1
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Golshekan M, Abedinzade M, Ahmadi E, Neha S, Najafi M. Revolutionizing Cancer Treatment: Harnessing the Power of Mesenchymal Stem Cells for Precise Targeted Therapy in the Tumor Microenvironment. Curr Top Med Chem 2025; 25:243-262. [PMID: 38797895 DOI: 10.2174/0115680266299112240514103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
In recent years, mesenchymal stem cells (MSCs) have emerged as promising anti-- cancer mediators with the potential to treat several cancers. MSCs have been modified to produce anti-proliferative, pro-apoptotic, and anti-angiogenic molecules that could be effective against a variety of malignancies. Additionally, customizing MSCs with cytokines that stimulate pro-tumorigenic immunity or using them as vehicles for traditional chemical molecules with anti-cancer characteristics. Even though the specific function of MSCs in tumors is still challenged, promising outcomes from preclinical investigations of MSC-based gene therapy for a variety of cancers inspire the beginning of clinical trials. In addition, the tumor microenvironment (TME) could have a substantial influence on normal tissue stem cells, which can affect the treatment outcomes. To overcome the complications of TME in cancer development, MSCs could provide some signs of hope for converting TME into unequivocal therapeutic tools. Hence, this review focuses on engineered MSCs (En-MSCs) as a promising approach to overcoming the complications of TME.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mostafa Golshekan
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Abedinzade
- Department of Medical Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Ahmadi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Singh Neha
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
3
|
van Schaik TA, Moreno-Lama L, Aligholipour Farzani T, Wang M, Chen KS, Li W, Cai L, Zhang YS, Shah K. Engineered cell-based therapies in ex vivo ready-made CellDex capsules have therapeutic efficacy in solid tumors. Biomed Pharmacother 2023; 162:114665. [PMID: 37062216 PMCID: PMC10165501 DOI: 10.1016/j.biopha.2023.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Encapsulated cell-based therapies for solid tumors have shown promising results in pre-clinical settings. However, the inability to culture encapsulated therapeutic cells prior to their transplantation has limited their translation into clinical settings. In this study, we created a wide variety of engineered therapeutic cells (ThC) loaded in micropore-forming gelatin methacryloyl (GelMA) hydrogel (CellDex) capsules that can be cultured in vitro prior to their transplantation in surgically debulked solid tumors. We show that both allogeneic and autologous engineered cells, such as stem cells (SCs), macrophages, NK cells, and T cells, proliferate within CellDex capsules and migrate out of the gel in vitro and in vivo. Furthermore, tumor cell specific therapeutic proteins and oncolytic viruses released from CellDex capsules retain and prolong their anti-tumor effects. In vivo, ThCs in pre-manufactured Celldex capsules persist long-term and track tumor cells. Moreover, chimeric antigen receptor (CAR) T cell bearing CellDex (T-CellDex) and human SC releasing therapeutic proteins (hSC-CellDex) capsules show therapeutic efficacy in metastatic and primary brain tumor resection models that mimic standard of care of tumor resection in patients. Overall, this unique approach of pre-manufactured micropore-forming CellDex capsules offers an effective off-the-shelf clinically viable strategy to treat solid tumors locally.
Collapse
Affiliation(s)
- Thijs A van Schaik
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucia Moreno-Lama
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Touraj Aligholipour Farzani
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Goyal P, Malviya R. Advances in nuclei targeted delivery of nanoparticles for the management of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188881. [PMID: 36965678 DOI: 10.1016/j.bbcan.2023.188881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
A carrier is inserted into the appropriate organelles (nucleus) in successful medication transport, crucial to achieving very effective illness treatment. Cell-membrane targeting is the major focus of using nuclei to localize delivery. It has been demonstrated that high quantities of anticancer drugs can be injected directly into the nuclei of cancer cells, causing the cancer cells to die and increasing the effectiveness of chemotherapy. There are several effective ways to functionalize Nanoparticles (NPs), including changing their chemical makeup or attaching functional groups to their surface to increase their ability to target organelles. To cause tumor cells to apoptosis, released medicines must engage with molecular targets on particular organelles when their concentration is high enough. Targeted medication delivery studies will increasingly focus on organelle-specific delivery.
Collapse
Affiliation(s)
- Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
5
|
Liu D, Liu Y, Hu Y, Ming Y, Meng X, Tan H, Zheng L. MiR-134-5p/Stat3 Axis Modulates Proliferation and Migration of MSCs Co-Cultured with Glioma C6 Cells by Regulating Pvt1 Expression. Life (Basel) 2022; 12:life12101648. [PMID: 36295083 PMCID: PMC9604557 DOI: 10.3390/life12101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are critical in regenerating tissues because they can differentiate into various tissue cells. MSCs interact closely with cells in the tissue microenvironment during the repair of damaged tissue. Although regarded as non-healing wounds, tumors can be treated by MSCs, which showed satisfactory treatment outcomes in previous reports. However, it is largely unknown whether the biological behaviors of MSCs would be affected by the tumor microenvironment. Exploring the truth of tumor microenvironmental cues driving MSCs tumor “wound” regeneration would provide a deeper understanding of the biological behavior of MSCs. Therefore, we mimicked the tumor microenvironment using co-cultured glioma C6 cells and rat MSCs, aiming to assess the proliferation and migration of MSCs and the associated effects of Stat3 in this process. The results showed that co-cultured MSCs significantly exhibited enhanced tumorigenic, migratory, and proliferative abilities. Both up-regulation of Stat3 and down-regulation of miR-134-5p were detected in co-cultured MSCs. Furthermore, miR-134-5p directly regulated Stat3 by binding to the sequence complementary to microRNA response elements in the 3′-UTR of its mRNA. Functional studies showed that both the migration and proliferation abilities of co-cultured MSCs were inhibited by miR-134-5p, whereas Stat3 gain-of-function treatment reversed these effects. In addition, Pvt1 was confirmed to be regulated by miR-134-5p through Stat3 and the suppression of Pvt1 reduced the migration and proliferation abilities of co-cultured MSCs. To sum up, these results demonstrate a suppressive role of miR-134-5p in tumor-environment-driven malignant transformation of rat MSCs through directly targeting Stat3, highlighting a crucial role of loss-of-function of miR-134-5p/Stat3 axis in the malignant transformation, providing a reference to the potential clinic use of MSCs.
Collapse
Affiliation(s)
- Dongrong Liu
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Department of Stomatology, The Second People’s Hospital of Yibin, Yibin 644000, China
| | - Yan Liu
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Department of Stomatology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yun Hu
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ye Ming
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xuehuan Meng
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hao Tan
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Leilei Zheng
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
- Correspondence:
| |
Collapse
|
6
|
Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature. Cancer Cell Int 2021; 21:158. [PMID: 33685452 PMCID: PMC7938588 DOI: 10.1186/s12935-021-01836-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
A crosstalk established between tumor microenvironment and tumor cells leads to contribution or inhibition of tumor progression. Mesenchymal stem cells (MSCs) are critical cells that fundamentally participate in modulation of the tumor microenvironment, and have been reported to be able to regulate and determine the final destination of tumor cell. Conflicting functions have been attributed to the activity of MSCs in the tumor microenvironment; they can confer a tumorigenic or anti-tumor potential to the tumor cells. Nonetheless, MSCs have been associated with a potential to modulate the tumor microenvironment in favouring the suppression of cancer cells, and promising results have been reported from the preclinical as well as clinical studies. Among the favourable behaviours of MSCs, are releasing mediators (like exosomes) and their natural migrative potential to tumor sites, allowing efficient drug delivering and, thereby, efficient targeting of migrating tumor cells. Additionally, angiogenesis of tumor tissue has been characterized as a key feature of tumors for growth and metastasis. Upon introduction of first anti-angiogenic therapy by a monoclonal antibody, attentions have been drawn toward manipulation of angiogenesis as an attractive strategy for cancer therapy. After that, a wide effort has been put on improving the approaches for cancer therapy through interfering with tumor angiogenesis. In this article, we attempted to have an overview on recent findings with respect to promising potential of MSCs in cancer therapy and had emphasis on the implementing MSCs to improve them against the suppression of angiogenesis in tumor tissue, hence, impeding the tumor progression.
