1
|
João EE, Lopes JR, Guedes BFR, da Silva Sanches PR, Chin CM, Dos Santos JL, Scarim CB. Advances in drug discovery of flavivirus NS2B-NS3pro serine protease inhibitors for the treatment of Dengue, Zika, and West Nile viruses. Bioorg Chem 2024; 153:107914. [PMID: 39546935 DOI: 10.1016/j.bioorg.2024.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/24/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Flaviviruses are vector-borne RNA viruses that seriously threaten global public health due to their high transmission index in humans, mainly in endemic areas. They spread infectious diseases that affect approximately 400 million people globally, primarily in developing countries struggling with persistent epidemic diseases. Viral infections manifest as hemorrhagic fever, encephalitis, congenital abnormalities, and fatalities. Despite nearly two decades of drug discovery campaigns, researchers have not identified promising lead compounds for clinical trials to treat or prevent flavivirus infections. Although scientists have made substantial progress through drug discovery approaches and vaccine development, resolving this complex issue might need some time. New therapeutic agents that can safely and effectively target key components of flaviviruses need to be identified. NS2B-NS3pro is an extensively studied pharmacological target among viral proteases. It plays a key role in the viral replication cycle by cleaving the polyprotein of flaviviruses and triggering the formation of structural and non-structural proteins. In this review, studies published from 2014 to 2023 were examined, and the specificity profile of compounds targeting NS2B-NS3 pro proteases for treating flavivirus infections was focused on. Additionally, the latest advancements in clinical trials were discussed. This article might provide information on the prospects of this promising pharmacological target.
Collapse
Affiliation(s)
- Emílio Emílio João
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Juliana Romano Lopes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | | | | | - Chung Man Chin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Cauê Benito Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
2
|
Souza RP, Pimentel VD, de Sousa RWR, Sena EP, da Silva ACA, Dittz D, Ferreira PMP, de Oliveira AP. Non-clinical investigations about cytotoxic and anti-platelet activities of gamma-terpinene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8145-8160. [PMID: 38801455 DOI: 10.1007/s00210-024-03173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Gamma-terpinene (γ-TPN) is a cyclohexane monoterpene isolated from plant essential oils, such as tea tree (Melaleuca alternifolia), oregano (Origanum vulgare), rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris Marchand), and eucalyptus (Eucalyptus sp.). Terpenes are widely studied molecules pharmacologically active on the cardiovascular system, hemostasis, and antioxidant actions. Herein, it was investigated the cytotoxic and antiplatelet activity of γ-TPN using different non-clinical laboratory models. For in silico evaluation, the PreADMET, SwissADME, and SwissTargetPrediction softwares were used. Molecular docking was performed using the AutoDockVina and BIOVIA Discovery Studio databases. The cytotoxicity of γ-TPN was analyzed by the MTT assay upon normal murine endothelial SVEC4-10 and fibroblast L-929 cells. Platelet aggregation was evaluated with platelet-rich (PRP) and platelet-poor (PPP) plasma from spontaneously hypertensive rats (SHR), in addition to SVEC4-10 cells pre-incubated with γ-TPN (50, 100, and 200 µM) for 24 h. SHR animals were pre-treated by gavage with γ-TPN for 7 days and divided into four groups (negative control, 25, 50, and 100 mg/kg). Blood samples were collected to measure nitrite using the Griess reagent. Gamma-TPN proved to be quite lipid-soluble (Log P = +4.50), with a qualified profile of similarity to the drug, good bioavailability, and adequate pharmacokinetics. It exhibited affinity mainly for the P2Y12 receptor (6.450 ± 0.232 Kcal/mol), moderate cytotoxicity for L-929 (CC50 = 333.3 µM) and SVEC 4-10 (CC50 = 366.7 µM) cells. The presence of γ-TPN in SVEC 4-10 cells was also able to reduce platelet aggregation by 51.57 and 44.20% at lower concentrations (50 and 100 µM, respectively). Then, γ-TPN has good affinity with purinergic receptors and an effect on the reversal of platelet aggregation and oxidative stress, being promising and safe for therapeutic targets and subsequent studies on the control of thromboembolic diseases.
Collapse
Affiliation(s)
- Railson Pereira Souza
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Vinícius Duarte Pimentel
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Rayran Walter Ramos de Sousa
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Emerson Portela Sena
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Alda Cássia Alves da Silva
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Dalton Dittz
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Antineoplastic Pharmacology (Lafan), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
- Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Aldeídia Pereira de Oliveira
- Postgraduate Program in Pharmacology, Center for Research on Medicinal Plants (NPPM), Federal University of Piauí, Teresina, 64049-550, Brazil.
- Laboratory of Cardiovascular Pharmacology (Lafac), Federal University of Piauí, Teresina, 64049-550, Brazil.
