1
|
Silva EB, Jiang Z, Liu C, Fajtová P, Teixeira TR, de Castro Fiorini Maia G, Liu LJ, El‐Sakkary N, Skinner DE, Syed A, Wang SC, Caffrey CR, O'Donoghue AJ. Enhancing schistosomiasis drug discovery approaches with optimized proteasome substrates. Protein Sci 2025; 34:e70180. [PMID: 40411405 PMCID: PMC12102734 DOI: 10.1002/pro.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/30/2025] [Accepted: 05/09/2025] [Indexed: 05/26/2025]
Abstract
Schistosomiasis, a neglected tropical disease infecting over 200 million people globally, has limited therapeutic options. The 20S proteasome is a validated drug target for many parasitic infections, including those caused by Plasmodium and Leishmania, and we have previously demonstrated antischistosomal activity with inhibitors targeting Schistosoma mansoni 20S proteasome (Sm20S). Here, we developed optimized subunit-specific substrates for Sm20S based on data generated by Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS). These substrates exhibit 9-fold or more improved activity compared to traditional human constitutive 20S proteasome (c20S) substrates. The optimized substrates also eliminated the need for extensive Sm20S purification, as robust enzyme activity could be detected in parasite extracts following an ammonium sulfate precipitation step. Finally, we show that the substrate and inhibition profiles for the 20S proteasome from the three medically important schistosome species are similar. This suggests that Sm20S-focused inhibitor development can be efficiently extrapolated to the other schistosome species, leading to significant time and resource savings.
Collapse
Affiliation(s)
- Elany B. Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Biochemistry & ImmunologyFederal University of Minas GeraisBelo HorizonteBrazil
| | - Zhenze Jiang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Pavla Fajtová
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Thaiz R. Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Lawrence J. Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Nelly El‐Sakkary
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Danielle E. Skinner
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ali Syed
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Steven C Wang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Anthony J. O'Donoghue
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
2
|
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez ER, Turmon AC, Cao J, Backus KM. Delineating cysteine-reactive compound modulation of cellular proteostasis processes. Nat Chem Biol 2025; 21:693-705. [PMID: 39448844 DOI: 10.1038/s41589-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Covalent modulators and covalent degrader molecules have emerged as drug modalities with tremendous therapeutic potential. Toward realizing this potential, mass spectrometry-based chemoproteomic screens have generated proteome-wide maps of potential druggable cysteine residues. However, beyond these direct cysteine-target maps, the full scope of direct and indirect activities of these molecules on cellular processes and how such activities contribute to reported modes of action, such as degrader activity, remains to be fully understood. Using chemoproteomics, we identified a cysteine-reactive small molecule degrader of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host protein disulfide isomerases. This degrader activity was further potentiated by generalized electrophile-induced global protein ubiquitylation, proteasome activation and widespread aggregation and depletion of host proteins, including the formation of stress granules. Collectively, we delineate the wide-ranging impacts of cysteine-reactive electrophilic compounds on cellular proteostasis processes.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Cindy Truong
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Emil R Dominguez
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexandra C Turmon
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Jian Cao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Dutta S, Hensel J, Scott A, Mohallem R, Rossitto LAM, Khan HF, Johnson T, Ferreira CR, Marmolejo JF, Chen X, Jayant K, Aryal UK, Volpicelli-Daley L, Rochet JC. Synaptic phosphoproteome modifications and cortical circuit dysfunction are linked to the early-stage progression of alpha-synuclein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634820. [PMID: 39896549 PMCID: PMC11785254 DOI: 10.1101/2025.01.24.634820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical dysfunction is increasingly recognized as a major contributor to the non-motor symptoms associated with Parkinson's disease (PD) and other synucleinopathies. Although functional alterations in cortical circuits have been observed in preclinical PD models, the underlying molecular mechanisms are unclear. To bridge this knowledge gap, we investigated tissue-level changes in the cortices of rats and mice treated with alpha-synuclein (aSyn) seeds using a multi-omics approach. Our study revealed significant phosphoproteomic changes, but not global proteomic or lipid profiling changes, in the rat sensorimotor cortex 3 months after intrastriatal injection with aSyn preformed fibrils (PFFs). Gene ontology analysis of the phosphoproteomic data indicated that PFF administration impacted pathways related to synaptic transmission and cytoskeletal organization. Similar phosphoproteomic perturbations were observed in the sensorimotor cortex of mice injected intrastriatally or intracortically with aSyn PFFs. Functional analyses demonstrated increased neuronal firing rates and enhanced spike-spike coherence in the sensorimotor cortices of PFF-treated mice, indicating seed-dependent cortical circuit dysfunction. Bioinformatic analysis of the altered phosphosites suggested the involvement of several kinases, including casein kinase-2 (CK2), which has been previously implicated in PD pathology. Collectively, these findings highlight the importance of phosphorylation-mediated signaling pathways in the cortical response to aSyn pathology spread in PD and related synucleinopathies, setting the stage for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sayan Dutta
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer Hensel
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Alicia Scott
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Leigh-Ana M Rossitto
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Hammad Furqan Khan
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Teshawn Johnson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Jackeline F. Marmolejo
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Xu Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Uma K. Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Yong J, Villalta JE, Vu N, Kukurugya MA, Olsson N, López MP, Lazzari-Dean JR, Hake K, McAllister FE, Bennett BD, Jan CH. Impairment of lipid homeostasis causes lysosomal accumulation of endogenous protein aggregates through ESCRT disruption. eLife 2024; 12:RP86194. [PMID: 39713930 DOI: 10.7554/elife.86194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Protein aggregation increases during aging and is a pathological hallmark of many age-related diseases. Protein homeostasis (proteostasis) depends on a core network of factors directly influencing protein production, folding, trafficking, and degradation. Cellular proteostasis also depends on the overall composition of the proteome and numerous environmental variables. Modulating this cellular proteostasis state can influence the stability of multiple endogenous proteins, yet the factors contributing to this state remain incompletely characterized. Here, we performed genome-wide CRISPRi screens to elucidate the modulators of proteostasis state in mammalian cells, using a fluorescent dye to monitor endogenous protein aggregation. These screens identified known components of the proteostasis network and uncovered a novel link between protein and lipid homeostasis. Increasing lipid uptake and/or disrupting lipid metabolism promotes the accumulation of sphingomyelins and cholesterol esters and drives the formation of detergent-insoluble protein aggregates at the lysosome. Proteome profiling of lysosomes revealed ESCRT accumulation, suggesting disruption of ESCRT disassembly, lysosomal membrane repair, and microautophagy. Lipid dysregulation leads to lysosomal membrane permeabilization but does not otherwise impact fundamental aspects of lysosomal and proteasomal functions. Together, these results demonstrate that lipid dysregulation disrupts ESCRT function and impairs proteostasis.
Collapse
Affiliation(s)
- John Yong
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Niclas Olsson
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Kayley Hake
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Calvin H Jan
- Calico Life Sciences LLC, South San Francisco, United States
| |
Collapse
|
5
|
Fajtova P, Hurysz BM, Miyamoto Y, Serafim MSM, Jiang Z, Vazquez JM, Trujillo DF, Liu LJ, Somani U, Almaliti J, Myers SA, Caffrey CR, Gerwick WH, McMinn DL, Kirk CJ, Boura E, Eckmann L, O'Donoghue AJ. Distinct substrate specificities of the three catalytic subunits of the Trichomonas vaginalis proteasome. Protein Sci 2024; 33:e5225. [PMID: 39589076 PMCID: PMC11590128 DOI: 10.1002/pro.5225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
The protozoan parasite Trichomonas vaginalis (Tv) causes trichomoniasis, the most common non-viral sexually transmitted infection in the world. Although Tv has been linked to significant health complications, only two closely related 5-nitroimidazole drugs are approved for its treatment. The emergence of resistance to these drugs and lack of alternative treatment options poses an increasing threat to public health, making development of novel anti-Trichomonas compounds an urgent need. The proteasome, a critical enzyme complex found in all eukaryotes has three catalytic subunits, β1, β2, and β5 and has been validated as a drug target to treat trichomoniasis. With the goal of developing tools to study the Tv proteasome, we isolated the enzyme complex and identified inhibitors that preferentially inactivate either one or two of the three catalytic subunits. Using a mass spectrometry-based peptide digestion assay, these inhibitors were used to define the substrate preferences of the β1, β2 and β5 subunits. Subsequently, three model fluorogenic substrates were designed, each specific for one of the catalytic subunits. This novel substrate profiling methodology will allow for individual subunit characterization of other proteasomes of interest. Using the new substrates, we screened a library of 284 peptide epoxyketone inhibitors against Tv and determined the subunits targeted by the most active compounds. The data show that inhibition of the Tv β5 subunit alone is toxic to the parasite. Taken together, the optimized proteasome subunit substrates will be instrumental for understanding the molecular determinants of proteasome specificity and for accelerating drug development against trichomoniasis.