Collapse
|
7
|
Zhang J, Yuan Z, Zhong W, Wei Y. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev Rep 2020; 17:829-841. [PMID: 33205352 DOI: 10.1007/s12015-020-10080-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
TAŞLI PN, YALÇIN ÜLKER GM, CUMBUL A, USLU Ü, YILMAZ Ş, BOZKURT BT, ŞAHİN F. In vitro tooth-shaped scaffold construction by mimicking late bell stage. Turk J Biol 2020; 44:315-326. [PMID: 33110369 PMCID: PMC7585158 DOI: 10.3906/biy-2002-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
Neogenesis of osseous and ligamentous interfacial structures is essential for the regeneration of large oral or craniofacial defects. However, current treatment strategies are inadequate in renewing supporting tissues of teeth after trauma, chronic infections or surgical resection. Combined use of 3D scaffolds with stem cells became a promising treatment option for these injuries. Matching different scaffolding materials with different tissues can induce the correct cytokines and the differentiation of cells corresponding to that particular tissue. In this study, a hydroxyapatite (HA) based scaffold was used together with human adipose stem cells (hASCs), human bone marrow stem cells (hBMSCs) and gingival epithelial cells to mimic human tooth dentin-pulp-enamel tissue complexes and model an immature tooth at the late bell stage in vitro. Characteristics of the scaffold were determined via SEM, FTIR, pore size and density measurements. Changes in gene expression, protein secretions and tissue histology resulting from cross-interactions of different dental tissues grown in the system were shown. Classical tooth tissues such as cementum, pulp and bone like tissues were formed within the scaffold. Our study suggests that a HA-based scaffold with different cell lineages can successfully mimic early stages of tooth development and can be a valuable tool for hard tissue engineering.
Collapse
Affiliation(s)
- Pakize Neslihan TAŞLI
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbulTurkey
| | - Gül Merve YALÇIN ÜLKER
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, İstanbul Okan University, İstanbulTurkey
| | - Alev CUMBUL
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, İstanbulTurkey
| | - Ünal USLU
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, İstanbulTurkey
| | - Şahin YILMAZ
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbulTurkey
| | - Batuhan Turhan BOZKURT
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbulTurkey
| | - Fikrettin ŞAHİN
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbulTurkey
| |
Collapse
|
9
|
Kim K, Khang D. Past, Present, and Future of Anticancer Nanomedicine. Int J Nanomedicine 2020; 15:5719-5743. [PMID: 32821098 PMCID: PMC7418170 DOI: 10.2147/ijn.s254774] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
This review aims to summarize the methods that have been used till today, highlight methods that are currently being developed, and predict the future roadmap for anticancer therapy. In the beginning of this review, established approaches for anticancer therapy, such as conventional chemotherapy, hormonal therapy, monoclonal antibodies, and tyrosine kinase inhibitors are summarized. To counteract the side effects of conventional chemotherapy and to increase limited anticancer efficacy, nanodrug- and stem cell-based therapies have been introduced. However, current level of understanding and strategies of nanodrug and stem cell-based therapies have limitations that make them inadequate for clinical application. Subsequently, this manuscript reviews methods with fewer side effects compared to those of the methods mentioned above which are currently being investigated and are already being applied in the clinic. The newer strategies that are already being clinically applied include cancer immunotherapy, especially T cell-mediated therapy and immune checkpoint inhibitors, and strategies that are gaining attention include the manipulation of the tumor microenvironment or the activation of dendritic cells. Tumor-associated macrophage repolarization is another potential strategy for cancer immunotherapy, a method which activates macrophages to immunologically attack malignant cells. At the end of this review, we discuss combination therapies, which are the future of cancer treatment. Nanoparticle-based anticancer immunotherapies seem to be effective, in that they effectively use nanodrugs to elicit a greater immune response. The combination of these therapies with others, such as photothermal or tumor vaccine therapy, can result in a greater anticancer effect. Thus, the future of anticancer therapy aims to increase the effectiveness of therapy using various therapies in a synergistic combination rather than individually.
Collapse
Affiliation(s)
- Kyungeun Kim
- College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- College of Medicine, Gachon University, Incheon 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Gachon Advanced Institute for Health Science & Technology (GAIHST), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
10
|
Gharbavi M, Sharafi A, Ghanbarzadeh S. Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy. Curr Gene Ther 2020; 20:269-284. [PMID: 32515309 DOI: 10.2174/1566523220666200607190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties. Therefore, they have considerable efficiency in genetic engineering for future clinical applications in cancer gene therapy and other diseases. For improving therapeutic efficiency, targeted therapy of cancers can be achieved through the sustained release of therapeutic agents and functional gene expression induction to the intended tissues. The development of a new vector in gene therapy can improve the durability of a transgene expression. Also, the safety of the vector, if administered systemically, may resolve several problems, such as durability of expression and the host immune response. Currently, MSCs are prominent candidates as cell vehicles for both preclinical and clinical trials due to the secretion of therapeutic agents in several cancers. In the present study, we discuss the status of gene therapy in both viral and non-viral vectors along with their limitations. Throughout this study, the use of several nano-carriers for gene therapy is also investigated. Finally, we critically discuss the promising advantages of MSCs in targeted gene delivery, tumor inhibition and their utilization as the gene carriers in clinical situations.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Ghanbarzadeh
- Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Pharmaceutical Nanotechnology Research Center and Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
LI A, ZHANG T, GAO J. [Progress on utilizing mesenchymal stem cells as cellular delivery system for targeting delivery of as drug/gene for anti-tumor therapy]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:20-34. [PMID: 32621413 PMCID: PMC8800717 DOI: 10.3785/j.issn.1008-9292.2020.02.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Mesenchymal stem cells (MSCs) have the inherent tumor-homing ability with the attraction of multiple chemokines released by tumor tissues or tumor microenvironments, which can be utilized as promising cellular carriers for targeted delivery of anti-tumor drugs and genes. In most circumstances, large amount of systemicly administrated MSCs will be firstly trapped by lungs, following with re-distribution and homing to tumor tissues after lung clearance. Several approaches like enhanced interactions between chemokines and receptors on MSCs or reducing the retention of MSCs by changes of administration methods are firstly reviewed for improving the homing of MSCs towards tumor tissues. Additionally, the potentials and gains of utilizing MSCs to carry several chemotherapeutics, such as doxorubicin, paclitaxel and gemcitabine are summarized, showing the advantages of overcoming the short half-life and poor tumor targeting of these chemotherapeutics. Moreover, the applications of MSCs to protect and deliver therapeutic genes to tumor sites for selectively tumor cells eliminating or promoting immune system are highlighted. In addition, the potentials of using MSCs for tumor-targeting delivery of diagnostic and therapeutic agents are addressed. We believed that the continuous improvement and optimization of this stem cells-based cellular delivery system will provide a novel delivery strategy and option for tumor treatment.
Collapse
|
12
|
Wong T, Narayanan S, Brown DP, Chen ZS. Synthesis and Cytotoxicity Studies of Stilbene Long-Chain Fatty Acid Conjugates. JOURNAL OF NATURAL PRODUCTS 2020; 83:1563-1570. [PMID: 32243160 DOI: 10.1021/acs.jnatprod.0c00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of 16 conjugates of the tubulin polymerization inhibitor combretastatin A4 (CA-4) and other functionally related stilbene with four 18-carbon fatty acids, namely, stearic, oleic, linoleic, and linolenic acids, have been synthesized in good yields. These new derivatives have been evaluated against the KB-3-1 (human epidermoid carcinoma), NCI-H460 (human lung cancer), HEK293 (human embryonic kidney), and MCF-7 (human breast adenocarcinoma) cell lines for antiproliferative activity, with the exhibited cytotoxic activities comparable with those of CA-4 and colchicine. Compounds 22 and 23, CA-4 conjugates of linoleic and linolenic acids, respectively, were determined to have exhibited the most active in vitro assays, with compound 23 exhibiting very similar activity to the parent compound against the NCI-H460 cell line. Our studies further delineated the structurally required Z-geometry of the stilbene moiety and that conjugation of the less active E-stilbenes with the most active fatty acid had minimal or no improvement in their respective activities.