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| |
Collapse
|
3
|
Zeidan MA, Othman DIA, Goda FE, Mostafa AS. Identification of novel sulfathiazole-triazolo-chalcone hybrids as VEGFR-2/EGFR dual inhibitors with antiangiogenic activity and apoptotic induction. Arch Pharm (Weinheim) 2024; 357:e2300320. [PMID: 38117940 DOI: 10.1002/ardp.202300320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Certain sulfathiazole-triazolo chalcone hybrids were identified as anticancer agents with dual vascular endothelial growth factor receptor-2 (VEGFR-2)/epidermal growth factor receptor (EGFR) kinase inhibitory effect. All of the compounds were evaluated for their cytotoxic activity against the MCF-7 and HepG-2 tumor cell lines. Compounds 11g, 11h, and 11j exhibited the most potent antiproliferative activity against both cancer cell lines, with good safety toward WI-38 normal cells. Thus, they were further assessed for VEGFR-2 inhibitory activity. They have suppressed VEGFR-2 enzyme at IC50 of 0.316, 0.076, and 0.189 µM, respectively in comparison to sorafenib (IC50 = 0.035 µM). EGFR enzyme inhibition was further screened for the most potent inhibitors, 11h and 11j, where they displayed enhanced potency with IC50 of 0.085 and 0.108 µM, respectively, compared to erlotinib (IC50 = 0.037 µM). Compounds 11h and 11j were additionally investigated for inhibition of comparable kinases, PDGFR-β and B-Raf, where results assessed adequate selectivity of both compounds toward the VEGFR-2 and EGFR kinases. Furthermore, the wound healing assay of compound 11h manifested a percent wound closure of 65.18% in MCF-7 cells compared to doxorubicin (58.51%) and untreated cells (97.77%), proving its antiangiogenic activity. The cell cycle assay of MCF-7 cells treated with 11h demonstrated cell cycle arrest at the S phase. Moreover, compound 11h induced apoptosis with a 44-fold increase compared to that induced in the control MCF-7 cells. Molecular docking results of compounds 11h and 11j established their efficacies, and in silico studies showed convenient safety profiles with drug-likeness properties.
Collapse
Affiliation(s)
- Mohamed A Zeidan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Dina I A Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Ayoup MS, Ammar A, Abdel-Hamid H, Amer A, Abu-Serie MM, Nasr SA, Ghareeb DA, Teleb M, Tageldin GN. Challenging the anticolorectal cancer capacity of quinoxaline-based scaffold via triazole ligation unveiled new efficient dual VEGFR-2/MAO-B inhibitors. Bioorg Chem 2024; 143:107102. [PMID: 38211551 DOI: 10.1016/j.bioorg.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Monoamine oxidases (MAOs) and vascular endothelial growth factor receptor-2 (VEGFR-2) are promoters of colorectal cancer (CRC) and central signaling nodes in epithelial-mesenchymal transition (EMT) induced by activating hypoxia-inducible factors (HIFs). Herein, a novel series of rationally designed triazole-tethered quinoxalines were synthesized and evaluated against HCT-116 CRC cells. The tailored scaffolds combine the pharmacophoric themes of both VEGFR-2 inhibitors and MAO inhibitors. All the synthesized derivatives were screened utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for their possible cytotoxic effects on normal human colonocytes, then evaluated for their anticancer activities against HCT-116 cells overexpressing MAOs. The hit derivatives 11 and 14 exhibited IC50 = 18.04 and 7.850 µM, respectively, against HCT-116cells within their EC100 doses on normal human colonocytes. Wound healing assay revealed their efficient CRC antimetastatic activities recording HCT-116 cell migration inhibition exceeding 75 %. In vitro enzymatic assays demonstrated that both 11 and 14 efficiently inhibited VEGFR-2 (IC50 = 88.79 and 9.910 nM), MAO-A (IC50 = 0.763 and 629.1 nM) and MAO-B (IC50 = 0.488 and 209.6 nM) with observed MAO-B over MAO-A selectivity (SI = 1.546 and 3.001), respectively. Enzyme kinetics studies were performed for both compounds to identify their mode of MAO-B inhibition. Furthermore, qRT-PCR analysis showed that the hits efficiently downregulated HIF-1α in HCT-116cells by 3.420 and 16.96 folds relative to untreated cells. Docking studies simulated their possible binding modes within the active sites of VEGFR-2 and MAO-B to highlight their essential structural determinants of activities. Finally, they recorded in silico drug-like absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles as well as ligand efficiency metrics.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Ahmed Ammar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Adel Amer
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Samah A Nasr
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Gina N Tageldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
5
|
Preikša J, Petrikaitė V, Petrauskas V, Matulis D. Intrinsic Solubility of Ionizable Compounds from p Ka Shift. ACS OMEGA 2023; 8:44571-44577. [PMID: 38046347 PMCID: PMC10688098 DOI: 10.1021/acsomega.3c04071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Aqueous solubility of pharmaceutical substances plays an important role in small molecule drug discovery and development, with ionizable groups often employed to enhance solubility. Drug candidate compounds often contain ionizable groups to increase their solubility. Recognizing that the electrostatically charged form of the compound is much more soluble than the uncharged form, this work proposes a model to explore the relationship between the pKa shift of the ionizable group and dissolution equilibria. The model considers three forms of a compound: dissolved-charged, dissolved-uncharged, and aggregated-uncharged. It analyzes two linked equilibria: the protonation of the ionizable group and the dissolution-aggregation of the uncharged form, with the observed pKa shift depending on the total concentration of the compound. The active concentration of the aggregates determines this shift. The model was explored through the determination of the pKa shift and intrinsic solubility of specific compounds, such as ICPD47, a high-affinity inhibitor of the Hsp90 chaperone protein and anticancer target, as well as benzoic acid and benzydamine. The model holds the potential for a more nuanced understanding of intrinsic solubility and may lead to advancements in drug discovery and development.