Collapse
Affiliation(s)
- Pavla Fajtova
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Brianna M. Hurysz
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Yukiko Miyamoto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Mateus Sá M. Serafim
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Departamento de Microbiologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrazil
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Julia M. Vazquez
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Diego F. Trujillo
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Lawrence J. Liu
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Urvashi Somani
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Jehad Almaliti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Samuel A. Myers
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Conor R. Caffrey
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| | - William H. Gerwick
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
| | - Lars Eckmann
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Loy CA, Trader DJ. Caged aminoluciferin probe for bioluminescent immunoproteasome activity analysis. RSC Chem Biol 2024; 5:877-883. [PMID: 39211472 PMCID: PMC11352960 DOI: 10.1039/d4cb00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
The immunoproteasome (iCP) can be expressed under inflammatory conditions, such as exposure to interferon-gamma (IFN-γ), that alerts the cell to begin generating iCP preferentially over the standard proteasome (sCP). With the iCP becoming a widely targeted isoform in a variety of diseases, there is a need to understand its activity and expression in cells and in vivo. Activity-based probes for the iCP have been developed but their application has been limited due to their difficult synthesis and cannot be used in tissues or whole animals. Our lab has previously demonstrated we can monitor iCP activity using a 4-mer peptide linked to a fluorophore and a peptoid. This was utilized in the development of the first cell-permeable iCP activity-based probe that did not include a covalent reactive moiety. Here, we demonstrate that this same peptide recognition sequence can be appended to aminoluciferin, caging it, until its interaction with the iCP. This probe should be applicable to monitor iCP activity in animal models where tumor or other tissue has been engineered to produce luciferase. We anticipate it could also be applied to observe iCP activity as tumors are formed in vivo.
Collapse
Affiliation(s)
- Cody A Loy
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
| |
Collapse
|
7
|
Liu L, Lucero B, Manriquez-Rodriguez C, Francisco KR, Teixeira TR, Yohannan DJ, Ballatore C, Myers SA, O’Donoghue AJ, Caffrey CR. Clickable Probes for Pathogen Proteasomes: Synthesis and Applications. ACS OMEGA 2024; 9:34829-34840. [PMID: 39157084 PMCID: PMC11325529 DOI: 10.1021/acsomega.4c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
The 20S proteasome is a multimeric protease complex that is essential for proteostasis in the cell. Small molecule proteasome inhibitors are approved drugs for various cancers and are advancing clinically as antiparasitics. Although tools and technologies to study the 20S proteasome have advanced, only one probe is commercially available to image proteasome activity. This probe consists of a fluorescently labeled, peptidyl vinyl sulfone that binds to one or more of the catalytic proteasome subunits. Here, we synthesized two, active site-directed epoxyketone probes, LJL-1 and LJL-2, that were based on the peptidyl backbones of the anticancer drugs, carfilzomib and bortezomib, respectively. Each probe was conjugated, via click chemistry, to a bifunctional group comprising 5-carboxytetramethylrhodamine (TAMRA) and biotin to, respectively, visualize and enrich the 20S proteasome from protein extracts of two eukaryotic pathogens, Leishmania donovani and Trichomonas vaginalis. Depending on species, each probe generated a different subunit-binding profile by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and the biotin tag enabled the enrichment of the bound subunits which were then formally identified by proteomics. Species differences in the order of electrophoretic migration by the β subunits were also noted. Finally, both probes reacted specifically with the 20S subunits in contrast to the commercial vinyl sulfone probe that cross reacted with cysteine proteases. LJL-1 and LJL-2 should find general utility in the identification and characterization of pathogen proteasomes, and serve as reagents to evaluate the specificity and mechanism of binding of new antiparasitic proteasome inhibitors.
Collapse
Affiliation(s)
- Lawrence
J. Liu
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Bobby Lucero
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Cindy Manriquez-Rodriguez
- Center
for Autoimmunity and Inflammation, La Jolla
Institute for Immunology, La Jolla, California 92037, United States
- Laboratory
for Immunochemical Circuits, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Karol R. Francisco
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Thaiz R. Teixeira
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Darius J. Yohannan
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Carlo Ballatore
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Samuel A. Myers
- Center
for Autoimmunity and Inflammation, La Jolla
Institute for Immunology, La Jolla, California 92037, United States
- Laboratory
for Immunochemical Circuits, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Anthony J. O’Donoghue
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Burov A, Grigorieva E, Lebedev T, Vedernikova V, Popenko V, Astakhova T, Leonova O, Spirin P, Prassolov V, Karpov V, Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front Mol Biosci 2024; 11:1351641. [PMID: 38774235 PMCID: PMC11106389 DOI: 10.3389/fmolb.2024.1351641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.
Collapse
Affiliation(s)
- Alexander Burov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grigorieva
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria Vedernikova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Karpov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Neeman-Egozi S, Livneh I, Dolgopyat I, Nussinovitch U, Milman H, Cohen N, Eisen B, Ciechanover A, Binah O. Stress-Induced Proteasome Sub-Cellular Translocation in Cardiomyocytes Causes Altered Intracellular Calcium Handling and Arrhythmias. Int J Mol Sci 2024; 25:4932. [PMID: 38732146 PMCID: PMC11084437 DOI: 10.3390/ijms25094932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.
Collapse
Affiliation(s)
- Shunit Neeman-Egozi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Ido Livneh
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Irit Dolgopyat
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Udi Nussinovitch
- Department of Cardiology, Edith Wolfson Medical Center, Holon 5822012, Israel
- The Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Nadav Cohen
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Aaron Ciechanover
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| |
Collapse
|
10
|
Jiang Z, Silva EB, Liu C, Fajtová P, Liu LJ, El-Sakkary N, Skinner DE, Syed A, Wang SC, Caffrey CR, O’Donoghue AJ. Development of subunit selective proteasome substrates for Schistosoma species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580161. [PMID: 38405969 PMCID: PMC10888821 DOI: 10.1101/2024.02.13.580161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Schistosomiasis, or bilharzia, is a neglected tropical disease caused by Schistosoma spp. blood flukes that infects over 200 million people worldwide. Just one partially effective drug is available, and new drugs and drug targets would be welcome. The 20S proteasome is a validated drug target for many parasitic infections, including those caused by Plasmodium and Leishmania. We previously showed that anticancer proteasome inhibitors that act through the Schistosoma mansoni 20S proteasome (Sm20S) kill the parasite in vitro. To advance these initial findings, we employed Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) to define the substrate cleavage specificities of the three catalytic β subunits of purified Sm20S. The profiles in turn were used to design and synthesize subunit-specific optimized substrates that performed two to eight fold better than the equivalent substrates used to measure the activity of the constitutive human proteasome (c20S). These specific substrates also eliminated the need to purify Sm20S from parasite extracts - a single step enrichment was sufficient to accurately measure substrate hydrolysis and its inhibition with proteasome inhibitors. Finally, we show that the substrate and inhibition profiles for the 20S proteasome from the three medically important schistosome species are similar, suggesting that data arising from an inhibitor development campaign that focuses on Sm20S can be extrapolated to the other two targets with consequent time and cost savings.
