1
|
Cirillo S, Zhang B, Brown S, Zhao X. Antimicrobial peptide A 9K as a gene delivery vector in cancer cells. Eur J Pharm Biopharm 2024; 198:114244. [PMID: 38467336 DOI: 10.1016/j.ejpb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
3
|
Wu B, Zhao S, Yang X, Zhou L, Ma Y, Zhang H, Li W, Wang H. Biomimetic Heterodimerization of Tetrapeptides to Generate Liquid Crystalline Hydrogel in A Two-Component System. ACS NANO 2022; 16:4126-4138. [PMID: 35230089 DOI: 10.1021/acsnano.1c09860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anisotropic structures made by hierarchical self-assembly and crystallization play an essential role in the living system. However, the spontaneous formation of liquid crystalline hydrogel of low molecular weight organic molecules with controlled properties remains challenging. This work describes a rational design of tetrapeptide without N-terminal modification and chemical conjugation that utilizes intermolecular interactions to drive the formation of nanofiber bundles in a two-component system, which could not be accessed by a single component. The diameter of nanofibers can be simply controlled by varying the enantiomer of electrostatic pairs. Mutation of lysine (K) to arginine (R) results in an over 30-fold increase of mechanical property. Mechanistic studies using different techniques unravel the mechanism of self-assembly and formation of anisotropic liquid crystalline domains. All-atom molecular dynamics simulations reveal that the mixture of heterochiral peptides self-assembles into a nanofiber with a larger width compared to the homochiral assemblies due to the different stacking pattern and intermolecular interactions. The intermolecular interactions show an obvious increase by substituting the K with R, facilitating a more stable assembly and further altering the assembly mechanics and bulk material properties. Moreover, we also demonstrated that the hydrogel properties can be easily controlled by incorporating a light-responsive group. This work provides a method to generate the liquid crystalline hydrogel from isotropic monomers.
Collapse
Affiliation(s)
- Bihan Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Shuang Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Institute of Advanced Technology, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Laicheng Zhou
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Yang Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Wenbin Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Institute of Advanced Technology, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
4
|
Yin X, Chen Z, Chen Y, Xie Y, Xiong B, Jiang H, Zhu J. Lipidated gemini peptide amphiphiles with enhanced loading capacity and cell membrane affinity for drug delivery. Colloids Surf B Biointerfaces 2020; 195:111271. [DOI: 10.1016/j.colsurfb.2020.111271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
|
5
|
Activating the Intrinsic Pathway of Apoptosis Using BIM BH3 Peptides Delivered by Peptide Amphiphiles with Endosomal Release. MATERIALS 2019; 12:ma12162567. [PMID: 31408950 PMCID: PMC6719084 DOI: 10.3390/ma12162567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic manipulation of the BCL-2 family using BH3 mimetics is an emerging paradigm in cancer treatment and immune modulation. For example, peptides mimicking the BIM BH3 helix can directly target the full complement of anti- and pro-apoptotic BCL-2 proteins to trigger apoptosis. This study has incorporated the potent BH3 α-helical death domain of BIM into peptide amphiphile (PA) nanostructures designed to facilitate cellular uptake and induce cell death. This study shows that these PA nanostructures are quickly incorporated into cells, are able to specifically bind BCL-2 proteins, are stable at physiologic temperatures and pH, and induce dose-dependent apoptosis in cells. The incorporation of a cathepsin B cleavable linker between the BIM BH3 peptide and the hydrophobic tail resulted in increased intracellular accumulation and mitochondrial co-localization of the BIM BH3 peptide while also improving BCL-2 family member binding and apoptotic reactivation. This PA platform represents a promising new strategy for intracellular therapeutic peptide delivery for the disruption of intracellular protein:protein interactions.