Collapse
Affiliation(s)
- Joku̅bas Preikša
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius, LT-02300, Lithuania
- Department
of Biothermodynamics and Drug Design, Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Vilma Petrikaitė
- Department
of Biothermodynamics and Drug Design, Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
- Laboratory
of Drug Targets Histopathology, Institute
of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas, LT-50162, Lithuania
| | - Vytautas Petrauskas
- Department
of Biothermodynamics and Drug Design, Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Daumantas Matulis
- Department
of Biothermodynamics and Drug Design, Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
6
|
Abdulredha FH, Mahdi MF, Khan AK. In silico evaluation of binding interaction and ADME study of new 1,3-diazetidin-2-one derivatives with high antiproliferative activity. J Adv Pharm Technol Res 2023; 14:176-184. [PMID: 37692021 PMCID: PMC10483897 DOI: 10.4103/japtr.japtr_116_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 09/12/2023] Open
Abstract
A series of eight novels' 1,3-diazetidin-2-ones have been proposed to assess their potential activities. They are intended to examine antiproliferative effects through inhibition of epidermal growth factor receptor (EGFR) expression. These eight compounds strongly interact with the EGFR protein, responsible for the activity. As part of a present study, these compounds were docked to the crystal structure of the EGFR (Protein Data Bank code: 1 M17) to determine their binding affinity at the active site. Based on computer predictions, two compounds were demonstrated high scores of 80.80 and 85.89. After analyzing ADME properties, these compounds were found to have significant potential for binding. Consequently, the abilities of gefitinib, erlotinib, imatinib, and sorafenib were selected for comparison as controls. Computational methods were performed to predict the critical disposition of eight novels' 1,3-diazetidin-2-one derivatives to the EGFR. Moreover, a docking technique employing the Genetic Optimization for Ligand Docking program was conducted. Compounds 2 and 7 demonstrate a high docking peace-wise scoring function (PLP) fitness of 85.89 and 80.80, respectively. They fulfilled the Lipinski's rule, topological descriptors, and fingerprints of drug-like molecular structure keys. These compounds can be used as lead compounds to develop novel antiproliferative agents. The outcome of applying this study is novel series of 1,3-diazetidin-2-one compounds as new analogs were designed and evaluated for their antiproliferative activity with a higher potency profile and binding affinity within the active sites of EGFR.
Collapse
Affiliation(s)
- Farah Haidar Abdulredha
- Department of Pharmaceutical Chemistry, College of Pharmacy, Al-Mustansiriyah University, Baghdad, Iraq
| | - Monther Faisal Mahdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Al-Mustansiriyah University, Baghdad, Iraq
| | - Ayad Kareem Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Al-Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
7
|
Guo W, Dong X, Li Y, Li C, Tian Y, Gao H, Li T, Zhu H, Wang J, Yang C. Co-amorphous formulation of dipyridamole with p-hydroxybenzoic acid: Underlying molecular mechanisms, physical stability, dissolution behavior and pharmacokinetic study. Eur J Pharm Biopharm 2023; 184:139-149. [PMID: 36709922 DOI: 10.1016/j.ejpb.2023.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Coamorphization has been proven to be an effective approach to improve bioavailability of poorly soluble active pharmaceutical ingredients (APIs) by virtue of solubilization, and also contributes to overcome limitation of physical stability associated with amorphous drug alone. In current work, a co-amorphous formulation of dipyridamole (DPM), a poor solubility drug, with p-hydroxybenzoic acid (HBA) was prepared and investigated. At a molar ratio of 1:2, DPM and HBA were melted result in the formation of a binary co-amorphous system. The DPM-HBA co-amorphous was structurally characterized by powder X-ray diffraction (PXRD), temperature modulated differential scanning calorimetry (mDSC), high performance liquid chromatography (HPLC) and solution state 1H nuclear magnetic resonance (1H NMR). The molecular mechanisms in the co-amorphous were further analysed via Fourier-transform infrared (FTIR) and Raman spectroscopies, as well as density functional theory (DFT) calculation. All the results consistently revealed the presence of hydrogen bonding interactions between -OH of DPM and -COOH on HBA. Accelerated test and glass transition kinetics showed excellent physical stability of DPM-HBA co-amorphous compared with amorphous DPM along with glass transition temperatures (Tg). The phase-solubility study indicated that complexation occurred between DPM and HBA in solution, which contributed to the solubility and dissolution enhancement of DPM in co-amorphous system. Pharmacokinetic study of co-amorphous DPM-HBA in mouse plasma revealed that the DPM exhibited 1.78-fold and 2.64-fold improvement in AUC0‑∞ value compared with crystalline and amorphous DPM, respectively. This current study revealed coamorphization is an effective approach for DPM to improve the solubility and biopharmaceutical performance.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xueqing Dong
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yuanchun Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Congwei Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yawen Tian
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Huibing Gao
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Tiantian Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Hanruo Zhu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| | - Caiqin Yang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
8
|
Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation. Bioorg Chem 2022; 124:105816. [DOI: 10.1016/j.bioorg.2022.105816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
|
9
|
Ueda H, Hirakawa Y, Miyano T, Imono M, Tse JY, Uchiyama H, Tozuka Y, Kadota K. Design of a Stable Coamorphous System Using Lactose as an Antiplasticizing Agent for Diphenhydramine Hydrochloride with a Low Glass Transition Temperature. Mol Pharm 2022; 19:1209-1218. [PMID: 35316068 DOI: 10.1021/acs.molpharmaceut.2c00057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coamorphous systems comprising small molecules are emerging as counterparts to polymeric solid dispersions. However, the glass transition temperatures (Tgs) of coamorphous materials are relatively low because of the lack of polymeric carriers with higher Tgs. This study aimed to investigate the applicability of lactose (LAC) as an antiplasticizing coformer to a coamorphous system. Diphenhydramine hydrochloride (DPH) was selected as a model drug (Tg = 16 °C). Differential scanning calorimetry showed a comelting point in addition to a decrease in the neat melting points depending on the composition of the physical mixtures, suggesting that the mixture of DPH-LAC was eutectic. The melting point of the eutectic mixture was calculated according to the Schröder-van Laar equation. The heat of fusion of the eutectic mixture was maximized at a 70:30 molar ratio of DPH to LAC; at this point, the melting peaks of the pure components disappeared. The heat flow profiles following the melting and cooling of DPH-LAC physical mixtures at the ratios from 10:90 to 90:10 showed a single Tg, suggesting the formation of a coamorphous system. Lactose showed a Tg of over 100 °C, and the Tg of DPH increased with the molar ratio of LAC; it was 84 °C at a 10:90 molar ratio of DPH to LAC. The Raman image indicated the formation of a homogeneous dispersion of DPH and LAC in the coamorphous system. Peak shifts in the infrared spectra indicated the presence of intermolecular interactions between the amino group of DPH and the hydroxyl group of LAC. Principal component analysis of the infrared spectra revealed a significant change at the 70:30 molar ratio of DPH to LAC, which was in agreement with the results of the thermal analysis. A stability test at 40 °C revealed rapid crystallization of the supercooled liquid DPH. The coamorphous samples containing 10-50% of LAC remained in an amorphous state for 21 days, and no crystallization was observed for the samples containing >60% of LAC for 28 days. The relatively lower Tg (less than 40 °C) of the coamorphous system containing 10-50% of LAC might have caused crystallization during storage. These findings indicate that LAC, which is a safe and widely used pharmaceutical excipient, can be applied to coamorphous systems as an antiplasticizing coformer.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Physical Chemistry, Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Yuya Hirakawa