Collapse
Affiliation(s)
- Thomas Wong
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Silpa Narayanan
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - David P Brown
- Department of Chemistry, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|
13
|
Wang Q, Li T, Wu W, Ding G. Interplay between mesenchymal stem cell and tumor and potential application. Hum Cell 2020; 33:444-458. [PMID: 32378164 DOI: 10.1007/s13577-020-00369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) possess the capabilities of self-renewal and multipotent differentiation. Firstly isolated from bone marrow, MSCs are subsequently identified from various post-natal tissue types. Based the differentiation into tissue-specific cells, MSCs were capable of replacing damaged and diseased tissues. In addition, MSCs have been demonstrated to possess important immunomodulatory properties. Increasing data showed that MSCs exhibited tropism for sites of the tumor microenvironment and interacted with tumor cells closely through paracrine signaling. Therefore, better understanding of crosstalk between MSCs and tumor cells will be able to develop potential strategies in the treatment of tumors in the future. Herein, we summarize the research progress of the influence of MSCs on tumor cells and the prospect of their application in tumor therapy in this review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Ti Li
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Wei Wu
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, Linglongshan South Road No. 4138, Qingzhou, 262500, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Remant KC, Thapa B, Valencia-Serna J, Domun SS, Dimitroff C, Jiang X, Uludağ H. Cholesterol grafted cationic lipopolymers: Potential siRNA carriers for selective chronic myeloid leukemia therapy. J Biomed Mater Res A 2019; 108:565-580. [PMID: 31714657 DOI: 10.1002/jbm.a.36837] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 01/22/2023]
Abstract
Synthetic siRNA technology has emerged as a promising approach for molecular therapy of cancer but, despite its potential for post-transcriptional gene silencing, there is an urgent need to develop efficient delivery systems particularly for difficult-to-transfect, anchorage-independent cells. In this study, we designed highly hydrophobic cationic lipopolymers by grafting cholesterol (Chol) onto low-molecular weight (0.6, 1.2, and 2.0 kDa) polyethylenimines (PEIs) to enable specific siRNA therapy to chronic myeloid leukemia (CML) cells. The siRNA binding by PEI-Chol led to nano-sized (100-200 nm diameter) polyplexes with enhanced ζ-potential (+20 to +35 mV) and ability to protect the loaded siRNA completely in fresh serum. The siRNA delivery to CML (K562) cells was proportional to degree of substitution and, unexpectedly, inversely proportional to molecular size of the polymeric backbone. Chol grafting with as little as ~1.0 Chol/PEI on 0.6 and 1.2 kDa PEIs enabled silencing of the reporter Green Fluorescent Protein gene as well as the endogenous BCR-Abl oncogene in K562 cells. The PEI-Chol mediated delivery of siRNAs specific for BCR-Abl and KSP genes significantly arrested the growth the cells which was significantly reflected in colony formation potency of K562 cells. BCR-Able siRNA mediated therapeutic efficacy was also observed in significantly increased caspase activity and apoptosis of K562 cells. Thus, Chol-grafted low-molecular weight PEIs appear to be unique siRNA carriers to realize the molecular therapy in CML cells.
Collapse
Affiliation(s)
- K C Remant
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Juliana Valencia-Serna
- Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Suraj S Domun
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Cailean Dimitroff
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoyan Jiang
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hasan Uludağ
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Ambekar RS, Kandasubramanian B. A polydopamine-based platform for anti-cancer drug delivery. Biomater Sci 2019; 7:1776-1793. [PMID: 30838354 DOI: 10.1039/c8bm01642a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cancer is the second leading cause of death in the world with around 9.6 million deaths in 2018, approximately 70% of which occurred in the middle- and low-income countries; moreover, the economic impact of cancer is significant and escalating day by day. The total annual economic cost of cancer treatment in 2010 was estimated at approximately US$ 1.16 trillion. Researchers have explored cancer mitigation therapies such as chemo-thermal therapy, chemo-photothermal therapy and photodynamic-photothermal therapy. These combinational therapies facilitate better control on the tunability of the carrier for effectively diminishing cancer cells than individual therapies such as chemotherapy, photothermal therapy and targeted therapy. All these therapies come under novel drug delivery systems in which anti-cancer drugs attack the cancerous cells due to various stimuli (e.g. pH, thermal, UV, IR, acoustic and magnetic)-responsive properties of the anti-cancer drug carriers. Compared to conventional drug delivery systems, the novel drug delivery systems have several advantages such as targeted drug release, sustained and consistent blood levels within the therapeutic window, and decreased dosing frequency. Among the numerous polymeric carriers developed for drug delivery, polydopamine has been found to be more suitable as a carrier for these drug delivery functions due to its easy and cost-effective fabrication, excellent biocompatibility, multi-drug carrier capacity and stimuli sensitivity. Therefore, in this review, we have explored polydopamine-based carriers for anti-cancer drug delivery systems to mitigate cancer and simultaneously discussed basic synthesis routes for polydopamine.
Collapse
Affiliation(s)
- Rushikesh S Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India.
| | | |
Collapse
|
16
|
Increased Cytotoxicity of Herpes Simplex Virus Thymidine Kinase Expression in Human Induced Pluripotent Stem Cells. Int J Mol Sci 2019; 20:ijms20040810. [PMID: 30769780 PMCID: PMC6413063 DOI: 10.3390/ijms20040810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) hold enormous promise for regenerative medicine. The major safety concern is the tumorigenicity of transplanted cells derived from iPSCs. A potential solution would be to introduce a suicide gene into iPSCs as a safety switch. The herpes simplex virus type 1 thymidine kinase (HSV-TK) gene, in combination with ganciclovir, is the most widely used enzyme/prodrug suicide system from basic research to clinical applications. In the present study, we attempted to establish human iPSCs that stably expressed HSV-TK with either lentiviral vectors or CRISPR/Cas9-mediated genome editing. However, this task was difficult to achieve, because high-level and/or constitutive expression of HSV-TK resulted in the induction of cell death or silencing of HSV-TK expression. A nucleotide metabolism analysis suggested that excessive accumulation of thymidine triphosphate, caused by HSV-TK expression, resulted in an imbalance in the dNTP pools. This unbalanced state led to DNA synthesis inhibition and cell death in a process similar to a “thymidine block”, but more severe. We also demonstrated that the Tet-inducible system was a feasible solution for overcoming the cytotoxicity of HSV-TK expression. Our results provided a warning against using the HSV-TK gene in human iPSCs, particularly in clinical applications.
Collapse
|
17
|
Abstract
Exosomes derived from human mesenchymal stem cells (MSCs) engineered to express the suicide gene yeast cytosine deaminase::uracil phosphoribosyl transferase (yCD::UPRT) represent a new therapeutic approach for tumor-targeted innovative therapy. The yCD::UPRT-MSC-exosomes carry mRNA of the suicide gene in their cargo. Upon internalization by tumor cells, the exosomes inhibit the growth of broad types of cancer cells in vitro, in the presence of a prodrug. Here we describe the method leading to the production and testing of these therapeutic exosomes. The described steps include the preparation of replication-deficient retrovirus possessing the yCD::UPRT suicide gene, and the preparation and selection of MSCs transduced with yCD::UPRT suicide gene. We present procedures to obtain exosomes possessing the ability to induce the death of tumor cells. In addition, we highlight methods for the evaluation of the suicide gene activity of yCD::UPRT-MSC-exosomes.