Collapse
|
6
|
Wang H, Zhao F, Cai S, Pu Y. MiR-193a regulates chemoresistance of human osteosarcoma cells via repression of IRS2. J Bone Oncol 2019; 17:100241. [PMID: 31193934 PMCID: PMC6543196 DOI: 10.1016/j.jbo.2019.100241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022] Open
Abstract
Chemoresistance prevents curative potential of chemotherapy in most cases. MicroRNAs (miRNAs) are key players in regulating chemoresistance in osteosarcoma, which is the most common primary bone cancer. Bisulfite sequencing and quantitative real time PCR analyses showed that miR-193a expression is downregulated by DNA hypermethylation at its promoter region in a chemoresistant cell line, SJSA-1, compared to a chemosensitive cell line G-292. Introduction of a miR-193a mimic in SJSA-1 cells or an antagomir into G-292 cells confirmed the role of miR-193a in osteosarcoma chemoresistance. Bioinformatics together with biochemical assays showed that insulin receptor substrate 2 (IRS2) is a target of miR-193a. Our data concludes that miR-193a plays a role in the osteosarcoma chemoresistance and thus might serve as a useful biomarker for osteosarcoma prognosis.
Collapse
Key Words
- 3PA, miR-193a-3p-antagomir
- 3PM, miR-193a-3p-mimic
- Ago, miR-193a-3p's agomir
- Anta, miR-193a-3p's antagomir
- BSP, Bisulfite Sequencing PCR
- CDDP, cisplatin
- Carb, carboplatin
- Chemoresistance
- DNA methylation
- Dox, doxorubicin
- Etop, etoposide
- IRS2
- IRS2, Insulin Receptor Substrate 2
- MTX, methotrexate
- Mut, mutation-type vector
- OS, osteosarcoma
- Osteosarcoma
- UTR, untranslated region
- WT, wild-type vector
- miR, microRNA
- miR-193a-3p
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Clinical Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Fangfang Zhao
- Department of Laboratory Research Center, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Youguang Pu
- Department of Laboratory Research Center, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| |
Collapse
|
7
|
Tesauro D, Accardo A, Diaferia C, Milano V, Guillon J, Ronga L, Rossi F. Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives. Molecules 2019; 24:E351. [PMID: 30669445 PMCID: PMC6359574 DOI: 10.3390/molecules24020351] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
Peptides of natural and synthetic sources are compounds operating in a wide range of biological interactions. They play a key role in biotechnological applications as both therapeutic and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently, peptides achieved resounding success in drug delivery and in nanomedicine smart applications. These applications are the most significant challenge of recent decades: they can selectively deliver drugs to only pathological tissues whilst saving the other districts of the body. This specific feature allows a reduction in the drug side effects and increases the drug efficacy. In this context, peptide-based aggregates present many advantages, including biocompatibility, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on the design and the characterization of drug delivery systems using peptide-based carriers; moreover, we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward specific targets.
Collapse
Affiliation(s)
- Diego Tesauro
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Vittoria Milano
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
- ARNA, INSERM U1212/UMR CNRS 5320, UFR des Sciences Pharmaceutiques, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Jean Guillon
- ARNA, INSERM U1212/UMR CNRS 5320, UFR des Sciences Pharmaceutiques, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Luisa Ronga
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-University of Pau, 64000 Pau, France.
| | - Filomena Rossi
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| |
Collapse
|
8
|
Shape Effects of Peptide Amphiphile Micelles for Targeting Monocytes. Molecules 2018; 23:molecules23112786. [PMID: 30373234 PMCID: PMC6278295 DOI: 10.3390/molecules23112786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Peptide amphiphile micelles (PAMs) are a nanoparticle platform that have gained popularity for their targeting versatility in a wide range of disease models. An important aspect of micelle design is considering the type of hydrophobic moiety used to synthesize the PAM, which can act as a contributing factor regarding their morphology and targeting capabilities. To delineate and compare the characteristics of spherical and cylindrical micelles, we incorporated the monocyte-targeting chemokine, monocyte chemoattractant protein-1 (MCP-1), into our micelles (MCP-1 PAMs). We report that both shapes of nanoparticles were biocompatible with monocytes and enhanced the secondary structure of the MCP-1 peptide, thereby improving the ability of the micelles to mimic the native MCP-1 protein structure. As a result, both shapes of MCP-1 PAMs effectively targeted monocytes in an in vitro binding assay with murine monocytes. Interestingly, cylindrical PAMs showed a greater ability to attract monocytes compared to spherical PAMs in a chemotaxis assay. However, the surface area, the multivalent display of peptides, and the zeta potential of PAMs may also influence their biomimetic properties. Herein, we introduce variations in the methods of PAM synthesis and discuss the differences in PAM characteristics that can impact the recruitment of monocytes, a process associated with disease and cancer progression.
