1
|
Iman K, Mirza MU, Sadia F, Froeyen M, Trant JF, Chaudhary SU. Pharmacophore-Assisted Covalent Docking Identifies a Potential Covalent Inhibitor for Drug-Resistant Genotype 3 Variants of Hepatitis C Viral NS3/4A Serine Protease. Viruses 2024; 16:1250. [PMID: 39205224 PMCID: PMC11359326 DOI: 10.3390/v16081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of drug-resistance-inducing mutations in Hepatitis C virus (HCV) coupled with genotypic heterogeneity has made targeting NS3/4A serine protease difficult. In this work, we investigated the mutagenic variations in the binding pocket of Genotype 3 (G3) HCV NS3/4A and evaluated ligands for efficacious inhibition. We report mutations at 14 positions within the ligand-binding residues of HCV NS3/4A, including H57R and S139P within the catalytic triad. We then modelled each mutational variant for pharmacophore-based virtual screening (PBVS) followed by covalent docking towards identifying a potential covalent inhibitor, i.e., cpd-217. The binding stability of cpd-217 was then supported by molecular dynamic simulation followed by MM/GBSA binding free energy calculation. The free energy decomposition analysis indicated that the resistant mutants alter the HCV NS3/4A-ligand interaction, resulting in unbalanced energy distribution within the binding site, leading to drug resistance. Cpd-217 was identified as interacting with all NS3/4A G3 variants with significant covalent docking scores. In conclusion, cpd-217 emerges as a potential inhibitor of HCV NS3/4A G3 variants that warrants further in vitro and in vivo studies. This study provides a theoretical foundation for drug design and development targeting HCV G3 NS3/4A.
Collapse
Affiliation(s)
- Kanzal Iman
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Muhammad Usman Mirza
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Fazila Sadia
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven—University of Leuven, B-3000 Leuven, Belgium;
| | - John F. Trant
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Safee Ullah Chaudhary
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| |
Collapse
|
2
|
Ge H, Peng L, Sun Z, Liu H, Shen Y, Yao X. Discovery of Novel HPK1 Inhibitors Through Structure-Based Virtual Screening. Front Pharmacol 2022; 13:850855. [PMID: 35370676 PMCID: PMC8967249 DOI: 10.3389/fphar.2022.850855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic progenitor kinase (HPK1) is a negative regulator of T-cell receptor and B-cell signaling, which has been recognized as a novel antitumor target for immunotherapy. In this work, Glide docking-based virtual screening and kinase inhibition assay were performed to identify novel HPK1 inhibitors. The kinase inhibition assay results demonstrated five compounds with IC50 values below 20 μM, and the most potent one (compound M074-2865) had an IC50 value of 2.93 ± 0.09 μM. Molecular dynamics (MD) simulations were performed to delve into the interaction of sunitinib and the identified compound M074-2865 with the kinase domain of HPK1. The five compounds identified in this work could be considered promising hit compounds for further development of HPK1 inhibitors for immunotherapy.
Collapse
Affiliation(s)
- Huizhen Ge
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Lizeng Peng
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Jinan, China
| | - Zhou Sun
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Yu W, Ping Cheng L, Pang W, Ling Guo L. Design, Synthesis and Biological Evaluation of Novel 1, 3, 4-Oxadiazole Derivatives as Potent Neuraminidase Inhibitors. Bioorg Med Chem 2022; 57:116647. [DOI: 10.1016/j.bmc.2022.116647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
|
4
|
Wang RG, Zhang HX, Zheng QC. Revealing the binding and drug resistance mechanism of amprenavir, indinavir, ritonavir, and nelfinavir complexed with HIV-1 protease due to double mutations G48T/L89M by molecular dynamics simulations and free energy analyses. Phys Chem Chem Phys 2020; 22:4464-4480. [DOI: 10.1039/c9cp06657h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MD simulations, MM-PBSA, and SIE analyses were used to investigate the drug resistance mechanisms of two mutations G48T and L89M in HIV-1 protease toward four inhibitors.
Collapse
Affiliation(s)
- Rui-Ge Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| |
Collapse
|
5
|
Zhu J, Li K, Xu L, Jin J. Insight into the selective mechanism of phosphoinositide 3-kinase γ with benzothiazole and thiazolopiperidine γ-specific inhibitors by in silico approaches. Chem Biol Drug Des 2019; 93:818-831. [PMID: 30582283 DOI: 10.1111/cbdd.13469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/23/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
The phosphoinositide 3-kinase γ (PI3Kγ) has been verified to be a potential drug target for the treatments of various human physical disorders. Although received lots of attention, the development of PI3Kγ-selective inhibitors is still a challenging subject because of its unique protein structural features. Aiming to uncover the interaction mechanism between the selective inhibitors and PI3Kγ, a series of benzothiazole and thiazolopiperidine PI3Kγ isoform-selective inhibitors were studied with an integrated in silico strategy by combining molecular docking, molecular dynamic simulations, binding free energy calculations, and decomposition analysis. Firstly, three molecular docking models, including rigid receptor docking, induced fit docking (IFD), and quantum mechanical-polarized ligand docking, were respectively, built, and the IFD preliminarily predicted the docking poses of all studied inhibitors and roughly analyzed the binding mechanism. Secondly, four binding complexes with representative inhibitors were selected to perform molecular dynamic simulations and free energy calculations. The predicted binding energies were consistent with the experimental bioactivities and different binding patterns between potent and weak inhibitors were uncovered. Finally, through the Molecular Mechanics/Generalized Born Surface Area binding free energy decomposition, residue-inhibitor interactions spectra were obtained and several key residues contributing to favorable binding were highlighted, which provides valuable information for rational PI3Kγ inhibitor design and modification.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Kan Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Xiao Z, Cong Y, Huang K, Zhong S, Zhang JZH, Duan L. Drug-resistance mechanisms of three mutations in anaplastic lymphoma kinase against two inhibitors based on MM/PBSA combined with interaction entropy. Phys Chem Chem Phys 2019; 21:20951-20964. [DOI: 10.1039/c9cp02851j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a promising drug target in the treatment of lung cancer, anaplastic lymphoma kinase (ALK) and its mutations have been studied widely. This work explored the origin of the resistance mechanism of the ALK mutants again two inhibitors.
