1
|
Reynolds TS, Blagg BSJ. Extracellular heat shock protein 90 alpha (eHsp90α)'s role in cancer progression and the development of therapeutic strategies. Eur J Med Chem 2024; 277:116736. [PMID: 39126794 PMCID: PMC11374465 DOI: 10.1016/j.ejmech.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Heat shock protein 90 alpha (Hsp90α) is an abundantly expressed and evolutionarily conserved molecular chaperone. Hsp90α is the inducible Hsp90 isoform, and its expression and secretion extracellularly (eHsp90α) can be triggered in response to a variety of cellular stresses to protect/activate client proteins and to facilitate cellular adjustment to the stress. As a result, cancers often have high expression levels of intracellular and extracellular (plasma) Hsp90α, allowing them to support their oncogenesis and progression. In fact, (e)Hsp90α has been implicated in regulating processes such as cell signaling transduction, DNA repair, promotion of the Epithelial-to-Mesenchymal Transition (EMT), promotion of angiogenesis, immune response, and cell migration. Hsp90α levels have been correlated with cancer progression and severity in several cancers, indicating that it may be a useful biomarker or drug-target for cancer. To date, the development of intracellular Hsp90α-targeted therapies include standard N-terminal ATP-competitive inhibitors and allosteric regulators that bind to Hsp90α's middle or C-terminal domain. On-target toxicities and dosing complications as a result of Hsp90α inhibition has driven the development of eHsp90α-targeted therapies. Examples include anti-Hsp90α monoclonal antibodies and cell-impermeable Hsp90α small molecule inhibitors. This review aims to discuss the many roles Hsp90α plays in cancer progression with a focus on the current development of Hsp90α-targeted therapies.
Collapse
Affiliation(s)
- Tyelor S Reynolds
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Dernovšek J, Goričan T, Gedgaudas M, Zajec Ž, Urbančič D, Jug A, Skok Ž, Sturtzel C, Distel M, Grdadolnik SG, Babu K, Panchamatia A, Stachowski TR, Fischer M, Ilaš J, Zubrienė A, Matulis D, Zidar N, Tomašič T. Hiding in plain sight: Optimizing topoisomerase IIα inhibitors into Hsp90β selective binders. Eur J Med Chem 2024; 280:116934. [PMID: 39388906 DOI: 10.1016/j.ejmech.2024.116934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Due to their impact on several oncogenic client proteins, the Hsp90 family of chaperones has been widely studied for the development of potential anticancer agents. Although several Hsp90 inhibitors have entered clinical trials, most were unsuccessful because they induced a heat shock response (HSR). This issue can be circumvented by using isoform-selective inhibitors, but the high similarity in the ATP-binding sites between the isoforms presents a challenge. Given that Hsp90 shares a conserved Bergerat fold with bacterial DNA gyrase B and human topoisomerase IIα, we repurposed our ATP-competitive inhibitors of these two proteins for Hsp90 inhibition. We virtually screened a library of in-house inhibitors and identified eleven hits for evaluation of Hsp90 binding. Among these, compound 11 displayed low micromolar affinity for Hsp90 and demonstrated a 12-fold selectivity for Hsp90β over its closest isoform, Hsp90α. Out of 29 prepared analogs, 16 showed a preference for Hsp90β over Hsp90α. Furthermore, eleven of these compounds inhibited the growth of several cancer cell lines in vitro. Notably, compound 24e reduced intracellular levels of Hsp90 client proteins in MCF-7 cells, leading to cell cycle arrest in the G0/G1 phase without inducing HSR. This inhibitor exhibited at least a 27-fold preference for Hsp90β and was selective against topoisomerase IIα, a panel of 22 representative protein kinases, and proved to be non-toxic in a zebrafish larvae toxicology model. Finally, molecular modeling, corroborated by STD NMR studies, and the binding of 24e to the S52A mutant of Hsp90α confirmed that the serine to alanine switch drives the selectivity between the two cytoplasmic isoforms.
Collapse
Affiliation(s)
- Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tjaša Goričan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Ana Jug
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Kesavan Babu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Ashna Panchamatia
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Timothy R Stachowski
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Gedgaudas M, Kaziukonytė P, Kairys V, Mickevičiūtė A, Zubrienė A, Brukštus A, Matulis D, Kazlauskas E. Comprehensive analysis of resorcinyl-imidazole Hsp90 inhibitor design. Eur J Med Chem 2024; 273:116505. [PMID: 38788300 DOI: 10.1016/j.ejmech.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Human Hsp90 chaperones are implicated in various aspects of cancer. Due to this, Hsp90 has been explored as potential target in cancer treatment. Initial attempts to use Hsp90 inhibitors in drug trials failed due to toxicity and inefficacy. The next generation of drugs were less toxic but still insufficiently effective in a clinical setting. Recently, a lot of effort is being put into understanding the consequences of Hsp90 isoform selective inhibition, expecting that this might hold the key in targeting Hsp90 for disease treatment. Here we investigate a series of compounds containing the aryl-resorcinol scaffold with a 5-membered ring as a promising class of new human Hsp90 inhibitors, reaching nanomolar affinity. We compare how the replacement of 5-membered ring, from thiadiazole to imidazole, as well as a variety of their substituents, influences the potency of these inhibitors for Hsp90 alpha and beta isoforms. To further elucidate the dissimilarity in ligand selectivity between the isoforms, a mutant protein was constructed and tested against the ligand library. In addition, we performed a series of molecular dynamics (MD) and docking simulations to further explain our experimental findings as well as evaluated key compounds in cell assays. Our results deepen the understanding of Hsp90 isoform ligand selectivity and serve as an informative base for further Hsp90 inhibitor optimization.
Collapse
Affiliation(s)
- Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Paulina Kaziukonytė
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Algirdas Brukštus
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
4
|
Vogt M, Dienstbier N, Schliehe-Diecks J, Scharov K, Tu JW, Gebing P, Hogenkamp J, Bilen BS, Furlan S, Picard D, Remke M, Yasin L, Bickel D, Kalia M, Iacoangeli A, Lenz T, Stühler K, Pandyra AA, Hauer J, Fischer U, Wagener R, Borkhardt A, Bhatia S. Co-targeting HSP90 alpha and CDK7 overcomes resistance against HSP90 inhibitors in BCR-ABL1+ leukemia cells. Cell Death Dis 2023; 14:799. [PMID: 38057328 PMCID: PMC10700369 DOI: 10.1038/s41419-023-06337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and β) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90β isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.