Collapse
|
9
|
Smith JD, Cardwell LN, Porciani D, Nguyen JA, Zhang R, Gallazzi F, Tata RR, Burke DH, Daniels MA, Ulery BD. Aptamer-displaying peptide amphiphile micelles as a cell-targeted delivery vehicle of peptide cargoes. Phys Biol 2018; 15:065006. [PMID: 30124431 DOI: 10.1088/1478-3975/aadb68] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peptide amphiphile micelles (PAMs) are attractive vehicles for the delivery of a variety of therapeutic and prophylactic peptides. However, a key limitation of PAMs is their lack of preferential targeting ability. In this paper, we describe our design of a PAM system that incorporates a DNA oligonucleotide amphiphile (antitail amphiphile-AA) to form A/PAMs. A cell-targeting DNA aptamer with a 3' extension sequence (tail) complementary to the AA is annealed to the surface to form aptamer-displaying PAMs (Aptamer~A/PAMs). Aptamer~A/PAMs are small, anionic, stable nanoparticles capable of delivering a large mass percentage peptide amphiphile (PA) compared to targeting DNA components. Aptamer~A/PAMs are stable for over 4 h in the presence of biological fluids. Additionally, the aptamer retains its cell-targeting properties when annealed to the A/PAM, thus leading to enhanced delivery to a specifically-targeted B-cell leukemia cell line. This exciting modular technology can be readily used with a library of different targeting aptamers and PAs, capable of improving the bioavailability and potency of the peptide cargo.
Collapse
Affiliation(s)
- Josiah D Smith
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mertens M, Hilsch M, Haralampiev I, Volkmer R, Wessig P, Müller P. Synthesis and Characterization of a New Bifunctionalized, Fluorescent, and Amphiphilic Molecule for Recruiting SH-Containing Molecules to Membranes. Chembiochem 2018; 19:1643-1647. [PMID: 29785742 DOI: 10.1002/cbic.201800268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 11/10/2022]
Abstract
This study describes the synthesis and characterization of an amphiphilic construct intended to recruit SH-containing molecules to membranes. The construct consists of 1) an aliphatic chain to enable anchoring within membranes, 2) a maleimide moiety to react with the sulfhydryl group of a soluble (bio)molecule, and 3) a fluorescence moiety to allow the construct to be followed by fluorescence spectroscopy and microscopy. It is shown that the construct can be incorporated into preformed membranes, thus allowing application of the approach with biological membranes. The close proximity between the fluorophore and the maleimide moiety within the construct causes fluorescence quenching. This allows monitoring of the reaction with SH-containing molecules by measurement of increases in fluorescence intensity and lifetime. Notably, the construct distributes into laterally ordered membrane domains of lipid vesicles, which is probably triggered by the length of its membrane anchor. The advantages of the new construct can be employed for several biological, biotechnological, and medicinal applications.
Collapse
Affiliation(s)
- Monique Mertens
- University of Potsdam, Department of Chemistry, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Malte Hilsch
- Humboldt Universität zu Berlin, Department of Biology, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Ivan Haralampiev
- Humboldt Universität zu Berlin, Department of Biology, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Rudolf Volkmer
- Institute for Medical Immunology, Charité, University Medicine Berlin, Hessische Strasse 3, 10115, Berlin, Germany
| | - Pablo Wessig
- University of Potsdam, Department of Chemistry, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Peter Müller
- Humboldt Universität zu Berlin, Department of Biology, Invalidenstrasse 42, 10115, Berlin, Germany
| |
Collapse
|
11
|
Zhang R, Smith JD, Allen BN, Kramer JS, Schauflinger M, Ulery BD. Peptide Amphiphile Micelle Vaccine Size and Charge Influence the Host Antibody Response. ACS Biomater Sci Eng 2018; 4:2463-2472. [PMID: 33435110 DOI: 10.1021/acsbiomaterials.8b00511] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vaccines are one of the best health care advances ever developed, having led to the eradication of smallpox and near eradication of polio and diphtheria. While tremendously successful, traditional vaccines (i.e., whole-killed or live-attenuated) have been associated with some undesirable side effects, including everything from mild injection site inflammation to the autoimmune disease Guillain-Barré syndrome. This has led recent research to focus on developing subunit vaccines (i.e., protein, peptide, or DNA vaccines) since they are inherently safer because they deliver only the bioactive components necessary (i.e., antigens) to produce a protective immune response against the pathogen of interest. However, a major challenge in developing subunit vaccines is overcoming numerous biological barriers to effectively deliver the antigen to the secondary lymphoid organs where adaptive immune responses are orchestrated. Peptide amphiphile micelles are a class of biomaterials that have been shown to possess potent self-adjuvanting vaccine properties, but their optimization capacity and underlying immunostimulatory mechanism are not well understood. The present work investigated the influence of micelle size and charge on the materials' bioactivity, including lymph node accumulation, cell uptake ability, and immunogenicity. The results generated provide considerable insight into how micelles exert their biological effects, yielding a micellar toolbox that can be exploited to either enhance or diminish host immune responses. This exciting development makes peptide amphiphile micelles an attractive candidate for both immune activation and suppression applications.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Josiah D Smith