Collapse
Affiliation(s)
- Zhengrong Xiao
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| | - Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Kaifang Huang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| | - Susu Zhong
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Lili Duan
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| |
Collapse
|
7
|
Shi D, Zhou S, Liu X, Zhao C, Liu H, Yao X. Understanding the structural and energetic basis of PD-1 and monoclonal antibodies bound to PD-L1: A molecular modeling perspective. Biochim Biophys Acta Gen Subj 2017; 1862:576-588. [PMID: 29203283 DOI: 10.1016/j.bbagen.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/13/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The inhibitors blocking the interaction between programmed cell death protein 1(PD-1) and programmed death-ligand 1(PD-L1) can activate the immune response of T cell and eliminate cancer cells. The crystallographic studies have provided structural insights of the interactive interfaces between PD-L1 and its protein ligands. However, the hotspot residues on PD-L1 as well as structural and energetic basis for different protein ligands still need to be further investigated. METHODS Molecular modeling methods including molecular dynamics simulation, per-residue free energy decomposition, virtual alanine scanning mutagenesis and residue-residue contact analysis were used to qualitatively and quantitatively analyze the interactions between PD-L1 and different protein ligands. RESULTS The results of virtual alanine scanning mutagenesis suggest that Y56, Q66, M115, D122, Y123, R125 are the hotspot residues on PD-L1. The residue-residue contact analysis further shows that PD-1 interacts with PD-L1 mainly by F and G strands while monoclonal antibodies like avelumab and BMS-936559 mainly interact with PD-L1 by CDR2 and CDR3 loops of the heavy chain. CONCLUSIONS A structurally similar β-hairpin peptide with 13 or 14 residues was extracted from each protein ligand and these β-hairpin peptides were found tightly binding to the putative hotspot residues on PD-L1. GENERAL SIGNIFICANCE This study recognizes the hotspot residues on PD-L1 and uncovers the common structural and energetic basis of different protein ligands binding to PD-L1. These results will be valuable for the design of small molecule or peptide inhibitors targeting on PD-L1.
Collapse
Affiliation(s)
- Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Shuangyan Zhou
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Chenxi Zhao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
8
|
Shi D, Bai Q, Zhou S, Liu X, Liu H, Yao X. Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity. Proteins 2017; 86:43-56. [PMID: 29023988 DOI: 10.1002/prot.25401] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/13/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
As co-chaperones of the 90-kDa heat shock protein(HSP90), FK506 binding protein 51 (FKBP51) and FK506 binding protein 52 (FKBP52) modulate the maturation of steroid hormone receptor through their specific FK1 domains (FKBP12-like domain 1). The inhibitors targeting FK1 domains are potential therapies for endocrine-related physiological disorders. However, the structural conservation of the FK1 domains between FKBP51 and FKBP52 make it difficult to obtain satisfactory selectivity in FK506-based drug design. Fortunately, a series of iFit ligands synthesized by Hausch et al exhibited excellent selectivity for FKBP51, providing new opportunity for design selective inhibitors. We performed molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis to reveal selective mechanism for the inhibitor iFit4 binding with FKBP51 and FKBP52. The conformational stability evaluation of the "Phe67-in" and "Phe67-out" states implies that FKBP51 and FKBP52 have different preferences for "Phe67-in" and "Phe67-out" states, which we suggest as the determinant factor for the selectivity for FKBP51. The binding free energy calculations demonstrate that nonpolar interaction is favorable for the inhibitors binding, while the polar interaction and entropy contribution are adverse for the inhibitors binding. According to the results from binding free energy decomposition, the electrostatic difference of residue 85 causes the most significant thermodynamics effects on the binding of iFit4 to FKBP51 and FKBP52. Furthermore, the importance of substructure units on iFit4 were further evaluated by unbinding pathway analysis and residue-residue contact analysis between iFit4 and the proteins. The results will provide new clues for the design of selective inhibitors for FKBP51.
Collapse
Affiliation(s)
- Danfeng Shi
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuangyan Zhou
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xuewei Liu
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
9
|
Zhao S, Zhu J, Xu L, Jin J. Theoretical studies on the selective mechanisms of GSK3β and CDK2 by molecular dynamics simulations and free energy calculations. Chem Biol Drug Des 2016; 89:846-855. [PMID: 27863047 DOI: 10.1111/cbdd.12907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase which is widely involved in cell signaling and controls a broad number of cellular functions. GSK3 contains α and β isoforms, and GSK3β has received more attention and becomes an attractive drug target for the treatment of several diseases. The binding pocket of cyclin-dependent kinase 2 (CDK2) shares high sequence identity to that of GSK3β, and therefore, the design of highly selective inhibitors toward GSK3β remains a big challenge. In this study, a computational strategy, which combines molecular docking, molecular dynamics simulations, free energy calculations, and umbrella sampling simulations, was employed to explore the binding mechanisms of two selective inhibitors to GSK3β and CDK2. The simulation results highlighted the key residues critical for GSK3β selectivity. It was observed that although GSK3β and CDK2 share the conserved ATP-binding pockets, some different residues have significant contributions to protein selectivity. This study provides valuable information for understanding the GSK3β-selective binding mechanisms and the rational design of selective GSK3β inhibitors.
Collapse
Affiliation(s)
- Sufang Zhao
- Department of Gastroenterology, The 2nd Hospital of Shenzhen (The First Affiliated Hospital of Shenzhen University), ShenZhen, Guangdong, China
| | - Jingyu Zhu
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Jian Jin
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Phanich J, Rungrotmongkol T, Kungwan N, Hannongbua S. Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study. J Comput Aided Mol Des 2016; 30:917-926. [PMID: 27714494 DOI: 10.1007/s10822-016-9981-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
The H7N9 avian influenza virus is a novel re-assortment from at least four different strains of virus. Neuraminidase, which is a glycoprotein on the surface membrane, has been the target for drug treatment. However, some H7N9 strains that have been isolated from patient after drug treatment have a R292K mutation in neuraminidase. This substitution was found to facilitate drug resistance using protein- and virus- assays, in particular it gave a high resistance to the most commonly used drug, oseltamivir. The aim of this research is to understand the source of oseltamivir resistance using MD simulations and the MM/PB(GB)SA binding free energy approaches. Both methods can predict the reduced susceptibility of oseltamivir in good agreement to the IC 50 binding energy, although MM/GBSA underestimates this prediction compared to the MM/PBSA calculation. Electrostatic interaction is the main contribution for oseltamivir binding in terms of both interaction and solvation. We found that the source of the drug resistance is a decrease in the binding interaction combined with the reduction of the dehydration penalty. The smaller K292 mutated residue has a larger binding pocket cavity compared to the wild-type resulting in the loss of drug carboxylate-K292 hydrogen bonding and an increased accessibility for water molecules around the K292 mutated residue. In addition, oseltamivir does not bind well to the R292K mutant complex as shown by the high degree of fluctuation in ligand RMSD during the simulation and the change in angular distribution of bulky side chain groups.
