1
|
Wu L, Niu Y, Ren B, Wang S, Song Y, Wang X, Zhao K, Yue Z, Li Y, Gao J. Naringenin Promotes Gastrointestinal Motility in Mice by Impacting the SCF/c-Kit Pathway and Gut Microbiota. Foods 2024; 13:2520. [PMID: 39200447 PMCID: PMC11353455 DOI: 10.3390/foods13162520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Naringenin (NRG) is widely found in citrus fruits and has anti-inflammatory, hypoglycemic, and immunomodulatory effects. Previous studies have shown that NRG promotes gastrointestinal motility in mice constipation models, but there are few systematic evaluations of its effects on normal animals. This study first clarified the promotive effects of NRG on gastric emptying and small intestine propulsion (p < 0.01). NRG can also regulate the release of gastrointestinal hormones, including enhancing gastrin (GAS) and motilin (MTL) (p < 0.01), while reducing vasoactive intestinal peptide (VIP) secretion (p < 0.01). Using NRG to stimulate the isolated stomach, duodenum, and colon showed similar promotive effects to those observed in vivo (p < 0.01). A Western blot analysis indicated that this effect may be mediated by increasing the expression of stem cell factor (SCF) and its receptor (c-Kit) in these three segments, thus regulating their downstream pathways. It is worth noting that NRG can also increase the proportion of beneficial bacteria (Planococcaceae, Bacteroides acidifaciens, Clostridia_UCG-014) in the intestine and reduce the quantity of harmful bacteria (Staphylococcus). These findings provide a new basis for the application of NRG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (L.W.); (Y.N.); (B.R.); (S.W.); (Y.S.); (X.W.); (K.Z.); (Z.Y.); (Y.L.)
| |
Collapse
|
2
|
Ding M, Bao Y, Liang H, Zhang X, Li B, Yang R, Zeng N. Potential mechanisms of formononetin against inflammation and oxidative stress: a review. Front Pharmacol 2024; 15:1368765. [PMID: 38799172 PMCID: PMC11116718 DOI: 10.3389/fphar.2024.1368765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Formononetin (FMNT) is a secondary metabolite of flavonoids abundant in legumes and graminaceous plants such as Astragalus mongholicus Bunge [Fabaceae; Astragali radix] and Avena sativa L. [Poaceae]. Astragalus is traditionally used in Asia countries such as China, Korea and Mongolia to treat inflammatory diseases, immune disorders and cancers. In recent years, inflammation and oxidative stress have been found to be associated with many diseases. A large number of pharmacological studies have shown that FMNT, an important bioactive metabolite of Astragalus, has a profoundly anti-inflammatory and antioxidant potential. This review focuses on providing comprehensive and up-to-date findings on the efficacy of the molecular targets and mechanisms involve of FMNT and its derivatives against inflammation and oxidative stress in both in vitro and in vivo. Relevant literature on FMNT against inflammation and oxidative stress between 2013 and 2023 were analyzed. FMNT has antioxidant and anti-inflammatory potential and shows mild or no toxicity in various diseases. Moreover, in the medical field, FMNT has shown potential in the prevention and treatment of cancers, neurological diseases, fibrotic diseases, allergic diseases, metabolic diseases, cardiovascular diseases, gastrointestinal diseases and autoimmune diseases. Thus, it is expected to be utilized in more products in the medical, food and cosmetic industries in the future.
Collapse
Affiliation(s)
- Meiling Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwen Bao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Du Y, Wang J, Jiang L, Li J, Li J, Ren C, Yan T, Jia Y, He B. Screening the components in multi-biological samples and the comparative pharmacokinetic study in healthy and depression model rats of Suan-Zao-Ren decoction combined with a network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117360. [PMID: 37898440 DOI: 10.1016/j.jep.2023.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suanzaoren Decoction (SZRD) is a classic traditional Chinese prescription, which has been commonly used for treating insomnia, depression and other nerve system diseases for a long time. AIM OF THIS STUDY The present study aimed to explore the metabolic profiles in multi-biological samples and pharmacokinetic mechanism between healthy and depression model rats combined with a network pharmacology approach after administration of SZRD. MATERIALS AND METHODS In our study, an ultra-high performance liquid chromatography (UPLC)-Q-Exactive Orbitrap Mass Spectrometry method was firstly used to study the prototype components and metabolites of SZRD in plasma, brain, urine, and feces between healthy and depressed rats. The possible metabolic pathways were also speculated. Then a network pharmacological study was conducted on the components in the plasma of model rats. According to the above components screened by network pharmacology and the other reported representative active components, the comparative pharmacokinetic study was established for the simultaneous determination of mangiferin, spinosin, ferulic acid, liquiritin, formononetin. magnoflorine and isoliquiritin between healthy and depression model rats. Finally, molecular docking was used to validate the binding affinity between key potential targets and active components in pharmacokinetics. RESULTS A total of 115 components were identified in healthy rats, and 101 components were identified in model rats. The prototype components and metabolites in plasma, brain, urine, and feces were also distinguished. The main metabolic pathways included phase I and phase II metabolic reactions, such as dehydrogenation, oxidation, hydroxylation, gluconaldehyde conjugation, glutathione conjugation and so on. These results provided a basis for the further study of antidepressive pharmacokinetic and pharmacological action in SZRD. Then, according to the degree value of network pharmacological study, it was predicted that 10 components and 10 core targets, which involved in the critical pathways such as neuroactive ligand-receptor interaction, cyclic adenosine monophosphate (cAMP) signaling pathway, serotonergic synapse, phosphatidylinositol-3 kinase (PI3K)-Akt signaling pathway, etc. Finally, the established pharmacokinetic method was successfully applied to compare the pharmacokinetic behavior of these 7 active components in plasma of healthy and depressed rats after oral administration of SZRD. It showed that except magnoflorine, the pharmacokinetic parameters of each component were different between healthy and depressed rats. Molecular docking analysis also indicated that the active compounds in pharmacokinetics could bind tightly to the key targets of network pharmacological study. CONCLUSION This study may provide important information for studying the action mechanism of SZRD in treating depression.