Collapse
Affiliation(s)
- Zhenze Jiang
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | | | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pavla Fajtová
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Lawrence J. Liu
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Danielle E. Skinner
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Ali Syed
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Steven C Wang
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Anthony J. O’Donoghue
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
11
|
Nelson S, Harris TJ, Muli CS, Maresch ME, Baker B, Smith C, Neumann C, Trader DJ, Parkinson EI. Discovery and Development of Cyclic Peptide Proteasome Stimulators. Chembiochem 2024; 25:e202300671. [PMID: 38055197 PMCID: PMC10993313 DOI: 10.1002/cbic.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
The proteasome degrades proteins, which is essential for cellular homeostasis. Ubiquitin independent proteolysis degrades highly disordered and misfolded proteins. A decline of proteasomal activity has been associated with multiple neurodegenerative diseases due to the accumulation of misfolded proteins. In this work, cyclic peptide proteasome stimulators (CyPPSs) that enhance the clearance of misfolded proteins were discovered. In the initial screen of predicted natural products (pNPs), several cyclic peptides were found to stimulate the 20S core particle (20S CP). Development of a robust structural activity relationship led to the identification of potent, cell permeable CyPPSs. In vitro assays revealed that CyPPSs stimulate degradation of highly disordered and misfolded proteins without affecting ordered proteins. Furthermore, using a novel flow-based assay for proteasome activity, several CyPPSs were found to stimulate the 20S CP in cellulo. Overall, this work describes the development of CyPPSs as chemical tools capable of stimulating the proteasome and provides strong support for proteasome stimulation as a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Samantha Nelson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Timothy J. Harris
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California, 92697, United States
| | - Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Marianne E. Maresch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Braden Baker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Chloe Smith
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Chris Neumann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California, 92697, United States
| | - Elizabeth I. Parkinson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
12
|
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez E, Turmon AC, Cao J, Backus K. Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564067. [PMID: 38014036 PMCID: PMC10680658 DOI: 10.1101/2023.10.30.564067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Protein homeostasis is tightly regulated, with damaged or misfolded proteins quickly eliminated by the proteasome and autophagosome pathways. By co-opting these processes, targeted protein degradation technologies enable pharmacological manipulation of protein abundance. Recently, cysteine-reactive molecules have been added to the degrader toolbox, which offer the benefit of unlocking the therapeutic potential of 'undruggable' protein targets. The proteome-wide impact of these molecules remains to be fully understood and given the general reactivity of many classes of cysteine-reactive electrophiles, on- and off-target effects are likely. Using chemical proteomics, we identified a cysteine-reactive small molecule degrader of the SARS-CoV-2 nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host chaperones together with activation of global cell stress response pathways. We find that cysteine-reactive electrophiles increase global protein ubiquitylation, trigger proteasome activation, and result in widespread aggregation and depletion of host proteins, including components of the nuclear pore complex. Formation of stress granules was also found to be a remarkably ubiquitous cellular response to nearly all cysteine-reactive compounds and degraders. Collectively, our study sheds light on complexities of covalent target protein degradation and highlights untapped opportunities in manipulating and characterizing proteostasis processes via deciphering the cysteine-centric regulation of stress response pathways.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Cindy Truong
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Emil Dominguez
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Alexandra C Turmon
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Jian Cao
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Keriann Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
13
|
Livneh I, Cohen-Kaplan V, Fabre B, Abramovitch I, Lulu C, Nataraj NB, Lazar I, Ziv T, Yarden Y, Zohar Y, Gottlieb E, Ciechanover A. Regulation of nucleo-cytosolic 26S proteasome translocation by aromatic amino acids via mTOR is essential for cell survival under stress. Mol Cell 2023; 83:3333-3346.e5. [PMID: 37738964 DOI: 10.1016/j.molcel.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.
Collapse
Affiliation(s)
- Ido Livneh
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel.
| | - Victoria Cohen-Kaplan
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Bertrand Fabre
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ifat Abramovitch
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Chen Lulu
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | | | - Ikrame Lazar
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaniv Zohar
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Eyal Gottlieb
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel.
| |
Collapse
|
14
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
15
|
Saratov GA, Vladimirov VI, Novoselov AL, Ziganshin RH, Chen G, Baymukhametov TN, Konevega AL, Belogurov AA, Kudriaeva AA. Myelin Basic Protein Fragmentation by Engineered Human Proteasomes with Different Catalytic Phenotypes Revealed Direct Peptide Ligands of MS-Associated and Protective HLA Class I Molecules. Int J Mol Sci 2023; 24:ijms24032091. [PMID: 36768413 PMCID: PMC9917034 DOI: 10.3390/ijms24032091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.
Collapse
Affiliation(s)
- George A. Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Vasiliy I. Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey L. Novoselov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | | | - Andrey L. Konevega
- National Research Center, “Kurchatov Institute”, 123182 Moscow, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre, Kurchatov Institute, 188300 Gatchina, Russia
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Ministry of Health of Russian Federation, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Correspondence: (A.A.B.J.); (A.A.K.); Tel.: +7-495-3352288 (A.A.B.J. & A.A.K.)
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (A.A.B.J.); (A.A.K.); Tel.: +7-495-3352288 (A.A.B.J. & A.A.K.)
| |
Collapse
|
16
|
Abjean L, Ben Haim L, Riquelme-Perez M, Gipchtein P, Derbois C, Palomares MA, Petit F, Hérard AS, Gaillard MC, Guillermier M, Gaudin-Guérif M, Aurégan G, Sagar N, Héry C, Dufour N, Robil N, Kabani M, Melki R, De la Grange P, Bemelmans AP, Bonvento G, Deleuze JF, Hantraye P, Flament J, Bonnet E, Brohard S, Olaso R, Brouillet E, Carrillo-de Sauvage MA, Escartin C. Reactive astrocytes promote proteostasis in Huntington's disease through the JAK2-STAT3 pathway. Brain 2023; 146:149-166. [PMID: 35298632 DOI: 10.1093/brain/awac068] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.
Collapse
Affiliation(s)
- Laurene Abjean
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Lucile Ben Haim
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Miriam Riquelme-Perez
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France.,Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Pauline Gipchtein
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Céline Derbois
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Marie-Ange Palomares
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Fanny Petit
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Martine Guillermier
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Mylène Gaudin-Guérif
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Gwennaëlle Aurégan
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Nisrine Sagar
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Cameron Héry
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Noëlle Dufour
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | | | - Mehdi Kabani
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Ronald Melki
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | | | - Alexis P Bemelmans
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Jean-François Deleuze
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Philippe Hantraye
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Eric Bonnet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Solène Brohard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Robert Olaso
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Carole Escartin
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Riesenberg BP, Hunt EG, Tennant MD, Hurst KE, Andrews AM, Leddy LR, Neskey DM, Hill EG, Rivera GOR, Paulos CM, Gao P, Thaxton JE. Stress-Mediated Attenuation of Translation Undermines T-cell Activity in Cancer. Cancer Res 2022; 82:4386-4399. [PMID: 36126165 PMCID: PMC9722626 DOI: 10.1158/0008-5472.can-22-1744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023]
Abstract
Protein synthesis supports robust immune responses. Nutrient competition and global cell stressors in the tumor microenvironment (TME) may impact protein translation in T cells and antitumor immunity. Using human and mouse tumors, we demonstrated here that protein translation in T cells is repressed in solid tumors. Reduced glucose availability to T cells in the TME led to activation of the unfolded protein response (UPR) element eIF2α (eukaryotic translation initiation factor 2 alpha). Genetic mouse models revealed that translation attenuation mediated by activated p-eIF2α undermines the ability of T cells to suppress tumor growth. Reprograming T-cell metabolism was able to alleviate p-eIF2α accumulation and translational attenuation in the TME, allowing for sustained protein translation. Metabolic and pharmacological approaches showed that proteasome activity mitigates induction of p-eIF2α to support optimal antitumor T-cell function, protecting from translation attenuation and enabling prolonged cytokine synthesis in solid tumors. Together, these data identify a new therapeutic avenue to fuel the efficacy of tumor immunotherapy. SIGNIFICANCE Proteasome function is a necessary cellular component for endowing T cells with tumor killing capacity by mitigating translation attenuation resulting from the unfolded protein response induced by stress in the tumor microenvironment.