- Chemical Modality 2, Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Tetsuya Miyano
- Physical Chemistry, Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Masaaki Imono
- Physical Chemistry, Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| |
Collapse
|
10
|
Scarim CB, Pavan FR. Recent advancement in drug development of nitro(NO 2 )-heterocyclic compounds as lead scaffolds for the treatment of Mycobacterium tuberculosis. Drug Dev Res 2022; 83:842-858. [PMID: 35106801 DOI: 10.1002/ddr.21921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Tuberculosis (TB) is an infectious disease caused predominantly by Mycobacterium tuberculosis (Mtb). It was responsible for approximately 1.4 million deaths worldwide in 2019. The lack of new drugs to treat drug-resistant strains is a principal factor for the slow rise in TB infections. Our aim is to aid the development of new TB treatments by describing improvements (last decade, 2011-2021) to nitro(NO2 )-based compounds that have shown activity or pharmacological properties (e.g., anti-proliferative, anti-kinetoplastid) against Mtb. For all compounds, we have included final correlations of minimum inhibitory concentrations against Mtb (H37 Rv).
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Department of Cell and Molecular Biology, University of Mississippi Medical Center (UMMC), Jackson, Mississippi, USA
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
11
|
Oselusi SO, Christoffels A, Egieyeh SA. Cheminformatic Characterization of Natural Antimicrobial Products for the Development of New Lead Compounds. Molecules 2021; 26:molecules26133970. [PMID: 34209681 PMCID: PMC8271829 DOI: 10.3390/molecules26133970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
The growing antimicrobial resistance (AMR) of pathogenic organisms to currently prescribed drugs has resulted in the failure to treat various infections caused by these superbugs. Therefore, to keep pace with the increasing drug resistance, there is a pressing need for novel antimicrobial agents, especially from non-conventional sources. Several natural products (NPs) have been shown to display promising in vitro activities against multidrug-resistant pathogens. Still, only a few of these compounds have been studied as prospective drug candidates. This may be due to the expensive and time-consuming process of conducting important studies on these compounds. The present review focuses on applying cheminformatics strategies to characterize, prioritize, and optimize NPs to develop new lead compounds against antimicrobial resistance pathogens. Moreover, case studies where these strategies have been used to identify potential drug candidates, including a few selected open-access tools commonly used for these studies, are briefly outlined.
Collapse
Affiliation(s)
- Samson Olaitan Oselusi
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa;
- Correspondence:
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town 7535, South Africa;
| | - Samuel Ayodele Egieyeh
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa;
| |
Collapse
|
12
|
Borah P, Hazarika S, Deka S, Venugopala KN, Nair AB, Attimarad M, Sreeharsha N, Mailavaram RP. Application of Advanced Technologies in Natural Product Research: A Review with Special Emphasis on ADMET Profiling. Curr Drug Metab 2020; 21:751-767. [PMID: 32664837 DOI: 10.2174/1389200221666200714144911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
The successful conversion of natural products (NPs) into lead compounds and novel pharmacophores has emboldened the researchers to harness the drug discovery process with a lot more enthusiasm. However, forfeit of bioactive NPs resulting from an overabundance of metabolites and their wide dynamic range have created the bottleneck in NP researches. Similarly, the existence of multidimensional challenges, including the evaluation of pharmacokinetics, pharmacodynamics, and safety parameters, has been a concerning issue. Advancement of technology has brought the evolution of traditional natural product researches into the computer-based assessment exhibiting pretentious remarks about their efficiency in drug discovery. The early attention to the quality of the NPs may reduce the attrition rate of drug candidates by parallel assessment of ADMET profiling. This article reviews the status, challenges, opportunities, and integration of advanced technologies in natural product research. Indeed, emphasis will be laid on the current and futuristic direction towards the application of newer technologies in early-stage ADMET profiling of bioactive moieties from the natural sources. It can be expected that combinatorial approaches in ADMET profiling will fortify the natural product-based drug discovery in the near future.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Sangeeta Hazarika
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh-221005, India
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia
| | - Raghu P Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur (Affiliated to Andhra University), Bhimavaram, W.G. Dist., Andhra Pradesh, India
| |
Collapse
|
13
|
Baker CM, Kidley NJ, Papachristos K, Hotson M, Carson R, Gravestock D, Pouliot M, Harrison J, Dowling A. Tautomer Standardization in Chemical Databases: Deriving Business Rules from Quantum Chemistry. J Chem Inf Model 2020; 60:3781-3791. [PMID: 32644790 DOI: 10.1021/acs.jcim.0c00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Databases of small, potentially bioactive molecules are ubiquitous across the industry and academia. Designed such that each unique compound should appear only once, the multiplicity of ways in which many compounds can be represented means that these databases require methods for standardizing the representation of chemistry. This is commonly achieved through the use of "Chemistry Business Rules", sets of predefined rules that describe the "house style" of the database in question. At Syngenta, the historical approach to the design of chemistry business rules has been to focus on consistency of representation, with chemical relevance given secondary consideration. In this work, we overturn that convention. Through the use of quantum chemistry calculations, we define a set of chemistry business rules for tautomer standardization that reproduces gas-phase energetic preferences. We go on to show that, compared to our historic approach, this method yields tautomers that are in better agreement with those observed experimentally in condensed phases and that are better suited for use in predictive models.
