1
|
Izquierdo-Garcia D, Désogère P, Philip AL, Sosnovik DE, Catana C, Caravan P. Dosimetry of [ 64Cu]FBP8: a fibrin-binding PET probe. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.27.24309589. [PMID: 38978675 PMCID: PMC11230308 DOI: 10.1101/2024.06.27.24309589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Purpose This study presents the biodistribution, clearance and dosimetry estimates of [64Cu]Fibrin Binding Probe #8 ([64Cu]FBP8) in healthy subjects. Procedures This prospective study included 8 healthy subjects to evaluate biodistribution, safety and dosimetry estimates of [64Cu]FBP8, a fibrin-binding positron emission tomography (PET) probe. All subjects underwent up to 3 sessions of PET/Magnetic Resonance Imaging (PET/MRI) 0-2 hours, 4h and 24h post injection. Dosimetry estimates were obtained using OLINDA 2.2 software. Results Subjects were injected with ~400 MBq of [64Cu]FBP8. Subjects did not experience adverse effects due to the injection of the probe. [64Cu]FBP8 PET images demonstrated fast blood clearance (half-life = 67 min) and renal excretion of the probe, showing low background signal across the body. The organs with the higher doses were: the urinary bladder (0.075 vs. 0.091 mGy/MBq for males and females, respectively); the kidneys (0.050 vs. 0.056 mGy/MBq respectively); and the liver (0.027 vs. 0.035 mGy/MBq respectively). The combined mean effective dose for males and females was 0.016 ± 0.0029 mSv/MBq, lower than the widely used [18F]fluorodeoxyglucose ([18F]FDG, 0.020mSv/MBq). Conclusions This study demonstrates the following properties of the [64Cu]FBP8 probe: low dosimetry estimates; fast blood clearance and renal excretion; low background signal; and whole-body acquisition within 20 minutes in a single session. These properties provide the basis for [64Cu]FBP8 to be an excellent candidate for whole-body non-invasive imaging of fibrin, an important driver/feature in many cardiovascular, oncological and neurological conditions.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
- Bioengineering Department, Universidad Carlos III, Madrid, Spain
| | - Pauline Désogère
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| | - Anne L. Philip
- Cardiovascular Research Center, Cardiology Division, Dept. of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - David E. Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Cardiology Division, Dept. of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
2
|
Samridhi, Setia A, Mehata AK, Priya V, Pradhan A, Prasanna P, Mohan S, Muthu MS. Nanoparticles for Thrombus Diagnosis and Therapy: Emerging Trends in Thrombus-theranostics. Nanotheranostics 2024; 8:127-149. [PMID: 38328614 PMCID: PMC10845253 DOI: 10.7150/ntno.92184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/09/2023] [Indexed: 02/09/2024] Open
Abstract
Cardiovascular disease is one of the chief factors that cause ischemic stroke, myocardial infarction, and venous thromboembolism. The elements that speed up thrombosis include nutritional consumption, physical activity, and oxidative stress. Even though the precise etiology and pathophysiology remain difficult topics that primarily rely on traditional medicine. The diagnosis and management of thrombosis are being developed using discrete non-invasive and non-surgical approaches. One of the emerging promising approach is ultrasound and photoacoustic imaging. The advancement of nanomedicines offers concentrated therapy and diagnosis, imparting efficacy and fewer side effects which is more significant than conventional medicine. This study addresses the potential of nanomedicines as theranostic agents for the treatment of thrombosis. In this article, we describe the factors that lead to thrombosis and its consequences, as well as summarize the findings of studies on thrombus formation in preclinical and clinical models and also provide insights on nanoparticles for thrombus imaging and therapy.