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Brittany N Allen
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Jake S Kramer
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Martin Schauflinger
- Electron Microscopy Core Facilities, University of Missouri, Columbia, Missouri 65211, United States
| | - Bret D Ulery
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States.,Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
12
|
Acar H, Ting JM, Srivastava S, LaBelle JL, Tirrell MV. Molecular engineering solutions for therapeutic peptide delivery. Chem Soc Rev 2018; 46:6553-6569. [PMID: 28902203 DOI: 10.1039/c7cs00536a] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins and their interactions in and out of cells must be well-orchestrated for the healthy functioning and regulation of the body. Even the slightest disharmony can cause diseases. Therapeutic peptides are short amino acid sequences (generally considered <50 amino acids) that can naturally mimic the binding interfaces between proteins and thus, influence protein-protein interactions. Because of their fidelity of binding, peptides are a promising next generation of personalized medicines to reinstate biological harmony. Peptides as a group are highly selective, relatively safe, and biocompatible. However, they are also vulnerable to many in vivo pharmacologic barriers limiting their clinical translation. Current advances in molecular, chemical, and nanoparticle engineering are helping to overcome these previously insurmountable obstacles and improve the future of peptides as active and highly selective therapeutics. In this review, we focus on self-assembled vehicles as nanoparticles to carry and protect therapeutic peptides through this journey, and deliver them to the desired tissue.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
13
|
Zhang R, Leeper CN, Wang X, White TA, Ulery BD. Immunomodulatory vasoactive intestinal peptide amphiphile micelles. Biomater Sci 2018; 6:1717-1722. [DOI: 10.1039/c8bm00466h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two different vasoactive intestinal peptide (VIP) amphiphiles have been formulated which readily form micelles of varying shapes. Interestingly, VIP micelle structure has been found to directly correlate to anti-inflammatory behavior providing evidence that these biomaterials can serve as a promising new therapeutic modality.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
| | | | - Xiaofei Wang
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
| | - Tommi A. White
- Department of Biochemistry
- University of Missouri
- Columbia
- USA
| | - Bret D. Ulery
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
- Department of Bioengineering
| |
Collapse
|
14
|
Acar H, Samaeekia R, Schnorenberg MR, Sasmal DK, Huang J, Tirrell MV, LaBelle JL. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation. Bioconjug Chem 2017; 28:2316-2326. [PMID: 28771332 DOI: 10.1021/acs.bioconjchem.7b00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein-protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a Förster resonance energy transfer (FRET)-based tracking system. Using this platform, we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| | - Ravand Samaeekia
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States.,Medical Scientist Training Program, University of Chicago , 924 East 57th Street, Suite 104, Chicago, Illinois 60637, United States
| | - Dibyendu K Sasmal
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Institute for Molecular Engineering, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60639, United States
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Pu Y, Zhao F, Li Y, Cui M, Wang H, Meng X, Cai S. The miR-34a-5p promotes the multi-chemoresistance of osteosarcoma via repression of the AGTR1 gene. BMC Cancer 2017; 17:45. [PMID: 28073349 PMCID: PMC5223322 DOI: 10.1186/s12885-016-3002-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Background Chemoresistance hinders the curative cancer chemotherapy. MicroRNAs (miRNAs) are key players in diverse biological processes including the chemoresistance of cancers. Methods A RNA-seq-based miR-omic analysis of osteosarcoma (OS) cells was performed to detect the levels of miR-34a-5p. Bioinformatics analysis revealed that AGTR1 is one of the target genes of miR-34a-5p. The mRNA and protein levels of AGTR1 were detected in both the miR-34a-5p-mimic transfected G-292 and miR-34a-5p-antagomiR transfected SJSA-1 cells. The involvement of AGTR1 with OS chemoresistance was validated by the experiments with siRNA-mediated repression