Collapse
Affiliation(s)
- Jiraphorn Phanich
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Dong K, Wang X, Yang X, Zhu X. Binding mechanism of CDK5 with roscovitine derivatives based on molecular dynamics simulations and MM/PBSA methods. J Mol Graph Model 2016; 68:57-67. [PMID: 27371933 DOI: 10.1016/j.jmgm.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
Roscovitine derivatives are potent inhibitors of cyclin-dependent kinase 5 (CDK5), but they exhibit different activities, which has not been understood clearly up to now. On the other hand, the task of drug design is difficult because of the fuzzy binding mechanism. In this context, the methods of molecular docking, molecular dynamics (MD) simulation, and binding free energy analysis are applied to investigate and reveal the detailed binding mechanism of four roscovitine derivatives with CDK5. The electrostatic and van der Waals interactions of the four inhibitors with CDK5 are analyzed and discussed. The calculated binding free energies in terms of MM-PBSA method are consistent with experimental ranking of inhibitor effectiveness for the four inhibitors. The hydrogen bonds of the inhibitors with Cys83 and Lys33 can stabilize the inhibitors in binding sites. The van der Waals interactions, especially the pivotal contacts with Ile10 and Leu133 have larger contributions to the binding free energy and play critical roles in distinguishing the variant bioactivity of four inhibitors. In terms of binding mechanism of the four inhibitors with CDK5 and energy contribution of fragments of each inhibitor, two new CDK5 inhibitors are designed and have stronger inhibitory potency.
Collapse
Affiliation(s)
- Keke Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xueyu Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaolei Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
12
|
Xue Q, Zheng QC, Zhang JL, Cui YL, Zhang HX. Exploring the mechanism how Marburg virus VP35 recognizes and binds dsRNA by molecular dynamics simulations and free energy calculations. Biopolymers 2016; 101:849-60. [PMID: 24459115 DOI: 10.1002/bip.22463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Filoviruses often cause terrible infectious disease which has not been successfully dealt with pharmacologically. All filoviruses encode a unique protein termed VP35 which can mask doubled-stranded RNA to deactivate interferon. The interface of VP35-dsRNA would be a feasible target for structure-based antiviral agent design. To explore the essence of VP35-dsRNA interaction, molecular dynamics simulation combined with MM-GBSA calculations were performed on Marburg virus VP35-dsRNA complex and several mutational complexes. The energetic analysis indicates that nonpolar interactions provide the main driving force for the binding process. Although the intermolecular electrostatic interactions play important roles in VP35-dsRNA interaction, the whole polar interactions are unfavorable for binding which result in a low binding affinity. Compared with wild type VP35, the studied mutants F228A, R271A, and K298A have obviously reduced binding free energies with dsRNA reflecting in the reduction of polar or nonpolar interactions. The results also indicate that the loss of binding affinity for one dsRNA strand would abolish the total binding affinity. Three important residues Arg271, Arg294, and Lys298 which makes the largest contribution for binding in VP35 lose their binding affinity significantly in mutants. The uncovering of VP35-dsRNA recognition mechanism will provide some insights for development of antiviral drug.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, China
| | | | | | | | | |
Collapse
|
13
|
Zhou D, Chen J, Xu Y. Identification of potential quinoxalinone-based aldose reductase inhibitors by 3D-QSAR, molecular docking and molecular dynamics. RSC Adv 2016. [DOI: 10.1039/c6ra05649k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 3D-QSAR model of aldose reductase (ARIs) inhibitors is built to gain insights into the key structural factors affecting the inhibitory activity. Based on the model, six new potential ARIs were designed.
Collapse
Affiliation(s)
- Dan Zhou
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Jianbo Chen
- College of Life and Environmental Sciences
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yi Xu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| |
Collapse
|
14
|
Katiyar SP, Jain A, Dhanjal JK, Sundar D. Mixed Inhibition of cPEPCK by Genistein, Using an Extended Binding Site Located Adjacent to Its Catalytic Cleft. PLoS One 2015; 10:e0141987. [PMID: 26528723 PMCID: PMC4631375 DOI: 10.1371/journal.pone.0141987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (cPEPCK) is a critical enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis. cPEPCK converts oxaloacetic acid (OAA) into phosphoenol pyruvate (PEP) in the presence of GTP. cPEPCK is known to be associated with type 2 diabetes. Genistein is an isoflavone compound that shows anti-diabetic and anti-obesitic properties. Experimental studies have shown a decrease in the blood glucose level in the presence of genistein by lowering the functional activity of cPEPCK, an enzyme of gluconeogenesis. Using computational techniques such as molecular modeling, molecular docking, molecular dynamics simulation and binding free energy calculations, we identified cPEPCK as a direct target of genistein. We studied the molecular interactions of genistein with three possible conformations of cPEPCK-unbound cPEPCK (u_cPEPCK), GTP bound cPEPCK (GTP_cPEPCK) and GDP bound cPEPCK (GDP_cPEPCK). Binding of genistein was also compared with an already known cPEPCK inhibitor. We analyzed the interactions of genistein with cPEPCK enzyme and compared them with its natural substrate (OAA), product (PEP) and known inhibitor (3-MPA). Our results demonstrate that genistein uses the mechanism of mixed inhibition to block the functional activity of cPEPCK and thus can serve as a potential anti-diabetic and anti-obesity drug candidate. We also identified an extended binding site in the catalytic cleft of cPEPCK which is used by 3-MPA to inhibit cPEPCK non-competitively. We demonstrate that extended binding site of cPEPCK can further be exploited for designing new drugs against cPEPCK.