Collapse
Affiliation(s)
- Samridhi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Aditi Pradhan
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Pragya Prasanna
- National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
3
|
Molecular Detection of Venous Thrombosis in Mouse Models Using SPECT/CT. Biomolecules 2022; 12:biom12060829. [PMID: 35740954 PMCID: PMC9221411 DOI: 10.3390/biom12060829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
The efficacy of thrombolysis is inversely correlated with thrombus age. During early thrombogenesis, activated factor XIII (FXIIIa) cross-links α2-AP to fibrin to protect it from early lysis. This was exploited to develop an α2-AP-based imaging agent to detect early clot formation likely susceptible to thrombolysis treatment. In this study, this imaging probe was improved and validated using 111In SPECT/CT in a mouse thrombosis model. In vitro fluorescent- and 111In-labelled imaging probe-to-fibrin cross-linking assays were performed. Thrombus formation was induced in C57Bl/6 mice by endothelial damage (FeCl3) or by ligation (stenosis) of the infrarenal vena cava (IVC). Two or six hours post-surgery, mice were injected with 111In-DTPA-A16 and ExiTron Nano 12000, and binding of the imaging tracer to thrombi was assessed by SPECT/CT. Subsequently, ex vivo IVCs were subjected to autoradiography and histochemical analysis for platelets and fibrin. Efficient in vitro cross-linking of A16 imaging probe to fibrin was obtained. In vivo IVC thrombosis models yielded stable platelet-rich thrombi with FeCl3 and fibrin and red cell-rich thrombi with stenosis. In the stenosis model, clot formation in the vena cava corresponded with a SPECT hotspot using an A16 imaging probe as a molecular tracer. The fibrin-targeting A16 probe showed specific binding to mouse thrombi in in vitro assays and the in vivo DVT model. The use of specific and covalent fibrin-binding probes might enable the clinical non-invasive imaging of early and active thrombosis.
Collapse
|
4
|
Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophys Rev 2022; 14:427-461. [PMID: 35399372 PMCID: PMC8984085 DOI: 10.1007/s12551-022-00950-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood protein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular engineering toward the development of new therapies targeting fibrin and the coagulation system.
Collapse
|
5
|
Izquierdo-Garcia D, Diyabalanage H, Ramsay IA, Rotile NJ, Mauskapf A, Choi JK, Witzel T, Humblet V, Jaffer FA, Brownell AL, Tawakol A, Catana C, Conrad MF, Caravan P, Ay I. Imaging High-Risk Atherothrombosis Using a Novel Fibrin-Binding Positron Emission Tomography Probe. Stroke 2022; 53:595-604. [PMID: 34965737 PMCID: PMC8792326 DOI: 10.1161/strokeaha.121.035638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE High-risk atherosclerosis is an underlying cause of cardiovascular events, yet identifying the specific patient population at immediate risk is still challenging. Here, we used a rabbit model of atherosclerotic plaque rupture and human carotid endarterectomy specimens to describe the potential of molecular fibrin imaging as a tool to identify thrombotic plaques. METHODS Atherosclerotic plaques in rabbits were induced using a high-cholesterol diet and aortic balloon injury (N=13). Pharmacological triggering was used in a group of rabbits (n=9) to induce plaque disruption. Animals were grouped into thrombotic and nonthrombotic plaque groups based on gross pathology (gold standard). All animals were injected with a novel fibrin-specific probe 68Ga-CM246 followed by positron emission tomography (PET)/magnetic resonance imaging 90 minutes later. 68Ga-CM246 was quantified on the PET images using tissue-to-background (back muscle) ratios and standardized uptake value. RESULTS Both tissue-to-background (back muscle) ratios and standardized uptake value were significantly higher in the thrombotic versus nonthrombotic group (P<0.05). Ex vivo PET and autoradiography of the abdominal aorta correlated positively with in vivo PET measurements. Plaque disruption identified by 68Ga-CM246 PET agreed with gross pathology assessment (85%). In ex vivo surgical specimens obtained from patients undergoing elective carotid endarterectomy (N=12), 68Ga-CM246 showed significantly higher binding to carotid plaques compared to a D-cysteine nonbinding control probe. CONCLUSIONS We demonstrated that molecular fibrin PET imaging using 68Ga-CM246 could be a useful tool to diagnose experimental and clinical atherothrombosis. Based on our initial results using human carotid plaque specimens, in vivo molecular imaging studies are warranted to test 68Ga-CM246 PET as a tool to stratify risk in atherosclerotic patients.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,Harvard-MIT Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Ian A. Ramsay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,Collagen Medical, LLC, Belmont, MA,The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Adam Mauskapf
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ji-Kyung Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | | | - Farouc A. Jaffer
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Ahmed Tawakol
- Nuclear Cardiology, Division of Cardiology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Mark F. Conrad
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| |
Collapse
|
6
|
An overview on the two recent decades’ study of peptides synthesis and biological activities in Iran. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Tiwari A, Elgrably B, Saar G, Vandoorne K. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne) 2022; 8:754369. [PMID: 35071257 PMCID: PMC8766766 DOI: 10.3389/fmed.2021.754369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Betsalel Elgrably