Collapse
Affiliation(s)
- Christopher M Baker
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Nathan J Kidley
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | | | - Matthew Hotson
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Rob Carson
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - David Gravestock
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Martin Pouliot
- Syngenta Crop Protection, Schaffhauserstrasse, Stein CH-4332, Switzerland
| | - Jim Harrison
- Datacraft Technologies, 110 Parkwood Place, Anstead, QLD 4070, Australia
| | - Alan Dowling
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| |
Collapse
|
14
|
Chen D, Wang Q, Li Y, Li Y, Zhou H, Fan Y. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. CHEMOSPHERE 2020; 247:125869. [PMID: 31972487 DOI: 10.1016/j.chemosphere.2020.125869] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Predicting the effects of organic compounds on environments and biological systems is an important objective for environmental chemistry and human health. The logarithm (to base 10) of the n-octanoll-water partition coefficient has been widely used to predict the mentioned properties. However, the suitability of this parameter for the purpose has been questioned, since the environments relating to the properties may be quite different from that of bulk n-octanol. In this study, we used a theoretical derivation approach to develop a model for predicting the partition coefficients of solutes between water and an organic solvent that may be similar to n-octanol or quite different from it. Our model relies on solute descriptors that can be calculated based on solute structures. It was used to predict the n-octanoll-water, hexadecanel-water and chloroforml-water partition coefficients of solutes. The calculated values of the examined parameters agreed well with their experimental counterparts. The model can find application in the accurate prediction of the effects of organic compounds on environments and the physicochemical properties of organic compounds by a full in-silico approach and can provide useful guidance for improving some properties of organic compounds.
Collapse
Affiliation(s)
- Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi, 341000, PR China.
| | - Qingyun Wang
- College of Mathematics and Computer Science, Gannan Normal University, Ganzhou, Jiangxi, 341000, PR China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi, 341000, PR China
| | - Yongdong Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi, 341000, PR China
| | - Hui Zhou
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi, 341000, PR China
| | - Yulan Fan
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
15
|
Carvalho AM, Fernandes E, Gonçalves H, Giner-Casares JJ, Bernstorff S, Nieder JB, Real Oliveira MECD, Lúcio M. Prediction of paclitaxel pharmacokinetic based on in vitro studies: Interaction with membrane models and human serum albumin. Int J Pharm 2020; 580:119222. [PMID: 32194209 DOI: 10.1016/j.ijpharm.2020.119222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/10/2023]
Abstract
Interactions of paclitaxel (PTX) with models mimicking biological interfaces (lipid membranes and serum albumin, HSA) were investigated to test the hypothesis that the set of in vitro assays proposed can be used to predict some aspects of drug pharmacokinetics (PK). PTX membrane partitioning was studied by derivative spectrophotometry; PTX effect on membrane biophysics was evaluated by dynamic light scattering, fluorescence anisotropy, atomic force microscopy and synchrotron small/wide-angle X-ray scattering; PTX distribution/molecular orientation in membranes was assessed by steady-state/time-resolved fluorescence and computer simulations. PTX binding to HSA was studied by fluorescence quenching, derivative spectrophotometry and dynamic/electrophoretic light scattering. PTX high membrane partitioning is consistent with its efficacy crossing cellular membranes and its off-target distribution. PTX is closely located in the membrane phospholipids headgroups, also interacting with the hydrophobic chains, and causes a major distortion of the alignment of the membrane phospholipids, which, together with its fluidizing effect, justifies some of its cellular toxic effects. PTX binds strongly to HSA, which is consistent with its reduced distribution in target tissues and toxicity by bioaccumulation. In conclusion, the described set of biomimetic models and techniques has the potential for early prediction of PK issues, alerting for the required drug optimizations, potentially minimizing the number of animal tests used in the drug development process.
Collapse
Affiliation(s)
- Ana M Carvalho
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Nanophotonics Department, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Eduarda Fernandes
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | | | - Juan J Giner-Casares
- Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain.
| | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, in Area Science Park, I-34149 Basovizza, Trieste, Italy.
| | - Jana B Nieder
- Nanophotonics Department, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - M Elisabete C D Real Oliveira
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
16
|
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 2019; 19:131-148. [DOI: 10.1038/s41573-019-0048-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
17
|
Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. Int J Mol Sci 2019; 20:ijms20215326. [PMID: 31731563 PMCID: PMC6862029 DOI: 10.3390/ijms20215326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Drug discovery now faces a new challenge, where the availability of experimental data is no longer the limiting step, and instead, making sense of the data has gained a new level of importance, propelled by the extensive incorporation of cheminformatics and bioinformatics methodologies into the drug discovery and development pipeline. These enable, for example, the inference of structure-activity relationships that can be useful in the discovery of new drug candidates. One of the therapeutic applications that could benefit from this type of data mining is proteasome inhibition, given that multiple compounds have been designed and tested for the last 20 years, and this collection of data is yet to be subjected to such type of assessment. This study presents a retrospective overview of two decades of proteasome inhibitors development (680 compounds), in order to gather what could be learned from them and apply this knowledge to any future drug discovery on this subject. Our analysis focused on how different chemical descriptors coupled with statistical tools can be used to extract interesting patterns of activity. Multiple instances of the structure-activity relationship were observed in this dataset, either for isolated molecular descriptors (e.g., molecular refractivity and topological polar surface area) as well as scaffold similarity or chemical space overlap. Building a decision tree allowed the identification of two meaningful decision rules that describe the chemical parameters associated with high activity. Additionally, a characterization of the prevalence of key functional groups gives insight into global patterns followed in drug discovery projects, and highlights some systematically underexplored parts of the chemical space. The various chemical patterns identified provided useful insight that can be applied in future drug discovery projects, and give an overview of what has been done so far.