or overexpression of the AGTR1 gene. Results We showed that miR-34a-5p promotes the multi- chemoresistance of OS. The angiotensin II type 1 receptor (AGTR1) gene, is one of the targets of miR-34a-5p in OS and thus negatively correlates with OS chemoresistance by systematic investigations of a multi-drug sensitive (G-292) and resistant (SJSA-1) OS cell lines. Down-regulation of the AGTR1 expression by siRNA passivates G-292 cells and suppresses cell apoptosis, while over-expression of AGTR1 sensitizes SJSA-1 cells and thus promotes the drug-triggered cell death. Conclusions The miR-34a-5p and its target gene AGTR1 are the potential targets for an effective chemotherapy of OS. Our results also provide novel insights into the effective chemotherapy for OS patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3002-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youguang Pu
- Cancer Epigenetics Program, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031, Anhui, China
| | - Fangfang Zhao
- Cancer Epigenetics Program, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031, Anhui, China
| | - Yinpeng Li
- Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Mingda Cui
- Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Haiyan Wang
- Department of Clinical Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031, Anhui, China
| | - Xianghui Meng
- Department of Orthopedic Surgery, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031, Anhui, China
| | - Shanbao Cai
- Cancer Epigenetics Program, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031, Anhui, China. .,Xinxiang Medical University, Xinxiang, Henan, 453000, China. .,Department of Orthopedic Surgery, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031, Anhui, China.
| |
Collapse
|
16
|
Barrett JC, Ulery BD, Trent A, Liang S, David NA, Tirrell MV. Modular Peptide Amphiphile Micelles Improving an Antibody-Mediated Immune Response to Group A Streptococcus. ACS Biomater Sci Eng 2016; 3:144-152. [PMID: 29242824 DOI: 10.1021/acsbiomaterials.6b00422] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inducing a strong and specific immune response is the hallmark of a successful vaccine. Nanoparticles have emerged as promising vaccine delivery devices to discover and elicit immune responses. Fine-tuning a nanoparticle vaccine to create an immune response with specific antibody and other cellular responses is influenced by many factors such as shape, size, and composition. Peptide amphiphile micelles are a unique biomaterials platform that can function as a modular vaccine delivery system, enabling control over many of these important factors and delivering payloads more efficiently to draining lymph nodes. In this study, the modular properties of peptide amphiphile micelles are utilized to improve an immune response against a Group A Streptococcus B cell antigen (J8). The hydrophobic/hydrophilic interface of peptide amphiphile micelles enabled the precise entrapment of amphiphilic adjuvants which were found to not alter micelle formation or shape. These heterogeneous micelles significantly enhanced murine antibody responses when compared to animals vaccinated with nonadjuvanted micelles or soluble J8 peptide supplemented with a classical adjuvant. The heterogeneous micelle induced antibodies also showed cross-reactivity with wild-type Group A Streptococcus providing evidence that micelle-induced immune responses are capable of identifying their intended pathogenic targets.
Collapse
Affiliation(s)
- John C Barrett
- Institute for Molecular Engineering, University of Chicago, William Eckhardt Research Center, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States.,Biophysical Sciences Graduate Program, University of Chicago, Gordon Center for Integrative Science, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Bret D Ulery
- Institute for Molecular Engineering, University of Chicago, William Eckhardt Research Center, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Chemical Engineering, University of Missouri, Lafferre Hall, 500 South 6th Street, Columbia, Missouri 65211, United States.,Department of Bioengineering, University of Missouri, 254 Agricultural Engineering, Columbia, Missouri 65211, United States
| | - Amanda Trent
- Biomolecular Science and Engineering Program, University of California Santa Barbara, 500 UCen Road, Santa Barbara, California 93106, United States
| | - Simon Liang
- Division of Biological Sciences, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, United States
| | - Natalie A David
- Division of Biological Sciences, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Institute for Molecular Engineering, University of Chicago, William Eckhardt Research Center, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Tang Y, Wu Z, Zhang CH, Zhang XL, Jiang JH. Enzymatic activatable self-assembled peptide nanowire for targeted therapy and fluorescence imaging of tumors. Chem Commun (Camb) 2016; 52:3631-4. [DOI: 10.1039/c5cc10591a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An activatable theranostic approach based on self-assembled peptide nanostructures with surface-displayed activatable cytotoxic agents for targeted cancer therapy was developed.