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Du Y, Chen Z, Duan X, Yan P, Zhang C, Kang L, Wang R. 99mTc-labeled peptide targeting interleukin 13 receptor α 2 for tumor imaging in a cervical cancer mouse model. Ann Nucl Med 2022; 36:360-372. [PMID: 35032308 DOI: 10.1007/s12149-022-01715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Pep-1 (CGEMGWVRC) can potently bind to interleukin 13 receptor α 2 (IL-13Rα2), a tumor-restricted receptor found to be expressed in various malignancies. In this study, we intended to prepare a 99mTc-labeled probe and evaluate its in vivo tumor accumulation properties in a cervical cancer xenograft model. METHODS The Pep-1 was designed and radiolabeled with 99mTc by conjugation with mercaptoacetyl-triglycine (MAG3). The labeling yield, radiochemical purity and stability were characterized in vitro. Cell uptake assays and fluorescence imaging were conducted for qualitative and quantitative evaluation of the specificity and affinity of Pep-1. Flow cytometry and tissue immunofluorescence were used to confirm the IL-13Rα2 expression in cervical cancer. Biodistribution and in vivo imaging were performed periodically to evaluate the imaging value of 99mTc-MAG3-Pep-1 in cervical cancer xenograft model. RESULTS 99mTc-MAG3-Pep-1 was successfully prepared with a high labeling yield and radiochemical purity (> 95%). Specific cell uptake was demonstrated by scramble control and unlabeled MAG3-Pep-1 blockade. Flow cytometry and tissue immunofluorescence also confirmed the mild IL-13Rα2 expression of HeLa. In the gamma imaging study and biodistribution, the tumors were imaged clearly at 2-6 h after injection of 99mTc-MAG3-Pep-1 and the accumulation of 99mTc-MAG3-Pep-1 in tumor was significantly higher than that in the blocking and scramble controls, demonstrating ligand-receptor binding specificity. CONCLUSIONS This work demonstrated that 99mTc-MAG3-Pep-1 can bind to cervical cancer with high affinity and specificity. MAG3-Pep-1 may be a prospective precursor for IL-13Rα2-expressing cancer therapy.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, Xicheng District, Beijing, 100034, China. .,Department of Nuclear Medicine, Peking University International Hospital, 1 life Garden Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China.
| |
Collapse
|
9
|
Thakur R, Suri CR, Kaur IP, Rishi P. Review. Crit Rev Ther Drug Carrier Syst 2022; 40:49-100. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Affiliation(s)
- Binbin Sui
- Radiology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Radiology Department, Beijing Neurosurgical Institute, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Peiyi Gao
- Radiology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Radiology Department, Beijing Neurosurgical Institute, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
11
|
Koudrina A, O'Brien J, Garcia R, Boisjoli S, Kan PTM, Tsai EC, DeRosa MC. Assessment of Aptamer-Targeted Contrast Agents for Monitoring of Blood Clots in Computed Tomography and Fluoroscopy Imaging. Bioconjug Chem 2020; 31:2737-2749. [PMID: 33232126 DOI: 10.1021/acs.bioconjchem.0c00525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: Random formation of thrombi is classified as a pathological process that may result in partial or complete obstruction of blood flow and limited perfusion. Further complications include pulmonary embolism, thrombosis-induced myocardial infraction, ischemic stroke, and others. Location and full delineation of the blood clot are considered to be two clinically relevant aspects that could streamline proper diagnosis and treatment follow-up. In this work, we prepared two types of X-ray attenuating contrast formulations, using fibrinogen aptamer as the clot-seeking moiety. Methods: Two novel aptamer-targeted formulations were designed. Iodine-modified bases were directly incorporated into a fibrinogen aptamer (iodo-FA). Isothermal titration calorimetry was used to confirm that these modifications did not negatively impact target binding. Iodo-FA was tested for its ability to produce concentration-dependent contrast enhancement in a phantom CT. It was subsequently tested in vitro with clotted human and swine blood. This allowed for translation into ex vivo testing, using fluoroscopy. FA was also used to functionalize gold nanoparticles (FA-AuNPs), and contrast capabilities were confirmed. This formulation was tested in vitro using clotted human blood in a CT scan. Results: Unmodified FA and iodo-FA demonstrated a nearly identical affinity toward fibrin, confirming that base modifications did not impact target binding. Iodo-FA and FA-AuNPs both demonstrated excellent concentration-dependent contrast enhancement capabilities (40.5 HU mM-1 and 563.6 HU μM-1, respectively), which were superior to the clinically available agent, iopamidol. In vitro CT testing revealed that iodo-FA is able to penetrate into the blood clots, producing contrast enhancement throughout, while FA-AuNPs only accumulated on the surface of the clot. Iodo-FA was thereby translated to ex vivo testing, confirming target-binding associated accumulation of the contrast material at the location of the clot within the dilation of the external carotid artery. This resulted in a 34% enhancement of the clot. Conclusions: Both iodo-FA and FA-AuNPs were confirmed to be effective contrast formulations in CT. Targeting of fibrin, a major structural constituent of thrombi, with these novel contrast agents would allow for higher contrast enhancement and better clot delineation in CT and fluoroscopy.