Collapse
Affiliation(s)
- Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Dienstbier
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katerina Scharov
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philip Gebing
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Hogenkamp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Berna-Selin Bilen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Furlan
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Bickel
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Munishikha Kalia
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Julia Hauer
- Department of Pediatrics and Children's Cancer Research Center, Children's Hospital Munich Schwabing, Technical University of Munich, School of Medicine, Munich, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Merfeld T, Peng S, Keegan BM, Crowley VM, Brackett CM, Gutierrez A, McCann NR, Reynolds TS, Rhodes MC, Byrd KM, Deng J, Matts RL, Blagg BSJ. Elucidation of novel TRAP1-Selective inhibitors that regulate mitochondrial processes. Eur J Med Chem 2023; 258:115531. [PMID: 37307624 PMCID: PMC10529355 DOI: 10.1016/j.ejmech.2023.115531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
Hsp90 isoform-selective inhibitors represent a new paradigm for novel anti-cancer drugs as each of the four isoforms have specific cellular localization, function, and client proteins. The mitochondrial isoform, TRAP1, is the least understood member of the Hsp90 family due to the lack of small molecule tools to study its biological function. Herein, we report novel TRAP1-selective inhibitors used to interrogate TRAP1's biological function along with co-crystal structures of such compounds bound to the N-terminus of TRAP1. Solution of the co-crystal structure allowed for a structure-based approach that resulted in compound 36, which is a 40 nM inhibitor with >250-fold TRAP1 selectivity over Grp94, the isoform with the highest structural similarity to TRAP1 within the N-terminal ATP binding site. Lead compounds 35 and 36 were found to selectively induce TRAP1 client protein degradation without inducing the heat shock response or disrupting Hsp90-cytosolic clients. They were also shown to inhibit OXPHOS, alter cellular metabolism towards glycolysis, disrupt TRAP1 tetramer stability, and disrupt the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Taylor Merfeld
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shuxia Peng
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Bradley M Keegan
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vincent M Crowley
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher M Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Andrew Gutierrez
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nathan R McCann
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tyelor S Reynolds
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew C Rhodes
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Katherine M Byrd
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Junpeng Deng
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Robert L Matts
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
6
|
Xie X, Zhang N, Li X, Huang H, Peng C, Huang W, Foster LJ, He G, Han B. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy. Bioorg Chem 2023; 139:106721. [PMID: 37467620 DOI: 10.1016/j.bioorg.2023.106721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Heat shock protein 90, also known as Hsp90, is an extensively preserved molecular chaperone that performs a critical function in organizing various biological pathways and cellular operations. As a potential drug target, Hsp90 is closely linked to cancer. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and have shown promise in a variety of diseases, especially cancer. However, Hsp90 inhibitors have encountered several challenges in clinical development, such as low efficacy, toxicity, or drug resistance, few Hsp90 small molecule inhibitors have been approved worldwide. Nonetheless, combining Hsp90 inhibitors with other tumor inhibitors, such as HDAC inhibitors, tubulin inhibitors, and Topo II inhibitors, has been shown to have synergistic antitumor effects. Consequently, the development of Hsp90 dual-target inhibitors is an effective strategy in cancer treatment, as it enhances potency while reducing drug resistance. This article provides an overview of Hsp90's domain structure and biological functions, as well as a discussion of the design, discovery, and structure-activity relationships of Hsp90 dual inhibitors, aiming to provide insights into clinical drug research from a medicinal chemistry perspective and discover novel Hsp90 dual inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gu He
- Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Reynolds T, Blagg BSJ. Synthesis and Validation of the First Cell-Impermeable Hsp90α-Selective Inhibitors. ACS Med Chem Lett 2023; 14:1250-1256. [PMID: 37736193 PMCID: PMC10510499 DOI: 10.1021/acsmedchemlett.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
Hsp90α is an isoform of the heat shock protein 90 (Hsp90) family of molecular chaperones and mediates the folding and activation of ∼400 client proteins. However, inhibition of intracellular Hsp90α has caused detrimental side effects and significantly hindered the clinical development of Hsp90 inhibitors. As an alternative strategy, 14 Hsp90α-selective inhibitors were synthesized to introduce permanently charged moieties onto the solvent-exposed portion of the Hsp90α binding site to produce cell-impermeable extracellular Hsp90α-selective inhibitors. The resulting lead compounds were cell-permeable dimethylamine 14 (NDNA3), with an affinity of 0.51 μM for Hsp90α and >196-fold selectivity over the other Hsp90 isoforms, and cell-impermeable quaternary ammonium 17 (NDNA4), with an affinity of 0.34 μM for Hsp90α and >294-fold selectivity. The permanently charged analogs were determined to have low membrane permeability, to be nontoxic against Ovcar-8 and MCF-10A cells, to avoid disruption of hERG channel maturation, and not to induce the heat shock response or Hsp90α-dependent client degradation.
Collapse
Affiliation(s)
- Tyelor
S. Reynolds
- Department of Chemistry and
Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Brian S. J. Blagg
- Department of Chemistry and
Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol Ther 2023; 245:108396. [PMID: 37001734 DOI: 10.1016/j.pharmthera.2023.108396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90β. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90β have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90β isoforms are discussed.
Collapse
Affiliation(s)
- Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194908. [PMID: 36638864 PMCID: PMC9908860 DOI: 10.1016/j.bbagrm.2023.194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Potassium channels are multi-subunit transmembrane proteins that permit the selective passage of potassium and play fundamental roles in physiological processes, such as action potentials in the nervous system and organismal salt and water homeostasis, which is mediated by the kidney. Like all ion channels, newly translated potassium channels enter the endoplasmic reticulum (ER) and undergo the error-prone process of acquiring post-translational modifications, folding into their native conformations, assembling with other subunits, and trafficking through the secretory pathway to reach their final destinations, most commonly the plasma membrane. Disruptions in these processes can result in detrimental consequences, including various human diseases. Thus, multiple quality control checkpoints evolved to guide potassium channels through the secretory pathway and clear potentially toxic, aggregation-prone misfolded species. We will summarize current knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway, highlight diseases associated with channel misfolding, and suggest potential therapeutic routes.
Collapse
Affiliation(s)
- Nga H Nguyen
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
DNA topoisomerase 2-associated proteins PATL1 and PATL2 regulate the biogenesis of hERG K + channels. Proc Natl Acad Sci U S A 2023; 120:e2206146120. [PMID: 36608291 PMCID: PMC9926248 DOI: 10.1073/pnas.2206146120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) K+ channel conducts a rapidly activating delayed rectifier K+ current (IKr), which is essential for normal electrical activity of the heart. Precise regulation of hERG channel biogenesis is critical for serving its physiological functions, and deviations from the regulation result in human diseases. However, the mechanism underlying the precise regulation of hERG channel biogenesis remains elusive. Here, by using forward genetic screen, we found that PATR-1, the Caenorhabditis elegans homolog of the yeast DNA topoisomerase 2-associated protein PAT1, is a critical regulator for the biogenesis of UNC-103, the ERG K+ channel in C. elegans. A loss-of-function mutation in patr-1 down-regulates the expression level of UNC-103 proteins and suppresses the phenotypic defects resulted from a gain-of-function mutation in the unc-103 gene. Furthermore, downregulation of PATL1 and PATL2, the human homologs of PAT1, decreases protein levels and the current density of native hERG channels in SH-SY5Y cells and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Knockdown of PATL1 and PATL2 elongates the duration of action potentials in hiPSC-CMs, suggesting that PATL1 and PATL2 affect the function of hERG channels and hence electrophysiological characteristics in the human heart. Further studies found that PATL1 and PATL2 interact with TFIIE, a general transcription factor required for forming the RNA polymerase II preinitiation complex, and dual-luciferase reporter assays indicated that PATL1 and PATL2 facilitate the transcription of hERG mRNAs. Together, our study discovers that evolutionarily conserved DNA topoisomerase 2-associated proteins regulate the biogenesis of hERG channels via a transcriptional mechanism.