Collapse
Affiliation(s)
- Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Jiahong Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Li Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Jinyan Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Jiahe Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Chuang Ren
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| |
Collapse
|
4
|
Yang YZ, Wang T, Chen QL, Chen HB, He QS, Zhang YZ. Identification of the Metabolites of Both Formononetin in Rat Hepatic S9 and Ononin in Rat Urine Samples and Preliminary Network Pharmacology Evaluation of Their Main Metabolites. Molecules 2023; 28:7451. [PMID: 37959870 PMCID: PMC10648658 DOI: 10.3390/molecules28217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Astragalus membranaceus is a traditional Chinese medicine derived from the roots of Astragalus membranaceus (Fisch.) Bge., which has the same medicinal and edible uses in China. It is also widely used in daily food, and its pharmacological effects mainly include antioxidant effects, vascular softening effects, etc. Currently, it is increasingly widely used in the prevention of hypertension, cerebral ischemia, and stroke in China. Formononetin and its glucopyranoside (ononin) are both important components of Astragalus membranaceuss and may play important roles in the treatment of cardiovascular diseases (CVDs). This study conducted metabolic studies using formononectin and its glucopyranoside (ononin), including a combination of the in vitro metabolism of Formonetin using rat liver S9 and the in vivo metabolism of ononin administered orally to rats. Five metabolites (Sm2, 7, 9, 10, and 12) were obtained from the solution incubated with formononetin and rat hepatic S9 fraction using chromatographic methods. The structures of the five metabolites were elucidated as (Sm2)6,7,4'-trihydroxy-isoflavonoid; (Sm7)7,4'-dihydroxy-isoflavonoid; (Sm9)7,8,4'-trihydroxy-isoflavonoid; (Sm10)7,8,-dihydroxy-4'-methoxy-isoflavonoid; and (Sm12)6,7-dihydroxy-4'-methoxy- isoflavonoid on the basis of UV, NMR, and MS data. Totally, 14 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis, from which the formononetin was incubated with rat hepatic S9 fraction, and the main metabolic pathways were hydroxylation, demethylation, and glycosylation. Then, 21 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis from the urine samples from SD rats to which ononin was orally administered, and the main metabolic pathways were glucuronidation, hydroxylation, demethylation, and sulfonation. The main difference between the in vitro metabolism of formononetin and the in vivo metabolism of ononin is that ononin undergoes deglycemic transformation into Formonetin in the rat intestine, while Formonetin is absorbed into the bloodstream for metabolism, and the metabolic products also produce combined metabolites during in vivo metabolism. The six metabolites obtained from the aforementioned separation indicate the primary forms of formononetin metabolism, and due to their higher contents of similar isoflavone metabolites, they are considered the main active compounds that are responsible for pharmacological effects. To investigate the metabolites of the active ingredients of formononetin in the rat liver S9 system, network pharmacology was used to evaluate the cardiovascular disease (CVD) activities of the six primary metabolites that were structurally identified. Additionally, the macromolecular docking results of six main components and two core targets (HSP90AA1 and SRC) related to CVD showed that formononetin and its main metabolites, Sm10 and Sm12, may have roles in CVD treatment due to their strong binding activities with the HSP90AA1 receptor, while the Sm7 metabolite may have a role in CVD treatment due to its strong binding activity with the SRC receptor.
Collapse
Affiliation(s)
- Yu-Zhu Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (Q.-L.C.); (H.-B.C.)
| | - Tao Wang
- Departments of, Medicine and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G1Y6, Canada;
| | - Qi-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (Q.-L.C.); (H.-B.C.)
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (Q.-L.C.); (H.-B.C.)
| | - Qian-Song He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Ya-Zhou Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (Q.-L.C.); (H.-B.C.)
| |
Collapse
|
5
|
Liu Y, Dong Y, Shen W, DU J, Sun Q, Yang Y, Yin D. Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis. Chin J Nat Med 2023; 21:263-278. [PMID: 37120245 DOI: 10.1016/s1875-5364(23)60435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 05/01/2023]
Abstract
Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yahui Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| | - Jiahui DU
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| |
Collapse
|
6
|
Liu F, Pei S, Li W, Wang X, Liang C, Yang R, Zhang Z, Yao X, Fang D, Xie S, Sun H. Characterization of Formononetin Sulfonation in SULT1A3 Overexpressing HKE293 Cells: Involvement of Multidrug Resistance-Associated Protein 4 in Excretion of Sulfate. Front Pharmacol 2021; 11:614756. [PMID: 33510641 PMCID: PMC7836013 DOI: 10.3389/fphar.2020.614756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022] Open
Abstract
Formononetin is one of the main active compounds of traditional Chinese herbal medicine Astragalus membranaceus. However, disposition of formononetin via sulfonation pathway remains undefined. Here, expression-activity correlation was performed to identify the contributing of SULT1A3 to formononetin metabolism. Then the sulfonation of formononetin and excretion of its sulfate were investigated in SULT1A3 overexpressing human embryonic kidney 293 cells (or HKE-SULT1A3 cells) with significant expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 4 (MRP4). As a result, formononetin sulfonation was significantly correlated with SULT1A3 protein levels (r = 0.728; p < 0.05) in a bank of individual human intestine S9 fractions (n = 9). HEK-SULT1A3 cells catalyzed formononetin formation of a monosulfate metabolite. Sulfate formation of formononetin in HEK-SULT1A3 cell lysate followed the Michaelis-Menten kinetics (Vmax = 13.94 pmol/min/mg and Km = 6.17 μM). Reduced activity of MRP4 by MK-571 caused significant decrease in the excretion rate (79.1%–94.6%) and efflux clearance (85.3%–98.0%) of formononetin sulfate, whereas the BCRP specific inhibitor Ko143 had no effect. Furthermore, silencing of MRP4 led to obvious decrease in sulfate excretion rates (>32.8%) and efflux clearance (>50.6%). It was worth noting that the fraction of dose metabolized (fmet), an indicator of the extent of drug sulfonation, was also decreased (maximal 26.7%) with the knockdown of MRP4. In conclusion, SULT1A3 was of great significance in determining sulfonation of formononetin. HEK-SULT1A3 cells catalyzed formononetin formation of a monosulfate. MRP4 mainly contributed to cellular excretion of formononetin sulfate and further mediated the intracellular sulfonation of formononetin.