Collapse
Affiliation(s)
- Anna Koudrina
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | | | - Roberto Garcia
- Department of Neurosurgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Spencer Boisjoli
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Peter T M Kan
- Department of Neurosurgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Eve C Tsai
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada.,Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Abstract
Purpose of Review The main goal of the article is to familiarize the reader with commonly and uncommonly used nuclear medicine procedures that can significantly contribute to improved patient care. The article presents examples of specific modality utilization in the chest including assessment of lung ventilation and perfusion, imaging options for broad range of infectious and inflammatory processes, and selected aspects of oncologic imaging. In addition, rapidly developing new techniques utilizing molecular imaging are discussed. Recent Findings The article describes nuclear medicine imaging modalities including gamma camera, SPECT, PET, and hybrid imaging (SPECT/CT, PET/CT, and PET/MR) in the context of established and emerging clinical applications. Areas of potential future development in nuclear medicine are discussed with emphasis on molecular imaging and implementation of new targeted tracers used in diagnostics and therapeutics (theranostics). Summary Nuclear medicine and molecular imaging provide many unique and novel options for the diagnosis and treatment of pulmonary diseases. This article reviews current applications for nuclear medicine and molecular imaging and selected future applications for radiopharmaceuticals and targeted molecular imaging techniques.
Collapse
|
13
|
Su M, Dai Q, Chen C, Zeng Y, Chu C, Liu G. Nano-Medicine for Thrombosis: A Precise Diagnosis and Treatment Strategy. NANO-MICRO LETTERS 2020; 12:96. [PMID: 34138079 PMCID: PMC7770919 DOI: 10.1007/s40820-020-00434-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/13/2020] [Indexed: 05/11/2023]
Abstract
Thrombosis is a global health issue and one of the leading factors of death. However, its diagnosis has been limited to the late stages, and its therapeutic window is too narrow to provide reasonable and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their convertible properties. Furthermore, diagnosis and treatment of thrombosis using nano-medicines have also been widely studied. This review summarizes the recent advances in this area, which revealed six types of nanoparticle approaches: (1) in vitro diagnostic kits using "synthetic biomarkers"; (2) in vivo imaging using nano-contrast agents; (3) targeted drug delivery systems using artificial nanoparticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery systems using biological nanostructures; and (6) treatments with external irradiation. The investigations of nano-medicines are believed to be of great significance, and some of the advanced drug delivery systems show potential applications in clinical theranotics.