Collapse
|
18
|
Nitroheterocyclic derivatives: privileged scaffold for drug development against Chagas disease. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02453-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Raevsky OA, Grigorev VY, Polianczyk DE, Raevskaja OE, Dearden JC. Aqueous Drug Solubility: What Do We Measure, Calculate and QSPR Predict? Mini Rev Med Chem 2019; 19:362-372. [PMID: 30058484 DOI: 10.2174/1389557518666180727164417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 01/07/2023]
Abstract
Detailed critical analysis of publications devoted to QSPR of aqueous solubility is presented in the review with discussion of four types of aqueous solubility (three different thermodynamic solubilities with unknown solute structure, intrinsic solubility, solubility in physiological media at pH=7.4 and kinetic solubility), variety of molecular descriptors (from topological to quantum chemical), traditional statistical and machine learning methods as well as original QSPR models.
Collapse
Affiliation(s)
- Oleg A Raevsky
- Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russian Federation
| | - Veniamin Y Grigorev
- Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russian Federation
| | - Daniel E Polianczyk
- Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russian Federation
| | - Olga E Raevskaja
- Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Russian Federation
| | - John C Dearden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
20
|
Okasha RM, Al-Shaikh NE, Aljohani FS, Naqvi A, Ismail EH. Design of Novel Oligomeric Mixed Ligand Complexes: Preparation, Biological Applications and the First Example of Their Nanosized Scale. Int J Mol Sci 2019; 20:ijms20030743. [PMID: 30744196 PMCID: PMC6387131 DOI: 10.3390/ijms20030743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 01/30/2023] Open
Abstract
A successful oligomerization of ternary metal complexes, cobalt (II), nickel (II), copper (II), zinc (II), chromium (III) and ferric sulfate (III) with nitrilotriacetic acid (NTA) as a primary ligand and glutamic acid as a secondary ligand, has been demonstrated. The formation of oligomers arose from the presence of the sulfate moiety, which operates as a bridged bidentate ligand that coordinates with other metal moieties. The novel oligomers exhibited octahedral structures, which bonded together through the sulfate moiety. In silico predictions were conducted to gauge the bioactivity, physico-chemical and pharmacokinetic properties. The biological activities of these oligomers as well as their tumor inhibitory behavior have been explored. This work also presents a facile and novel method of preparing these materials in nanosize, using Cetyltrimethylammonium bromide (CTAB) and polyvinyl alcohol (PVA) as capping ligands. The size and shape of the nanomaterials have been confirmed using the transmission electron microscope (TEM) and the scanning electron microscope (SEM).
Collapse
Affiliation(s)
- Rawda M Okasha
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Najla E Al-Shaikh
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Faizah S Aljohani
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Arshi Naqvi
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Eman H Ismail
- Chemistry Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
21
|
Scarim CB, Jornada DH, Machado MGM, Ferreira CMR, Dos Santos JL, Chung MC. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur J Med Chem 2018; 162:378-395. [PMID: 30453246 DOI: 10.1016/j.ejmech.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Thiazole, thiosemicarbazone and semicarbazone moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. In this review article, we critically analyzed the contribution of these scaffolds to medicinal chemistry in the last five years, focusing on tropical infectious diseases, such as Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. We also present perspectives for their use in drug design in order to contribute to the development of new drugs.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| | | | | | | | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Man Chin Chung
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
22
|
Scarim CB, Jornada DH, Chelucci RC, de Almeida L, Dos Santos JL, Chung MC. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018; 155:824-838. [PMID: 30033393 DOI: 10.1016/j.ejmech.2018.06.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is one of the 17 neglected tropical diseases (NTDs) according to World Health Organization. It is estimated that 8-10 million people are infected worldwide, mainly in Latin America. Chagas disease is caused by the parasite Trypanosoma cruzi and is characterized by two phases: acute and chronic. The current therapy for Chagas disease is limited to drugs such as nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease. In addition, several side effects ranging from hypersensitivity to bone marrow depression and peripheral polyneuropathy have been associated with these drugs. Therefore, the current challenge is to find new effective and safe drugs against this NTD. The aim of this review is to describe the advances in the medicinal chemistry of new anti-chagasic compounds reported in the literature in the last five years. We report promising prototypes for drug discovery identified through target-based and phenotype-based strategies and present some important targets for the development of new synthetic compounds.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil.
| | - Daniela Hartmann Jornada
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Rafael Consolin Chelucci
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Leticia de Almeida
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, USP, Brazil
| | - Jean Leandro Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Man Chin Chung
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| |
Collapse
|
23
|
Azad I, Nasibullah M, Khan T, Hassan F, Akhter Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J Mol Graph Model 2018; 81:211-228. [PMID: 29609141 DOI: 10.1016/j.jmgm.2018.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect. Molecular docking was performed with vascular endothelial growth factor receptor-2(VEGFR2) and glutathione S-transferase-1 (GSTP1) because both are common cancer causing proteins. Sunitinib and Doxorubicin possess great affinity to inhibit these cancers causing protein. Self-organizing map (SOM) was used to depict data in a simple 2D presentation. Our studies justify that good oral bioavailability and therapeutic efficacy of 10, 12-19 and 22-27 compounds can be considered as potential anticancer agents.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India.