Collapse
Affiliation(s)
- Cestmir Altaner
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
- Stem Cell Preparation Department, St. Elizabeth Cancer Institute, Bratislava, Slovakia.
| | - Ursula Altanerova
- Stem Cell Preparation Department, St. Elizabeth Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
18
|
Zhang S, Liu Y, Derakhshanfar S, He W, Huang Q, Dong S, Rao J, Luo G, Zhong W, Liao W, Shi M, Xing M. Polymer Self-Assembled BMSCs with Cancer Tropism and Programmed Homing. Adv Healthc Mater 2018; 7:e1800118. [PMID: 30345648 DOI: 10.1002/adhm.201800118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/09/2018] [Indexed: 11/05/2022]
Abstract
Targeted therapy can improve the accuracy of diagnosis and treatment in the field of cancer management. Cellular surface engineering can enhance cell functions via mounting functional molecules onto cellular membranes. A novel amphiphilic hyperbranched polymer (AHP) conjugated with oleic acid (OA) and tumor-targeted ligand folic acid (FA) is employed. The lipophilic chain can self-assemble and infuse with the cytomembrane of bone marrow mesenchymal stem cells (BMSCs) with the end of FA left on the outside for targeting. The polymer tailored BMSCs can enhance tumor tropism in gastric cancer. BMSCs are characterized by the low immunogenicity and tumor tropism, which makes them promising targeting carriers. Regarding the integrated advantages of these two vectors, it is demonstrated that the functional amphiphilic AHP-OA-FA enhances the tumor tropism of BMSCs. Flow cytometry, standard MTT assay, and wound-healing assay show that AHP-OA-FA has no influence on CD expression, proliferative capacity, and cell motility of BMSCs, respectively. Furthermore, in vitro transwell assay and ex vivo fluorescence image verify that AHP-OA-FA enhances tumor tropism of BMSCs compared to BMSCs and AHP-OA-Rhodamine B-BMSCs. Finally, histological analysis demonstrates that AHP-OA-FA causes no damage to major organs. The results of this study suggest that living BMSCs self-assembled with a polymer might be a promising vehicle for targeted delivery to cancer cells.
Collapse
Affiliation(s)
- Shuyi Zhang
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Yuqing Liu
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical University Guangzhou 510006 China
- Burns InstituteSouthwest Hospital Chongqing 400038 China
| | - Soroosh Derakhshanfar
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Wanming He
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Qiong Huang
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Shumin Dong
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Jinjun Rao
- Key Laboratory of New Drug Screening of Guangdong ProvinceSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou 510006 China
| | - Gao‐Xing Luo
- Burns InstituteSouthwest Hospital Chongqing 400038 China
| | - Wen Zhong
- Department of Biosystem EngineeringUniversity of Manitoba Winnipeg R3T 5V6 Canada
| | - Wangjun Liao
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Min Shi
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Malcolm Xing
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical University Guangzhou 510006 China
- Burns InstituteSouthwest Hospital Chongqing 400038 China
- Department of Mechanical EngineeringDepartment of Biochemistry and Medical GeneticsUniversity of Manitoba Winnipeg R3T 5V6 Canada
| |
Collapse
|
19
|
Altanerova U, Jakubechova J, Benejova K, Priscakova P, Pesta M, Pitule P, Topolcan O, Kausitz J, Zduriencikova M, Repiska V, Altaner C. Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. Int J Cancer 2018; 144:897-908. [PMID: 30098225 DOI: 10.1002/ijc.31792] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
The natural behavior of mesenchymal stem cells (MSCs) and their exosomes in targeting tumors is a promising approach for curative therapy. Human tumor tropic mesenchymal stem cells (MSCs) isolated from various tissues and MSCs engineered to express the yeast cytosine deaminase::uracil phosphoribosyl transferase suicide fusion gene (yCD::UPRT-MSCs) released exosomes in conditional medium (CM). Exosomes from all tissue specific yCD::UPRT-MSCs contained mRNA of the suicide gene in the exosome's cargo. When the CM was applied to tumor cells, the exosomes were internalized by recipient tumor cells and in the presence of the prodrug 5-fluorocytosine (5-FC) effectively triggered dose-dependent tumor cell death by endocytosed exosomes via an intracellular conversion of the prodrug 5-FC to 5-fluorouracil. Exosomes were found to be responsible for the tumor inhibitory activity. The presence of microRNAs in exosomes produced from naive MSCs and from suicide gene transduced MSCs did not differ significantly. MicroRNAs from yCD::UPRT-MSCs were not associated with therapeutic effect. MSC suicide gene exosomes represent a new class of tumor cell targeting drug acting intracellular with curative potential.
Collapse
Affiliation(s)
- Ursula Altanerova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Jana Jakubechova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Katarina Benejova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Petra Priscakova
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, University Hospital Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.,Laboratory of tumor biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,University Hospital in Pilsen, Department of Nuclear Medicine - Immunoanalytic Laboratory, Pilsen, Czech Republic
| | - Pavel Pitule
- Laboratory of tumor biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Ondrej Topolcan
- University Hospital in Pilsen, Department of Nuclear Medicine - Immunoanalytic Laboratory, Pilsen, Czech Republic
| | - Juraj Kausitz
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Martina Zduriencikova
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vanda Repiska
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, University Hospital Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | - Cestmir Altaner
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia.,Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
20
|
Han SW, Kim YY, Kang WJ, Kim HC, Ku SY, Kang BC, Yun JW. The Use of Normal Stem Cells and Cancer Stem Cells for Potential Anti-Cancer Therapeutic Strategy. Tissue Eng Regen Med 2018; 15:365-380. [PMID: 30603561 PMCID: PMC6171655 DOI: 10.1007/s13770-018-0128-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite recent advance in conventional cancer therapies including surgery, radiotherapy, chemotherapy, and immunotherapy to reduce tumor size, unfortunately cancer mortality and metastatic cancer incidence remain high. Along with a deeper understanding of stem cell biology, cancer stem cell (CSC) is important in targeted cancer therapy. Herein, we review representative patents using not only normal stem cells as therapeutics themselves or delivery vehicles, but also CSCs as targets for anti-cancer strategy. METHODS Relevant patent literatures published between 2005 and 2017 are discussed to present developmental status and experimental results on using normal stem cells and CSCs for cancer therapy and explore potential future directions in this field. RESULTS Stem cells have been considered as important element of regenerative therapy by promoting tissue regeneration. Particularly, there is a growing trend to use stem cells as a target drug-delivery system to reduce undesirable side effects in non-target tissues. Noteworthy, studies on CSC-specific markers for distinguishing CSCs from normal stem cells and mature cancer cells have been conducted as a selective anti-cancer therapy with few side effects. Many researchers have also reported the development of various substances with anticancer effects by targeting CSCs from cancer tissues. CONCLUSION There has been a continuing increase in the number of studies on therapeutic stem cells and CSC-specific markers for selective diagnosis and therapy of cancer. This review focuses on the current status in the use of normal stem cells and CSCs for targeted cancer therapy. Future direction is also proposed.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Woo-Ju Kang
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| |
Collapse
|
21
|
Sun SK, Wang HF, Yan XP. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Acc Chem Res 2018; 51:1131-1143. [PMID: 29664602 DOI: 10.1021/acs.accounts.7b00619] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Persistent luminescence nanoparticles (PLNPs) are unique optical materials emitting long-lasting luminescence after ceasing excitation. Such a unique optical feature allows luminescence detection without constant external illumination to avoid the interferences of autofluorescence and scattering light from biological fluids and tissues. Besides, near-infrared (NIR) PLNPs have advantages of deep penetration and the reactivation of the persistent luminescence (PL) by red or NIR light. These features make the application of NIR-emitting PLNPs in long-term bioimaging no longer limited by the lifetime of PL. To take full advantage of PLNPs for biological applications, the versatile strategies for bridging PLNPs and biological system become increasingly significant for the design of PLNPs-based nanoprobes. In this Account, we summarize our systematic achievements in the biological applications of PLNPs from biosensing/bioimaging to theranostics with emphasizing the engineering strategies for fabricating specific PLNPs-based nanoprobes. We take surface engineering and manipulating energy transfer as the major principles to design various PLNPs-based nanoprobes based on the nature of interactions between nanoprobes and targets. We have developed target-induced formation or interruption of fluorescence resonance energy transfer systems for autofluorescence-free biosensing and imaging of cancer biomarkers. We have decorated single or dual targeting ligands on PLNPs for tumor-targeted imaging, and integrated other modal imaging agents into PLNPs for multimodal imaging. We have also employed specific functionalization for various biomedical applications including chemotherapy, photodynamic therapy, photothermal therapy, stem cells tracking and PL imaging-guided gene therapy. Besides, we have modified PLNPs with multiple functional units to achieve challenging metastatic tumor theranostics. The proposed design principle and comprehensive strategies show great potential in guiding the design of PLNPs nanoprobes and promoting further development of PLNPs in the fields of biological science and medicine. We conclude this Account by outlining the future directions to further promote the practical application of PLNPs. The novel protocols for the synthesis of small-size, monodisperse, and water-soluble PLNPs with high NIR PL intensity and superlong afterglow are the vibrant directions for the biomedical applications of PLNPs. In-depth theories and evidence on luminescence mechanism of PLNPs are highly desired for further improvement of their luminescence performance. Furthermore, other irradiations without tissue penetrating depth limit, such as X-ray, are encouraged for use in energy storage and re-excitation of PLNPs, enabling imaging in deep tissue in vivo and integrating other X-ray sensitized theranostic techniques such as computed tomography imaging and radiotherapy. Last but not least, PLNPs-based nanoprobes and the brand new hybrids of PLNPs with other nanomaterials show a bright prospect for accurate diagnosis and efficient treatment of diseases besides tumors.