Collapse
Affiliation(s)
- Shashank Prakash Katiyar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Arpit Jain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Jaspreet Kaur Dhanjal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
15
|
Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations. Cell Biochem Biophys 2015; 74:35-48. [DOI: 10.1007/s12013-015-0709-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Guan Y, Sun H, Pan P, Li Y, Li D, Hou T. Exploring resistance mechanisms of HCV NS3/4A protease mutations to MK5172: insight from molecular dynamics simulations and free energy calculations. MOLECULAR BIOSYSTEMS 2015. [DOI: 10.1039/c5mb00394f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mutations at a number of key positions (Ala156, Asp168 and Arg155) of the HCV NS3/4A protease can induce medium to high resistance to MK5172.
Collapse
Affiliation(s)
- Yan Guan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
- Institute of Functional Nano & Soft Materials (FUNSOM)
| | - Huiyong Sun
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Peichen Pan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Dan Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Tingjun Hou
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
17
|
Wang YT, Chuang LY, Lu CY. Molecular basis of R294K mutation effects of H7N9 neuraminidases with drugs and cyclic peptides: an in silico and experimental study. RSC Adv 2015. [DOI: 10.1039/c5ra10068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An overview of Shanghai N9/cyclic peptide I complex structure.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- Department of Biochemistry
- College of Medicine
- Kaohsiung Medical University
- Kaohsiung
- Republic of China
| | - Lea-Yea Chuang
- Department of Biochemistry
- College of Medicine
- Kaohsiung Medical University
- Kaohsiung
- Republic of China
| | - Chi-Yu Lu
- Department of Biochemistry
- College of Medicine
- Kaohsiung Medical University
- Kaohsiung
- Republic of China
| |
Collapse
|
18
|
Wang X, Pan P, Li Y, Li D, Hou T. Exploring the prominent performance of CX-4945 derivatives as protein kinase CK2 inhibitors by a combined computational study. MOLECULAR BIOSYSTEMS 2014; 10:1196-210. [PMID: 24647611 DOI: 10.1039/c4mb00013g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase CK2, also known as casein kinase II, is related to various cellular events and is a potential target for numerous cancers. In this study, we attempted to gain more insight into the inhibition process of CK2 by a series of CX-4945 derivatives through an integrated computational study that combines molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. Based on the binding poses predicted by molecular docking, the MD simulations were performed to explore the dynamic binding processes for ten selected inhibitors. Then, both Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) techniques were employed to predict the binding affinities of the studied systems. The predicted binding energies of the selected inhibitors correlate well with their experimental activities (r(2) = 0.78). The van der Waals term is the most favorable component for the total energies. The free energy decomposition on a per residue basis reveals that the residue K68 is essential for the electrostatic interactions between CK2 and the studied inhibitors and numerous residues, including L45, V53, V66, F113, M163 and I174, play critical roles in forming van der Waals interactions with the inhibitors. Finally, a number of new derivatives were designed and the binding affinity and the predicted binding free energies of each designed molecule were obtained on the basis of molecular docking and MM/PBSA. It is expected that our research will benefit the future rational design of novel and potent inhibitors of CK2.
Collapse
Affiliation(s)
- Xuwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | | | |
Collapse
|
19
|
Understanding the recognition mechanisms of Zα domain of human editing enzyme ADAR1 (hZα(ADAR1)) and various Z-DNAs from molecular dynamics simulation. J Mol Model 2014; 20:2500. [PMID: 25344900 DOI: 10.1007/s00894-014-2500-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
The Z-DNA-binding domain of human double-stranded RNA adenosine deaminase I (hZαADAR1) can specifically recognize the left-handed Z-DNA which preferentially occurs at alternating purine-pyrimidine repeats, especially the CG-repeats. The interactions of hZαADAR1 and Z-DNAs in different sequence contexts can affect many important biological functions including gene regulation and chromatin remodeling. Therefore it is of great necessity to fully understand their recognition mechanisms. However, most existing studies are aimed at the standard CG-repeat Z-DNA rather than the non-CG-repeats, and whether the molecular basis of hZαADAR1 binding to various Z-DNAs are identical or not is still unclear on the atomic level. Here, based on the recently determined crystal structures of three representative non-CG-repeat Z-DNAs (d(CACGTG)2, d(CGTACG)2 and d(CGGCCG)2) in complex with hZαADAR1, 40 ns molecular dynamics simulation together with binding free energy calculation were performed for each system. For comparison, the standard CG-repeat Z-DNA (d(CGCGCG)2) complexed with hZαADAR1 was also simulated. The consistent results demonstrate that nonpolar interaction is the driving force during the protein-DNA binding process, and that polar interaction mainly from helix α3 also provides important contributions. Five common hot-spot residues were identified, namely Lys169, Lys170, Asn173, Arg174 and Tyr177. Hydrogen bond analysis coupled with surface charge distribution further reveal the interfacial information between hZαADAR1 and Z-DNA in detail. All of the analysis illustrate that four complexes share the common key features and the similar binding modes irrespective of Z-DNA sequences, suggesting that Z-DNA recognition by hZαADAR1 is conformation-specific rather than sequence-specific. Additionally, by analyzing the conformational changes of hZαADAR1, we found that the binding of Z-DNA could effectively stabilize hZαADAR1 protein. Our study can provide some valuable information for better understanding the binding mechanism between hZαADAR1 or even other Z-DNA-binding protein and Z-DNA.
Collapse
|
20
|
Shen M, Zhou S, Li Y, Li D, Hou T. Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: insight into structure-based inhibitor design. MOLECULAR BIOSYSTEMS 2014; 9:2435-46. [PMID: 23881296 DOI: 10.1039/c3mb70168a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LIM kinases (LIMKs), downstream of Rho-associated protein kinases (ROCKs) and p21-activated protein kinases (PAKs), are shown to be promising targets for the treatment of cancers. In this study, the inhibition mechanism of 41 pyrrolopyrimidine derivatives as LIMK2 inhibitors was explored through a series of theoretical approaches. First, a model of LIMK2 was generated through molecular homology modeling, and the studied inhibitors were docked into the binding active site of LIMK2 by the docking protocol, taking into consideration the flexibility of the protein. The binding poses predicted by molecular docking for 17 selected inhibitors with different bioactivities complexed with LIMK2 underwent molecular dynamics (MD) simulations, and the binding free energies for the complexes were predicted by using the molecular mechanics/generalized born surface area (MM/GBSA) method. The predicted binding free energies correlated well with the experimental bioactivities (r(2) = 0.63 or 0.62). Next, the free energy decomposition analysis was utilized to highlight the following key structural features related to biological activity: (1) the important H-bond between Ile408 and pyrrolopyrimidine, (2) the H-bonds between the inhibitors and Asp469 and Gly471 which maintain the stability of the DFG-out conformation, and (3) the hydrophobic interactions between the inhibitors and several key residues (Leu337, Phe342, Ala345, Val358, Lys360, Leu389, Ile408, Leu458 and Leu472). Finally, a variety of LIMK2 inhibitors with a pyrrolopyrimidine scaffold were designed, some of which showed improved potency according to the predictions. Our studies suggest that the use of molecular docking with MD simulations and free energy calculations could be a powerful tool for understanding the binding mechanism of LIMK2 inhibitors and for the design of more potent LIMK2 inhibitors.