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India; Department of Chemistry, Isabella Thoburn College, University of Lucknow, Lucknow 226007, UP, India
| | - Firoj Hassan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, UP 2260025, India
| |
Collapse
|
24
|
Wenlock MC. Oral drug suitability parameters. MEDCHEMCOMM 2018; 9:460-470. [PMID: 30108936 PMCID: PMC6072407 DOI: 10.1039/c7md00586e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022]
Abstract
Assessing the oral drug suitability of compounds as early as possible within drug discovery is an important objective. This study describes a methodology that attempts to simplify the evaluation of compounds based on their in vivo quantity levels within a mammalian body, represented using a mathematical model that imposes a time limitation on oral absorption and assumes non-instantaneous drug distribution between plasma and tissue. This simplification results in two new oral drug suitability parameters that can quantitatively relate oral dose to in vivo exposure for compounds with vastly different tendencies in terms of absorption into, and elimination from, the body. Consequently, the complexities associated with evaluating a compound's oral drug suitability are simplified to an assessment of these two new parameters. Application of this methodology at the virtual design stage is discussed, along with functionality that accounts for uncertainty related to a compound's distribution kinetics and errors associated to in silico QSAR predictions for the required input data.
Collapse
Affiliation(s)
- M C Wenlock
- InSilicoLynx Ltd , BioHub at Alderley Park , Mereside, Alderley Park , Cheshire , SK10 4TG , UK .
| |
Collapse
|
25
|
Abstract
Natural products (NPs) have been used as traditional medicines since antiquity. With more than 1060 estimated compounds with molecular weights less than 500 Da representing chemical space, NPs occupy a very small percentage; however, they are significantly overrepresented in biologically relevant chemical space. The classical approach concentrates on identifying one or more NPs with biological activity from a source organism. There is much more to be learned from NPs than we can discover this narrow view. In this review, we discuss ways to harness the global properties of NPs.
Collapse
Affiliation(s)
- Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; ,
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; ,
| |
Collapse
|
26
|
Vale N, Correia-Branco A, Patrício B, Duarte D, Martel F. In vitro studies on the inhibition of colon cancer by amino acid derivatives of bromothiazole. Bioorg Med Chem Lett 2017; 27:3507-3510. [DOI: 10.1016/j.bmcl.2017.05.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 01/18/2023]
|
27
|
Fernandes GFDS, Man Chin C, Dos Santos JL. Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds. Pharmaceuticals (Basel) 2017; 10:ph10020051. [PMID: 28587160 PMCID: PMC5490408 DOI: 10.3390/ph10020051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), a disease caused mainly by the Mycobacterium tuberculosis (Mtb), is according to the World Health Organization (WHO) the infectious disease responsible for the highest number of deaths worldwide. The increased number of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains, and the ineffectiveness of the current treatment against latent tuberculosis are challenges to be overcome in the coming years. The scenario of drug discovery becomes alarming when it is considered that the number of new drugs does not increase proportionally to the emergence of drug resistance. In this review, we will demonstrate the current advances in antitubercular drug discovery, focusing on the research of compounds with potent antituberculosis activity against MDR-TB strains. Herein, active compounds against MDR-TB with minimum inhibitory concentrations (MICs) less than 11 µM and low toxicity published in the last 4 years in the databases PubMed, Web of Science and Scopus will be presented and discussed.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
28
|
Wenlock MC. Designing safer oral drugs. MEDCHEMCOMM 2017; 8:571-577. [PMID: 30108773 PMCID: PMC6072361 DOI: 10.1039/c6md00706f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/16/2017] [Indexed: 09/29/2023]
Abstract
Designing an oral drug such that its estimated dose to humans is both efficacious and safe is challenging. During the early design stage, where in vitro or preclinical species in vivo safety data are limited, heuristic-based criteria often related to physicochemical properties are used for guidance. The causal relationship between a compound's log P and its human in vivo toxicity is considered. With respect to designing efficacious oral drugs that potentially have reduced toxicity liabilities, an alternative heuristic-based criterion is proposed based on the amount of compound in the body at steady state. In humans, a threshold for the amount of compound in the body at steady state of 0.5 mg kg-1 is suggested. The criterion is based on the minimum toxic blood-plasma concentration that produces clinically relevant side effects or symptoms in humans for 242 oral drugs. It can be used to estimate a therapeutic window against which a compound's estimated in vivo plasma levels for a particular dose size and frequency can be assessed. The relationship between this criterion and acceptable oral dose sizes for different charge types with different in vivo plasma clearances is discussed.
Collapse
Affiliation(s)
- M C Wenlock
- InSilicoLynx Ltd , BioHub at Alderley Park , Mereside, Alderley Park , Cheshire , SK10 4TG , UK .
| |
Collapse
|
29
|
Toward Commercialization. Drug Deliv 2016. [DOI: 10.1201/9781315382579-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data. Mol Pharm 2016; 13:2524-30. [PMID: 27200455 DOI: 10.1021/acs.molpharmaceut.6b00248] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics, and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF-7, and PC-3 cell lines from the LINCS Project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled data set of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both pathway and gene level classification, DNN achieved high classification accuracy and convincingly outperformed the support vector machine (SVM) model on every multiclass classification problem, however, models based on pathway level data performed significantly better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, ETC, B301, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Sergey Plis
- Datalytic Solutions , 1101 Yale Boulevard NE, Albuquerque, New Mexico 87106, United States.,The Mind Research Network , Albuquerque, New Mexico 87106, United States
| | - Artem Artemov
- Insilico Medicine, ETC, B301, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Alvaro Ulloa
- The Mind Research Network , Albuquerque, New Mexico 87106, United States
| | - Polina Mamoshina
- Insilico Medicine, ETC, B301, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Alex Zhavoronkov
- Insilico Medicine, ETC, B301, Johns Hopkins University , Baltimore, Maryland 21218, United States.,The Biogerontology Research Foundation , Oxford, U.K
| |
Collapse
|
31
|
Wenlock MC. Profiling the estimated plasma concentrations of 215 marketed oral drugs. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00583c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The human pharmacokinetic parameters of 215 marketed oral drugs have been collated and their estimated plasma concentrations (following repeat dosing) profiled against time using a one-compartment model.