Collapse
Affiliation(s)
- Ying Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Zhan Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Chong-Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiao-Li Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
18
|
Wang Y, Lomakin A, Kanai S, Alex R, Benedek GB. Transformation of oligomers of lipidated peptide induced by change in pH. Mol Pharm 2015; 12:411-9. [PMID: 25569709 DOI: 10.1021/mp500519s] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oligomerization of lipidated peptides is of general scientific interest and is important in biomedical and pharmaceutical applications. We investigated the solution properties of a lipidated peptide, Liraglutide, which is one of the glucagon-like peptide-1 (GLP-1) agonists used for the treatment of type II diabetes. Liraglutide can serve as a model system for studying biophysical and biochemical properties of micelle-like self-assemblies of the lipidated peptides. Here, we report a transformation induced in Liraglutide oligomers by changing pH in the vicinity of pH 7. This fully reversible transformation is characterized by changes in the size and aggregation number of the oligomer and an associated change in the secondary structure of the constituent peptides. This transformation has quite slow kinetics: the equilibrium is reached in a course of several days. Interestingly, while the transformation is induced by changing pH, its kinetics is essentially independent of the final pH. We interpreted these findings using a model in which desorption of the monomer from the oligomer is the rate-limiting step in the transformation, and we determined the rate constant of the monomer desorption.
Collapse
Affiliation(s)
- Ying Wang
- Materials Processing Center, ‡Department of Physics, and §Center for Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
19
|
Trent A, Ulery BD, Black MJ, Barrett JC, Liang S, Kostenko Y, David NA, Tirrell MV. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS JOURNAL 2014; 17:380-8. [PMID: 25527256 DOI: 10.1208/s12248-014-9707-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Delivery system design and adjuvant development are crucially important areas of research for improving vaccines. Peptide amphiphile micelles are a class of biomaterials that have the unique potential to function as both vaccine delivery vehicles and self-adjuvants. In this study, peptide amphiphiles comprised of a group A streptococcus B cell antigen (J8) and a dialkyl hydrophobic moiety (diC16) were synthesized and organized into self-assembled micelles, driven by hydrophobic interactions among the alkyl tails. J8-diC16 formed cylindrical micelles with highly α-helical peptide presented on their surfaces. Both the micelle length and secondary structure were shown to be enhanced by annealing. When injected into mice, J8-diC16 micelles induced a strong IgG1 antibody response that was comparable to soluble J8 peptide supplemented with two classical adjuvants. It was discovered that micelle adjuvanticity requires the antigen be a part of the micelle since separation of J8 and the micelle was insufficient to induce an immune response. Additionally, the diC16 tail appears to be non-immunogenic since it does not stimulate a pathogen recognition receptor whose agonist (Pam3Cys) possesses a very similar chemical structure. The research presented in this paper demonstrates the promise peptide amphiphile micelles have in improving the field of vaccine engineering.