Collapse
Affiliation(s)
- Mingyun Shen
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | |
Collapse
|
21
|
Wang YT, Chen YC. Insights from QM/MM Modeling the 3D Structure of the 2009 H1N1 Influenza A Virus Neuraminidase and Its Binding Interactions with Antiviral Drugs. Mol Inform 2014; 33:240-9. [PMID: 27485692 DOI: 10.1002/minf.201300117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/15/2014] [Indexed: 11/07/2022]
Abstract
Control of drug release through the inhibition of neuraminidase-1 has been identified as a potential target for the treatment of H1N1 influenza; however, the drug binding mode of neuraminidase is not yet completely understood. In this work, we propose a model for a neuraminidase-1 complex based on four known X-ray structures of drug/neuraminidase-1 complexes. Specifically, H1N1 neuraminidase-1 complexed with 4 drugs (zanamivir, laninamivir, laninamivir octanoate and oseltamivir) was first investigated using a combined quantum mechanical and molecular mechanical (QM/MM) approach. Based on these structures, a model for the H1N1 neuraminidase-1 complex was proposed and simulated using the same computational protocol. Implications to drug/H1N1 neuraminidase-1 binding modes are discussed. From our simulations, the predicted binding free energies of the four drugs are in good agreement with the experimental results, with the correlation coefficient being 0.84.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan, R.O.C.
| | - Yu-Ching Chen
- Department of Biomedical Informatics of Asia University, No. 500, Lioufeng Road, Wufeng, Taichung 41354, Taiwan R.O.C
| |
Collapse
|
22
|
The competitive binding between inhibitors and substrates of HCV NS3/4A protease: A general mechanism of drug resistance. Antiviral Res 2014; 103:60-70. [DOI: 10.1016/j.antiviral.2014.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 11/19/2022]
|
23
|
Xue W, Jiao P, Liu H, Yao X. Molecular modeling and residue interaction network studies on the mechanism of binding and resistance of the HCV NS5B polymerase mutants to VX-222 and ANA598. Antiviral Res 2014; 104:40-51. [PMID: 24462692 DOI: 10.1016/j.antiviral.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/09/2023]
Abstract
Hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) with essential functions in viral genome replication and represents a promising therapeutic target to develop direct-acting antivirals (DAAs). Multiple nonnucleoside inhibitors (NNIs) binding sites have been identified within the polymerase. VX-222 and ANA598 are two NNIs targeting thumb II site and palm I site of HCV NS5B polymerase, respectively. These two molecules have been shown to be very effective in phase II clinical trials. However, the emergence of resistant HCV replicon variants (L419M, M423T, I482L mutants to VX-222 and M414T, M414L, G554D mutants to ANA598) has significantly decreased their efficacy. To elucidate the molecular mechanism about how these mutations influenced the drug binding mode and decreased drug efficacy, we studied the binding modes of VX-222 and ANA598 to wild-type and mutant polymerase by molecular modeling approach. Molecular dynamics (MD) simulations results combined with binding free energy calculations indicated that the mutations significantly altered the binding free energy and the interaction for the drugs to polymerase. The further per-residue binding free energy decomposition analysis revealed that the mutations decreased the interactions with several key residues, such as L419, M423, L474, S476, I482, L497, for VX-222 and L384, N411, M414, Y415, Q446, S556, G557 for ANA598. These were the major origins for the resistance to these two drugs. In addition, by analyzing the residue interaction network (RIN) of the complexes between the drugs with wild-type and the mutant polymerase, we found that the mutation residues in the networks involved in the drug resistance possessed a relatively lower size of topology centralities. The shift of betweenness and closeness values of binding site residues in the mutant polymerase is relevant to the mechanism of drug resistance of VX-222 and ANA598. These results can provide an atomic-level understanding about the mechanisms of drug resistance conferred by the studied mutations and will be helpful to design more potent inhibitors which could effectively overcome drug resistance of antivirus agents.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Pingzu Jiao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
24
|
Sun H, Li Y, Shen M, Tian S, Xu L, Pan P, Guan Y, Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 2014; 16:22035-45. [DOI: 10.1039/c4cp03179b] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have thoroughly investigated the performance of MM/GBSA and MM/PBSA methodologies on virtual screening based on various protocols for kinase targets.