Collapse
Affiliation(s)
- Min Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
14
|
Zhang Y, Zhong Y, Ye M, Xu J, Liu J, Zhou J, Wang S, Guo D, Wang Z, Ran H. Polydopamine-modified dual-ligand nanoparticles as highly effective and targeted magnetic resonance/photoacoustic dual-modality thrombus imaging agents. Int J Nanomedicine 2019; 14:7155-7171. [PMID: 31564871 PMCID: PMC6731970 DOI: 10.2147/ijn.s216603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
Background Platelet activation and subsequent aggregation are the initial stages of thrombosis. A molecular probe that specifically targets activated platelets and remains retained under high shear stress in vivo can enhance the imaging effect to achieve early and accurate diagnosis. Methods and materials In this study, we constructed nanoparticles (NPs) using polydopamine to carry two peptides that simultaneously bind integrin αIIbβ3 and P-selectin on activated platelets to enhance the targeting of NPs to thrombus. Results The targeting specificity and binding stability of the NPs on red and white thrombi were demonstrated in vitro using a simulated circulatory device and the targeting effect of the NPs on mixed thrombus was studied by magnetic resonance (MR)/photoacoustic (PA) dual-modality imaging in vivo. NPs that were surface modified with both peptides have higher selectivity and retention to red and white thrombi in vitro than NPs with a single or no peptide, and the targeting effect was closely related to the number and distribution of activated platelets as well as the structure and type of thrombus. The NPs also have MR/PA dual-modality imaging functionality, significantly enhancing the imaging of mixed thrombus in vivo. Conclusion These dual-targeted NPs have improved targeting specificity and binding stability to different thrombi under high shear stress and are beneficial for the early diagnosis of thrombosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixin Zhong
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Man Ye
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Xu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jia Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shike Wang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|
16
|
Synthesis and Preclinical Evaluation of the Fibrin-Binding Cyclic Peptide 18F-iCREKA: Comparison with Its Contrasted Linear Peptide. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:6315954. [PMID: 31346326 PMCID: PMC6620859 DOI: 10.1155/2019/6315954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Purpose Cys-Arg-Glu-Lys-Ala (CREKA) is a pentapeptide which can target fibrin-fibronectin complexes. Our previous study has built a probe called iCREKA which was based on CREKA and has proved the feasibility and specificity of iCREKA by the fluorescence experiment. The purpose of this study is to achieve the 18F-labeled iCREKA and make preclinical evaluation of the 18F-iCREKA with comparison of its contrasted linear peptide (LP). Methods CREKA, LP, and iCREKA were labeled by the Al18F labeling method, respectively. These 18F-labeled peptides were evaluated by the radiochemistry, binding affinity, in vitro stability, in vivo stability, micro-PET imaging, and biodistribution tests. Results 18F-NOTA-iCREKA was stable both in vitro and in vivo. However, 18F-NOTA-CREKA and 18F-NOTA-LP were both unstable. The FITC or 18F-labeled iCREKA could be abundantly discovered only in matrix metalloproteinases- (MMPs-) 2/9 highly expressed U87MG cells, while the FITC or 18F-labeled LP could also be abundantly discovered in MMP-2/9 lowly expressed Caov3 cells. Biodistribution and micropositron emission tomography (PET) imaging revealed that the U87MG xenografts showed a higher uptake of 18F-NOTA-iCREKA than 18F-NOTA-LP while the Caov3 xenografts showed very low uptake of both 18F-NOTA-iCREKA and 18F-NOTA-LP. The tumor-to-muscle (T/M) ratio of 18F-NOTA-iCREKA (9.93 ± 0.42) was obviously higher than 18F-NOTA-LP (2.69 ± 0.35) in U87MG xenografts. Conclusions The novel CREKA-based probe 18F-NOTA-iCREKA could get a high uptake in U87MG cells and high T/M ratio in U87MG mice. It was more stable and specific than the 18F-NOTA-LP.
Collapse
|
17
|
Lanza GM, Cui G, Schmieder AH, Zhang H, Allen JS, Scott MJ, Williams T, Yang X. An unmet clinical need: The history of thrombus imaging. J Nucl Cardiol 2019; 26:986-997. [PMID: 28608182 PMCID: PMC5741521 DOI: 10.1007/s12350-017-0942-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/24/2017] [Indexed: 11/24/2022]
Abstract
Robust thrombus imaging is an unresolved clinical unmet need dating back to the mid 1970s. While early molecular imaging approaches began with nuclear SPECT imaging, contrast agents for virtually all biomedical imaging modalities have been demonstrated in vivo with unique strengths and common weaknesses. Two primary molecular imaging targets have been pursued for thrombus imaging: platelets and fibrin. Some common issues noted over 40 years ago persist today. Acute thrombus is readily imaged with all probes and modalities, but aged thrombus remains a challenge. Similarly, anti-coagulation continues to interfere with and often negate thrombus imaging efficacy, but heparin is clinically required in patients suspected of pulmonary embolism, deep venous thrombosis or coronary ruptured plaque prior to confirmatory diagnostic studies have been executed and interpreted. These fundamental issues can be overcome, but an innovative departure from the prior approaches will be needed.