Collapse
|
32
|
Colclough N, Wenlock MC. Interpreting physicochemical experimental data sets. J Comput Aided Mol Des 2015; 29:779-94. [PMID: 26054297 DOI: 10.1007/s10822-015-9850-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/29/2015] [Indexed: 12/01/2022]
Abstract
With the wealth of experimental physicochemical data available to chemoinformaticians from the literature, commercial, and company databases an increasing challenge is the interpretation of such datasets. Subtle differences in experimental methodology used to generate these datasets can give rise to variations in physicochemical property values. Such methodology nuances will be apparent to an expert experimentalist but not necessarily to the data analyst and modeller. This paper describes the differences between common methodologies for measuring the four most important physicochemical properties namely aqueous solubility, octan-1-ol/water distribution coefficient, pK(a) and plasma protein binding highlighting key factors that can lead to systematic differences. Insight is given into how to identify datasets suitable for combining.
Collapse
Affiliation(s)
- Nicola Colclough
- Oncology and Drug Safety and Metabolism, Innovative Medicines, Mereside, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | - Mark C Wenlock
- Oncology and Drug Safety and Metabolism, Innovative Medicines, Mereside, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| |
Collapse
|
33
|
Feenstra P, Brunsteiner M, Khinast J. Investigation of Migrant–Polymer Interaction in Pharmaceutical Packaging Material Using the Linear Interaction Energy Algorithm. J Pharm Sci 2014; 103:3197-204. [DOI: 10.1002/jps.24115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/05/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022]
|
34
|
Zakharov A, Peach ML, Sitzmann M, Nicklaus MC. A new approach to radial basis function approximation and its application to QSAR. J Chem Inf Model 2014; 54:713-9. [PMID: 24451033 PMCID: PMC3985791 DOI: 10.1021/ci400704f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Indexed: 01/19/2023]
Abstract
We describe a novel approach to RBF approximation, which combines two new elements: (1) linear radial basis functions and (2) weighting the model by each descriptor's contribution. Linear radial basis functions allow one to achieve more accurate predictions for diverse data sets. Taking into account the contribution of each descriptor produces more accurate similarity values used for model development. The method was validated on 14 public data sets comprising nine physicochemical properties and five toxicity endpoints. We also compared the new method with five different QSAR methods implemented in the EPA T.E.S.T. program. Our approach, implemented in the program GUSAR, showed a reasonable accuracy of prediction and high coverage for all external test sets, providing more accurate prediction results than the comparison methods and even the consensus of these methods. Using our new method, we have created models for physicochemical and toxicity endpoints, which we have made freely available in the form of an online service at http://cactus.nci.nih.gov/chemical/apps/cap.
Collapse
Affiliation(s)
- Alexey
V. Zakharov
- CADD
Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes
of Health, DHHS, NCI-Frederick, , 376 Boyles St., Frederick, Maryland 21702, United
States
| | - Megan L. Peach
- Basic
Science Program, Leidos Biomedical, Inc., Computer-Aided Drug Design Group, Chemical Biology Laboratory, Frederick
National Laboratory for Cancer Research, 376 Boyles St., Frederick, Maryland 21702, United States
| | - Markus Sitzmann
- CADD
Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes
of Health, DHHS, NCI-Frederick, , 376 Boyles St., Frederick, Maryland 21702, United
States
| | - Marc C. Nicklaus
- CADD
Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes
of Health, DHHS, NCI-Frederick, , 376 Boyles St., Frederick, Maryland 21702, United
States
| |
Collapse
|
35
|
N-acylated derivatives of sulfamethoxazole and sulfafurazole inhibit intracellular growth of Chlamydia trachomatis. Antimicrob Agents Chemother 2014; 58:2968-71. [PMID: 24566180 DOI: 10.1128/aac.02015-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antibacterial compounds with novel modes of action are needed for management of bacterial infections. Here we describe a high-content screen of 9,800 compounds identifying acylated sulfonamides as novel growth inhibitors of the sexually transmitted pathogen Chlamydia trachomatis. The effect was bactericidal and distinct from that of sulfonamide antibiotics, as para-aminobenzoic acid did not reduce efficacy. Chemical inhibitors play an important role in Chlamydia research as probes of potential targets and as drug development starting points.
Collapse
|
36
|
Han YQ, Wang J, Cui QX, Wang LQ, Cheng BF, Zhao HZ, Jiang M, Bai G, Luo GA. Absorption, metabolism and effect of compatibility on absorption of qishenyiqi dropping pill. Biomed Chromatogr 2013; 28:554-63. [DOI: 10.1002/bmc.3069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/18/2013] [Accepted: 09/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Yan-qi Han
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
| | - Jing Wang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
| | - Qing-xin Cui
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
| | - Li-qiang Wang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
| | - Bin-feng Cheng
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
| | - Hong-zhi Zhao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
| | - Min Jiang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
| | - Gang Bai
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
| | - Guo-an Luo
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300071 People's Republic of China
- Department of Chemistry; Tsinghua University; Beijing 100084 People's Republic of China
| |
Collapse
|
37
|
Special Challenges to the Rational Design of Antibacterial Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-417150-3.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|