Collapse
Affiliation(s)
- Huiyong Sun
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou, P. R. China
- College of Pharmaceutical Sciences
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou, P. R. China
| | - Mingyun Shen
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou, P. R. China
| | - Sheng Tian
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou, P. R. China
| | - Lei Xu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou, P. R. China
| | - Peichen Pan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou, P. R. China
| | - Yan Guan
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou, P. R. China
| | - Tingjun Hou
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou, P. R. China
- College of Pharmaceutical Sciences
| |
Collapse
|
25
|
Seniya C, Khan GJ, Misra R, Vyas V, Kaushik S. In-silico modelling and identification of a possible inhibitor of H1N1 virus. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Jiao P, Xue W, Shen Y, Jin N, Liu H. Understanding the drug resistance mechanism of hepatitis C virus NS5B to PF-00868554 due to mutations of the 423 site: a computational study. MOLECULAR BIOSYSTEMS 2014; 10:767-77. [DOI: 10.1039/c3mb70498j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Zhu J, Pan P, Li Y, Wang M, Li D, Cao B, Mao X, Hou T. Theoretical studies on beta and delta isoform-specific binding mechanisms of phosphoinositide 3-kinase inhibitors. MOLECULAR BIOSYSTEMS 2013; 10:454-66. [PMID: 24336903 DOI: 10.1039/c3mb70314b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) is known to be closely related to tumorigenesis and cell proliferation, and controls a variety of cellular processes, including proliferation, growth, apoptosis, migration, metabolism, etc. The PI3K family comprises eight catalytic isoforms, which are subdivided into three classes. Recently, the discovery of inhibitors that block a single isoform of PI3K has continued to attract special attention because they may have higher selectivity for certain tumors and less toxicity for healthy cells. The PI3Kβ and PI3Kδ share fewer studies than α/γ, and therefore, in this work, the combination of molecular dynamics simulations and free energy calculations was employed to explore the binding of three isoform-specific PI3K inhibitors (COM8, IC87114, and GDC-0941) to PI3Kβ or PI3Kδ. The isoform specificities of the studied inhibitors derived from the predicted binding free energies are in good agreement with the experimental data. In addition, the key residues critical for PI3Kβ or PI3Kδ selectivity were highlighted by decomposing the binding free energies into the contributions from individual residues. It was observed that although PI3Kβ and PI3Kδ share the conserved ATP-binding pockets, individual residues do behave differently, particularly the residues critical for PI3Kβ or PI3Kδ selectivity. It can be concluded that the inhibitor specificity between PI3Kβ and PI3Kδ is determined by the additive contributions from multiple residues, not just a single one. This study provides valuable information for understanding the isoform-specific binding mechanisms of PI3K inhibitors, and should be useful for the rational design of novel and selective PI3K inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pan P, Li L, Li Y, Li D, Hou T. Insights into susceptibility of antiviral drugs against the E119G mutant of 2009 influenza A (H1N1) neuraminidase by molecular dynamics simulations and free energy calculations. Antiviral Res 2013; 100:356-64. [DOI: 10.1016/j.antiviral.2013.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
|
29
|
Sun H, Li Y, Li D, Hou T. Insight into crizotinib resistance mechanisms caused by three mutations in ALK tyrosine kinase using free energy calculation approaches. J Chem Inf Model 2013; 53:2376-89. [PMID: 23952683 DOI: 10.1021/ci400188q] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a safe and efficacious drug, crizotinib was approved by the U.S. Food and Drug Administration (FDA) in 2011 for the treatment of advanced fusion-type nonsmall-cell lung cancer. Although high response ratio was detected from the patients treated with crizotinib, the cancer has eventually conferred resistance to crizotinib. Several drug resistance mutations have been found in the anaplastic lymphoma kinase (ALK) tyrosine kinase domain as the target for crizotinib, but the drug resistance mechanisms remain unclear. Therefore, in this study, the adaptive biasing force (ABF) method and two-end-state free energy calculation approaches were employed to elucidate the resistance mechanisms of crizotinib induced by the mutations L1152R, G1202R, and S1206Y. The ABF simulation results suggest that the reaction coordinates for the unbinding processes of crizotinib from the binding pockets of the mutated ALKs is different from that of the wild type ALK. The potentials of mean force for the crizotinib unbinding and the binding free energies predicted by the two-end-state free energy calculations are consistent with the experimental data. Our results indicate that the three mutations weaken the binding affinity of crizotinib obviously and lead to drug resistance. The free energy decomposition analysis illustrates the importance of the loss of two important H-bonds in the L1152R and S1206Y mutants on drug resistance. The entropy analysis shows that the entropy term plays a critical role in the substantial change of the conformational entropies of G1202R and L1152R. Our results reveal the mechanisms of drug resistance and provide vital clues for the development of new inhibitors to combat drug resistance.
Collapse
Affiliation(s)
- Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | | | | | | |
Collapse
|
30
|
Quiliano M, Valdivia-Olarte H, Olivares C, Requena D, Gutiérrez AH, Reyes-Loyola P, Tolentino-Lopez LE, Sheen P, Briz V, Muñoz-Fernández MA, Correa-Basurto J, Zimic M. Molecular distribution of amino acid substitutions on neuraminidase from the 2009 (H1N1) human influenza pandemic virus. Bioinformation 2013; 9:673-9. [PMID: 23930018 PMCID: PMC3732439 DOI: 10.6026/97320630009673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/11/2022] Open
Abstract
The pandemic influenza AH1N1 (2009) caused an outbreak of human infection that spread to the world. Neuraminidase (NA) is an antigenic surface glycoprotein, which is essential to the influenza infection process, and is the target of anti-flu drugs oseltamivir and zanamivir. Currently, NA inhibitors are the pillar pharmacological strategy against seasonal and global influenza. Although mutations observed after NA-inhibitor treatment are characterized by changes in conserved amino acids of the enzyme catalytic site, it is possible that specific amino acid substitutions (AASs) distant from the active site such as H274Y, could confer oseltamivir or zanamivir resistance. To better understand the molecular distribution pattern of NA AASs, we analyzed NA AASs from all available reported pandemic AH1N1 NA sequences, including those reported from America, Africa, Asia, Europe, Oceania, and specifically from Mexico. The molecular distributions of the AASs were obtained at the secondary structure domain level for both the active and catalytic sites, and compared between geographic regions. Our results showed that NA AASs from America, Asia, Europe, Oceania and Mexico followed similar molecular distribution patterns. The compiled data of this study showed that highly conserved amino acids from the NA active site and catalytic site are indeed being affected by mutations. The reported NA AASs follow a similar molecular distribution pattern worldwide. Although most AASs are distributed distantly from the active site, this study shows the emergence of mutations affecting the previously conserved active and catalytic site. A significant number of unique AASs were reported simultaneously on different continents.
Collapse
Affiliation(s)
- MiguelMiguel Quiliano
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía,
Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru
- Drug R&D Unit, Center for Applied Pharmacobiology Research, University of Navarra, C/ Irunlarrea s/n, 31008, Pamplona, Spain
| | - Hugo Valdivia-Olarte
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía,
Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru
| | - Carlos Olivares
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía,
Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, Brazil
| | - David Requena
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía,
Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru
| | - Andrés H Gutiérrez
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía,
Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru
| | - Paola Reyes-Loyola
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México.
Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico city, México
| | - Luis E Tolentino-Lopez
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México.
Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico city, México
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía,
Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru
| | - Verónica Briz
- Laboratorio de Inmunobiología Molecular, Hospital Universitario Gregorio Marañón, Madrid, España, CIBER BBN, Madrid, Spain
| | - Maria A Muñoz-Fernández
- Laboratorio de Inmunobiología Molecular, Hospital Universitario Gregorio Marañón, Madrid, España, CIBER BBN, Madrid, Spain
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México.
Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico city, México
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía,
Universidad Peruana Cayetano Heredia. Av. Honorio Delgado, 430. SMP. Lima, Peru
| |
Collapse
|
31
|
Xu L, Sun H, Li Y, Wang J, Hou T. Assessing the Performance of MM/PBSA and MM/GBSA Methods. 3. The Impact of Force Fields and Ligand Charge Models. J Phys Chem B 2013; 117:8408-21. [DOI: 10.1021/jp404160y] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Xu
- College of
Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junmei Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd.,
Dallas, Texas 75390, United States
| | - Tingjun Hou
- College of
Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
32
|
Xue W, Ban Y, Liu H, Yao X. Computational study on the drug resistance mechanism against HCV NS3/4A protease inhibitors vaniprevir and MK-5172 by the combination use of molecular dynamics simulation, residue interaction network, and substrate envelope analysis. J Chem Inf Model 2013; 54:621-33. [PMID: 23745769 DOI: 10.1021/ci400060j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) NS3/4A protease is an important and attractive target for anti-HCV drug development and discovery. Vaniprevir (phase III clinical trials) and MK-5172 (phase II clinical trials) are two potent antiviral compounds that target NS3/4A protease. However, the emergence of resistance to these two inhibitors reduced the effectiveness of vaniprevir and MK-5172 against viral replication. Among the drug resistance mutations, three single-site mutations at residues Arg155, Ala156, and Asp168 in NS3/4A protease are especially important due to their resistance to nearly all inhibitors in clinical development. A detailed understanding of drug resistance mechanism to vaniprevir and MK-5172 is therefore very crucial for the design of novel potent agents targeting viral variants. In this work, molecular dynamics (MD) simulation, binding free energy calculation, free energy decomposition, residue interaction network (RIN), and substrate envelope analysis were used to study the detailed drug resistance mechanism of the three mutants R155K, A156T, and D168A to vaniprevir and MK-5172. MD simulation was used to investigate the binding mode for these two inhibitors to wild-type and resistant mutants of HCV NS3/4A protease. Binding free energy calculation and free energy decomposition analysis reveal that drug resistance mutations reduced the interactions between the active site residues and substituent in the P2 to P4 linker of vaniprevir and MK-5172. Furthermore, RIN and substrate envelope analysis indicate that the studied mutations of the residues are located outside the substrate (4B5A) binding site and selectively decrease the affinity of inhibitors but not the activity of the enzyme and consequently help NS3/4A protease escape from the effect of the inhibitors without influencing the affinity of substrate binding. These findings can provide useful information for understanding the drug resistance mechanism against vaniprevir and MK-5172. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | | | | | | |
Collapse
|
33
|
Xu L, Li Y, Sun H, Li D, Hou T. Structural basis of the interactions between CXCR4 and CXCL12/SDF-1 revealed by theoretical approaches. MOLECULAR BIOSYSTEMS 2013; 9:2107-17. [PMID: 23702796 DOI: 10.1039/c3mb70120d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The G protein-coupled chemokine receptor CXCR4 is implicated in a variety of physiological responses that also share several downstream effectors involved in multiple pathological processes. The interaction between CXCR4 and its natural ligand CXCL12/stromal-derived factor-1 (SDF-1) plays important roles in cancer metastasis, HIV-1 infection, and inflammatory diseases. Therefore, investigating the CXCR4-CXCL12 interaction is critical for understanding the molecular mechanisms of the modulation of chemokine-receptor functions and designing new pharmaceutical agents to target the CXCR4-CXCL12 pathway. Based on known experimental data, the interaction between CXCR4 and CXCL12 was predicted by an integrated protocol, which combines protein-protein docking, molecular dynamics (MD) simulations, Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy calculations, and MM/GBSA binding free energy decomposition analysis. The predicted CXCR4-CXCL12 binding pattern is in good agreement with the experimental data. Analysis of the binding structure reveals an obvious electrostatic complementarity between CXCR4 and CXCL12. Moreover, significant conformational rearrangements were observed during the 50 ns MD simulations. In particular, the basic Lys1 at the CXCL12 N-terminus, an essential residue in receptor activation, forms a strong polar interaction with the Glu32 in the CXCR4 extracellular region. It facilitates the significant movement of TM5 and TM6 in the conformational transition, which is coupled to the association with the intracellular signal transduction pathways via heterotrimer G-protein. Based on the dynamic and energetic analyses, a two-site binding model was proposed. We believe that our study provides useful information for understanding the mechanisms of CXCR4 ligand binding and structure-based drug design of CXCR4.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Functional Nano & Soft Materials FUNSOM and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | | | |
Collapse
|
34
|
Cui W, Cheng YH, Geng LL, Liang DS, Hou TJ, Ji MJ. Unraveling the Allosteric Inhibition Mechanism of PTP1B by Free Energy Calculation Based on Umbrella Sampling. J Chem Inf Model 2013; 53:1157-67. [DOI: 10.1021/ci300526u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Cui
- School of Chemistry and Chemical
Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Hua Cheng
- Department of Chemistry, Tsinghua University, 30# Shuangqing Road, Haidian District,
Beijing 100084, P.R. China
| | - Ling-Ling Geng
- School of Chemistry and Chemical
Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Den-Sheng Liang
- School of Chemistry and Chemical
Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Jun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Juan Ji
- School of Chemistry and Chemical
Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Pan P, Li Y, Yu H, Sun H, Hou T. Molecular Principle of Topotecan Resistance by Topoisomerase I Mutations through Molecular Modeling Approaches. J Chem Inf Model 2013; 53:997-1006. [DOI: 10.1021/ci400066x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peichen Pan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huidong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
36
|
Shen M, Zhou S, Li Y, Pan P, Zhang L, Hou T. Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations. MOLECULAR BIOSYSTEMS 2013; 9:361-74. [DOI: 10.1039/c2mb25408e] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Wang YT. Insights from modelling the 3D structure of the 2013 H7N9 influenza A virus neuraminidase and its binding interactions with drugs. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00126a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Xue W, Jin X, Ning L, Wang M, Liu H, Yao X. Exploring the Molecular Mechanism of Cross-Resistance to HIV-1 Integrase Strand Transfer Inhibitors by Molecular Dynamics Simulation and Residue Interaction Network Analysis. J Chem Inf Model 2012; 53:210-22. [DOI: 10.1021/ci300541c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Weiwei Xue