Collapse
Affiliation(s)
- Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - He-Fang Wang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xiu-Ping Yan
- State Key Laboratory
of Food Science and Technology, Jiangnan University; International
Joint Laboratory on Food Safety, Jiangnan University; Institute of
Analytical Food Safety, School of Food Science and Technology, Jiangnan
University, Wuxi 214122, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
22
|
Lakota J. Fate of human mesenchymal stem cells (MSCs) in humans and rodents-Is the current paradigm obtained on rodents applicable to humans? J Cell Mol Med 2018; 22:2523-2524. [PMID: 29441676 PMCID: PMC5867141 DOI: 10.1111/jcmm.13561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/11/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jan Lakota
- Biomedical Center, SAS, Bratislava, Slovakia.,Institute of Normal and Pathological Physiology CEM, SAS, Bratislava, Slovakia.,St. Elizabeth Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
23
|
Usuelli FG, D'Ambrosi R, Maccario C, Indino C, Manzi L, Maffulli N. Adipose-derived stem cells in orthopaedic pathologies. Br Med Bull 2017; 124:31-54. [PMID: 29253149 DOI: 10.1093/bmb/ldx030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To examine the current literature regarding the clinical application of adipose-derived stem cells (ADSCs) for the management of orthopaedic pathologies. SOURCES OF DATA MEDLINE,SCOPUS, CINAHL and EMBASE (1950 to April 14, 2017) were searched by two independent investigators for articles published in English. Reviews, meta-analyses, expert opinions, case reports, mini case series and editorials were excluded. Furthermore, we excluded animal studies, cadaveric studies and in vitro studies. AREAS OF AGREEMENT ADSCs seem to produce excellent clinical results. However, the length and modalities of follow-up in the different conditions are extremely variable. Nevertheless, it appears that the use of adipose-derived stem cells is associated with subjective and objective clinical improvements and minimal complication rates. AREAS OF CONTROVERSY None of the studies identified is a randomized double-blinded trial, and most of the selected studies present major limitations, and different methods, confounding the results of our review. GROWING POINTS It is necessary to conduct more and better studies to ascertain whether ADSCs really play a role in orthopaedic surgery with particular attention to ADSCs harvesting method, type of administration and the conditions treated. AREAS TIMELY FOR DEVELOPING RESEARCH The current literature regarding the use of ADSCs for orthopaedic pathologies is limited. At present, long-term safety is the biggest challenge of ADSCs based regenerative medicine. LEVEL OF EVIDENCE Level IV-Study of Level I, II, III, IV.
Collapse
Affiliation(s)
| | - Riccardo D'Ambrosi
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Italy
| | - Camilla Maccario
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Italy
| | - Cristian Indino
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luigi Manzi
- Foot and Ankle Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Nicola Maffulli
- Department of Orthopaedics and Traumatology, Azienda Ospedaliera San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, London, UK
| |
Collapse
|
24
|
Altanerova U, Babincova M, Babinec P, Benejova K, Jakubechova J, Altanerova V, Zduriencikova M, Repiska V, Altaner C. Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine 2017; 12:7923-7936. [PMID: 29138559 PMCID: PMC5667789 DOI: 10.2147/ijn.s145096] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Magnetic hyperthermia, or the heating of tissues using magnetic materials, is a promising approach for treating cancer. We found that human mesenchymal stem cells (MSCs) isolated from various tissues and MSCs expressing the yeast cytosine deaminase∷uracil phosphoribosyl transferase suicide fusion gene (yCD∷UPRT) can be labeled with Venofer, an iron oxide carbohydrate nanoparticle. Venofer labeling did not affect cell proliferation or the ability to home to tumors. All Venofer-labeled MSCs released exosomes that contained iron oxide. Furthermore, these exosomes were efficiently endocytosed by tumor cells. Exosomes from Venofer-labeled MSCs expressing the yCD∷UPRT gene in the presence of the prodrug 5-fluorocytosine inhibited tumor growth in a dose-dependent fashion. The treated tumor cells were also effectively ablated following induction of hyperthermia using an external alternating magnetic field. Cumulatively, we found that magnetic nanoparticles packaged into MSC exosomes are efficiently endocytosed by tumor cells, facilitating targeted tumor cell ablation via magnetically induced hyperthermia.