Collapse
Affiliation(s)
- Fanye Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Shuhua Pei
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Wenqi Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiao Wang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Chao Liang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Ruohan Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Zhansheng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin Yao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Songqiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int J Mol Sci 2019; 20:E1463. [PMID: 30909474 PMCID: PMC6470777 DOI: 10.3390/ijms20061463] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. Modern pharmacological studies and clinical practices indicate that AR possesses various biological functions, including potent immunomodulation, antioxidant, anti-inflammation and antitumor activities. To date, more than 200 chemical constituents have been isolated and identified from AR. Among them, isoflavonoids, saponins and polysaccharides are the three main types of beneficial compounds responsible for its pharmacological activities and therapeutic efficacy. After ingestion of AR, the metabolism and biotransformation of the bioactive compounds were extensive in vivo. The isoflavonoids and saponins and their metabolites are the major type of constituents absorbed in plasma. The bioavailability barrier (BB), which is mainly composed of efflux transporters and conjugating enzymes, is expected to have a significant impact on the bioavailability of AR. This review summarizes studies on the phytochemistry, pharmacology and pharmacokinetics on AR. Additionally, the use of AR as a personalized medicine based on the BB is also discussed, which may provide beneficial information to achieve a better and more accurate therapeutic response of AR in clinical practice.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Qing Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
8
|
Li Y, Song W, Ou X, Luo G, Xie Y, Sun R, Wang Y, Qi X, Hu M, Liu Z, Zhu L. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Determine the Disposition of Esculetin-7-O-Glucuronide and 4-Methylesculetin-7-O-Glucuronide. Drug Metab Dispos 2019; 47:203-214. [PMID: 30602435 DOI: 10.1124/dmd.118.083493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
Esculetin (ET)-7-O-glucuronide (ET-G) and 4-methylesculetin (4-ME)-7-O-glucuronide (4-ME-G) are the main glucuronide of ET and 4-ME, respectively. The disposition mediated by efflux transporters for glucuronide has significant influence on the pharmacokinetic profile and efficacy of bioactive compounds. In the current study, transporter gene knockout mice and Caco-2 cells were used to explore the effects of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) on the disposition of ET-G and 4-ME-G. After oral or i.v. administration of ET and 4-ME, the area under the plasma concentration-time curve from time 0 to the last data point or infinity values of ET, 4-ME, and their glucuronides (ET-G and 4-ME-G) were remarkably and significantly increased in most Bcrp1-/- and Mrp2-/- mice compared with those in wild-type FVB mice (P < 0.05). These results were accompanied with a significant increase of maximum plasma concentration values (P < 0.05). In Caco-2 monolayers, the efflux and clearance rates of ET-G and 4-ME-G were markedly reduced by the BCRP inhibitor Ko143 and MRP2 inhibitor MK571 on the apical side (P < 0.05). In an intestinal perfusion study, the excretion of ET-G was significantly decreased in perfusate and increased in plasma in Bcrp1-/- mice compared with those in wild-type FVB mice (P < 0.05). The 4-ME-G concentration was also decreased in the bile in transporter gene knockout mice. ET and 4-ME showed good permeability in both Caco-2 monolayers [apparent permeability (Papp ) ≥ 0.59 × 10-5 cm/s] and duodenum (Papp ≥ 1.81). In conclusion, BCRP and MRP2 are involved in excreting ET-G and 4-ME-G. ET and 4-ME are most likely absorbed via passive diffusion in the intestines.
Collapse
Affiliation(s)
- Yuhuan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Wenjie Song
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xiaojun Ou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Guangkuo Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Yushan Xie
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Rongjin Sun
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ming Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Lijun Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| |
Collapse
|
9
|
UGT-mediated metabolism plays a dominant role in the pharmacokinetic behavior and the disposition of morusin in vivo and in vitro. J Pharm Biomed Anal 2018; 154:339-353. [PMID: 29571132 DOI: 10.1016/j.jpba.2018.02.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Morusin is a prenylated flavone isolated from mulberry, the branch and root bark of various Morus species, which possesses diverse pharmacological activities. However, it lacks extensive studies about its absorption and disposition. This study investigated the pharmacokinetic behavior of morusin in rat, and its first-pass metabolism in situ. The metabolic pathway of morusin was further investigated by 12 human recombinant UDP-glucuronosyltransferases (UGTs), 9 CYP450s, as well as liver and intestinal microsomes. Four mono-glucuronide metabolites (M-5-G, M-4'-G, M-2'-G, and MII-2) were identified in rat intestine and bile by LC-MS/MS, while three of them were also detected in plasma (M-5-G, M-4'-G, and MII-2). M-4'-G was the principal conjugate. However, few CYP450 metabolites were found in rat intestine and bile. Only a small amount of MI-1 could be detected in rat plasma. UGT1A1, 1A3, 1A7, and 2B7 were the major contributors to morusin glucuronidation. Morusin exhibited substrate inhibition kinetic characteristics in all UGTs. Clearance rates of M-4'-G in HLM, RLM, UGT1A1, UGT1A3, and UGT2B7 were 137.02, 127.55, 32.54, 41.18, and 35.07 ml/min/mg, respectively. Besides, CYP3A5, 3A4, and 2C19 primarily contributed to the oxidative metabolism of morusin. The pharmacokinetic curves of morusin and its conjugates presented double peaks, showing that an enterohepatic recycling may exist. In conclusion, glucuronidation was confirmed to be the crucial metabolic pathway for morusin in vivo, and M-4'-G was the main metabolite.
Collapse
|
10
|
Jiang H, Yu J, Zheng H, Chen J, Wu J, Qi X, Wang Y, Wang X, Hu M, Zhu L, Liu Z. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Regulate the Disposition of Acacetin Glucuronides. Pharm Res 2017; 34:1402-1415. [PMID: 28421306 DOI: 10.1007/s11095-017-2157-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/31/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the mechanism responsible for acacetin glucuronide transport and the bioavailability of acacetin. METHODS Area under the curve (AUC), clearance (CL), half-life (T1/2) and other pharmacokinetic parameters were determined by the pharmacokinetic model. The excretion of acacetin glucuronides was evaluated by the mouse intestinal perfusion model and the Caco-2 cell model. RESULTS In pharmacokinetic studies, the bioavailability of acacetin in FVB mice was 1.3%. Acacetin was mostly exposed as acacetin glucuronides in plasma. AUC of acacetin-7-glucuronide (Aca-7-Glu) was 2-fold and 6-fold higher in Bcrp1 (-/-) mice and Mrp2 (-/-) mice, respectively. AUC of acacetin-5-glucuronide (Aca-5-Glu) was 2-fold higher in Bcrp1 (-/-) mice. In mouse intestinal perfusion, the excretion of Aca-7-Glu was decreased by 1-fold and 2-fold in Bcrp1 (-/-) and Mrp2 (-/-) mice, respectively. In Caco-2 cells, the efflux rates of Aca-7-Glu and Aca-5-Glu were significantly decreased by breast cancer resistance protein (BCRP) inhibitor Ko143 and multidrug resistance protein 2 (MRP2) inhibitor LTC4. The use of these inhibitors markedly increased the intracellular acacetin glucuronide content. CONCLUSIONS BCRP and MRP2 regulated the in vivo disposition of acacetin glucuronides. The coupling of glucuronidation and efflux transport was probably the primary reason for the low bioavailability of acacetin.