Collapse
|
11
|
Pugh KW, Alnaed M, Brackett CM, Blagg BSJ. The biology and inhibition of glucose-regulated protein 94/gp96. Med Res Rev 2022; 42:2007-2024. [PMID: 35861260 PMCID: PMC10003671 DOI: 10.1002/med.21915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
The 94 kDa molecular chaperone, glucose-regulated protein 94 (Grp94), has garnered interest during the last decade due to its direct association with endoplasmic reticulum (ER) stress and disease. Grp94 belongs to the Hsp90 family of molecular chaperones and is a master regulator of ER homeostasis due to its ability to fold and stabilize proteins/receptors, and to chaperone misfolded proteins for degradation. Multiple studies have demonstrated that Grp94 knockdown or inhibition leads to the degradation of client protein substrates, which leads to disruption of disease-dependent signaling pathways. As a result, small molecule inhibitors of Grp94 have become a promising therapeutic approach to target a variety of disease states. Specifically, Grp94 has proven to be a promising target for cancer, glaucoma, immune-mediated inflammation, and viral infection. Moreover, Grp94-peptide complexes have been utilized effectively as adjuvants for vaccines against a variety of disease states. This work highlights the significance of Grp94 biology and the development of therapeutics that target this molecular chaperone in multiple disease states.
Collapse
Affiliation(s)
- Kyler W. Pugh
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Marim Alnaed
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Christopher M. Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
12
|
Rahmy S, Mishra SJ, Murphy S, Blagg BSJ, Lu X. Hsp90β inhibition upregulates interferon response and enhances immune checkpoint blockade therapy in murine tumors. Front Immunol 2022; 13:1005045. [PMID: 36341371 PMCID: PMC9630337 DOI: 10.3389/fimmu.2022.1005045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Response resistance to the immune checkpoint blockade (ICB) immunotherapy remains a major clinical challenge that may be overcome through the rational combination of ICB and specific targeted therapeutics. One emerging combination strategy is based on sensitizing ICB-refractory tumors with antagonists of 90kD heat shock protein (Hsp90) that target all four isoforms. However, pan-Hsp90 inhibitors are limited by the modest efficacy, on-target and off-tumor toxicities, and induction of the heat shock response (HSR) that overrides the effect of Hsp90 inhibition. Recently, we developed Hsp90β-selective inhibitors that were cytotoxic to cancer cells but did not induce HSR in vitro. Here, we report that the Hsp90β inhibitor NDNB1182 downregulated CDK4 (an Hsp90β-dependent client protein) and induced the expression of endogenous retroviral elements and interferon-stimulated genes. In syngeneic mouse models of prostate cancer and breast cancer, NDNB1182 significantly augmented the efficacy of ICB therapy. Furthermore, NDNB1182 showed superior tolerability to the pan-Hsp90 inhibitor Ganetespib in mice. Our findings provide evidence that Hsp90β inhibition is a potentially effective and safe regimen to combine with ICB to treat immunotherapy-refractory solid tumors.
Collapse
Affiliation(s)
- Sharif Rahmy
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Sanket J. Mishra
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, United States
| | - Sean Murphy
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, United States
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| |
Collapse
|
13
|
Maiti S, Picard D. Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance. Biomolecules 2022; 12:1166. [PMID: 36139005 PMCID: PMC9496497 DOI: 10.3390/biom12091166] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone and a key regulator of proteostasis under both physiological and stress conditions. In mammals, there are two cytosolic Hsp90 isoforms: Hsp90α and Hsp90β. These two isoforms are 85% identical and encoded by two different genes. Hsp90β is constitutively expressed and essential for early mouse development, while Hsp90α is stress-inducible and not necessary for survivability. These two isoforms are known to have largely overlapping functions and to interact with a large fraction of the proteome. To what extent there are isoform-specific functions at the protein level has only relatively recently begun to emerge. There are studies indicating that one isoform is more involved in the functionality of a specific tissue or cell type. Moreover, in many diseases, functionally altered cells appear to be more dependent on one particular isoform. This leaves space for designing therapeutic strategies in an isoform-specific way, which may overcome the unfavorable outcome of pan-Hsp90 inhibition encountered in previous clinical trials. For this to succeed, isoform-specific functions must be understood in more detail. In this review, we summarize the available information on isoform-specific functions of mammalian Hsp90 and connect it to possible clinical applications.
Collapse
Affiliation(s)
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Geneve, Switzerland
| |
Collapse
|
14
|
Isogenic Sets of hiPSC-CMs Harboring Distinct KCNH2 Mutations Differ Functionally and in Susceptibility to Drug-Induced Arrhythmias. Stem Cell Reports 2021; 15:1127-1139. [PMID: 33176122 PMCID: PMC7664051 DOI: 10.1016/j.stemcr.2020.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Mutations in KCNH2 can lead to long QT syndrome type 2. Variable disease manifestation observed with this channelopathy is associated with the location and type of mutation within the protein, complicating efforts to predict patient risk. Here, we demonstrated phenotypic differences in cardiomyocytes derived from isogenic human induced pluripotent stem cells (hiPSC-CMs) genetically edited to harbor mutations either within the pore or tail region of the ion channel. Electrophysiological analysis confirmed that the mutations prolonged repolarization of the hiPSC-CMs, with differences between the mutations evident in monolayer cultures. Blocking the hERG channel revealed that the pore-loop mutation conferred greater susceptibility to arrhythmic events. These findings showed that subtle phenotypic differences related to KCNH2 mutations could be captured by hiPSC-CMs under genetically matched conditions. Moreover, the results support hiPSC-CMs as strong candidates for evaluating the underlying severity of individual KCNH2 mutations in humans, which could facilitate patient risk stratification. Mutation-specific differences detected in hiPSC-CMs with same genetic background APD and FPD in the hERG pore variant hiPSC-CMs more prolonged than the tail variant The pore variant was also more susceptible to drug-induced arrhythmic events Potential strategy to determine KCNH2 mutation-specific arrhythmic risk
Collapse
|
15
|
Serwetnyk MA, Blagg BS. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B 2021; 11:1446-1468. [PMID: 34221862 PMCID: PMC8245820 DOI: 10.1016/j.apsb.2020.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- Aha1, activator of Hsp90 ATPase homologue 1
- CTD, C-terminal domain
- Cdc37, cell division cycle 37
- Disruptors
- Grp94, 94-kD glucose-regulated protein
- HIF-1α, hypoxia-inducing factor-1α
- HIP, Hsp70-interaction protein
- HOP, Hsp70‒Hsp90 organizing protein
- HSQC, heteronuclear single quantum coherence
- Her-2, human epidermal growth factor receptor-2
- Hsp90
- Hsp90, 90-kD heat shock protein
- MD, middle domain
- NTD, N-terminal domain
- Natural products
- PPI, protein−protein interaction
- Peptidomimetics
- Protein−protein interactions
- SAHA, suberoylanilide hydroxamic acid
- SAR, structure–activity relationship
- SUMO, small ubiquitin-like modifier
- Small molecules
- TPR2A, tetratricopeptide-containing repeat 2A
- TRAP1, Hsp75tumor necrosis factor receptor associated protein 1
- TROSY, transverse relaxation-optimized spectroscopy
- hERG, human ether-à-go-go-related gene
Collapse
|
16
|
Mishra SJ, Liu W, Beebe K, Banerjee M, Kent CN, Munthali V, Koren J, Taylor JA, Neckers LM, Holzbeierlein J, Blagg BSJ. The Development of Hsp90β-Selective Inhibitors to Overcome Detriments Associated with pan-Hsp90 Inhibition. J Med Chem 2021; 64:1545-1557. [PMID: 33428418 DOI: 10.1021/acs.jmedchem.0c01700] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.