Collapse
Affiliation(s)
- U Altanerova
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia
| | - M Babincova
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - P Babinec
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - K Benejova
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia
| | - J Jakubechova
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia
| | - V Altanerova
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia
| | - M Zduriencikova
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - V Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - C Altaner
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia.,Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
25
|
Multifunctional hetero-nanostructures of hydroxyl-rich polycation wrapped cellulose-gold hybrids for combined cancer therapy. J Control Release 2017; 255:154-163. [DOI: 10.1016/j.jconrel.2017.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/18/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
|
26
|
Lo Furno D, Mannino G, Cardile V, Parenti R, Giuffrida R. Potential Therapeutic Applications of Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1615-1628. [PMID: 27520311 DOI: 10.1089/scd.2016.0135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cells are subdivided into two main categories: embryonic and adult stem cells. In principle, pluripotent embryonic stem cells might differentiate in any cell types of the organism, whereas the potential of adult stem cells would be more restricted. Although adult stem cells from bone marrow have been initially the most extensively studied, those derived from human adipose tissue have been lately more widely investigated, because of several advantages. First, they can be easily obtained in large amounts from subcutaneous adipose tissue, with minimal pain and morbidity for the patients during harvesting. In addition, they feature low immunogenicity and can differentiate not only in cells of mesodermal lineage (adipocytes, osteoblasts, chondrocytes and muscle cells), but also in cells of other germ layers, such as neural or epithelial cells. As their multilineage differentiation capabilities are increasingly highlighted, their possible use in cell-based regenerative medicine is now broadly explored. In fact, starting from in vitro observations, many studies have already entered the preclinical and clinical phases. In this review, because of our main scientific interest, adipogenic, osteogenic, chondrogenic, and neurogenic differentiation abilities of adipose-derived mesenchymal stem cells, as well as their possible therapeutic applications, are chiefly focused. In addition, their ability to differentiate toward muscle, epithelial, pancreatic, and hepatic cells is briefly reported.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| |
Collapse
|
27
|
Toro L, Bohovic R, Matuskova M, Smolkova B, Kucerova L. Metastatic Ovarian Cancer Can Be Efficiently Treated by Genetically Modified Mesenchymal Stromal Cells. Stem Cells Dev 2016; 25:1640-1651. [PMID: 27539058 DOI: 10.1089/scd.2016.0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to late diagnosis, often recurrence, formation of metastases and resistance to commonly used chemotherapeutics human ovarian carcinoma represents a serious disease with high mortality. Adipose tissue-derived mesenchymal stromal cells (AT-MSC) can serve as vehicles for therapeutic genes and we engineered AT-MSC to express either Herpes simplex virus thymidine kinase (HSVtk-MSC), which phosphorylates ganciclovir (GCV) to its toxic metabolites or yeast fused cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT-MSC), which converts 5-fluorocytosine (5-FC) to highly toxic 5-fluorouracil (5-FU). Here, we reported different responses of cytotoxicity mediated by CD::UPRT-MSC/5-FC treatment on human ovarian carcinoma cell lines-SKOV-3 and A2780 used in adherent or three-dimensional (3D) cell culture and we proved high potential of 3D model to predict results in our in vivo experiments. Both tumor cell lines showed similarly high chemosensitivity to the used treatment in adherent culture, but 3D model revealed severe discrepancy-only 36% of SKOV-3 cells but even 90% of A2780 cells were eliminated. This result served as a prognostic marker-we were able to achieve significantly decreased tumor volumes of subcutaneous xenografts of A2780 cells in nude mice and we prolonged tumor-free survival in 33% of animals bearing highly metastatic ovarian carcinoma after CD::UPRT-MSC/5-FC treatment.
Collapse
Affiliation(s)
- Lenka Toro
- 1 Laboratory of Molecular Oncology, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roman Bohovic
- 1 Laboratory of Molecular Oncology, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Matuskova
- 1 Laboratory of Molecular Oncology, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bozena Smolkova
- 2 Department of Genetics, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kucerova
- 1 Laboratory of Molecular Oncology, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
28
|
Navarro SA, Carrillo E, Griñán-Lisón C, Martín A, Perán M, Marchal JA, Boulaiz H. Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat 2016; 26:1095-104. [PMID: 27424657 DOI: 10.1080/13543776.2016.1211640] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. AREAS COVERED In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. EXPERT OPINION Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.
Collapse
Affiliation(s)
- Saúl Abenhamar Navarro
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain
| | - Esmeralda Carrillo
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain.,b Department of Human Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain.,c Biosanitary Institute of Granada (ibs.GRANADA) , University Hospitals of Granada-Univesity of Granada , Granada , Spain
| | - Carmen Griñán-Lisón
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain
| | - Ana Martín
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain
| | - Macarena Perán
- d Department of Health Sciences , University of Jaén , Jaén , Spain
| | - Juan Antonio Marchal
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain.,b Department of Human Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain.,c Biosanitary Institute of Granada (ibs.GRANADA) , University Hospitals of Granada-Univesity of Granada , Granada , Spain
| | - Houria Boulaiz
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain.,b Department of Human Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain.,c Biosanitary Institute of Granada (ibs.GRANADA) , University Hospitals of Granada-Univesity of Granada , Granada , Spain
| |
Collapse
|
29
|
Hagenhoff A, Bruns CJ, Zhao Y, von Lüttichau I, Niess H, Spitzweg C, Nelson PJ. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther 2016; 16:1079-92. [PMID: 27270211 DOI: 10.1080/14712598.2016.1196179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitor cells that have been exploited as vehicles for cell-based cancer therapy. The general approach is based on the innate potential of adoptively applied MSC to undergo facilitated recruitment to malignant tissue. MSC from different tissue sources have been engineered using a variety of therapy genes that have shown efficacy in solid tumor models. AREAS COVERED In this review we will focus on the current developments of MSC-based gene therapy, in particular the diverse approaches that have been used for MSCs-targeted tumor therapy. We also discuss some outstanding issues and general prospects for their clinical application. EXPERT OPINION The use of modified mesenchymal stem cells as therapy vehicles for the treatment of solid tumors has progressed to the first generation of clinical trials, but the general field is still in its infancy. There are many questions that need to be addressed if this very complex therapy approach is widely applied in clinical settings. More must be understood about the mechanisms underlying tumor tropism and we need to identify the optimal source of the cells used. Outstanding issues also include the therapy transgenes used, and which tumor types represent viable targets for this therapy.
Collapse
Affiliation(s)
- Anna Hagenhoff
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Christiane J Bruns
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Yue Zhao
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Irene von Lüttichau
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Hanno Niess
- c Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , University of Munich , Munich , Germany
| | - Christine Spitzweg
- d Department of Internal Medicine II , University of Munich , Munich , Germany
| | - Peter J Nelson
- e Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV , University of Munich , Munich , Germany
| |
Collapse
|
30
|
Funaro MG, Nemani KV, Chen Z, Bhujwalla ZM, Griswold KE, Gimi B. Effect of alginate microencapsulation on the catalytic efficiency andin vitroenzyme-prodrug therapeutic efficacy of cytosine deaminase and of recombinantE. coliexpressing cytosine deaminase. J Microencapsul 2015; 33:64-70. [DOI: 10.3109/02652048.2015.1115902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Feisst V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:149-62. [PMID: 26586955 PMCID: PMC4636091 DOI: 10.2147/sccaa.s64373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the discovery of adipose-derived stem cells (ASC) in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation). Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties.
Collapse
Affiliation(s)
- Vaughan Feisst
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah Meidinger
- Dunbar Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Michelle B Locke
- Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Kim SJ, Lewis B, Steiner MS, Bissa UV, Dose C, Frank JA. Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:55-64. [PMID: 26234504 DOI: 10.1002/cmmi.1658] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/05/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
To develop effective stem cell therapies, it is important to track therapeutic cells non-invasively and monitor homing to areas of pathology. The purpose of this study was to design and evaluate the labeling efficiency of commercially available dextran-coated superparamagnetic iron oxide nanoparticles, FeraTrack Direct (FTD), in various stem and immune cells; assess the cytotoxicity and tolerability of the FTD in stem cells; and monitor stem cell homing using FTD-labeled bone-marrow-derived mesenchymal stromal cells (BMSCs) and neural stem cells (NSCs) in a tumor model by in vivo MRI. BMSCs, NSCs, hematopoietic stem cells (HSCs), T-lymphocytes, and monocytes were labeled effectively with FTD without the need for transfection agents, and Prussian blue (PB) staining and transmission electron microscopy (TEM) confirmed intracellular uptake of the agent. The viability, proliferation, and functionality of the labeled cells were minimally or not affected after labeling. When 10(6) FTD-labeled BMSCs or NSCs were injected into C6 glioma bearing nude mice, the cells homing to the tumors were detected as hypointense regions within the tumor using 3 T clinical MRI up to 10 days post injection. Histological analysis confirmed the homing of injected cells to the tumor by the presence of PB positive cells that are not macrophages. Labeling of stem cells or immune cells with FTD was non-toxic, and should facilitate the translation of this agent to clinical trials for evaluation of trafficking of cells by MRI.