Collapse
Affiliation(s)
- Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haihui Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiamei Chen
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xinchun Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, 832008, China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Department of Pharmacological and Pharmaceutical Sciences College of Pharmacy, University of Houston, Houston, Texas, 77030, USA
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
11
|
Zhang Q, Zhu L, Gong X, Ruan Y, Yu J, Jiang H, Wang Y, Qi X, Lu L, Liu Z. Sulfonation Disposition of Acacetin: In Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4921-4931. [PMID: 28540728 DOI: 10.1021/acs.jafc.7b00854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acacetin, an important component of acacia honey, exerts extensive therapeutic effects on many cancers. However, the sulfonation disposition of acacetin has rarely been reported. Therefore, this study aimed to investigate the sulfonation disposition of acacetin systematically. The results showed that acacetin-7-sulfate was the main metabolite mediated primarily by sulfotransferases (SULT) 1A1. Dog liver S9 presented the highest formation rate of acacetin-7-sulfate. Compared with that in wild-type Friend Virus B (FVB) mice, plasma exposure of acacetin-7-sulfate decreased significantly in multidrug resistance protein 1 knockout (Mrp1-/-) mice vut increased clearly in breast cancer resistance protein knockout (Bcrp-/-) mice. In Caco-2 monolayers, the efflux and clearance of acacetin-7-sulfate was reduced distinctly by the BCRP inhibitor Ko143 on the apical side and by the MRP1 inhibitor MK571 on the basolateral side. In conclusion, acacetin sulfonation was mediated mostly by SULT1A1. Acacetin-7-sulfate was found to be transported mainly by BCRP and MRP1. Hence, SULT1A1, BCRP, and MRP1 are responsible for acacetin-7-sulfate exposure in vivo.
Collapse
Affiliation(s)
- Qisong Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - XiaoXiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| |
Collapse
|
12
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
13
|
Yu J, Zhu L, Zheng H, Gong X, Jiang H, Chen J, Li Y, Zheng H, Qi X, Wang Y, Hu M, Lu L, Liu Z. Sulfotransferases and Breast Cancer Resistance Protein Determine the Disposition of Calycosin in Vitro and in Vivo. Mol Pharm 2017; 14:2917-2929. [DOI: 10.1021/acs.molpharmaceut.7b00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jia Yu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haihui Zheng
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiamei Chen
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuhuan Li
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hongming Zheng
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaoxiao Qi
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ming Hu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Linlin Lu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- State Key Laboratory
of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
14
|
Cheng X, Yan H, Jia X, Zhang Z. Preparation and in vivo/in vitro evaluation of formononetin phospholipid/vitamin E TPGS micelles. J Drug Target 2016; 24:161-8. [PMID: 26325229 DOI: 10.3109/1061186x.2015.1064435] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To enhance the formononetin (FN) antitumor effect, we developed a passive targeting FN-contained formulation. FN-contained Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS)/phospholipid micelles were prepared by the solvent injection method. Particle size, polydispersity, zeta potential, encapsulation efficiency, drug release profile, and micelles morphology were evaluated and characterized by various methods including high-performance liquid chromatography, dynamic light scattering, and transmission electron microscopy. Cellular uptake of micelles was evaluated with fluorescence imaging coupled with HPLC method. Cytotoxicity of FN micelles and free FN was compared using MTT method. In vivo imaging was employed to assess the accumulation of DiR micelles and free DiR at tumor site. The antitumor effect of FN micelles was examined in tumor-bearing mice. The results showed that prepared FN micelles had an average particle diameter of 111.91 ± 5.82 nm with good stability. FN micelles enhanced the cellular uptake and improved cell cytotoxicity than free FN. Furthermore, DiR micelles quickly accumulated at the tumor site than free DiR. FN micelles significantly improved tumor inhibition rate compared to that observed with free FN in tumor-bearing mice with great biosafety. Thus, FN micelles demonstrated a clear treatment advantage and provided an ideal drug administration system to improve the antitumor effect of FN.
Collapse
|
15
|
Shi J, Zheng H, Yu J, Zhu L, Yan T, Wu P, Lu L, Wang Y, Hu M, Liu Z. SGLT-1 Transport and Deglycosylation inside Intestinal Cells Are Key Steps in the Absorption and Disposition of Calycosin-7-O- -D-Glucoside in Rats. Drug Metab Dispos 2015; 44:283-96. [DOI: 10.1124/dmd.115.067009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022] Open
|
16
|
Shi J, Zheng L, Lin Z, Hou C, Liu W, Yan T, Zhu L, Wang Y, Lu L, Liu Z. Study of pharmacokinetic profiles and characteristics of active components and their metabolites in rat plasma following oral administration of the water extract of Astragali radix using UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:183-194. [PMID: 25917840 DOI: 10.1016/j.jep.2015.04.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/16/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali radix is one of the well-known traditional Chinese herbal medicine, and possesses various biological functions, such as hepatoprotective and anticancer. In present study, to investigate the metabolism and pharmacokinetics of the major constituents of A. radix, a sensitive ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-MS/MS) method with shorter chromatographic running time was developed and validated for simultaneous quantification of formononetin, ononin, calycosin, calycosin-7-β-glucoside, astragaloside IV and their glucuronide metabolites in rat plasma after oral administration of water extract of A. radix at two different doses. MATERIALS AND METHODS The chromatographic separation was achieved on a C18 column with gradient elution by using a mixture of 0.1% formic acid aqueous solution and acetonitrile as the mobile phase at a flow rate of 0.3mL/min. A tandem mass spectrometric detection was conducted using multiple-reaction monitoring (MRM) via electrospray ionization (ESI) source in positive ionization mode. Samples were pre-treated by a single-step protein precipitation with methanol, and erlotinib was used as internal standard (IS). RESULTS The current UPLC-MS/MS assay was validated for linearity, intra-day and inter-day precisions, accuracy, extraction recovery, matrix effects and stability. The lowest limit of quantifications (LLOQ) were 1ng/mL for all analytes. After oral administration, the plasma concentrations of the glucuronides, especially calycosin-3'-glucuronide, were much higher than the parent compounds. The mean half-life (t1/2) was between 1 and 5h, and the metabolites were eliminated faster than the parent constituents. The median (range) time to reach maximum plasma concentration (Tmax) was between 0.5 and 1h. CONCLUSIONS This is the first study of the pharmacokinetic study of bioactive compounds and their glucuronides in male rat plasma after oral administration of water extract of A. radix. The results demonstrated the biotransformation between the bioactive isoflavonoids and their glucuronides was extensive in rats and provided a significant basis for better understanding the absorption and metabolism mechanism of A. radix. Furthermore, this study could suggest that future studies should focus on the metabolites and biotransformation between the bioactive constituents when conducting a drug efficacy study.