Collapse
Affiliation(s)
- Brian P. Riesenberg
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA
| | - Elizabeth G. Hunt
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA
| | - Megan D. Tennant
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425; USA
| | - Katie E. Hurst
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA
| | - Alex M. Andrews
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; USA
| | - Lee R. Leddy
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; USA
| | - David M. Neskey
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; USA
| | - Elizabeth G. Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; USA,Department of Public Health Sciences, Hollings Cancer Center Biostatistics Shared Resource; Director, Medical University of South Carolina, Charleston, SC 29425; USA
| | - Guillermo O. Rangel Rivera
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425; USA,Department of Surgery and Microbiology & Immunology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322; USA
| | - Chrystal M. Paulos
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425; USA,Department of Surgery and Microbiology & Immunology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322; USA
| | - Peng Gao
- Department of Medicine, Metabolomics Core Facility; Director, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; USA
| | - Jessica E. Thaxton
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27514; USA,Correspondence: Dr. Jessica Thaxton, Department of Cell Biology & Physiology, Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27514, 919-966-4913,
| |
Collapse
|
18
|
Halder S, Macatangay NJ, Zerfas BL, Salazar-Chaparro AF, Trader DJ. Oleic amide derivatives as small molecule stimulators of the human proteasome's core particle. RSC Med Chem 2022; 13:1077-1081. [PMID: 36324496 PMCID: PMC9491356 DOI: 10.1039/d2md00133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 07/28/2023] Open
Abstract
A series of oleic acid amide derivatives were synthesized based on our previous and continuing endeavors towards stimulation of the 20S core particle of the proteasome (20S CP) with the goal of increasing the protein degradation rate via the ubiquitin-independent pathway. The designed compounds were tested in a variety of biochemical and cell-based assays to assess their ability to increase the rate of hydrolysis of the 20S CP, and compared to a known fatty acid amide stimulator of the 20S CP, AM-404. AM-404 was previously described to stimulate the activity of the 20S CP, however, it does negatively affect viability of cells after prolonged dosing. Here we report the development of several small molecules with a similar ability to enhance the activity of the 20S CP as AM-404. While one molecule (17) was just as potent as AM-404, it still caused significant unwanted cytotoxicity. Molecules such as these are compatible with biochemical assays and short-term cell-based proteasome activity assays, but their unwanted toxicity limits their use in prolonged cell assays or in vivo studies.
Collapse
Affiliation(s)
- Saayak Halder
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| | - Nathaniel J Macatangay
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| | - Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| |
Collapse
|
19
|
Salazar‐Chaparro AF, Halder S, Trader DJ. Synthesis and Application of a Clickable Epoxomicin-Based Probe for Proteasome Activity Analysis. Curr Protoc 2022; 2:e490. [PMID: 35849029 PMCID: PMC9354099 DOI: 10.1002/cpz1.490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proteasome is a multisubunit protein complex responsible for the degradation of proteins, making it essential in myriad cellular processes. Several reversible and irreversible peptide substrates inspired by known proteasome inhibitors have been developed to visualize it and monitor its activity; however, they have limited commercial availability or possess fluorophores that overlap with other known chemical probes, limiting their simultaneous use. The protocols presented here describe the synthesis of a clickable epoxomicin-based probe followed by the copper-catalyzed installment of an azide-containing fluorophore, and the application of the synthesized peptide in proteasome activity assays by SDS-PAGE and flow cytometry. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Solid-phase synthesis of clickable peptide fragment (2) Basic Protocol 2: In-solution coupling of epoxy-ketone moiety to fragment (2) Basic Protocol 3: Copper-catalyzed click reaction of (3) with fluorophore of choice Basic Protocol 4: Monitoring proteasome activity by SDS-PAGE in HEK-293T cells Alternate Protocol: Monitoring proteasome activity by flow cytometry in HEK-293T cells.
Collapse
Affiliation(s)
| | - Saayak Halder
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndiana
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
20
|
Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal DAP, Shah RG, Cox J, Shah GM, Blagoev B, Vertegaal ACO. Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun 2022; 13:2736. [PMID: 35585066 PMCID: PMC9117253 DOI: 10.1038/s41467-022-30376-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin-proteasome axis has been extensively explored at a system-wide level, but the impact of deubiquitinating enzymes (DUBs) on the ubiquitinome remains largely unknown. Here, we compare the contributions of the proteasome and DUBs on the global ubiquitinome, using UbiSite technology, inhibitors and mass spectrometry. We uncover large dynamic ubiquitin signalling networks with substrates and sites preferentially regulated by DUBs or by the proteasome, highlighting the role of DUBs in degradation-independent ubiquitination. DUBs regulate substrates via at least 40,000 unique sites. Regulated networks of ubiquitin substrates are involved in autophagy, apoptosis, genome integrity, telomere integrity, cell cycle progression, mitochondrial function, vesicle transport, signal transduction, transcription, pre-mRNA splicing and many other cellular processes. Moreover, we show that ubiquitin conjugated to SUMO2/3 forms a strong proteasomal degradation signal. Interestingly, PARP1 is hyper-ubiquitinated in response to DUB inhibition, which increases its enzymatic activity. Our study uncovers key regulatory roles of DUBs and provides a resource of endogenous ubiquitination sites to aid the analysis of substrate specific ubiquitin signalling.
Collapse
Affiliation(s)
- Fredrik Trulsson
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mihaela Robu
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Nila van Overbeek
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Rashmi G Shah
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Girish M Shah
- Laboratory for Skin Cancer Research, CHU de Québec Laval University Hospital Research Centre, Québec, QC, Canada
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
21
|
Salazar-Chaparro AF, Halder S, Maresh ME, Trader DJ. Solid-Phase Synthesis and Application of a Clickable Version of Epoxomicin for Proteasome Activity Analysis. Chembiochem 2022; 23:e202100710. [PMID: 35107861 PMCID: PMC9122039 DOI: 10.1002/cbic.202100710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Degradation of proteins by the proteasome is an essential cellular process and one that many wish to study in a variety of disease types. There are commercially available probes that can monitor proteasome activity in cells, but they typically contain common fluorophores that limit their simultaneous use with other activity-based probes. In order to exchange the fluorophore or incorporate an enrichment tag, the proteasome probe likely has to be synthesized which can be cumbersome. Here, we describe a simple synthetic procedure that only requires one purification step to generate epoxomicin, a selective proteasome inhibitor, with a terminal alkyne. Through a copper-catalyzed cycloaddition, any moiety containing an azide can be incorporated into the probe. Many fluorophores are commercially available that contain an azide that can be "clicked", allowing this proteasome activity probe to be included into already established assays to monitor both proteasome activity and other cellular activities of interest.
Collapse
Affiliation(s)
- Andres F. Salazar-Chaparro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907 (USA)
| | - Saayak Halder
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907 (USA)
| | - Marianne E. Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907 (USA)
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907 (USA)
| |
Collapse
|
22
|
Buckle T, van Willigen DM, Welling MM, van Leeuwen FW. Pre-clinical development of fluorescent tracers and translation towards clinical application. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
23
|
Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis. Nat Commun 2021; 12:6984. [PMID: 34848715 PMCID: PMC8633328 DOI: 10.1038/s41467-021-27306-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/09/2021] [Indexed: 11/15/2022] Open
Abstract
Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions.
Collapse
|
24
|
p62-containing, proteolytically active nuclear condensates, increase the efficiency of the ubiquitin-proteasome system. Proc Natl Acad Sci U S A 2021; 118:2107321118. [PMID: 34385323 DOI: 10.1073/pnas.2107321118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Degradation of a protein by the ubiquitin-proteasome system (UPS) is a multistep process catalyzed by sequential reactions. Initially, ubiquitin is conjugated to the substrate in a process mediated by concerted activity of three enzymes; the last of them-a ubiquitin ligase (E3)-belongs to a family of several hundred members, each recognizing a few specific substrates. This is followed by repeated addition of ubiquitin moieties to the previously conjugated one to generate a ubiquitin chain that serves as a recognition element for the proteasome, which then degrades the substrate. Ubiquitin is recycled via the activity of deubiquitinating enzymes (DUBs). It stands to reason that efficiency of such a complex process would depend on colocalization of the different components in an assembly that allows the reactions to be carried out sequentially and processively. Here we describe nuclear condensates that are dynamic in their composition. They contain p62 as an essential component. These assemblies are generated by liquid-liquid phase separation (LLPS) and also contain ubiquitinated targets, 26S proteasome, the three conjugating enzymes, and DUBs. Under basal conditions, they serve as efficient centers for proteolysis of nuclear proteins (e.g., c-Myc) and unassembled subunits of the proteasome, suggesting they are involved in cellular protein quality control. Supporting this notion is the finding that such foci are also involved in degradation of misfolded proteins induced by heat and oxidative stresses, following recruitment of heat shock proteins and their associated ubiquitin ligase CHIP.