Collapse
Affiliation(s)
- Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA.
| | - Grace Cui
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Anne H Schmieder
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Huiying Zhang
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - John S Allen
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Michael J Scott
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Todd Williams
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Xiaoxia Yang
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| |
Collapse
|
18
|
Abstract
Purpose of Review A variety of approaches and molecular targets have emerged in recent years for radionuclide-based imaging of atherosclerosis and vulnerable plaque using single photon emission computed tomography (SPECT) and positron emission tomography (PET), with numerous methods focused on characterizing the mechanisms underlying plaque progression and rupture. This review highlights the ongoing developments in both the preclinical and clinical environment for radionuclide imaging of atherosclerosis and atherothrombosis. Recent Findings Numerous physiological processes responsible for the evolution of high-risk atherosclerotic plaque, such as inflammation, thrombosis, angiogenesis, and microcalcification, have been shown to be feasible targets for SPECT and PET imaging. For each physiological process, specific molecular markers have been identified that allow for sensitive non-invasive detection and characterization of atherosclerotic plaque. Summary The capabilities of SPECT and PET imaging continue to evolve for physiological evaluation of atherosclerosis. This review summarizes the latest developments related to radionuclide imaging of atherothrombotic diseases.
Collapse
|
19
|
Rezaeianpour S, Mosayebnia M, Moghimi A, Amidi S, Geramifar P, Kobarfard F, Shahhosseini S. [ 18F]FDG-Labeled CGPRPPC Peptide Serving as a Small Thrombotic Lesions Probe, Including a Comparison with [ 99mTc]-Labeled Form. Cancer Biother Radiopharm 2018; 33:438-444. [PMID: 30234382 DOI: 10.1089/cbr.2018.2515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Fibrin is a perfect target for specific imaging of all types of thrombotic lesions. Cyclic peptides were introduced as the best scaffolds out of the different types of probes for thrombi detection. This study was conducted to label previously synthesized peptide-targeting fibrin with [18F]FDG and its in vitro and in vivo assessments. Materials and Methods: CGPRPPC peptide functionalized with 6-hydrazinonicotinamide and Eei-NHS was synthesized and cyclized using air oxidation method. The cyclic sequences were labeled with [18F]FDG at 85°C within 30 min. The stability studies were performed in human plasma. Fibrin-binding and platelet aggregation tests were performed in vitro. Biodistribution and scintigraphy imaging in normal mice and carotid thrombotic rat model were considered as in vivo studies. Results: Radiolabeled peptides show a good stability in human plasma and also high-affinity binding for human fibrin. Platelet aggregation test confirmed specific binding of radiopeptides to fibrin. A key problem with the authors' previous research was inability to detect small-vessel thrombi. The results of positron emission tomography/computed tomography scanning show high specific uptake of [18F]FDG-labeled CGPRPPC in small-sized thrombosis. Conclusion: The experiment revealed that radiolabeling of cyclic peptide (CGPRPPC) with [18F]FDG enables us to detect small thrombotic lesions in small animal models with high resolution.
Collapse
Affiliation(s)
- Sedigheh Rezaeianpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghasem Moghimi
- Faculty of Chemistry, Tehran North Branch Islamic Azad University, Tehran, Iran
| | - Salimeh Amidi
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, and Protein Technology Research Center, Shahid Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Boros E, Pinkhasov OR, Caravan P. Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes. EJNMMI Radiopharm Chem 2018; 3:2. [PMID: 29503859 PMCID: PMC5824709 DOI: 10.1186/s41181-017-0037-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Methods Two known peptide-DOTA conjugates were chelated with natGa and natIn. Limit of detection of HPLC-ICP-MS for 69Ga and 115In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. Results The limits of detection were 0.16 pmol for 115In and 0.53 pmol for 69Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. Conclusions HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.