Collapse
Affiliation(s)
- Jian Shi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Liang Zheng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhufen Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chuqi Hou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Wenqin Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Tongmeng Yan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
17
|
High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism. Br J Nutr 2015; 114:169-80. [PMID: 26083965 DOI: 10.1017/s0007114515001671] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study aims to determine the permeability of naringenin in the stomach, small intestine and colon, to evaluate intestinal and hepatic first-pass metabolism, and to study the influence of the microbiota on the absorption and disposition of naringenin (3.5 μg/ml). A single-pass intestinal perfusion model in mice (n 4-6) was used. Perfusate (every 10 min), blood (at 60 min) and bile samples were taken and analysed to evaluate the presence of naringenin and its metabolites by an HPLC-MS/MS method. To study the influence of the microbiota on the bioavailability of naringenin, a group of animals received the antibiotic rifaximin (50 mg/kg per d) for 5 d, and naringenin permeability was determined in the colon. Naringenin was absorbed well throughout the gastrointestinal tract but mainly in the small intestine and colon (mean permeability coefficient 7.80 (SD 1.54) × 10(-4) cm/s and 5.49 (SD 1.86) × 10(-4) cm/s, respectively), at a level similar to the highly permeable compound, naproxen (6.39 (SD 1.23) × 10(-4) cm/s). According to the high amounts of metabolites found in the perfusate compared to the bile and plasma, naringenin underwent extensive intestinal first-pass metabolism, and the main metabolites excreted were sulfates (84.00 (SD 12.14)%), followed by glucuronides (8.40 (SD 5.67)%). Phase II metabolites were found in all perfusates from 5 min of sampling. Mice treated with rifaximin showed a decrease in naringenin permeability and in the amounts of 4-hydroxyhippuric acid and hippuric acid in the lumen. Naringenin was well absorbed throughout the gastrointestinal tract and its poor bioavailability was due mainly to high intestinal metabolism.
Collapse
|
18
|
Ge S, Gao S, Yin T, Hu M. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2902-2910. [PMID: 25715997 DOI: 10.1021/jf5056979] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chrysin, a flavone found in many plants, is also available as a dietary supplement because of its reported anticancer activities. However, its bioavailability is very poor due to extensive phase II metabolism. The purpose of this study was to develop an UPLC-MS/MS method to simultaneously quantify chrysin and its phase II metabolites, and to determine its pharmacokinetics in FVB wild-type and Bcrp knockout (Bcrp1 -/-) mice. In addition, the role of BCRP in chrysin phase II disposition was further investigated in Caco-2 cells. The results showed that our sensitive and reproducible UPLC-MS/MS method was successfully applied to the pharmacokinetic study of chrysin in wild-type and Bcrp1 (-/-) FVB mice after oral administration (20 mg/kg). Although there was no significant change in systemic exposure of chrysin and its metabolites, it was found that the Tmax for chrysin glucuronide was significantly shorter (p < 0.01) in Bcrp1-deficient mice. Furthermore, it was shown that inhibition of BCRP by Ko143 significantly reduced the efflux of chrysin sulfate in Caco-2 cells. In conclusion, BCRP had significant but less than expected impact on pharmacokinetics of chrysin and its conjugates, which were determined using a newly developed and validated LC-MS/MS method.
Collapse
Affiliation(s)
- Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Song Gao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| |
Collapse
|
19
|
Dai P, Zhu L, Luo F, Lu L, Li Q, Wang L, Wang Y, Wang X, Hu M, Liu Z. Triple Recycling Processes Impact Systemic and Local Bioavailability of Orally Administered Flavonoids. AAPS JOURNAL 2015; 17:723-36. [PMID: 25762448 DOI: 10.1208/s12248-015-9732-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/02/2015] [Indexed: 11/30/2022]
Abstract
Triple recycling (i.e., enterohepatic, enteric and local recycling) plays a central role in governing the disposition of phenolics such as flavonoids, resulting in low systemic bioavailability but higher gut bioavailability and longer than expected apparent half-life. The present study aims to investigate the coexistence of these recycling schemes using model bioactive flavonoid tilianin and a four-site perfused rat intestinal model in the presence or absence of a lactase phlorizin hydrolase (LPH) inhibitor gluconolactone and/or a glucuronidase inhibitor saccharolactone. The result showed that tilianin could be metabolized into tilianin glucuronide, acacetin, and acacetin glucuronide, which are excreted into the bile and luminal perfusate (highest in the duodenum and lowest in the colon). Gluconolactone (20 mM) significantly reduced the absorption of tilianin and the enteric and biliary excretion of acacetin glucuronide. Saccharolactone (0.1 mM) alone or in combination of gluconolactone also remarkably reduced the biliary and intestinal excretion of acacetin glucuronide. Acacetin glucuronides from bile or perfusate were rapidly hydrolyzed by bacterial β-glucuronidases to acacetin, enabling enterohepatic and enteric recycling. Moreover, saccharolactone-sensitive tilianin disposition and glucuronide deconjugation, which was more active in the small intestine than the colon, points to the small intestinal origin of the deconjugation enzyme and supports the presence of local recycling scheme. In conclusion, our studies have demonstrated triple recycling of a bioactive phenolic (i.e., a model flavonoid), and this recycling may have an impact on the site and duration of polyphenols pharmacokinetics in vivo.
Collapse
Affiliation(s)
- Peimin Dai
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ye L, Lu L, Li Y, Zeng S, Yang X, Chen W, Feng Q, Liu W, Tang L, Liu Z. Potential role of ATP-binding cassette transporters in the intestinal transport of rhein. Food Chem Toxicol 2013; 58:301-5. [DOI: 10.1016/j.fct.2013.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/06/2013] [Accepted: 04/24/2013] [Indexed: 01/01/2023]
|
21
|
Correia-da-Silva M, Sousa E, Pinto MMM. Emerging sulfated flavonoids and other polyphenols as drugs: nature as an inspiration. Med Res Rev 2013; 34:223-79. [PMID: 23553315 DOI: 10.1002/med.21282] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nature uses sulfation of endogenous and exogenous molecules mainly to avoid potential toxicity. The growing importance of natural sulfated molecules, as modulators of a number of physiological and pathological processes, has inspired the synthesis of non-natural sulfated scaffolds. Until the 1990s, the synthesis of sulfated small molecules was almost restricted to derivatives of flavonoids and aimed mainly at structure elucidation and plant biosynthesis studies. Currently, the synthesis of this type of compounds concerns structurally diverse scaffolds and is aimed at the development of potential drugs and/or exploitation of the biological effects of sulfated metabolites. Some important hit compounds are emerging from sulfated flavonoids and other polyphenols mainly as anticoagulant and antiviral agents. When compared with polymeric macromolecules such as heparins, sulfated small molecules could be of value in therapeutics due to their hydrophobic nature that can contribute to improve the bioavailability. This review highlights the synthetic approaches that were applied to obtain monosulfated or polysulfated phenolic small molecules and compiles the diverse biological activities already reported for this type of derivatives. Toxicity and pharmacokinetic parameters of this emerging class of derivatives will also be considered, emphasizing their value for therapeutic applications.