Collapse
Affiliation(s)
- Sanket J Mishra
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Weiya Liu
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Kristin Beebe
- Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Rockville, Maryland 20892, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Vitumbiko Munthali
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - John Koren
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - John A Taylor
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Leonard M Neckers
- Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Rockville, Maryland 20892, United States
| | - Jeffrey Holzbeierlein
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
17
|
Sanchez J, Carter TR, Cohen MS, Blagg BSJ. Old and New Approaches to Target the Hsp90 Chaperone. Curr Cancer Drug Targets 2020; 20:253-270. [PMID: 31793427 DOI: 10.2174/1568009619666191202101330] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that ensures cellular proteostasis by maintaining the folding, stabilization, activation, and degradation of over 400 client proteins. Hsp90 is not only critical for routine protein maintenance in healthy cells, but also during states of cellular stress, such as cancer and neurodegenerative diseases. Due to its ability to affect phosphorylation of numerous client proteins, inhibition of Hsp90 has been an attractive anticancer approach since the early 1990's, when researchers identified a druggable target on the amino terminus of Hsp90 for a variety of cancers. Since then, 17 Hsp90 inhibitors that target the chaperone's Nterminal domain, have entered clinical trials. None, however, have been approved thus far by the FDA as a cancer monotherapy. In these trials, a major limitation observed with Hsp90 inhibition at the N-terminal domain was dose-limiting toxicities and relatively poor pharmacokinetic profiles. Despite this, preclinical and clinical research continues to show that Hsp90 inhibitors effectively target cancer cell death and decrease tumor progression supporting the rationale for the development of novel Hsp90 inhibitors. Here, we present an in-depth overview of the Hsp90 inhibitors used in clinical trials. Finally, we present current shifts in the field related to targeting the carboxy-terminal domain of Hsp90 as well as to the development of isoform-selective inhibitors as a means to bypass the pitfalls of current Hsp90 inhibitors and improve clinical trial outcomes.
Collapse
Affiliation(s)
- Jackee Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trever R Carter
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Mark S Cohen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.,Department of Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
18
|
Dai J, Zhu M, Qi X, Wang Y, Li H, Tang S, Wang Q, Chen A, Liu M, Gu Q, Li D, Li J. Fungal mycotoxin penisuloxazin A, a novel C-terminal Hsp90 inhibitor and characteristics of its analogues on Hsp90 function related to binding sites. Biochem Pharmacol 2020; 182:114218. [PMID: 32949584 DOI: 10.1016/j.bcp.2020.114218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Hsp90 is a promising drug target for cancer therapy. However, toxicity and moderate effect are limitations of current inhibitors owing to broad protein degradation. The fungal mycotoxin penisuloxazin A (PNSA) belongs to a new epipolythiodiketopiperazines (ETPs) possessing a rare 3H-spiro[benzofuran-2,2'-piperazine] ring system. PNSA bound to cysteine residues C572/C598 of CT-Hsp90 with disulfide bonds and inhibits Hsp90 activity, resulting in apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. We identified that analogues PEN-A and HDN-1 bound to C572/C597 and C572 of CT-Hsp90α respectively, with binding pattern very similar to PNSA. These ETPs exhibited different effects on ATPase activity, dimerization formation and selectivity on client protein of Hsp90, indicating client recognition of Hsp90 can be exactly regulated by different sites of Hsp90. Our findings not only offer new chemotypes for anticancer drug development, but also help to better understand biological function of Hsp90 for exploring inhibitor with some client protein bias.
Collapse
Affiliation(s)
- Jiajia Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Meilin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Yanjuan Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Academy of Sciences, Shanghai 201203, PR China
| | - Qiang Wang
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, PR China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| |
Collapse
|
19
|
Ji X, Li Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev 2020; 40:1519-1557. [PMID: 32060956 PMCID: PMC7228277 DOI: 10.1002/med.21664] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Direct‐acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow‐spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad‐spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Huck JD, Que NL, Sharma S, Taldone T, Chiosis G, Gewirth DT. Structures of Hsp90α and Hsp90β bound to a purine-scaffold inhibitor reveal an exploitable residue for drug selectivity. Proteins 2019; 87:869-877. [PMID: 31141217 PMCID: PMC6718336 DOI: 10.1002/prot.25750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
Hsp90α and Hsp90β are implicated in a number of cancers and neurodegenerative disorders but the lack of selective pharmacological probes confounds efforts to identify their individual roles. Here, we analyzed the binding of an Hsp90α-selective PU compound, PU-11-trans, to the two cytosolic paralogs. We determined the co-crystal structures of Hsp90α and Hsp90β bound to PU-11-trans, as well as the structure of the apo Hsp90β NTD. The two inhibitor-bound structures reveal that Ser52, a nonconserved residue in the ATP binding pocket in Hsp90α, provides additional stability to PU-11-trans through a water-mediated hydrogen-bonding network. Mutation of Ser52 to alanine, as found in Hsp90β, alters the dissociation constant of Hsp90α for PU-11-trans to match that of Hsp90β. Our results provide a structural explanation for the binding preference of PU inhibitors for Hsp90α and demonstrate that the single nonconserved residue in the ATP-binding pocket may be exploited for α/β selectivity.
Collapse
Affiliation(s)
- John D. Huck
- Hauptman-Wood ward Medical Research Institute, Buffalo, NY USA
- Department of Structural Biology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY USA
| | | | - Sahil Sharma
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tony Taldone
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gabriela Chiosis
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel T. Gewirth
- Hauptman-Wood ward Medical Research Institute, Buffalo, NY USA
- Department of Structural Biology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY USA
| |
Collapse
|
21
|
Inhibitors of the protein disulfide isomerase family for the treatment of multiple myeloma. Leukemia 2018; 33:1011-1022. [PMID: 30315229 DOI: 10.1038/s41375-018-0263-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 11/08/2022]
Abstract
Multiple Myeloma (MM) is highly sensitive to disruptions in cellular protein homeostasis. Proteasome inhibitors (PIs) are initially effective in the treatment of MM, although cures are not achievable and the emergence of resistance limits the durability of responses. New therapies are needed for refractory patients, and those that combat resistance to standard of care agents would be particularly valuable. Screening of multiple chemical libraries for PI re-sensitizing compounds identified E61 as a potent enhancer of multiple PIs and MM specific activity. Using a tandem approach of click chemistry and peptide mass fingerprinting, we identified multiple protein disulfide isomerase (PDI) family members as the primary molecular targets of E61. PDIs mediate oxidative protein folding, and E61 treatment induced robust ER and oxidative stress responses as well as the accumulation of ubiquitinylated proteins. A chemical optimization program led to a new structural class of indene (exemplified by lead E64FC26), which are highly potent pan-style inhibitors of PDIs. In mice with MM, E64FC26 improved survival and enhanced the activity of bortezomib without any adverse effects. This work demonstrates the potential of E64FC26 as an early drug candidate and the strategy of targeting multiple PDI isoforms for the treatment of refractory MM and beyond.
Collapse
|
22
|
Khandelwal A, Kent CN, Balch M, Peng S, Mishra SJ, Deng J, Day VW, Liu W, Subramanian C, Cohen M, Holzbeierlein JM, Matts R, Blagg BSJ. Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat Commun 2018; 9:425. [PMID: 29382832 PMCID: PMC5789826 DOI: 10.1038/s41467-017-02013-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022] Open
Abstract
The 90 kDa heat shock protein (Hsp90) is a molecular chaperone responsible for folding proteins that are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms. pan-Inhibition of Hsp90 appears to be detrimental as toxicities have been reported alongside induction of the pro-survival heat shock response. The development of Hsp90 isoform-selective inhibitors represents an alternative approach towards the treatment of cancer that may limit some of the detriments. Described herein is a structure-based approach to design isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method to overcome the detriments associated with pan-inhibition.