Collapse
Affiliation(s)
- Amanda Trent
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California, 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kuo CH, Leon L, Chung EJ, Huang RT, Sontag TJ, Reardon CA, Getz GS, Tirrell M, Fang Y. Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles. J Mater Chem B 2014; 2:8142-8153. [PMID: 25685357 PMCID: PMC4322949 DOI: 10.1039/c4tb00977k] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polyelectrolyte complex micelles have great potential as gene delivery vehicles because of their ability to encapsulate charged nucleic acids forming a core by neutralizing their charge, while simultaneously protecting the nucleic acids from non-specific interactions and enzymatic degradation. Furthermore, to enhance specificity and transfection efficiency, polyelectrolyte complex micelles can be modified to include targeting capabilities. Here, we describe the design of targeted polyelectrolyte complex micelles containing inhibitors against dys-regulated microRNAs (miRNAs) that promote atherosclerosis, a leading cause of human mortality and morbidity. Inhibition of dys-regulated miRNAs in diseased cells associated with atherosclerosis has resulted in therapeutic efficacy in animal models and has been proposed to treat human diseases. However, the non-specific targeting of microRNA inhibitors via systemic delivery has remained an issue that may cause unwanted side effects. For this reason, we incorporated two different peptide sequences to our miRNA inhibitor containing polyelectrolyte complex micelles. One of the peptides (Arginine-Glutamic Acid-Lysine-Alanine or REKA) was used in another micellar system that demonstrated lesion-specific targeting in a mouse model of atherosclerosis. The other peptide (Valine-Histidine-Proline-Lysine-Glutamine-Histidine-Arginine or VHPKQHR) was identified via phage display and targets vascular endothelial cells through the vascular cell adhesion molecule-1 (VCAM-1). In this study we have tested the in vitro efficacy and efficiency of lesion- and cell-specific delivery of microRNA inhibitors to the cells associated with atherosclerotic lesions via peptide-targeted polyelectrolyte complex micelles. Our results show that REKA-containing micelles (fibrin-targeting) and VHPKQHR-containing micelles (VCAM-1 targeting) can be used to carry and deliver microRNA inhibitors into macrophages and human endothelial cells, respectively. Additionally, the functionality of miRNA inhibitors in cells was demonstrated by analyzing miRNA expression as well as the expression or the biological function of its downstream target protein. Our study provides the first demonstration of targeting dys-regulated miRNAs in atherosclerosis using targeted polyelectrolyte complex micelles and holds promising potential for translational applications.
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Lorraine Leon
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, IL 60439
| | - Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ru-Ting Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Timothy J. Sontag
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | - Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, IL 60439
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Missirlis D, Teesalu T, Black M, Tirrell M. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles. PLoS One 2013; 8:e54611. [PMID: 23349939 PMCID: PMC3547919 DOI: 10.1371/journal.pone.0054611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022] Open
Abstract
Background Peptide amphiphiles (PAs) are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. Methodology/Principal Findings PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol) to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. Conclusions/Significance Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of Bioengineering, University of California, Berkeley, California, USA.
| | | | | | | |
Collapse
|
22
|
Accardo A, Leone M, Tesauro D, Aufiero R, Bénarouche A, Cavalier JF, Longhi S, Carriere F, Rossi F. Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles. MOLECULAR BIOSYSTEMS 2013; 9:1401-10. [DOI: 10.1039/c3mb25507g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Black M, Trent A, Kostenko Y, Lee JS, Olive C, Tirrell M. Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3845-9. [PMID: 22550019 DOI: 10.1002/adma.201200209] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 02/20/2012] [Indexed: 05/20/2023]
MESH Headings
- Adaptive Immunity
- Amino Acid Sequence
- Animals
- Drug Delivery Systems
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/chemistry
- Female
- HEK293 Cells
- Humans
- Lipopeptides/administration & dosage
- Lipopeptides/chemistry
- Lipopeptides/immunology
- Mice
- Mice, Inbred C57BL
- Micelles
- Models, Molecular
- Molecular Structure
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Ovalbumin/immunology
- Surface-Active Agents/administration & dosage
- Surface-Active Agents/chemistry
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/chemistry
Collapse
Affiliation(s)
- Matthew Black
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | | | |
Collapse
|
24
|
Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3803-22, 3710. [PMID: 22674563 DOI: 10.1002/adma.201200832] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 05/21/2023]
Abstract
Encapsulating anticancer drugs in nanoparticles has proven to be an effective mechanism to alter the pharmacokinetic and pharmacodynamic profiles of the drugs, leading to clinically useful cancer therapeutics like Doxil and DaunoXome. Underdeveloped tumor vasculature and lymphatics allow these first-generation nanoparticles to passively accumulate within the tumor, but work to create the next-generation nanoparticles that actively participate in the tumor targeting process is underway. Lipid nanoparticles functionalized with targeting peptides are among the most often studied. The goal of this article is to review the recently published literature of targeted nanoparticles to highlight successful designs that improved in vivo tumor therapy, and to discuss the current challenges of designing these nanoparticles for effective in vivo performance.