Collapse
Affiliation(s)
- Marta Correia-da-Silva
- Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | | | | |
Collapse
|
22
|
Ye L, Yang X, Yang Z, Gao S, Yin T, Liu W, Wang F, Hu M, Liu Z. The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells. Toxicol Lett 2012. [PMID: 23200901 DOI: 10.1016/j.toxlet.2012.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aconitum alkaloids including aconitine (AC), mesaconitine (MA), hypaconitine (HA), are highly toxic. Their hydrolysates, such as benzoylaconine (BAC), benzoylmesaconine (BMA), benzoylhypaconine (BHA), aconine, and mesaconine, are considerably less toxic. Efflux transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein isoform 2 (MRP2), act as a first line of defence and play key roles in toxicity prevention. The aim of the present study was to determine the role of efflux transporters in the transport of Aconitum alkaloids using cultured Caco-2, MDR1-MDCKII and BCRP-MDCKII cells. Bidirectional transport assays of the Aconitum alkaloids were performed with or without P-gp (cyclosporine A and verapamil), BCRP (Ko143) and MRP2 (MK571) inhibitors. The efflux ratios (Er) of AC, MA, and HA in Caco-2 cells were 34.6±4.2, 29.7±2.1, and 15.6±2.1, respectively; those of BAC, BMA, and BHA were approximately 4, and those of aconine and mesaconine were equal to 1. The Er values of AC, MA, and HA in MDR1-MDCKII and BCRP-MDCKII cells were significantly higher than those in parental MDCKII cells. Taken together the results of Er values and intracellular amounts in the presence of inhibitors, P-gp and BCRP were involved in the transport of AC, MA and HA; and MRP2 might transport AC, MA, HA, BAC, BMA and BHA.
Collapse
Affiliation(s)
- Ling Ye
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Single-pass intestinal perfusion to establish the intestinal permeability of model drugs in mouse. Int J Pharm 2012; 436:472-7. [DOI: 10.1016/j.ijpharm.2012.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 01/08/2023]
|
24
|
Inhibition of the MRP1-mediated transport of the menadione-glutathione conjugate (thiodione) in HeLa cells as studied by SECM. Proc Natl Acad Sci U S A 2012; 109:11522-7. [PMID: 22679290 DOI: 10.1073/pnas.1201555109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress induced in live HeLa cells by menadione (2-methyl-1,4-napthaquinone) was studied in real time by scanning electrochemical microscopy (SECM). The hydrophobic molecule menadione diffuses through a living cell membrane where it is toxic to the cell. However, in the cell it is conjugated with glutathione to form thiodione. Thiodione is then recognized and transported across the cell membrane via the ATP-driven MRP1 pump. In the extracellular environment, thiodione was detected by the SECM tip at levels of 140, 70, and 35 µM upon exposure of the cells to menadione concentrations of 500, 250, and 125 µM, respectively. With the aid of finite element modeling, the kinetics of thiodione transport was determined to be 1.6 10(-7) m/s, about 10 times faster than menadione uptake. Selective inhibition of these MRP1 pumps inside live HeLa cells by MK571 produced a lower thiodione concentration of 50 µM in presence of 500 µM menadione and 50 µM MK571. A similar reduced (50% drop) thiodione efflux was observed in the presence of monoclonal antibody QCRL-4, a selective blocking agent of the MRP1 pumps. The reduced thiodione flux confirmed that thiodione was transported by MRP1, and that glutathione is an essential substrate for MRP1-mediated transport. This finding demonstrates the usefulness of SECM in quantitative studies of MRP1 inhibitors and suggests that monoclonal antibodies can be a useful tool in inhibiting the transport of these MDR pumps, and thereby aiding in overcoming multidrug resistance.
Collapse
|
25
|
Tang L, Feng Q, Zhao J, Dong L, Liu W, Yang C, Liu Z. Involvement of UDP-glucuronosyltranferases and sulfotransferases in the liver and intestinal first-pass metabolism of seven flavones in C57 mice and humans in vitro. Food Chem Toxicol 2012; 50:1460-7. [DOI: 10.1016/j.fct.2012.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/29/2022]
|
26
|
Tang L, Zhou J, Yang CH, Xia BJ, Hu M, Liu ZQ. Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3223-33. [PMID: 22352802 PMCID: PMC3409651 DOI: 10.1021/jf201987k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sulfation and glucuronidation are the principal metabolic pathways of flavonoids, and extensive phase II metabolism is the main reason for their poor bioavailabilities. The purpose of this study was to compare the similarities and differences in the positional preference of glucuronidation versus sulfation in the mouse liver S9 fraction. The conjugating rates of seven monohydroxyflavones (HFs) (i.e., 2'-, 3'-, 4'-, 3-, 5-, 6-, and 7-HF), and five dihydroxyflavones (diHFs) (i.e., 6,7-, 4',7-, 3,7-, 5,7-, and 3,4'-diHF) were determined in three separate enzymatic reaction systems: (A) sulfation only, (B) glucuronidation only, or (C) simultaneous sulfation and glucuronidation (i.e., Sult-Ugt coreaction). In general, glucuronidation rates were much faster than sulfation rates. Among the HFs, 7-HF was the best substrate for both conjugation reactions, whereas 3-HF was rapidly glucuronidated but was not sulfated. As a result, the rank order of sulfation was very different from that of glucuronidation. Among the diHFs, regiospecific glucuronidation was limited to 7-OH and 3-OH positions, whereas regiospecific sulfation was limited to 7-OH and 4'-OH positions. Other positions (i.e., 6-OH and 5-OH) in diHFs were not conjugated. The positional preferences were essentially maintained in a Sult-Ugt coreaction system, although sulfation was surprisingly enhanced. Lastly, sulfation and glucuronidation displayed different regiospecific- and substrate-dependent characteristics. In conclusion, glucuronidation and sulfation shared the same preference for 7-OH position (of flavonoids) but displayed unique preference in other positions in that glucuronidation preferred the 3-OH position whereas sulfation preferred the 4'-OH position.