Collapse
|
25
|
Maresh ME, Salazar-Chaparro AF, Trader DJ. Methods for the discovery of small molecules to monitor and perturb the activity of the human proteasome. Future Med Chem 2021; 13:99-116. [PMID: 33275045 PMCID: PMC7857359 DOI: 10.4155/fmc-2020-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Regulating protein production and degradation is critical to maintaining cellular homeostasis. The proteasome is a key player in keeping proteins at the proper levels. However, proteasome activity can be altered in certain disease states, such as blood cancers and neurodegenerative diseases. Cancers often exhibit enhanced proteasomal activity, as protein synthesis is increased in these cells compared with normal cells. Conversely, neurodegenerative diseases are characterized by protein accumulation, leading to reduced proteasome activity. As a result, the proteasome has emerged as a target for therapeutic intervention. The potential of the proteasome as a therapeutic target has come from studies involving chemical stimulators and inhibitors, and the development of a suite of assays and probes that can be used to monitor proteasome activity with purified enzyme and in live cells.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| |
Collapse
|
26
|
Kondo H, Matsumura T, Kaneko M, Inoue K, Kosako H, Ikawa M, Takahama Y, Ohigashi I. PITHD1 is a proteasome-interacting protein essential for male fertilization. J Biol Chem 2020; 295:1658-1672. [PMID: 31915251 PMCID: PMC7008373 DOI: 10.1074/jbc.ra119.011144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Indexed: 11/06/2022] Open
Abstract
The proteasome is a protein-degrading molecular complex that is necessary for protein homeostasis and various biological functions, including cell cycle regulation, signal transduction, and immune response. Proteasome activity is finely regulated by a variety of proteasome-interacting molecules. PITHD1 is a recently described molecule that has a domain putatively capable of interacting with the proteasome. However, it is unknown whether PITHD1 can actually bind to proteasomes and what it does in vivo Here we report that PITHD1 is detected specifically in the spermatids in the testis and the cortical thymic epithelium in the thymus. Interestingly, PITHD1 associates with immunoproteasomes in the testis, but not with thymoproteasomes in the thymus. Mice deficient in PITHD1 exhibit severe male infertility accompanied with morphological abnormalities and impaired motility of spermatozoa. Furthermore, PITHD1 deficiency reduces proteasome activity in the testis and alters the amount of proteins that are important for fertilization capability by the sperm. However, the PITHD1-deficient mice demonstrate no detectable defects in the thymus, including T cell development. Collectively, our results identify PITHD1 as a proteasome-interacting protein that plays a nonredundant role in the male reproductive system.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Takafumi Matsumura
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| |
Collapse
|
27
|
Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A, Arai N, Ohtake F, Murata S, Inada T, Baumeister W, Fernández-Busnadiego R, Tanaka K, Saeki Y. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 2020; 578:296-300. [DOI: 10.1038/s41586-020-1982-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
|
28
|
Conole D, Mondal M, Majmudar JD, Tate EW. Recent Developments in Cell Permeable Deubiquitinating Enzyme Activity-Based Probes. Front Chem 2019; 7:876. [PMID: 31921788 PMCID: PMC6930156 DOI: 10.3389/fchem.2019.00876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) function to remove or cleave ubiquitin from post-translationally modified protein substrates. There are about 100 known DUBs in the proteome, and their dysregulation has been implicated a number of disease states, but the specific function of many subclass members remains poorly understood. Activity-based probes (ABPs) react covalently with an active site residue to report on specific enzyme activity, and thus represent a powerful method to evaluate cellular and physiological enzyme function and dynamics. Ubiquitin-based ABPs, such as HA-Ub-VME, an epitope-tagged ubiquitin carrying a C-terminal reactive warhead, are the leading tool for "DUBome" activity profiling. However, these probes are generally cell membrane impermeable, limiting their use to isolated enzymes or lysates. Development of cell-permeable ABPs would allow engagement of DUB enzymes directly within the context of an intact live cell or organism, refining our understanding of physiological and pathological function, and greatly enhancing opportunities for translational research, including target engagement, imaging and biomarker discovery. This mini-review discusses recent developments in small molecule activity-based probes that target DUBs in live cells, and the unique applications of cell-permeable DUB activity-based probes vs. their traditional ubiquitin-based counterparts.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Milon Mondal
- Department of Chemistry, Imperial College London, London, United Kingdom
| | | | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Tao S, Tao R, Busch DH, Widera M, Schaal H, Drexler I. Sequestration of Late Antigens Within Viral Factories Impairs MVA Vector-Induced Protective Memory CTL Responses. Front Immunol 2019; 10:2850. [PMID: 31867011 PMCID: PMC6904312 DOI: 10.3389/fimmu.2019.02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic CD8+ T cell (CTL) responses play an essential role in antiviral immunity. Here, we focused on the activation of CTL which recognize epitopes derived from viral or recombinant antigens with either early or late expression kinetics after infection with Modified Vaccinia Virus Ankara (MVA). Late antigens but not early antigens failed to efficiently stimulate murine CTL lines in vitro and were unable to activate and expand protective memory T cell responses in mice in vivo. The reduced or absent presentation of late antigens was not due to impaired antigen presentation or delayed protein synthesis, but was caused by sequestration of late antigens within viral factories (VFs). Additionally, the trapping of late antigens in VFs conflicts with antigen processing and presentation as proteasomal activity was strongly reduced or absent in VFs, suggesting inefficient antigen degradation. This study gives for the first time a mechanistic explanation for the weak immunogenicity of late viral antigens for memory CTL activation. Since MVA is preferentially used as a boost vector in heterologous prime/boost vaccinations, this is an important information for future vaccine design.
Collapse
Affiliation(s)
- Sha Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dirk H Busch
- Institute of Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Marek Widera
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
30
|
Zerfas BL, Maresh ME, Trader DJ. The Immunoproteasome: An Emerging Target in Cancer and Autoimmune and Neurological Disorders. J Med Chem 2019; 63:1841-1858. [PMID: 31670954 DOI: 10.1021/acs.jmedchem.9b01226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed when cells are stressed or receive an inflammatory signal. The primary role of the iCP is to hydrolyze proteins into peptides that are compatible with being loaded into a MHC-I complex. When the activity of the iCP is dysregulated or highly expressed, it can lead to unwanted cell death. Some cancer types express the iCP rather than the standard proteasome, and selective inhibitors have been developed to exploit this difference. Here, we describe diseases known to be influenced by iCP activity and the current status for targeting the iCP to elicit a therapeutic response. We also describe a variety of chemical tools that have been developed to monitor the activity of the iCP in cells. Finally, we present the future outlook for targeting the iCP in a variety of disease types and with mechanisms besides inhibition.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Gan J, Leestemaker Y, Sapmaz A, Ovaa H. Highlighting the Proteasome: Using Fluorescence to Visualize Proteasome Activity and Distribution. Front Mol Biosci 2019; 6:14. [PMID: 30968028 PMCID: PMC6438883 DOI: 10.3389/fmolb.2019.00014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022] Open
Abstract
Proteasomes are critical proteases in the cell responsible for the turnover of many cytoplasmic and nuclear proteins. They are essential for many cellular processes and various diseases are associated with their malfunctioning. Proteasome activity depends on the nature of the catalytic subunits, as well as the interaction with associated proteasome regulators. Here we describe various fluorescence-based methods to study proteasome function, highlighting the use of activity-based probes to study proteasome localization, dynamics, and activity in living cells.
Collapse
Affiliation(s)
- Jin Gan
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Yves Leestemaker
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Aysegul Sapmaz
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
33
|
van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK, Leestemaker Y, Steenvoorden E, Rynearson KD, Brouwers JF, Helms JB, Ovaa H, Giera M, Wagner SL, Bang AG, Goldstein LSB. Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer's Disease Neurons. Cell Stem Cell 2019; 24:363-375.e9. [PMID: 30686764 PMCID: PMC6414424 DOI: 10.1016/j.stem.2018.12.013] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
Genetic, epidemiologic, and biochemical evidence suggests that predisposition to Alzheimer's disease (AD) may arise from altered cholesterol metabolism, although the molecular pathways that may link cholesterol to AD phenotypes are only partially understood. Here, we perform a phenotypic screen for pTau accumulation in AD-patient iPSC-derived neurons and identify cholesteryl esters (CE), the storage product of excess cholesterol, as upstream regulators of Tau early during AD development. Using isogenic induced pluripotent stem cell (iPSC) lines carrying mutations in the cholesterol-binding domain of APP or APP null alleles, we found that while CE also regulate Aβ secretion, the effects of CE on Tau and Aβ are mediated by independent pathways. Efficacy and toxicity screening in iPSC-derived astrocytes and neurons showed that allosteric activation of CYP46A1 lowers CE specifically in neurons and is well tolerated by astrocytes. These data reveal that CE independently regulate Tau and Aβ and identify a druggable CYP46A1-CE-Tau axis in AD.