Collapse
Affiliation(s)
- Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 4048, Lawrence, KS, 66045, USA
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Maurie Balch
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sanket J Mishra
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 4048, Lawrence, KS, 66045, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Victor W Day
- Department of Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 2010, Lawrence, KS, 66045, USA
| | - Weiya Liu
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Chitra Subramanian
- Department of Pharmacology, University of Michigan School of Medicine, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Mark Cohen
- Department of Pharmacology, University of Michigan School of Medicine, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Jeffery M Holzbeierlein
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Robert Matts
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
23
|
Mishra SJ, Ghosh S, Stothert AR, Dickey CA, Blagg BSJ. Transformation of the Non-Selective Aminocyclohexanol-Based Hsp90 Inhibitor into a Grp94-Seletive Scaffold. ACS Chem Biol 2017; 12:244-253. [PMID: 27959508 DOI: 10.1021/acschembio.6b00747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glucose regulated protein 94 kDa, Grp94, is the endoplasmic reticulum (ER) localized isoform of heat shock protein 90 (Hsp90) that is responsible for the trafficking and maturation of toll-like receptors, immunoglobulins, and integrins. As a result, Grp94 has emerged as a therapeutic target to disrupt cellular communication, adhesion, and tumor proliferation, potentially with fewer side effects compared to pan-inhibitors of all Hsp90 isoforms. Although, the N-terminal ATP binding site is highly conserved among all four Hsp90 isoforms, recent cocrystal structures of Grp94 have revealed subtle differences between Grp94 and other Hsp90 isoforms that has been exploited for the development of Grp94-selective inhibitors. In the current study, a structure-based approach has been applied to a Grp94 nonselective compound, SNX 2112, which led to the development of 8j (ACO1), a Grp94-selective inhibitor that manifests ∼440 nM affinity and >200-fold selectivity against cytosolic Hsp90 isoforms.
Collapse
Affiliation(s)
- Sanket J. Mishra
- Department
of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States
| | - Suman Ghosh
- Department
of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States
| | - Andrew R. Stothert
- Department
of Molecular Medicine and Byrd Alzheiemer’s Research Institute, University of South Florida, Tampa, Florida 33613, United States
| | - Chad A. Dickey
- Department
of Molecular Medicine and Byrd Alzheiemer’s Research Institute, University of South Florida, Tampa, Florida 33613, United States
| | - Brian S. J. Blagg
- Department
of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States
| |
Collapse
|
24
|
Gambogic acid identifies an isoform-specific druggable pocket in the middle domain of Hsp90β. Proc Natl Acad Sci U S A 2016; 113:E4801-9. [PMID: 27466407 DOI: 10.1073/pnas.1606655113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Because of their importance in maintaining protein homeostasis, molecular chaperones, including heat-shock protein 90 (Hsp90), represent attractive drug targets. Although a number of Hsp90 inhibitors are in preclinical/clinical development, none strongly differentiate between constitutively expressed Hsp90β and stress-induced Hsp90α, the two cytosolic paralogs of this molecular chaperone. Thus, the importance of inhibiting one or the other paralog in different disease states remains unknown. We show that the natural product, gambogic acid (GBA), binds selectively to a site in the middle domain of Hsp90β, identifying GBA as an Hsp90β-specific Hsp90 inhibitor. Furthermore, using computational and medicinal chemistry, we identified a GBA analog, referred to as DAP-19, which binds potently and selectively to Hsp90β. Because of its unprecedented selectivity for Hsp90β among all Hsp90 paralogs, GBA thus provides a new chemical tool to study the unique biological role of this abundantly expressed molecular chaperone in health and disease.
Collapse
|
25
|
Crowley VM, Khandelwal A, Mishra S, Stothert AR, Huard DJE, Zhao J, Muth A, Duerfeldt AS, Kizziah JL, Lieberman RL, Dickey CA, Blagg BSJ. Development of Glucose Regulated Protein 94-Selective Inhibitors Based on the BnIm and Radamide Scaffold. J Med Chem 2016; 59:3471-88. [PMID: 27003516 DOI: 10.1021/acs.jmedchem.6b00085] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum resident of the heat shock protein 90 kDa (Hsp90) family of molecular chaperones. Grp94 associates with many proteins involved in cell adhesion and signaling, including integrins, Toll-like receptors, immunoglobulins, and mutant myocilin. Grp94 has been implicated as a target for several therapeutic areas including glaucoma, cancer metastasis, and multiple myeloma. While 85% identical to other Hsp90 isoforms, the N-terminal ATP-binding site of Grp94 possesses a unique hydrophobic pocket that was used to design isoform-selective inhibitors. Incorporation of a cis-amide bioisostere into the radamide scaffold led to development of the original Grp94-selective inhibitor, BnIm. Structure-activity relationship studies have now been performed on the aryl side chain of BnIm, which resulted in improved analogues that exhibit better potency and selectivity for Grp94. These analogues also manifest superior antimigratory activity in a metastasis model as well as enhanced mutant myocilin degradation in a glaucoma model compared to BnIm.
Collapse
Affiliation(s)
- Vincent M Crowley
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Sanket Mishra
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Andrew R Stothert
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida , Tampa, Florida 33613, United States
| | - Dustin J E Huard
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332 United States
| | - Jinbo Zhao
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Aaron Muth
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| | - James L Kizziah
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332 United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332 United States
| | - Chad A Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida , Tampa, Florida 33613, United States
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, Malott Hall 4070, Lawrence, Kansas 66045-7563, United States
| |
Collapse
|
26
|
Ghosh S, Shinogle HE, Galeva NA, Dobrowsky RT, Blagg BSJ. Endoplasmic Reticulum-resident Heat Shock Protein 90 (HSP90) Isoform Glucose-regulated Protein 94 (GRP94) Regulates Cell Polarity and Cancer Cell Migration by Affecting Intracellular Transport. J Biol Chem 2016; 291:8309-23. [PMID: 26872972 DOI: 10.1074/jbc.m115.688374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that is up-regulated in cancer and is required for the folding of numerous signaling proteins. Consequently, HSP90 represents an ideal target for the development of new anti-cancer agents. The human HSP90 isoform, glucose-regulated protein 94 (GRP94), resides in the endoplasmic reticulum and regulates secretory pathways, integrins, and Toll-like receptors, which contribute to regulating immunity and metastasis. However, the cellular function of GRP94 remains underinvestigated. We report that GRP94 knockdown cells are defective in intracellular transport and, consequently, negatively impact the trafficking of F-actin toward the cellular cortex, integrin α2 and integrin αL toward the cell membrane and filopodia, and secretory vesicles containing the HSP90α-AHA1-survivin complex toward the leading edge. As a result, GRP94 knockdown cells form a multipolar spindle instead of bipolar morphology and consequently manifest a defect in cell migration and adhesion.