Collapse
Affiliation(s)
- Eszter Boros
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129 USA.,3Present address: Department of Chemistry, Stony Brook University, 100 Nicolls road, Stony Brook, New York, NY 11790 USA
| | - Omar R Pinkhasov
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129 USA
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129 USA.,2Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Building 149, Room 2301, 13th Street, Charlestown, Boston, MA 02129 USA
| |
Collapse
|
21
|
Abstract
The development of new methods to image the onset and progression of thrombosis is an unmet need. Non-invasive molecular imaging techniques targeting specific key structures involved in the formation of thrombosis have demonstrated the ability to detect thrombus in different disease state models and in patients. Due to its high concentration in the thrombus and its essential role in thrombus formation, the detection of fibrin is an attractive strategy for identification of thrombosis. Herein we provide an overview of recent and selected fibrin-targeted probes for molecular imaging of thrombosis by magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical techniques. Emphasis is placed on work that our lab has explored over the last 15 years that has resulted in the progression of the fibrin-binding PET probe [64Cu]FBP8 from preclinical studies into human trials.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | |
Collapse
|
22
|
Gorog DA, Fayad ZA, Fuster V. Arterial Thrombus Stability. J Am Coll Cardiol 2017; 70:2036-2047. [DOI: 10.1016/j.jacc.2017.08.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 01/27/2023]
|
23
|
van Mourik TR, Claesener M, Nicolay K, Grüll H. Development of a novel, fibrin-specific PET tracer. J Labelled Comp Radiopharm 2017; 60:286-293. [DOI: 10.1002/jlcr.3501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/02/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tiemen R. van Mourik
- Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven The Netherlands
| | - Michael Claesener
- Department of Nuclear Medicine; University of Münster; Münster Germany
| | - Klaas Nicolay
- Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven The Netherlands
| | - Holger Grüll
- Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven The Netherlands
- Department of Oncology Solutions; Philips Research; Eindhoven The Netherlands
| |
Collapse
|
24
|
Tripathi SK, Kumar P, Trabulsi EJ, Kim S, McCue PA, Intenzo C, Berger A, Gomella L, Thakur ML. VPAC1 Targeted 64Cu-TP3805 kit preparation and its evaluation. Nucl Med Biol 2017; 51:55-61. [PMID: 28577428 DOI: 10.1016/j.nucmedbio.2017.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Previously, our laboratory has shown that 64Cu-TP3805 can specifically target VPAC1 receptors and be used for positron emission tomography (PET) imaging of breast (BC) and prostate cancer (PC) in humans. Present work is aimed at the formulation of a freeze-dried diaminedithiol-peptide (N2S2-TP3805) kit and it's evaluation for the preparation of 64Cu labeled TP3805. Parameters such as pH, temperature and incubation time were examined that influenced the radiolabeling efficiency and stability of the product. METHODS Kits were prepared under different conditions and radiolabeling efficiency of TP3805 kit was evaluated for a range of pH3.5-8.5, after addition of 64Cu in 30μl, 0.1M HCl. Incubation temperature (37-90°C) and time (30-120min.) were also investigated. Kits were stored at -10°C and their long term stability was determined as a function of their radiolabeling efficiency. Further, stability of 64Cu-TP3805 complex was evaluated in presence of fetal bovine serum and bovine serum albumin by using SDS polyacrylamide gel electrophoresis. Kits were then used for PET imaging of BC and PC following eIND (101550) and institutional approvals. Specificity of 64Cu-TP3805 for VPAC1 was examined with digital autoradiography (DAR) of prostate tissues obtained after prostatectomy, benign prostatic hyperplasia (BPH) tissue, and benign and malignant lymph nodes. Results were compared with corresponding tissue histology. RESULTS Radiolabeling efficiency was ≥95% at final pH ~7.2 when incubated at 50°C for 90min. Kits were stable up to 18months when stored at -10°C, and 64Cu-TP3805 complex exhibited excellent stability for up to 4h at room temperature. 64Cu-TP3805 complex did not show any transchelation even after 2h incubation at 37°C in 10% FBS as well as in BSA as determined by SDS PAGE analysis. DAR identified ≥95% of malignant lesions 11 new PC lesions, 20 high grade prostatic intraepithelial neoplasia, 2/2 ejaculatory ducts and 5/5 urethra verumontanum not previously identified The malignant lymph nodes were correctly identified by DAR and for 3/3 BPH patients, and 5/5 cysts, DAR was negative. In human BC (n=19) and PC (n=26) were imaged with 100% sensitivity. CONCLUSION Availability of ready to use N2S2-peptide kits for 64Cu labeling is convenient and eliminates possible day to day variation during its routine preparation for clinical use.