Collapse
Affiliation(s)
- Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bobbi Lewis
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Durymanov MO, Rosenkranz AA, Sobolev AS. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines. Theranostics 2015; 5:1007-20. [PMID: 26155316 PMCID: PMC4493538 DOI: 10.7150/thno.11742] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/09/2015] [Indexed: 12/22/2022] Open
Abstract
The ability of nanoparticles and macromolecules to passively accumulate in solid tumors and enhance therapeutic effects in comparison with conventional anticancer agents has resulted in the development of various multifunctional nanomedicines including liposomes, polymeric micelles, and magnetic nanoparticles. Further modifications of these nanoparticles have improved their characteristics in terms of tumor selectivity, circulation time in blood, enhanced uptake by cancer cells, and sensitivity to tumor microenvironment. These "smart" systems have enabled highly effective delivery of drugs, genes, shRNA, radioisotopes, and other therapeutic molecules. However, the resulting therapeutically relevant local concentrations of anticancer agents are often insufficient to cause tumor regression and complete elimination. Poor perfusion of inner regions of solid tumors as well as vascular barrier, high interstitial fluid pressure, and dense intercellular matrix are the main intratumoral barriers that impair drug delivery and impede uniform distribution of nanomedicines throughout a tumor. Here we review existing methods and approaches for improving tumoral uptake and distribution of nano-scaled therapeutic particles and macromolecules (i.e. nanomedicines). Briefly, these strategies include tuning physicochemical characteristics of nanomedicines, modulating physiological state of tumors with physical impacts or physiologically active agents, and active delivery of nanomedicines using cellular hitchhiking.
Collapse
|
34
|
Zhang TY, Huang B, Wu HB, Wu JH, Li LM, Li YX, Hu YL, Han M, Shen YQ, Tabata Y, Gao JQ. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice. J Control Release 2015; 209:260-71. [PMID: 25966361 DOI: 10.1016/j.jconrel.2015.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/17/2015] [Accepted: 05/08/2015] [Indexed: 11/30/2022]
Abstract
The success of conventional suicide gene therapy for cancer treatment is still limited because of lack of efficient delivery methods, as well as poor penetration into tumor tissues. Mesenchymal stem cells (MSCs) have recently emerged as potential vehicles in improving delivery issues. However, these stem cells are usually genetically modified using viral gene vectors for suicide gene overexpression to induce sufficient therapeutic efficacy. This approach may result in safety risks for clinical translation. Therefore, we designed a novel strategy that uses non-viral gene vector in modifying MSCs with suicide genes to reduce risks. In addition, these cells were co-administrated with prodrug-encapsulated liposomes for synergistic anti-tumor effects. Results demonstrate that this strategy is effective for gene and prodrug delivery, which co-target tumor tissues, to achieve a significant decrease in tumor colonization and a subsequent increase in survival in a murine melanoma lung metastasis model. Moreover, for the first time, we demonstrated the permeability of MSCs within tumor nests by using an in vitro 3D tumor spheroid model. Thus, the present study provides a new strategy to improve the delivery problem in conventional suicide gene therapy and enhance the therapeutic efficacy. Furthermore, this study also presents new findings to improve our understanding of MSCs in tumor-targeted gene delivery.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Bing Huang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Hai-Bin Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Jia-He Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Li-Ming Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yan-Xin Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu-Lan Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Min Han
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - You-Qing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, PR China
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
35
|
Tyciakova S, Matuskova M, Bohovic R, Polakova K, Toro L, Skolekova S, Kucerova L. Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft. J Gene Med 2015; 17:54-67. [DOI: 10.1002/jgm.2823] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/19/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022] Open
Affiliation(s)
- Silvia Tyciakova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Miroslava Matuskova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Roman Bohovic
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Katarina Polakova
- Laboratory of Tumour Immunology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Lenka Toro
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Svetlana Skolekova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Lucia Kucerova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| |
Collapse
|
36
|
KC RB, Kucharski C, Uludağ H. Additive nanocomplexes of cationic lipopolymers for improved non-viral gene delivery to mesenchymal stem cells. J Mater Chem B 2015; 3:3972-3982. [DOI: 10.1039/c4tb02101k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Additive polyplexes composed of cationic lipopolymers and hyaluronic acid–pDNA combination for implementing gene delivery to mesenchymal stem cells.
Collapse
Affiliation(s)
- Remant Bahadur KC
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Cezary Kucharski
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Hasan Uludağ
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
37
|
Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
Kim JE, Kalimuthu S, Ahn BC. In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 2014; 49:3-10. [PMID: 25774232 DOI: 10.1007/s13139-014-0309-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/29/2022] Open
Abstract
Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk 2-ga, Jung Gu, Daegu, Republic of Korea 700-721
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk 2-ga, Jung Gu, Daegu, Republic of Korea 700-721
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk 2-ga, Jung Gu, Daegu, Republic of Korea 700-721
| |
Collapse
|
39
|
Kozovska Z, Gabrisova V, Kucerova L. Colon cancer: Cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother 2014; 68:911-6. [DOI: 10.1016/j.biopha.2014.10.019] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
|
40
|
Galactomannan-PEI based non-viral vectors for targeted delivery of plasmid to macrophages and hepatocytes. Eur J Pharm Biopharm 2014; 87:461-71. [DOI: 10.1016/j.ejpb.2014.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/22/2022]
|
41
|
Zhu D, Chen C, Purwanti YI, Du S, Lam DH, Wu C, Zeng J, Toh HC, Wang S. Induced Pluripotent Stem Cell-Derived Neural Stem Cells Transduced with Baculovirus Encoding CD40 Ligand for Immunogene Therapy in Mouse Models of Breast Cancer. Hum Gene Ther 2014; 25:747-58. [DOI: 10.1089/hum.2013.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Detu Zhu
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Institute of Bioengineering and Nanotechnology, Singapore 138669
| | - Can Chen
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Yovita Ida Purwanti
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Institute of Bioengineering and Nanotechnology, Singapore 138669
| | - Shouhui Du
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Dang Hoang Lam
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Institute of Bioengineering and Nanotechnology, Singapore 138669
| | - Chunxiao Wu
- Institute of Bioengineering and Nanotechnology, Singapore 138669
| | - Jieming Zeng
- Institute of Bioengineering and Nanotechnology, Singapore 138669
| | | | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Institute of Bioengineering and Nanotechnology, Singapore 138669
| |
Collapse
|
42
|
Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model. Gene Ther 2014; 21:874-87. [PMID: 25056607 DOI: 10.1038/gt.2014.66] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) can be exploited as cellular delivery vehicles for the enzymes converting non-toxic prodrugs to toxic substances. Because of their inherent chemoresistance, they exert potent bystander and antitumor effect. Here we show that the human adipose tissue-derived MSC expressing fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD-MSC) in combination with 5-fluorocytosine (5FC) mediated a long-term tumor-free survival in the 83.3% of tumor-bearing animals. CD-MSC/5FC treatment induced cytotoxicity against model human melanoma cells EGFP-A375. Only 4% of the therapeutic CD-MSC cells eliminated >98.5% of the tumor cells in vitro. Long-term tumor-free survival was confirmed in 15 out of the 18 animals. However, repeatedly used CD-MSC/5FC therapeutic regimen generated more aggressive and metastatic variant of the melanoma cells EGFP-A375/Rel3. These cells derived from the refractory xenotransplants exhibited increased resistance to the CD-MSC/5FC treatment, altered cell adhesion, migration, tumorigenic and metastatic properties. However, long-term curative effect was achieved by the augmentation of the CD-MSC/5FC regimen along with the inhibition of c-Met/hepatocyte growth factor signaling axis in this aggressive melanoma derivative. In summary, the CD-MSC/5FC regimen can be regarded as a very effective antitumor approach to achieve long-term tumor-free survival as demonstrated on a mouse model of aggressive human melanoma xenografts.