Collapse
Affiliation(s)
- Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Juan Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Cai-Hua Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Bi-Jun Xia
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
| | - Ming Hu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX77030, USA
- Corresponding authors: Ming Hu, Ph.D. 1441 Moursund Street, Department of Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030. Tel: (713)-795-8320. or Zhongqiu Liu, Ph.D. 1838 North Guangzhou Avenue, Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China, 510515. Tel: +86-20-61648596,
| | - Zhong-Qiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China, 510515
- Corresponding authors: Ming Hu, Ph.D. 1441 Moursund Street, Department of Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030. Tel: (713)-795-8320. or Zhongqiu Liu, Ph.D. 1838 North Guangzhou Avenue, Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China, 510515. Tel: +86-20-61648596,
| |
Collapse
|
27
|
Fan Y, Tang L, Zhou J, Feng Q, Xia B, Liu Z. Simultaneous Determination of Sulfation and Glucuronidation of Flavones in FVB Mouse Intestinein Vitroandin Vivo. J Appl Toxicol 2011; 33:273-80. [DOI: 10.1002/jat.1737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Yanfang Fan
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Juan Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Qian Feng
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Bijun Xia
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| |
Collapse
|
28
|
Yang Z, Gao S, Wang J, Yin T, Teng Y, Wu B, You M, Jiang Z, Hu M. Enhancement of oral bioavailability of 20(S)-ginsenoside Rh2 through improved understanding of its absorption and efflux mechanisms. Drug Metab Dispos 2011; 39:1866-72. [PMID: 21757611 PMCID: PMC11024865 DOI: 10.1124/dmd.111.040006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/13/2011] [Indexed: 01/15/2023] Open
Abstract
The development of 20(S)-ginsenoside Rh2 (Rh2s) as a chemoprevention agent is limited by its low oral bioavailability. The goals of this study were to determine the mechanisms responsible for its poor oral absorption and to improve its bioavailability by overcoming the barrier to its absorption. Comprehensive studies were conducted using the following models: 1) monolayers of Caco-2, parental, and multidrug resistance gene (MDR1)-overexpressing Madin-Darby canine kidney II (MDCKII) cells; 2) pharmacokinetics in wild-type (WT) FVB, MDR1a/b knockout [MDR1a/b⁻/⁻] FVB, and A/J mice; and 3) intestinal perfusion in WT, MDR1a/b⁻/⁻ FVB, and A/J mice. Two P-glycoprotein (P-gp) inhibitors, verapamil and cyclosporine A, substantially decreased the efflux ratio of Rh2s from 28.5 to 1.0 and 1.2, respectively, in Caco-2 cells. The intracellular concentrations of Rh2s were also significantly increased (2.3- and 3.9-fold) in the presence of inhibitors. Similar results were obtained when transcellular transport of Rh2s were determined using MDR1-overexpressing MDCKII cells in the absence or presence of cyclosporine A. Compared with WT mice, the plasma C(max) and AUC₀-∞ of Rh2s were substantially increased by 17- and 23-fold in MDR1a/b⁻/⁻ FVB mice, respectively. In the A/J mice, the oral bioavailability of Rh2s (0.94% at 5 mg/kg and 0.52% at 20 mg/kg) was substantially increased by P-gp inhibitor to 33.18 and 27.14%, respectively. As expected, deletion or inhibition of P-gp significantly increased absorption and steady-state plasma concentration of Rh2s in a mouse intestinal perfusion model. In conclusion, Rh2s is a good substrate of P-gp, and inhibition of P-gp can significantly enhance its oral bioavailability.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu B, Kulkarni K, Basu S, Zhang S, Hu M. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci 2011; 100:3655-81. [PMID: 21484808 DOI: 10.1002/jps.22568] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 12/11/2022]
Abstract
Glucuronidation mediated by UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates efficient elimination of numerous endobiotics and xenobiotics, including phenolics. UGT genetic deficiency and polymorphisms or inhibition of glucuronidation by concomitant use of drugs are associated with inherited physiological disorders or drug-induced toxicities. Moreover, extensive glucuronidation can be a barrier to oral bioavailability as the first-pass glucuronidation (or premature clearance by UGTs) of orally administered agents usually results in the poor oral bioavailability and lack of efficacies. This review focused on the first-pass glucuronidation of phenolics including natural polyphenols and pharmaceuticals. The complexity of UGT-mediated metabolism of phenolics is highlighted with species-, gender-, organ- and isoform-dependent specificity, as well as functional compensation between UGT1A and 2B subfamily. In addition, recent advances are discussed with respect to the mechanisms of enzymatic actions, including the important properties such as binding pocket size and phosphorylation requirements.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
30
|
Gao S, Hu M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev Med Chem 2010; 10:550-67. [PMID: 20370701 DOI: 10.2174/138955710791384081] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 12/21/2022]
Abstract
Phenolics including many polyphenols and flavonoids have the potentials to become chemoprevention and chemotherapy agents. However, poor bioavailability limits their biological effects in vivo. This paper reviews the factors that affect phenolics absorption and their bioavailabilities from the points of view of their physicochemical properties and disposition in the gastrointestinal tract. The up-to-date research data suggested that solubility and metabolism are the primary reasons that limit phenolic aglycones' bioavailability although stability and poor permeation may also contribute to the poor bioavailabilities of the glycosides. Future investigations should further optimize phenolics' bioavailabilities and realize their chemopreventive and chemotherapeutic effects in vivo.
Collapse
Affiliation(s)
- Song Gao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | | |
Collapse
|
31
|
Zhu W, Xu H, Wang SWJ, Hu M. Breast cancer resistance protein (BCRP) and sulfotransferases contribute significantly to the disposition of genistein in mouse intestine. AAPS JOURNAL 2010; 12:525-36. [PMID: 20582579 DOI: 10.1208/s12248-010-9209-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 05/24/2010] [Indexed: 11/30/2022]
Abstract
The low bioavailability of genistein has impeded its development into a therapeutic agent. Our earlier studies indicate that glucuronidation is one of the major barriers to genistein oral bioavailability. This study will determine how sulfotransferases and efflux transporters affect its intestinal disposition. A rodent intestinal perfusion model and S9 fractions were used. Sulfate excretion rates were comparable to glucuronide excretion in mouse small intestine but significantly higher than glucuronide excretion in mouse colon, which is different from rat intestinal disposition but similar to disposition in Caco-2 cells. To define efflux transporter(s) involved in sulfate excretion, two organic anion inhibitors (estrone sulfate and dihydroepiandrosterone sulfate) or a multidrug resistance protein inhibitor (MK-571) were used but neither was able to decrease the excretion of genistein sulfates. In contrast, the excretion of genistein sulfate decreased substantially (>90%) in small intestine of breast cancer resistance protein (BCRP) knockout mice and became undetectable in colon of the knockout mice. The excretion rates of genistein glucuronide in the small intestine of BCRP knockout mice were also significant decreased (78%). This study shows clearly that BCRP facilitates the cellular genistein sulfate excretion by removing sulfates to prevent their backward hydrolysis and to limit substrate inhibition, indicating that BCRP plays a dominant role in genistein sulfate excretion and a significant role in genistein glucuronide excretion in the mouse intestine.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