Collapse
Affiliation(s)
- Rik van der Kant
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Vanessa F Langness
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cheryl M Herrera
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel A Williams
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren K Fong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yves Leestemaker
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Evelyne Steenvoorden
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Research Biologist, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Oerlemans R, Berkers CR, Assaraf YG, Scheffer GL, Peters GJ, Verbrugge SE, Cloos J, Slootstra J, Meloen RH, Shoemaker RH, Dijkmans BAC, Scheper RJ, Ovaa H, Jansen G. Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide. Invest New Drugs 2018; 36:797-809. [PMID: 29442210 PMCID: PMC6153520 DOI: 10.1007/s10637-018-0569-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Background The hexapeptide 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-Glu(OtBu)-Gly-Bza) was isolated from a peptide library constructed to identify peptide-based transport inhibitors of multidrug resistance (MDR) efflux pumps including P-glycoprotein and Multidrug Resistance-associated Protein 1. 4A6 proved to be a substrate but not an inhibitor of these MDR efflux transporters. In fact, 4A6 and related peptides displayed potent cytotoxic activity via an unknown mechanism. Objective To decipher the mode of cytotoxic activity of 4A6. Methods Screening of 4A6 activity was performed against the NCI60 panel of cancer cell lines. Possible interactions of 4A6 with the 26S proteasome were assessed via proteasome activity and affinity labeling, and cell growth inhibition studies with leukemic cells resistant to the proteasome inhibitor bortezomib (BTZ). Results The NCI60 panel COMPARE analysis revealed that 4A6 had an activity profile overlapping with BTZ. Consistently, 4A6 proved to be a selective and reversible inhibitor of β5 subunit (PSMB5)-associated chymotrypsin-like activity of the 26S proteasome. This conclusion is supported by several lines of evidence: (i) inhibition of chymotrypsin-like proteasome activity by 4A6 and related peptides correlated with their cell growth inhibition potencies; (ii) 4A6 reversibly inhibited functional β5 active site labeling with the affinity probe BodipyFL-Ahx3L3VS; and (iii) human myeloid THP1 cells with acquired BTZ resistance due to mutated PSMB5 were highly (up to 287-fold) cross-resistant to 4A6 and its related peptides. Conclusion 4A6 is a novel specific inhibitor of the β5 subunit-associated chymotrypsin-like proteasome activity. Further exploration of 4A6 as a lead compound for development as a novel proteasome-targeted drug is warranted.
Collapse
Affiliation(s)
- Ruud Oerlemans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - George L Scheffer
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sue Ellen Verbrugge
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ben A C Dijkmans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Rik J Scheper
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit Jansen
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Jonik-Nowak B, Menneteau T, Fesquet D, Baldin V, Bonne-Andrea C, Méchali F, Fabre B, Boisguerin P, de Rossi S, Henriquet C, Pugnière M, Ducoux-Petit M, Burlet-Schiltz O, Lamond AI, Fort P, Boulon S, Bousquet MP, Coux O. PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ. Proc Natl Acad Sci U S A 2018; 115:E6477-E6486. [PMID: 29934401 PMCID: PMC6048556 DOI: 10.1073/pnas.1722299115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.
Collapse
Affiliation(s)
- Beata Jonik-Nowak
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Thomas Menneteau
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Didier Fesquet
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Véronique Baldin
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Catherine Bonne-Andrea
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Francisca Méchali
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Bertrand Fabre
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Prisca Boisguerin
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Sylvain de Rossi
- Montpellier Ressources Imagerie (MRI) Facility, Biocampus UMS3426, CNRS, 34090 Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier (IRCM) - INSERM U1194, Institut Régional du Cancer de Montpellier, Université de Montpellier, F-34298 Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier (IRCM) - INSERM U1194, Institut Régional du Cancer de Montpellier, Université de Montpellier, F-34298 Montpellier, France
| | - Manuelle Ducoux-Petit
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, DD1 5HL Dundee, United Kingdom
| | - Philippe Fort
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Séverine Boulon
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France;
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France;
| | - Olivier Coux
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France;
| |
Collapse
|
36
|
St-Pierre C, Morgand E, Benhammadi M, Rouette A, Hardy MP, Gaboury L, Perreault C. Immunoproteasomes Control the Homeostasis of Medullary Thymic Epithelial Cells by Alleviating Proteotoxic Stress. Cell Rep 2018; 21:2558-2570. [PMID: 29186691 DOI: 10.1016/j.celrep.2017.10.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 01/07/2023] Open
Abstract
The sole nonredundant role of the thymic medulla is to induce central tolerance, a vital process that depends on promiscuous gene expression (pGE), a unique feature of medullary thymic epithelial cells (mTECs). Although pGE enhances transcription of >3,000 genes in mTECs, its impact on the regulation of protein homeostasis remains unexplored. Here, we report that, because of pGE, mature mTECs synthesize substantially more proteins than other cell types and are exquisitely sensitive to loss of immunoproteasomes (IPs). Indeed, IP deficiency causes proteotoxic stress in mTECs and leads to exhaustion of postnatal mTEC progenitors. Moreover, IP-deficient mice show accelerated thymic involution, which is characterized by a selective loss of mTECs and multiorgan autoimmune manifestations. We conclude that pGE, the quintessential feature of mTECs, is a major burden for the maintenance of proteostasis, which is alleviated by the constitutive expression of IPs in mTECs.
Collapse
Affiliation(s)
- Charles St-Pierre
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Erwan Morgand
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; ENS Paris-Saclay, Université Paris-Saclay, Cachan 94230, France
| | - Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Alexandre Rouette
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Louis Gaboury
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
37
|
Miettinen TP, Peltier J, Härtlova A, Gierliński M, Jansen VM, Trost M, Björklund M. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J 2018; 37:e98359. [PMID: 29669860 PMCID: PMC5978322 DOI: 10.15252/embj.201798359] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Palbociclib is a CDK4/6 inhibitor approved for metastatic estrogen receptor-positive breast cancer. In addition to G1 cell cycle arrest, palbociclib treatment results in cell senescence, a phenotype that is not readily explained by CDK4/6 inhibition. In order to identify a molecular mechanism responsible for palbociclib-induced senescence, we performed thermal proteome profiling of MCF7 breast cancer cells. In addition to affecting known CDK4/6 targets, palbociclib induces a thermal stabilization of the 20S proteasome, despite not directly binding to it. We further show that palbociclib treatment increases proteasome activity independently of the ubiquitin pathway. This leads to cellular senescence, which can be counteracted by proteasome inhibitors. Palbociclib-induced proteasome activation and senescence is mediated by reduced proteasomal association of ECM29. Loss of ECM29 activates the proteasome, blocks cell proliferation, and induces a senescence-like phenotype. Finally, we find that ECM29 mRNA levels are predictive of relapse-free survival in breast cancer patients treated with endocrine therapy. In conclusion, thermal proteome profiling identifies the proteasome and ECM29 protein as mediators of palbociclib activity in breast cancer cells.
Collapse
Affiliation(s)
- Teemu P Miettinen
- Division of Cell and Developmental Biology, University of Dundee, Dundee, UK
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julien Peltier
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anetta Härtlova
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marek Gierliński
- Division of Computational Biology, University of Dundee, Dundee, UK
| | - Valerie M Jansen
- Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mikael Björklund
- Division of Cell and Developmental Biology, University of Dundee, Dundee, UK
| |
Collapse
|
38
|
|
39
|
Harding RJ, Tong YF. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018; 39:754-769. [PMID: 29620053 DOI: 10.1038/aps.2018.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/18/2018] [Indexed: 02/08/2023]
Abstract
Many neurodegenerative diseases are characterized by impairment of protein quality control mechanisms in neuronal cells. Ineffective clearance of misfolded proteins by the proteasome, autophagy pathways and exocytosis leads to accumulation of toxic protein oligomers and aggregates in neurons. Toxic protein species affect various cellular functions resulting in the development of a spectrum of different neurodegenerative proteinopathies, including Huntington's disease (HD). Playing an integral role in proteostasis, dysfunction of the ubiquitylation system in HD is progressive and multi-faceted with numerous biochemical pathways affected, in particular, the ubiquitin-proteasome system and autophagy routes for protein aggregate degradation. Unravelling the molecular mechanisms involved in HD pathogenesis of proteostasis provides new insight in disease progression in HD as well as possible therapeutic avenues. Recent developments of potential therapeutics are discussed in this review.