Collapse
Affiliation(s)
- Timothy R Pearce
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
25
|
Lin BF, Missirlis D, Krogstad DV, Tirrell M. Structural Effects and Lipid Membrane Interactions of the pH-Responsive GALA Peptide with Fatty Acid Acylation. Biochemistry 2012; 51:4658-68. [DOI: 10.1021/bi300314h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Brian F. Lin
- Department
of Bioengineering, University of California, Berkeley, California 94720,
United States
- Department
of Chemistry and
Biochemistry, University of California,
Santa Barbara, California 93106, United States
| | - Dimitris Missirlis
- Department
of Bioengineering, University of California, Berkeley, California 94720,
United States
- Department of Biophysical Chemistry,
Institute for Physical Chemistry, University of Heidelberg, Heidelberg, D-69210, Germany
| | - Daniel V. Krogstad
- Materials Department, University of California, Santa Barbara,
California 93106, United States
| | - Matthew Tirrell
- Department
of Bioengineering, University of California, Berkeley, California 94720,
United States
- Materials Department, University of California, Santa Barbara,
California 93106, United States
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United
States
| |
Collapse
|
26
|
Matson JB, Stupp SI. Self-assembling peptide scaffolds for regenerative medicine. Chem Commun (Camb) 2011; 48:26-33. [PMID: 22080255 DOI: 10.1039/c1cc15551b] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biomaterials made from self-assembling, short peptides and peptide derivatives have great potential to generate powerful new therapies in regenerative medicine. The high signaling capacity and therapeutic efficacy of peptidic scaffolds has been established in several animal models, and the development of more complex, hierarchical structures based on peptide materials is underway. This highlight discusses several classes of self-assembling peptide-based materials, including peptide amphiphiles, Fmoc-peptides, self-complementary ionic peptides, hairpin peptides, and others. The self-assembly designs, bioactive signalling strategies, and cell signalling capabilities of these bioactive materials are reported. The future challenges of the field are also discussed, including short-term goals such as integration with biopolymers and traditional implants, and long term goals, such as immune system programming, subcellular targeting, and the development of highly integrated scaffold systems.
Collapse
Affiliation(s)
- John B Matson
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
27
|
Lin BF, Marullo RS, Robb MJ, Krogstad DV, Antoni P, Hawker CJ, Campos LM, Tirrell MV. De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide amphiphile assembly. NANO LETTERS 2011; 11:3946-50. [PMID: 21800917 PMCID: PMC3223106 DOI: 10.1021/nl202220q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Self-assembling peptide amphiphiles (PAs) have been extensively used in the development of novel biomaterials. Because of their propensity to form cylindrical micelles, their use is limited in applications where small spherical micelles are desired. Here we present a platform method for controlling the self-assembly of biofunctional PAs into spherical 50 nm particles using dendrimers as shape-directing scaffolds. This templating approach results in biocompatible, stable protein-like assemblies displaying peptides with native secondary structure and biofunctionality.
Collapse
Affiliation(s)
- Brian F. Lin
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA
| | - Rachel S. Marullo
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA
| | - Maxwell J. Robb
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
| | - Daniel V. Krogstad
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
| | - Per Antoni
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5121, USA
| | - Luis M. Campos
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Matthew V. Tirrell
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA
| |
Collapse
|
28
|
Branco MC, Sigano DM, Schneider JP. Materials from peptide assembly: towards the treatment of cancer and transmittable disease. Curr Opin Chem Biol 2011; 15:427-34. [PMID: 21507707 PMCID: PMC3489472 DOI: 10.1016/j.cbpa.2011.03.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 01/20/2023]
Abstract
As the prevalence of cancer and transmittable disease persists, the development of new and more advanced therapies remains a priority in medical research. An emerging platform for the treatment of these illnesses is the use of materials formed via peptide assembly where the bulk material itself acts as the therapeutic. Higher ordered peptide structures with defined chemistry are capable of cellular targeting, recognition, and internalization. Recent design efforts are being made to exploit the nanoscale definition of the materials formed by assembling peptides to target cancer and microbial cells and to function as vaccines. This review focuses on assembled peptide materials that actively participate in the biological processes important to cancer and transmittable diseases to exert an anticipated functional outcome.
Collapse
Affiliation(s)
- Monica C Branco
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Dina M Sigano
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| |
Collapse
|