32
|
Yang Z, Zhu W, Gao S, Xu H, Wu B, Kulkarni K, Singh R, Tang L, Hu M. Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC-MS/MS method: Application to an oral bioavailability study of genistein in mice. J Pharm Biomed Anal 2010; 53:81-9. [PMID: 20378296 DOI: 10.1016/j.jpba.2010.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/07/2010] [Accepted: 03/08/2010] [Indexed: 11/26/2022]
Abstract
The purpose of this research was to develop a sensitive and reproducible UPLC-MS/MS method to simultaneously quantify genistein, genistein-7-O-glucuronide (G-7-G), genistein-4'-O-glucuronide (G-4'-G), genistein-4'-O-sulfate (G-4'-S) and genistein-7-O-sulfate (G-7-S) in mouse blood samples. After the method was fully validated over a wide linear range, it was applied to quantify the levels of genistein and its metabolites in a mouse bioavailability study. The linear response range was 19.5-10,000 nM for genistein, 12.5-3200 nM for G-7-G, 20-1280 nM for G-4'-G, 1.95-2000 nM for G-4'-S, and 1.56-3200 nM for G-7-S, respectively. The lower limit of quantification (LLOQ) was 4.88, 6.25, 5, 0.98 and 0.78 nM for genistein, G-7-G, G-4'-G, G-4'-S and G-7-S, respectively. Only 20 microl mouse blood sample from i.v. and p.o. administration were needed for analysis because of the high sensitivity of the method. The intra- and inter-day variance is less than 15% and accuracy is within 85-115%. The analysis was finished within 4.5 min. The applicability of this assay was demonstrated and successfully applied for bioavailability study in FVB mouse after i.v. and p.o. administration of 20mg/kg of genistein, and its oral bioavailability was approximately 23.4%.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang SWJ, Kulkarni KH, Tang L, Wang JR, Yin T, Daidoji T, Yokota H, Hu M. Disposition of flavonoids via enteric recycling: UDP-glucuronosyltransferase (UGT) 1As deficiency in Gunn rats is compensated by increases in UGT2Bs activities. J Pharmacol Exp Ther 2009; 329:1023-31. [PMID: 19264971 DOI: 10.1124/jpet.108.147371] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flavonoids have poor bioavailabilities largely because of metabolism via UDP-glucuronosyltransferases (UGTs). This study aims to further understand the functions of UGT in metabolizing genistein and apigenin, two compounds metabolized more extensively in the gut than in the liver. Because Gunn rats are deficient in UGT1As, we determined whether this deficiency would result in less flavonoid glucuronidation, using rat intestinal perfusion model and microsomes prepared from rat liver and intestine. In yeast-expressed rat UGT isoforms, rat UGT1A isoforms (especially UGT1A7) were mainly responsible for flavonoid metabolism. In perfusion studies, the two flavonoids were rapidly absorbed at comparable rates, but the intestinal excretions of glucuronides in Gunn rats compared with Wistar rats were not only comparable for genistein but also were higher (p < 0.05) for apigenin, suggesting up-regulation of UGT isoforms in Gunn rats. To determine the possible compensatory UGT isoforms, we first verified that UGT1A activities were significantly lower (p < 0.05) in Gunn rats by using UGT1A-specific probes 7-ethyl-10-hydroxycamptothecin (SN-38) and prunetin. We then demonstrated using UGT2B probes testosterone, ezetimibe, and indomethacin that UGT2B activities were usually significantly higher in Gunn rats. In addition, testosterone was metabolized much faster in liver microsomes than in intestinal microsomes, and in microsomes prepared from Gunn rats compared with Wistar rats. In conclusion, flavonoids are efficiently metabolized by UGT1A-deficient Gunn rats because of compensatory up-regulation of intestinal UGT2Bs and hepatic anion efflux transporters, which increases their disposition and limits their oral bioavailabilities.
Collapse
Affiliation(s)
- Stephen W J Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund St., University of Houston, Houston, TX 77204, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
A major challenge associated with the development of chemopreventive polyphenols is the lack of bioavailability in vivo, which are primarily the result of coupled metabolic activities of conjugating enzymes and efflux transporters. These coupling processes are present in disposition tissues and organs in mammals and are efficient for the purposes of drug metabolism, elimination and detoxification. Therefore, it was expected that these coupling processes represent a significant barrier to the oral bioavailabilities of polyphenols. In various studies of this coupling process, it was identified that various conjugating enzymes such as uridine 5'-diphosphate-glucuronosyltransferase and sulfotransferase are capable of producing very hydrophilic metabolites of polyphenols, which cannot diffuse out of the cells and needs the action of efflux transporters to pump them out of the cells. Additional studies have shown that efflux transporters, such as multi-drug resistance-associated protein 2, breast cancer-resistant protein and the organic anion transporters, appear to serve as the gate keeper when there is an excess capacity to metabolise the compounds. These efflux transporters may also act as the facilitator of metabolism when there is a product/metabolite inhibition. For polyphenols, these coupled processes enable a duo recycling scheme of enteric and enterohepatic recycling, which allows the polyphenols to be reabsorbed and results in longer than expected apparent plasma half-lifes for these compounds and their conjugates. Because the vast majority of polyphenols in plasma are hydrophilic conjugates, more research is needed to determine if the metabolites are active or reactive, which will help explain their mechanism of actions.
Collapse
Affiliation(s)
- Zhongqiu Liu
- Hong Kong Baptist University, School of Chinese Medicine, Hong Kong, China
| | | |
Collapse
|
35
|
Liu ZQ, Jiang ZH, Liu L, Hu M. Mechanisms responsible for poor oral bioavailability of paeoniflorin: Role of intestinal disposition and interactions with sinomenine. Pharm Res 2006; 23:2768-80. [PMID: 17063398 DOI: 10.1007/s11095-006-9100-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To determine the intestinal disposition mechanisms of paeoniflorin, a bioactive glucoside, and to investigate the mechanisms by which sinomenine increases paeoniflorin bioavailability. MATERIALS AND METHODS A single-pass "four-site" rat intestinal perfusion model and a cultured Caco-2 cell model were employed. RESULTS In both model systems, paeoniflorin permeability was poor. In the perfusion model, maximal absorption and metabolism of paeoniflorin occurred in duodenum and jejunum, which were significantly decreased by a glucosidase inhibitor gluconolactone (20 mM). On the other hand, paeoniflorin absorption in terminal ileum increased significantly but its metabolism did not in the presence of sinomenine and cyclosporine A. In the Caco-2 cell model, paeoniflorin was transported 48-fold slower than its aglycone (paeoniflorigenin). Absorptive transport of paeoniflorin was significantly (p < 0.05) increased by sinomenine (38%), verapamil (27%), and cyclosporine A (41%), whereas its secretory transport was significantly (p < 0.01) decreased by sinomenine (50%), verapamil (35%) and cyclosporine A (37%). In contrast, MRP inhibitors MK-571 and leukotriene C4 did not affect transport of paeoniflorin. Lastly, sinomenine was also shown to significantly increase the absorptive transport of digoxin (a prototypical p-glycoprotein substrate) and to significantly decrease its secretory transport. CONCLUSIONS Poor permeation, p-gp-mediated efflux, and hydrolysis via a glucosidase contributed to the poor bioavailability of paeoniflorin. Sinomenine (an inhibitor of the p-gp-mediated digoxin efflux) increased paeoniflorin's bioavailability via the inhibition of p-gp-mediated paeoniflorin efflux in the intestine.
Collapse
Affiliation(s)
- Zhong Qiu Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|