Collapse
|
40
|
Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, Pollina EA, Dulken BW, Zhao X, Yeo RW, Ho TT, Mahmoudi S, Devarajan K, Passegué E, Rando TA, Frydman J, Brunet A. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 2018; 359:1277-1283. [PMID: 29590078 PMCID: PMC5915358 DOI: 10.1126/science.aag3048] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/31/2017] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Abstract
In the adult brain, the neural stem cell (NSC) pool comprises quiescent and activated populations with distinct roles. Transcriptomic analysis revealed that quiescent and activated NSCs exhibited differences in their protein homeostasis network. Whereas activated NSCs had active proteasomes, quiescent NSCs contained large lysosomes. Quiescent NSCs from young mice accumulated protein aggregates, and many of these aggregates were stored in large lysosomes. Perturbation of lysosomal activity in quiescent NSCs affected protein-aggregate accumulation and the ability of quiescent NSCs to activate. During aging, quiescent NSCs displayed defects in their lysosomes, increased accumulation of protein aggregates, and reduced ability to activate. Enhancement of the lysosome pathway in old quiescent NSCs cleared protein aggregates and ameliorated the ability of quiescent NSCs to activate, allowing them to regain a more youthful state.
Collapse
Affiliation(s)
- Dena S Leeman
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Katja Hebestreit
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Tyson Ruetz
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ashley E Webb
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Andrew McKay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth A Pollina
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Ben W Dulken
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA
| | - Xiaoai Zhao
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Theodore T Ho
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Salah Mahmoudi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Emmanuelle Passegué
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Glenn Center for the Biology of Aging at Stanford University, Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
- Glenn Center for the Biology of Aging at Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
van Leeuwen FWB, Cornelissen B, Caobelli F, Evangelista L, Rbah-Vidal L, Del Vecchio S, Xavier C, Barbet J, de Jong M. Generation of fluorescently labeled tracers - which features influence the translational potential? EJNMMI Radiopharm Chem 2017; 2:15. [PMID: 29503856 PMCID: PMC5824706 DOI: 10.1186/s41181-017-0034-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/16/2023] Open
Abstract
Given the increasing exploration of fluorescent tracers in the field of nuclear medicine, a need has risen for practical development guidelines that can help improve the translation aspects of fluorescent tracers. This editorial discusses the does and don'ts in developing fluorescence tracers. It has been put forward by the European Association of Nuclear Medicine (EANM) Translational Molecular Imaging & Therapy committee and has been approved by the EANM board.
Collapse
Affiliation(s)
- Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Cornelissen
- Department of Oncology, CRUK&MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Federico Caobelli
- Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Laura Evangelista
- Nuclear Medicine and Molecular Imaging Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, Nantes, France
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Catarina Xavier
- In vivo Cellular and Molecular Imaging Lab (ICMI)-Department, Vrije Universiteit Brussel, Ixelles, Belgium
| | - Jacques Barbet
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, Nantes, France
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
42
|
Banno A, Garcia DA, van Baarsel ED, Metz PJ, Fisch K, Widjaja CE, Kim SH, Lopez J, Chang AN, Geurink PP, Florea BI, Overkleeft HS, Ovaa H, Bui JD, Yang J, Chang JT. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition. Oncotarget 2017; 7:21527-41. [PMID: 26930717 PMCID: PMC5008303 DOI: 10.18632/oncotarget.7596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/24/2016] [Indexed: 01/12/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy.
Collapse
Affiliation(s)
- Asoka Banno
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel A Garcia
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric D van Baarsel
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kathleen Fisch
- Center for Computational Biology and Bioinformatics, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Stephanie H Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Justine Lopez
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aaron N Chang
- Center for Computational Biology and Bioinformatics, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Paul P Geurink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bogdan I Florea
- Division of Chemical Biology, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Division of Chemical Biology, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Zaal EA, Wu W, Jansen G, Zweegman S, Cloos J, Berkers CR. Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer Metab 2017; 5:7. [PMID: 28855983 PMCID: PMC5575874 DOI: 10.1186/s40170-017-0169-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ–resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. Electronic supplementary material The online version of this article (doi:10.1186/s40170-017-0169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center-Location VUMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
44
|
Widjaja CE, Olvera JG, Metz PJ, Phan AT, Savas JN, de Bruin G, Leestemaker Y, Berkers CR, de Jong A, Florea BI, Fisch K, Lopez J, Kim SH, Garcia DA, Searles S, Bui JD, Chang AN, Yates JR, Goldrath AW, Overkleeft HS, Ovaa H, Chang JT. Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification. J Clin Invest 2017; 127:3609-3623. [PMID: 28846070 PMCID: PMC5617668 DOI: 10.1172/jci90895] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/14/2017] [Indexed: 12/30/2022] Open
Abstract
During an immune response, CD8+ T lymphocytes can undergo asymmetric division, giving rise to daughter cells that exhibit distinct tendencies to adopt terminal effector and memory cell fates. Here we show that "pre-effector" and "pre-memory" cells resulting from the first CD8+ T cell division in vivo exhibited low and high rates of endogenous proteasome activity, respectively. Pharmacologic reduction of proteasome activity in CD8+ T cells early during differentiation resulted in acquisition of terminal effector cell characteristics, whereas enhancement of proteasome activity conferred attributes of memory lymphocytes. Transcriptomic and proteomic analyses revealed that modulating proteasome activity in CD8+ T cells affected cellular metabolism. These metabolic changes were mediated, in part, through differential expression of Myc, a transcription factor that controls glycolysis and metabolic reprogramming. Taken together, these results demonstrate that proteasome activity is an important regulator of CD8+ T cell fate and raise the possibility that increasing proteasome activity may be a useful therapeutic strategy to enhance the generation of memory lymphocytes.
Collapse
Affiliation(s)
| | | | | | - Anthony T Phan
- Division of Biological Sciences, UCSD, La Jolla, California, USA
| | - Jeffrey N Savas
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Gerjan de Bruin
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Yves Leestemaker
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands
| | - Annemieke de Jong
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kathleen Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, and
| | | | | | | | | | - Jack D Bui
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Aaron N Chang
- Center for Computational Biology and Bioinformatics, Department of Medicine, and
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
45
|
Leestemaker Y, de Jong A, Witting KF, Penning R, Schuurman K, Rodenko B, Zaal EA, van de Kooij B, Laufer S, Heck AJR, Borst J, Scheper W, Berkers CR, Ovaa H. Proteasome Activation by Small Molecules. Cell Chem Biol 2017; 24:725-736.e7. [PMID: 28552582 DOI: 10.1016/j.chembiol.2017.05.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
Drugs that increase 26S proteasome activity have potential therapeutic applications in the treatment of neurodegenerative diseases. A chemical genetics screen of over 2,750 compounds using a proteasome activity probe as a readout in a high-throughput live-cell fluorescence-activated cell sorting-based assay revealed more than ten compounds that increase proteasome activity, with the p38 MAPK inhibitor PD169316 being one of the most potent ones. Genetic and chemical inhibition of either p38 MAPK, its upstream regulators, ASK1 and MKK6, and downstream target, MK2, enhance proteasome activity. Chemical activation of the 26S proteasome increases PROTAC-mediated and ubiquitin-dependent protein degradation and decreases the levels of both overexpressed and endogenous α-synuclein, without affecting the overall protein turnover. In addition, survival of cells overexpressing toxic α-synuclein assemblies is increased in the presence of p38 MAPK inhibitors. These findings highlight the potential of activation of 26S proteasome activity and that this can be achieved through multiple mechanisms by distinct molecules.