Collapse
Affiliation(s)
| | | | | | - Rick T Dobrowsky
- the Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045
| | | |
Collapse
|
27
|
Abstract
The 90-kDa heat-shock protein (Hsp90) is a molecular chaperone responsible for the stability and function of a wide variety of client proteins that are critical for cell growth and survival. Many of these client proteins are frequently mutated and/or overexpressed in cancer cells and are therefore being actively pursued as individual therapeutic targets. Consequently, Hsp90 inhibition offers a promising strategy for simultaneous degradation of several anticancer targets. Currently, most Hsp90 inhibitors under clinical evaluation act by blocking the binding of ATP to the Hsp90 N-terminal domain and thereby, induce the degradation of many Hsp90-dependent oncoproteins. Although, they have shown some promising initial results, clinical challenges such as induction of the heat-shock response, retinopathy, and gastrointestinal tract toxicity are emerging from human trials, which constantly raise concerns about the future development of these inhibitors. Novobiocin derivatives, which do not bind the chaperone's N-terminal ATPase pocket, have emerged over the past decade as an alternative strategy to inhibit Hsp90, but to date, no derivative has been investigated in the clinical setting. In recent years, a number of natural or synthetic compounds have been identified that modulate Hsp90 function via various mechanisms. These compounds not only offer new chemotypes for the development of future Hsp90 inhibitors but can also serve as chemical probes to unravel the biology of Hsp90. This chapter presents a synopsis of inhibitors that directly, allosterically, or even indirectly alters Hsp90 function, and highlights their proposed mechanisms of action.
Collapse
|
28
|
Foo B, Williamson B, Young JC, Lukacs G, Shrier A. hERG quality control and the long QT syndrome. J Physiol 2016; 594:2469-81. [PMID: 26718903 DOI: 10.1113/jp270531] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
Long-QT syndrome type-2 (LQT2) is characterized by reduced functional expression of the human ether-à-go-go related (hERG) gene product, resulting in impaired cardiac repolarization and predisposition to fatal arrhythmia. Previous studies have implicated abnormal trafficking of misfolded hERG as the primary mechanism of LQT2, with misfolding being caused by mutations in the hERG gene (inherited) or drug treatment (acquired). More generally, environmental and metabolic stresses present a constant challenge to the folding of proteins, including hERG, and must be countered by robust protein quality control (QC) systems. Disposal of partially unfolded yet functional plasma membrane (PM) proteins by protein QC contributes to the loss-of-function phenotype in various conformational diseases including cystic fibrosis (CF) and long-QT syndrome type-2 (LQT2). The prevalent view has been that the loss of PM expression of hERG is attributed to biosynthetic block by endoplasmic reticulum (ER) QC pathways. However, there is a growing appreciation for protein QC pathways acting at post-ER cellular compartments, which may contribute to conformational disease pathogenesis. This article will provide a background on the structure and cellular trafficking of hERG as well as inherited and acquired LQT2. We will review previous work on hERG ER QC and introduce the more novel view that there is a significant peripheral QC at the PM and peripheral cellular compartments. Particular attention is drawn to the unique role of the peripheral QC system in acquired LQT2. Understanding the QC process and players may provide targets for therapeutic intervention in dealing with LQT2.
Collapse
Affiliation(s)
- Brian Foo
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Brittany Williamson
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Jason C Young
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Gergely Lukacs
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Alvin Shrier
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| |
Collapse
|
29
|
Abstract
The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.
Collapse
|
30
|
Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med Chem 2015; 6:1587-605. [PMID: 25367392 DOI: 10.4155/fmc.14.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hsp90 is responsible for the conformational maturation of newly synthesized polypeptides (client proteins) and the re-maturation of denatured proteins via the Hsp90 chaperone cycle. Inhibition of the Hsp90 N-terminus has emerged as a clinically relevant strategy for anticancer chemotherapeutics due to the involvement of clients in a variety of oncogenic pathways. Several immunophilins, co-chaperones and partner proteins are also necessary for Hsp90 chaperoning activity. Alternative strategies to inhibit Hsp90 function include disruption of the C-terminal dimerization domain and the Hsp90 heteroprotein complex. C-terminal inhibitors and Hsp90 co-chaperone disruptors prevent cancer cell proliferation similar to N-terminal inhibitors and destabilize client proteins without induction of heat shock proteins. Herein, current Hsp90 inhibitors, the chaperone cycle, and regulation of this cycle will be discussed.
Collapse
|
31
|
Regulation and function of the human HSP90AA1 gene. Gene 2015; 570:8-16. [PMID: 26071189 DOI: 10.1016/j.gene.2015.06.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/21/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90α (Hsp90α), encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone Hsp90. Hsp90α is regulated differently and has different functions when compared to the constitutively expressed Hsp90β isoform, despite high amino acid sequence identity between the two proteins. These differences are likely due to variations in nucleotide sequence within non-coding regions, which allows for specific regulation through interaction with particular transcription factors, and to subtle changes in amino acid sequence that allow for unique post-translational modifications. This article will specifically focus on the expression, function and regulation of Hsp90α.
Collapse
|
32
|
Khandelwal A, Crowley VM, Blagg BSJ. Natural Product Inspired N-Terminal Hsp90 Inhibitors: From Bench to Bedside? Med Res Rev 2015; 36:92-118. [PMID: 26010985 DOI: 10.1002/med.21351] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/03/2015] [Accepted: 04/19/2015] [Indexed: 02/06/2023]
Abstract
The 90 kDa heat shock proteins (Hsp90) are responsible for the conformational maturation of nascent polypeptides and the rematuration of denatured proteins. Proteins dependent upon Hsp90 are associated with all six hallmarks of cancer. Upon Hsp90 inhibition, protein substrates are degraded via the ubiquitin-proteasome pathway. Consequentially, inhibition of Hsp90 offers a therapeutic opportunity for the treatment of cancer. Natural product inhibitors of Hsp90 have been identified in vitro, which have served as leads for the development of more efficacious inhibitors and analogs that have entered clinical trials. This review highlights the development of natural product analogs, as well as the development of clinically important inhibitors that arose from natural products.
Collapse
Affiliation(s)
- Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Vincent M Crowley
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| |
Collapse
|
33
|
Liu W, Vielhauer GA, Holzbeierlein JM, Zhao H, Ghosh S, Brown D, Lee E, Blagg BSJ. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells. Mol Pharmacol 2015; 88:121-30. [PMID: 25939977 DOI: 10.1124/mol.114.097303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/04/2015] [Indexed: 12/29/2022] Open
Abstract
The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α -: dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer.
Collapse
Affiliation(s)
- Weiya Liu
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - George A Vielhauer
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Jeffrey M Holzbeierlein
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Huiping Zhao
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Suman Ghosh
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Douglas Brown
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Eugene Lee
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Brian S J Blagg
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| |
Collapse
|
34
|
Dumotier BM. Republished: A straightforward guide to the basic science behind arrhythmogenesis. Postgrad Med J 2015; 91:221-9. [DOI: 10.1136/postgradmedj-2014-305647rep] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Ghosh S, Shinogle HE, Garg G, Vielhauer GA, Holzbeierlein JM, Dobrowsky RT, Blagg BSJ. Hsp90 C-terminal inhibitors exhibit antimigratory activity by disrupting the Hsp90α/Aha1 complex in PC3-MM2 cells. ACS Chem Biol 2015; 10:577-90. [PMID: 25402753 PMCID: PMC4340358 DOI: 10.1021/cb5008713] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Human Hsp90 isoforms are molecular
chaperones that are often up-regulated
in malignances and represent a primary target for Hsp90 inhibitors
undergoing clinical evaluation. Hsp90α is a stress-inducible
isoform of Hsp90 that plays a significant role in apoptosis and metastasis.