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojie Jin
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Lulu Ning
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Meixia Wang
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
39
|
Vergara-Jaque A, Poblete H, Lee EH, Schulten K, González-Nilo F, Chipot C. Molecular Basis of Drug Resistance in A/H1N1 Virus. J Chem Inf Model 2012; 52:2650-6. [DOI: 10.1021/ci300343w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Horacio Poblete
- Center for Bioinformatics and
Molecular Simulation, Universidad de Talca, Chile
| | - Eric H. Lee
- Beckman Institute, University of Illinois at Urbana−Champaign,
Urbana, United States
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana−Champaign,
Urbana, United States
| | - Fernando González-Nilo
- Universidad
Andres Bello, Center
for Bioinformatics and Integrative Biology, Santiago, Chile
- Centro Interdisciplinario de Neurociencias
de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Christophe Chipot
- Beckman Institute, University of Illinois at Urbana−Champaign,
Urbana, United States
- Equipe de Dynamique des Assemblages
Membranaires, UMR Centre National de la Recherche Scientifique/UHP
7565, Nancy Université BP 239, Nancy, France
| |
Collapse
|
40
|
Li L, Li Y, Zhang L, Hou T. Theoretical Studies on the Susceptibility of Oseltamivir against Variants of 2009 A/H1N1 Influenza Neuraminidase. J Chem Inf Model 2012; 52:2715-29. [DOI: 10.1021/ci300375k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lin Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liling Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- College of
Pharmaceutical Sciences,
Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
41
|
Pan D, Xue W, Zhang W, Liu H, Yao X. Understanding the drug resistance mechanism of hepatitis C virus NS3/4A to ITMN-191 due to R155K, A156V, D168A/E mutations: A computational study. Biochim Biophys Acta Gen Subj 2012; 1820:1526-34. [DOI: 10.1016/j.bbagen.2012.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 06/03/2012] [Accepted: 06/04/2012] [Indexed: 12/19/2022]
|
42
|
Meeprasert A, Khuntawee W, Kamlungsua K, Nunthaboot N, Rungrotmongkol T, Hannongbua S. Binding pattern of the long acting neuraminidase inhibitor laninamivir towards influenza A subtypes H5N1 and pandemic H1N1. J Mol Graph Model 2012; 38:148-54. [DOI: 10.1016/j.jmgm.2012.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
|
43
|
Pan D, Xue W, Wang X, Guo J, Liu H, Yao X. Molecular mechanism of the enhanced virulence of 2009 pandemic Influenza A (H1N1) virus from D222G mutation in the hemagglutinin: a molecular modeling study. J Mol Model 2012; 18:4355-66. [DOI: 10.1007/s00894-012-1423-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/02/2012] [Indexed: 11/30/2022]
|
44
|
Du QS, Gao J, Wei YT, Du LQ, Wang SQ, Huang RB. Structure-Based and Multiple Potential Three-Dimensional Quantitative Structure–Activity Relationship (SB-MP-3D-QSAR) for Inhibitor Design. J Chem Inf Model 2012; 52:996-1004. [DOI: 10.1021/ci300066y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi-Shi Du
- State Key
Laboratory of Non-food Biomass Energy and Enzyme Technology, National
Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007,
China
- Gordon Life Science Institute, San Diego, California, United States
| | - Jing Gao
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University,
Tianjin 300211, China
| | - Yu-Tuo Wei
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,
Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Li-Qin Du
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,
Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical
Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ri-Bo Huang
- State Key
Laboratory of Non-food Biomass Energy and Enzyme Technology, National
Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007,
China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,
Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
45
|
Lu SJ, Chong FC. Combining molecular docking and molecular dynamics to predict the binding modes of flavonoid derivatives with the neuraminidase of the 2009 H1N1 influenza A virus. Int J Mol Sci 2012; 13:4496-4507. [PMID: 22605992 PMCID: PMC3344228 DOI: 10.3390/ijms13044496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/22/2012] [Accepted: 03/29/2012] [Indexed: 12/27/2022] Open
Abstract
Control of flavonoid derivatives inhibitors release through the inhibition of neuraminidase has been identified as a potential target for the treatment of H1N1 influenza disease. We have employed molecular dynamics simulation techniques to optimize the 2009 H1N1 influenza neuraminidase X-ray crystal structure. Molecular docking of the compounds revealed the possible binding mode. Our molecular dynamics simulations combined with the solvated interaction energies technique was applied to predict the docking models of the inhibitors in the binding pocket of the H1N1 influenza neuraminidase. In the simulations, the correlation of the predicted and experimental binding free energies of all 20 flavonoid derivatives inhibitors is satisfactory, as indicated by R2 = 0.75.
Collapse
Affiliation(s)
- Shih-Jen Lu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; E-Mail:
- Department of Research and Development, BroadMaster Biotech Co., Ltd.: 7F., No.168-2, Liancheng Rd., Zhonghe Dist., New Taipei City 23553, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-266375859; Fax: +886-222428332
| | - Fok-Ching Chong
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; E-Mail:
| |
Collapse
|
46
|
Computational study on new natural polycyclic compounds of H1N1 influenza virus neuraminidase. J Mol Model 2012; 18:3445-53. [DOI: 10.1007/s00894-011-1349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/28/2011] [Indexed: 11/27/2022]
|
47
|
Xue W, Wang M, Jin X, Liu H, Yao X. Understanding the structural and energetic basis of inhibitor and substrate bound to the full-length NS3/4A: insights from molecular dynamics simulation, binding free energy calculation and network analysis. MOLECULAR BIOSYSTEMS 2012; 8:2753-65. [DOI: 10.1039/c2mb25157d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM. Influenza neuraminidase: A druggable target for natural products. Nat Prod Rep 2012; 29:11-36. [DOI: 10.1039/c1np00053e] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Xue W, Qi J, Yang Y, Jin X, Liu H, Yao X. Understanding the effect of drug-resistant mutations of HIV-1 intasome on raltegravir action through molecular modeling study. MOLECULAR BIOSYSTEMS 2012; 8:2135-44. [DOI: 10.1039/c2mb25114k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Xue W, Liu H, Yao X. Molecular mechanism of HIV-1 integrase-vDNA interactions and strand transfer inhibitor action: A molecular modeling perspective. J Comput Chem 2011; 33:527-36. [DOI: 10.1002/jcc.22887] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/25/2011] [Accepted: 10/20/2011] [Indexed: 01/03/2023]
|