Collapse
Affiliation(s)
- Yves Leestemaker
- Division of Cell Biology II, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Annemieke de Jong
- Division of Cell Biology II, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Katharina F Witting
- Division of Cell Biology II, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Renske Penning
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Karianne Schuurman
- Division of Cell Biology II, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Boris Rodenko
- Division of Cell Biology II, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Bert van de Kooij
- Division of Immunology, The Netherlands Cancer Institute, 2300 RC Amsterdam, the Netherlands
| | - Stefan Laufer
- Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jannie Borst
- Division of Immunology, The Netherlands Cancer Institute, 2300 RC Amsterdam, the Netherlands
| | - Wiep Scheper
- Department of Clinical Genetics and Alzheimer Center, VU University Medical Center, 1081 HV Amsterdam, the Netherlands; Department of Functional Genome Analysis, VU University, 1081 HV Amsterdam, the Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
46
|
Berkers CR, de Jong A, Schuurman KG, Linnemann C, Geenevasen JAJ, Schumacher TNM, Rodenko B, Ovaa H. Peptide Splicing in the Proteasome Creates a Novel Type of Antigen with an Isopeptide Linkage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4075-84. [PMID: 26401000 PMCID: PMC4642838 DOI: 10.4049/jimmunol.1402454] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/23/2015] [Indexed: 11/19/2022]
Abstract
The proteasome is able to create spliced Ags, in which two distant parts of a protein are excised and ligated together to form a novel peptide, for presentation by MHC class I molecules. These noncontiguous epitopes are generated via a transpeptidation reaction catalyzed by the proteasomal active sites. Transpeptidation reactions in the proteasome follow explicit rules and occur particularly efficiently when the C-terminal ligation partner contains a lysine or arginine residue at the site of ligation. Lysine contains two amino groups that theoretically may both participate in ligation reactions, implying that potentially not only peptide but also isopeptide linkages could be formed. Using nuclear magnetic resonance spectroscopy, we demonstrate in the present study that the proteasome can use the ε-amino group of an N-terminal lysine residue in transpeptidation reactions to create a novel type of posttranslationally modified epitopes. We show that the overall efficiency of ε ligation is only 10-fold lower as compared with α ligation, suggesting that the proteasome can produce sufficient isopeptide Ag to evoke a T cell response. Additionally, we show that isopeptides are more stable toward further proteasomal processing than are normal peptides, and we demonstrate that isopeptides can bind to HLA-A2.1 and HLA-A3 with high affinity. These properties likely increase the fraction of ε-ligated peptides presented on the cell surface for CD8(+) T cell surveillance. Finally, we show that isopeptide Ags are immunogenic in vivo. We postulate that ε ligation is a genuine posttranslational modification, suggesting that the proteasome can create a novel type of Ag that is likely to play a role in immunity.
Collapse
Affiliation(s)
- Celia R Berkers
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Annemieke de Jong
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Karianne G Schuurman
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Carsten Linnemann
- Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and
| | - Jan A J Geenevasen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Ton N M Schumacher
- Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and
| | - Boris Rodenko
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands;
| | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands;
| |
Collapse
|
47
|
Navarro-Yepes J, Anandhan A, Bradley E, Bohovych I, Yarabe B, de Jong A, Ovaa H, Zhou Y, Khalimonchuk O, Quintanilla-Vega B, Franco R. Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways. Mol Neurobiol 2015; 53:5229-51. [PMID: 26409479 DOI: 10.1007/s12035-015-9414-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022]
Abstract
Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson's disease (PD). Ubiquitin (Ub), alpha (α)-synuclein, p62/sequestosome 1, and oxidized proteins are the major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effects of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP(+), or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ-induced cell death. The inhibition of proteasomal activity by PQ was found to be a late event in cell death progression and had neither effect on the toxicity of either MPP(+) or PQ, nor on the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins), and carbonylated proteins induced by PQ. PQ- and MPP(+)-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagy. We confirmed that PQ and MPP(+) impaired autophagy flux and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane-associated foci in yeast cells. Our results demonstrate that the inhibition of protein ubiquitination by PQ and MPP(+) is involved in the dysfunction of Ub-dependent protein degradation pathways.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA.,Department of Toxicology, CINVESTAV-IPN, IPN No. 2508, Colonia Zacatenco, Mexico City, D.F., 07360, Mexico
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA
| | - Erin Bradley
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iryna Bohovych
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bo Yarabe
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Annemieke de Jong
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - You Zhou
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, CINVESTAV-IPN, IPN No. 2508, Colonia Zacatenco, Mexico City, D.F., 07360, Mexico.
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA.
| |
Collapse
|
48
|
Berkers CR, de Jong A, Schuurman KG, Linnemann C, Meiring HD, Janssen L, Neefjes JJ, Schumacher TNM, Rodenko B, Ovaa H. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules. THE JOURNAL OF IMMUNOLOGY 2015; 195:4085-95. [PMID: 26401003 DOI: 10.4049/jimmunol.1402455] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
Abstract
Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I-restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags.
Collapse
Affiliation(s)
- Celia R Berkers
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Annemieke de Jong
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Karianne G Schuurman
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Carsten Linnemann
- Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and
| | - Hugo D Meiring
- Institute for Translational Vaccinology, 3721 MA Bilthoven, the Netherlands
| | - Lennert Janssen
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jacques J Neefjes
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Ton N M Schumacher
- Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and
| | - Boris Rodenko
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands;
| |
Collapse
|
49
|
Ji K, Heyza J, Cavallo-Medved D, Sloane BF. Pathomimetic cancer avatars for live-cell imaging of protease activity. Biochimie 2015; 122:68-76. [PMID: 26375517 DOI: 10.1016/j.biochi.2015.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Abstract
Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the clinical importance of proteases in cancer progression, their functional roles individually and within the context of complex protease networks have not yet been well defined. These gaps in our understanding might be addressed with: 1) accurate and sensitive tools and methods to directly identify changes in protease activities in live cells, and 2) pathomimetic avatars for cancer that recapitulate in vitro the tumor in the context of its cellular and non-cellular microenvironment. Such avatars should be designed to facilitate mechanistic studies that can be translated to animal models and ultimately the clinic. Here, we will describe basic principles and recent applications of live-cell imaging for identification of active proteases. The avatars optimized by our laboratory are three-dimensional (3D) human breast cancer models in a matrix of reconstituted basement membrane (rBM). They are designated mammary architecture and microenvironment engineering (MAME) models as they have been designed to mimic the structural and functional interactions among cell types in the normal and cancerous human breast. We have demonstrated the usefulness of these pathomimetic avatars for following dynamic and temporal changes in cell:cell interactions and quantifying changes in protease activity associated with these interactions in real-time (4D). We also briefly describe adaptation of the avatars to custom-designed and fabricated tissue architecture and microenvironment engineering (TAME) chambers that enhance our ability to analyze concomitant changes in the malignant phenotype and the associated tumor microenvironment.
Collapse
Affiliation(s)
- Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Joshua Heyza
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Dora Cavallo-Medved
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biological Sciences, University of Windsor, Windsor, Canada.
| | - Bonnie F Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biological Sciences, University of Windsor, Windsor, Canada.
| |
Collapse
|
50
|
Priestman MA, Wang Q, Jernigan FE, Chowdhury R, Schmidt M, Lawrence DS. Multicolor monitoring of the proteasome's catalytic signature. ACS Chem Biol 2015; 10:433-40. [PMID: 25347733 PMCID: PMC4340355 DOI: 10.1021/cb5007322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The proteasome, a validated anticancer
target, participates in
an array of biochemical activities, which range from the proteolysis
of defective proteins to antigen presentation. We report the preparation
of biochemically and photophysically distinct green, red, and far-red
real-time sensors designed to simultaneously monitor the proteasome’s
chymotrypsin-, trypsin-, and caspase-like activities, respectively.
These sensors were employed to assess the effect of simultaneous multiple
active site catalysis on the kinetic properties of the individual
subunits. Furthermore, we have found that the catalytic signature
of the proteasome varies depending on the source, cell type, and disease
state. Trypsin-like activity is more pronounced in yeast than in mammals,
whereas chymotrypsin-like activity is the only activity detectable
in B-cells (unlike other mammalian cells). Furthermore, chymotrypsin-like
activity is more prominent in transformed B cells relative to their
counterparts from healthy donors.
Collapse
Affiliation(s)
- Melanie A. Priestman
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Qunzhao Wang
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Finith E. Jernigan
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ruma Chowdhury
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Marion Schmidt
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - David S. Lawrence
- Department
of Chemistry, Division of Chemical Biology and Medicinal Chemistry,
and Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|