Though Hsp90α is secreted into the extracellular space under
metastatic conditions, its role in cancer biology is poorly understood.
We report that Hsp90α associates with the Aha1 co-chaperone
and found this complex to localize in secretory vesicles and at the
leading edge of migrating cells. Knockdown of Hsp90α resulted
in a defect in cell migration. The functional role of Hsp90α/Aha1
was studied by treating the cells with various novobiocin-based Hsp90
C-terminal inhibitors. These inhibitors disrupted the Hsp90α/Aha1
complex, caused a cytoplasmic redistribution of Hsp90α and Aha1,
and decreased cell migration. Structure–function studies determined
that disruption of Hsp90α/Aha1 association and inhibition of
cell migration correlated with the presence of a benzamide side chain,
since an acetamide substituted analog was less effective. Our results
show that disruption of Hsp90α/Aha1 interactions with novobiocin-based
Hsp90 C-terminal inhibitors may limit the metastatic potential of
tumors.
Collapse
Affiliation(s)
| | | | | | - George A. Vielhauer
- Department
of Urology, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jeffrey M. Holzbeierlein
- Department
of Urology, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | | | | |
Collapse
|
36
|
Isambert N, Delord JP, Soria JC, Hollebecque A, Gomez-Roca C, Purcea D, Rouits E, Belli R, Fumoleau P. Debio0932, a second-generation oral heat shock protein (HSP) inhibitor, in patients with advanced cancer-results of a first-in-man dose-escalation study with a fixed-dose extension phase. Ann Oncol 2015; 26:1005-1011. [PMID: 25646368 DOI: 10.1093/annonc/mdv031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/09/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Objective was to determine maximum tolerated dose (MTD), recommended dose (RD) and schedule, safety, pharmacokinetic (PK) profile, pharmacodynamic (PD) effects, and antitumor activity of Debio0932, a new second-generation oral heat shock protein (HSP) inhibitor. PATIENTS AND METHODS This was a multicenter, uncontrolled, open-label, nonrandomized, dose-escalation study in adults with treatment-resistant advanced cancer. Groups of three patients received oral Debio0932 either daily or every other day. The starting dose of 50 mg was escalated until the MTD was reached, i.e. dose-limiting toxicity (DLT) occurred in ≥2 patients. Further 9 patients and an extension cohort of 30 patients were treated at the next lower dose (=RD). Adverse events (AEs), tumor response, PK, and HSP70 levels in peripheral blood mononuclear cells were recorded over 30 days. RESULTS Fifty patients were treated with doses up to 1600 mg, at which level three DLT occurred (febrile neutropenia, diarrhea, asthenia). In total, 39 patients were then treated at the RD of 1000 mg daily. Most common drug-related AEs were asthenia and gastrointestinal events. No ocular toxicities were observed. Debio0932 was rapidly absorbed and metabolized. Plasma steady state was reached within 9 days. Volume of distribution was high and elimination half-life was 9-11 h. Food had no effect on PK. PD showed large interpatient variability, but no dose-effect relationship. Partial tumor response was observed in 2 patients (NSCLC and breast cancer), stable disease (SD) in 12 patients (5 of 8 NSCLC patients). In the extension cohort, 9 patients had SD, and 1 patient a partial metabolic tumor response. CONCLUSION Debio0932 has limited clinical activity, together with manageable toxicity. Further development as adjunct treatment of NSCLC at daily doses of 1000 mg is warranted. CLINICAL TRIAL NCT01168752.
Collapse
Affiliation(s)
- N Isambert
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon
| | - J-P Delord
- Oncology and Clinical Research Unit, Institut Claudius Regaud, Toulouse
| | - J-C Soria
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus and University Paris-Sud, Paris, France
| | - A Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus and University Paris-Sud, Paris, France
| | - C Gomez-Roca
- Oncology and Clinical Research Unit, Institut Claudius Regaud, Toulouse
| | - D Purcea
- Debiopharm International SA, Lausanne, Switzerland
| | - E Rouits
- Debiopharm International SA, Lausanne, Switzerland
| | - R Belli
- Debiopharm International SA, Lausanne, Switzerland
| | - P Fumoleau
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon.
| |
Collapse
|
37
|
Synoradzki K, Bieganowski P. Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:445-52. [PMID: 25486457 DOI: 10.1016/j.bbamcr.2014.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 11/28/2022]
Abstract
Hsp90 is an essential chaperone for more than 200 client proteins in eukaryotic cells. The human genome encodes two highly similar cytosolic Hsp90 proteins called Hsp90α and Hsp90β. Most of the client proteins can interact with either Hsp90 protein; however, only a handful client proteins and one co-chaperone that interact specifically with one of the Hsp90 isoforms were identified. Structural differences underlying these isoform-specific interactions were not studied. Here we report for the first time that the Hsp90 co-chaperone Aha1 interacts preferentially with Hsp90α. The distinction depends on the middle domain of Hsp90. The middle domain of Hsp90α is also responsible for the slow growth phenotype of yeasts that express this isoform as a sole source of Hsp90. These results suggest that differences in the middle domain of Hsp90α and Hsp90β may be responsible for the isoform-specific interactions with selected proteins. Also shown here within, we determine that preferential chaperoning of cIAP1 by Hsp90β is mediated by the N-terminal domain of this isoform.
Collapse
Affiliation(s)
- Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., Warsaw 02-106, Poland
| | - Pawel Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., Warsaw 02-106, Poland.