Collapse
|
43
|
Kim JH, Lee HJ, Song YS. Stem cell based gene therapy in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549136. [PMID: 25121103 PMCID: PMC4120795 DOI: 10.1155/2014/549136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/02/2014] [Indexed: 02/08/2023]
Abstract
Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University, College of Medicine, Soonchunyang University Hospital, Seoul 140-743, Republic of Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang School of Medicine, Seoul 156-756, Republic of Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University, College of Medicine, Soonchunyang University Hospital, Seoul 140-743, Republic of Korea
| |
Collapse
|
44
|
Abstract
Cell-based therapeutics have advanced significantly over the past decade and are poised to become a major pillar of modern medicine. Three cell types in particular have been studied in detail for their ability to home to tumors and to deliver a variety of different payloads. Neural stem cells, mesenchymal stem cells and monocytes have each been shown to have great potential as future delivery systems for cancer therapy. A variety of other cell types have also been studied. These results demonstrate that the field of cell-based therapeutics will only continue to grow.
Collapse
|
45
|
A designed equine herpes thymidine kinase (EHV4 TK) variant improves ganciclovir-induced cell-killing. Biochem Pharmacol 2014; 87:435-44. [PMID: 24316433 DOI: 10.1016/j.bcp.2013.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
The limitations of the ganciclovir (GCV)/herpes simplex virus thymidine kinase (HSV1 TK: EC 2.7.1.21) system as a suicide gene therapy approach have been extensively studied over the years. In our study, we focused on improving the cytotoxic profile of the GCV/equine herpes virus-4 thymidine kinase (EHV4 TK: EC 2.7.1.21) system. Our approach involved the structure-guided mutagenesis of EHV4 TK in order to switch its ability to preferentially phosphorylate the natural substrate deoxythymidine (dT) to that of GCV. We performed steady-state kinetic analysis, genetic complementation in a thymidine kinase-deficient Escherichia coli strain, isothermal titration calorimetry, and analysis of GCV-induced cell killing through generation of HEK 293 stable cell-lines expressing EHV4 TK mutants and wild-type EHV4 TK. We found that the EHV4 TK S144H-GFP mutant preferentially phosphorylates GCV and confers increased GCV-induced cytotoxicity compared to wild-type EHV4 TK.
Collapse
|
46
|
Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells. Appl Biochem Biotechnol 2014; 172:3016-25. [PMID: 24477555 DOI: 10.1007/s12010-013-0706-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/25/2013] [Indexed: 01/01/2023]
Abstract
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.
Collapse
|
47
|
Human adipose-derived mesenchymal stromal cell pigment epithelium-derived factor cytotherapy modifies genetic and epigenetic profiles of prostate cancer cells. Cytotherapy 2014; 16:346-56. [PMID: 24424267 DOI: 10.1016/j.jcyt.2013.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/21/2013] [Accepted: 11/28/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND AIMS Adipose-derived mesenchymal stromal cells (ASCs) are promising tools for delivery of cytotherapy against cancer. However, ASCs can exert profound effects on biological behavior of tumor cells. Our study aimed to examine the influence of ASCs on gene expression and epigenetic methylation profiles of prostate cancer cells as well as the impact of expressing a therapeutic gene on modifying the interaction between ASCs and prostate cancer cells. METHODS ASCs were modified by lentiviral transduction to express either green fluorescent protein as a control or pigment epithelium-derived factor (PEDF) as a therapeutic molecule. PC3 prostate cancer cells were cultured in the presence of ASC culture-conditioned media (CCM), and effects on PC3 or DU145. Ras cells were examined by means of real-time quantitative polymerase chain reaction, EpiTect methyl prostate cancer-focused real-time quantitative polymerase chain reaction arrays, and luciferase reporter assays. RESULTS ASCs transduced with lentiviral vectors were able to mediate expression of several tumor-inhibitory genes, some of which correlated with epigenetic methylation changes on cocultured PC3 prostate cancer cells. When PC3 cells were cultured with ASC-PEDF CCM, we observed a shift in the balance of gene expression toward tumor inhibition, which suggests that PEDF reduces the potential tumor-promoting activity of unmodified ASCs. CONCLUSIONS These results suggest that ASC-PEDF CCM can promote reprogramming of tumor cells in a paracrine manner. An improved understanding of genetic and epigenetic events in prostate cancer growth in response to PEDF paracrine therapy would enable a more effective use of ASC-PEDF, with the goal of achieving safer yet more potent anti-tumor effects.
Collapse
|
48
|
Mavroudi M, Zarogoulidis P, Porpodis K, Kioumis I, Lampaki S, Yarmus L, Malecki R, Zarogoulidis K, Malecki M. Stem cells' guided gene therapy of cancer: New frontier in personalized and targeted therapy. JOURNAL OF CANCER RESEARCH & THERAPY 2014; 2:22-33. [PMID: 24860662 PMCID: PMC4031908 DOI: 10.14312/2052-4994.2014-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells' guided gene therapy. REVIEW OF THERAPEUTIC STRATEGIES IN PRECLINICAL AND CLINICAL TRIALS Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we discuss various strategies to safeguard stem cell guided gene therapy against iatrogenic cancerogenesis. PERSPECTIVES Defining cancer biomarkers to facilitate early diagnosis, elucidating cancer genomics and proteomics with modern tools of next generation sequencing, and analyzing patients' gene expression profiles provide essential data to elucidate molecular dynamics of cancer and to consider them for crafting pharmacogenomics-based personalized therapies. Streamlining of these data into genetic engineering of stem cells facilitates their use as the vectors delivering therapeutic genes into specific cancer cells. In this realm, stem cells guided gene therapy becomes a promising new frontier in personalized and targeted therapy of cancer.
Collapse
Affiliation(s)
- Maria Mavroudi
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | - Paul Zarogoulidis
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | - Konstantinos Porpodis
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | - Ioannis Kioumis
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | - Sofia Lampaki
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | | | - Raf Malecki
- San Francisco State University, San Francisco, CA, USA
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| | | | - Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
- University of Wisconsin, Madison, WI, USA
| |
Collapse
|
49
|
Alaee F, Sugiyama O, Virk MS, Tang H, Drissi H, Lichtler AC, Lieberman JR. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair. Gene Ther 2013; 21:139-47. [PMID: 24285218 DOI: 10.1038/gt.2013.66] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/14/2013] [Accepted: 10/11/2013] [Indexed: 11/09/2022]
Abstract
'Ex vivo' gene therapy using viral vectors to overexpress BMP-2 is shown to heal critical-sized bone defects in experimental animals. To increase its safety, we constructed a dual-expression lentiviral vector to overexpress BMP-2 or luciferase and an HSV1-tk analog, Δtk (LV-Δtk-T2A-BMP-2/Luc). We hypothesized that administering ganciclovir (GCV) will eliminate the transduced cells at the site of implantation. The vector-induced expression of BMP-2 and luciferase in a mouse stromal cell line (W-20-17 cells) and mouse bone marrow cells (MBMCs) was reduced by 50% compared with the single-gene vector. W-20-17 cells were more sensitive to GCV compared with MBMCs (90-95% cell death at 12 days with GCV at 1 μg ml(-1) in MBMCs vs 90-95% cell death at 5 days by 0.1 μg ml(-1) of GCV in W-20-17 cells). Implantation of LV-Δtk-T2A-BMP-2 transduced MBMCs healed a 2 mm femoral defect at 4 weeks. Early GCV treatment (days 0-14) postoperatively blocked bone formation confirming a biologic response. Delayed GCV treatment starting at day 14 for 2 or 4 weeks reduced the luciferase signal from LV-Δtk-T2A-Luc-transduced MBMCs, but the signal was not completely eliminated. These data suggest that this suicide gene strategy has potential for clinical use in the future, but will need to be optimized for increased efficiency.
Collapse
Affiliation(s)
- F Alaee
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - O Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - M S Virk
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - H Drissi
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - A C Lichtler
- Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - J R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|
50
|
Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 2013; 13:535. [PMID: 24209831 PMCID: PMC3829110 DOI: 10.1186/1471-2407-13-535] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/03/2013] [Indexed: 01/25/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. Methods The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. Results The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Conclusions Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses.
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Vlarska 7, 833 91, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|