| |
Collapse
|
38
|
Shapiro GI, Kwak E, Dezube BJ, Yule M, Ayrton J, Lyons J, Mahadevan D. First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin Cancer Res 2014; 21:87-97. [PMID: 25336693 DOI: 10.1158/1078-0432.ccr-14-0979] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE AT13387 is a potent second-generation, fragment-derived HSP90 inhibitor. This phase I study investigated the maximum tolerated dose (MTD)/recommended phase II dose (RP2D) and safety, pharmacokinetic, and pharmacodynamic profiles of two AT13387 regimens in a refractory solid tumor population. EXPERIMENTAL DESIGN Standard 3+3 dose escalation was used. MTD and RP2D determinations were based on the occurrence of dose-limiting toxicities (DLT) and overall toxicity, respectively. Pharmacokinetic parameters were measured after single and multiple doses. AT13387-mediated induction of HSP70 was evaluated in plasma, peripheral blood mononuclear cells, and paired tumor biopsies. RESULTS Sixty-two patients were treated with doses ranging from 10 to 120 mg/m(2) twice weekly and 150 to 310 mg/m(2) once weekly (both for 3 weeks every 28 days). One DLT of visual disturbance occurred at 120 mg/m(2), which was considered the MTD and RP2D for the twice-weekly regimen. No formal DLTs occurred in the once-weekly regimen, but multiple moderately severe toxicities, including diarrhea, nausea, vomiting, fatigue, and systemic infusion reactions, led to selection of 260 mg/m(2) as the RP2D. Exposures of AT13387 increased proportionally with dose. Target engagement as measured by HSP70 induction occurred in plasma and tumor biopsy samples. One patient with gastrointestinal stromal tumor (GIST) who had progressive disease on imatinib had a partial response and remained on treatment for 10 months. Twenty-one patients (34%) had stable disease, which lasted >120 days in 7 patients. CONCLUSION AT13387 administered once or twice weekly has an acceptable safety profile and demonstrated evidence of target engagement and preliminary antitumor activity.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| | - Eunice Kwak
- Department of Medicine, Harvard Medical School, Boston, Massachusetts. Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Bruce J Dezube
- Department of Medicine, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Beth Israel Deaconess Medical School, Boston, Massachusetts
| | - Murray Yule
- Astex Pharmaceuticals, Inc., Dublin, California
| | - John Ayrton
- Astex Pharmaceuticals, Inc., Dublin, California
| | - John Lyons
- Astex Pharmaceuticals, Inc., Dublin, California
| | | |
Collapse
|
39
|
Nogawa H, Kawai T. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia. Eur J Pharmacol 2014; 741:336-9. [DOI: 10.1016/j.ejphar.2014.06.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 02/01/2023]
|
40
|
Development of radamide analogs as Grp94 inhibitors. Bioorg Med Chem 2014; 22:4083-98. [PMID: 25027801 DOI: 10.1016/j.bmc.2014.05.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 12/29/2022]
Abstract
Hsp90 isoform-selective inhibition is highly desired as it can potentially avoid the toxic side-effects of pan-inhibition. The current study developed selective inhibitors of one such isoform, Grp94, predicated on the chimeric and pan-Hsp90 inhibitor, radamide (RDA). Replacement of the quinone moiety of RDA with a phenyl ring (2) was found to be better suited for Grp94 inhibition as it can fully interact with a unique hydrophobic pocket present in Grp94. An extensive SAR for this scaffold showed that substitutions at the 2- and 4-positions (8 and 27, respectively) manifested excellent Grp94 affinity and selectivity. Introduction of heteroatoms into the ring also proved beneficial, with a 2-pyridine derivative (38) exhibiting the highest Grp94 affinity (K(d)=820 nM). Subsequent cell-based assays showed that these Grp94 inhibitors inhibit migration of the metastatic breast cancer cell line, MDA-MB-231, as well as exhibit an anti-proliferative affect against the multiple myeloma cell line, RPMI 8226.
Collapse
|
41
|
It Takes More Than Two to Tango: Regulation of Plant ABC Transporters. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-319-06511-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Wang Q, Hu W, Lei M, Wang Y, Yan B, Liu J, Zhang R, Jin Y. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress. PLoS One 2013; 8:e84984. [PMID: 24386440 PMCID: PMC3875566 DOI: 10.1371/journal.pone.0084984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. RESULTS H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.
Collapse
Affiliation(s)
- Qi Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Weina Hu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Mingming Lei
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Yong Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Bing Yan
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Jun Liu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Ren Zhang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Yuanzhe Jin
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
- * E-mail:
| |
Collapse
|
43
|
Gao Y, Yechikov S, Vázquez AE, Chen D, Nie L. Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss. J Cell Mol Med 2013; 17:889-900. [PMID: 23750663 PMCID: PMC3729637 DOI: 10.1111/jcmm.12080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/29/2013] [Indexed: 01/21/2023] Open
Abstract
KCNQ4, a voltage-gated potassium channel, plays an important role in maintaining cochlear ion homoeostasis and regulating hair cell membrane potential, both essential for normal auditory function. Mutations in the KCNQ4 gene lead to DFNA2, a subtype of autosomal dominant non-syndromic deafness that is characterized by progressive sensorineural hearing loss across all frequencies. Despite recent advances in the identification of pathogenic KCNQ4 mutations, the molecular aetiology of DFNA2 remains unknown. We report here that decreased cell surface expression and impaired conductance of the KCNQ4 channel are two mechanisms underlying hearing loss in DFNA2. In HEK293T cells, a dramatic decrease in cell surface expression was detected by immunofluorescent microscopy and confirmed by Western blot for the pathogenic KCNQ4 mutants L274H, W276S, L281S, G285C, G285S, G296S and G321S, while their overall cellular levels remained normal. In addition, none of these mutations affected tetrameric assembly of KCNQ4 channels. Consistent with these results, all mutants showed strong dominant-negative effects on the wild-type (WT) channel function. Most importantly, overexpression of HSP90β, a key component of the molecular chaperone network that controls the KCNQ4 biogenesis, significantly increased cell surface expression of the KCNQ4 mutants L281S, G296S and G321S. KCNQ4 surface expression was restored or considerably improved in HEK293T cells mimicking the heterozygous condition of these mutations in DFNA2 patients. Finally, our electrophysiological studies demonstrated that these mutations directly compromise the conductance of the KCNQ4 channel, since no significant change in KCNQ4 current was observed after KCNQ4 surface expression was restored or improved.
Collapse
Affiliation(s)
- Yanhong Gao
- Department of Otolaryngology, University of California Davis, Davis, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Gao Y, Yechikov S, Vazquez AE, Chen D, Nie L. Distinct roles of molecular chaperones HSP90α and HSP90β in the biogenesis of KCNQ4 channels. PLoS One 2013; 8:e57282. [PMID: 23431407 PMCID: PMC3576372 DOI: 10.1371/journal.pone.0057282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 01/30/2023] Open
Abstract
Loss-of-function mutations in the KCNQ4 channel cause DFNA2, a subtype of autosomal dominant non-syndromic deafness that is characterized by progressive sensorineural hearing loss. Previous studies have demonstrated that the majority of the pathogenic KCNQ4 mutations lead to trafficking deficiency and loss of KCNQ4 currents. Over the last two decades, various strategies have been developed to rescue trafficking deficiency of pathogenic mutants; the most exciting advances have been made by manipulating activities of molecular chaperones involved in the biogenesis and quality control of the target protein. However, such strategies have not been established for KCNQ4 mutants and little is known about the molecular chaperones governing the KCNQ4 biogenesis. To identify KCNQ4-associated molecular chaperones, a proteomic approach was used in this study. As a result, two major molecular chaperones, HSP70 and HSP90, were identified and then confirmed by reciprocal co-immunoprecipitation assays, suggesting that the HSP90 chaperone pathway might be involved in the KCNQ4 biogenesis. Manipulating chaperone expression further revealed that two different isoforms of HSP90, the inducible HSP90α and the constitutive HSP90β, had opposite effects on the cellular level of the KCNQ4 channel; that HSP40, HSP70, and HOP, three key components of the HSP90 chaperone pathway, were crucial in facilitating KCNQ4 biogenesis. In contrast, CHIP, a major E3 ubiquitin ligase, had an opposite effect. Collectively, our data suggest that HSP90α and HSP90β play key roles in controlling KCNQ4 homeostasis via the HSP40-HSP70-HOP-HSP90 chaperone pathway and the ubiquitin-proteasome pathway. Most importantly, we found that over-expression of HSP90β significantly improved cell surface expression of the trafficking-deficient, pathogenic KCNQ4 mutants L274H and W276S. KCNQ4 surface expression was restored by HSP90β in cells mimicking heterozygous conditions of the DFNA2 patients, even though it was not sufficient to rescue the function of KCNQ4 channels.
Collapse
Affiliation(s)
- Yanhong Gao
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
| | - Sergey Yechikov
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
| | - Ana E. Vazquez
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
- * E-mail: (AEV); (LN)
| | - Dongyang Chen
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
| | - Liping Nie
- Department of Otolaryngology, University of California Davis, Davis, California, United States of America
- * E-mail: (AEV); (LN)
| |
Collapse
|