Collapse
Affiliation(s)
| | - Pardeep Kumar
- Thomas Jefferson University, Department of Radiology
| | | | - Sung Kim
- Thomas Jefferson University, Department of Radiology
| | - Peter A McCue
- Thomas Jefferson University, Department of Pathology
| | | | - Adam Berger
- Thomas Jefferson University, Department of Surgery
| | - Leonard Gomella
- Thomas Jefferson University, Department of Urology; The Sidney Kimmel Cancer Center
| | - Mathew L Thakur
- Thomas Jefferson University, Department of Radiology; The Sidney Kimmel Cancer Center.
| |
Collapse
|
25
|
Wang X, Peter K. Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing. Arterioscler Thromb Vasc Biol 2017; 37:1029-1040. [PMID: 28450298 DOI: 10.1161/atvbaha.116.306483] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Molecular imaging, with major advances in the development of both innovative targeted contrast agents/particles and radiotracers, as well as various imaging technologies, is a fascinating, rapidly growing field with many preclinical and clinical applications, particularly for personalized medicine. Thrombosis in either the venous or the arterial system, the latter typically caused by rupture of unstable atherosclerotic plaques, is a major determinant of mortality and morbidity in patients. However, imaging of the various thrombotic complications and the identification of plaques that are prone to rupture are at best indirect, mostly unreliable, or not available at all. The development of molecular imaging toward diagnosis and prevention of thrombotic disease holds promise for major advance in this clinically important field. Here, we review the medical need and clinical importance of direct molecular imaging of thrombi and unstable atherosclerotic plaques that are prone to rupture, thereby causing thrombotic complications such as myocardial infarction and ischemic stroke. We systematically compare the advantages/disadvantages of the various molecular imaging modalities, including X-ray computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, fluorescence imaging, and ultrasound. We further systematically discuss molecular targets specific for thrombi and those characterizing unstable, potentially thrombogenic atherosclerotic plaques. Finally, we provide examples for first theranostic approaches in thrombosis, combining diagnosis, targeted therapy, and monitoring of therapeutic success or failure. Overall, molecular imaging is a rapidly advancing field that holds promise of major benefits to many patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Abstract
Thromboembolic disorders are a major cause of morbidity and mortality worldwide. The progress in noninvasive imaging techniques has led to the development of radionuclide imaging based on SPECT and PET approaches to observe molecular and cellular processes that may underlie the onset and progression of disease. The advantages of using normal and genetically modified small animal research have spurred the development of dedicated small animal imaging systems. Animal models of venous and arterial thrombosis are largely used and have improved our understanding of the etiology and pathogenesis of thrombosis. Here, we review the literature regarding nuclear imaging of thrombosis in mice and rats.
Collapse
Affiliation(s)
- Marie-Cécile Valéra
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,b Faculté de Chirurgie Dentaire, Université de Toulouse III , Toulouse , France
| | - Bernard Payrastre
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,c Laboratoire d'Hématologie CHU de Toulouse , Toulouse , France
| | - Olivier Lairez
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,d Fédération des services de cardiologie, Département de Médecine Nucléaire Centre d'imagerie cardiaque, CHU de Toulouse , Toulouse , France
| |
Collapse
|
27
|
Kim J, Park JE, Nahrendorf M, Kim DE. Direct Thrombus Imaging in Stroke. J Stroke 2016; 18:286-296. [PMID: 27733029 PMCID: PMC5066439 DOI: 10.5853/jos.2016.00906] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 01/02/2023] Open
Abstract
There is an emergent need for imaging methods to better triage patients with acute stroke for tissue-plasminogen activator (tPA)-mediated thrombolysis or endovascular clot retrieval by directly visualizing the size and distribution of cerebral thromboemboli. Currently, magnetic resonance (MR) or computed tomography (CT) angiography visualizes the obstruction of blood flow within the vessel lumen rather than the thrombus itself. The present visualization method, which relies on observation of the dense artery sign (the appearance of cerebral thrombi on a non-enhanced CT), suffers from low sensitivity. When translated into the clinical setting, direct thrombus imaging is likely to enable individualized acute stroke therapy by allowing clinicians to detect the thrombus with high sensitivity, assess the size and nature of the thrombus more precisely, serially monitor the therapeutic effects of thrombolysis, and detect post-treatment recurrence. This review is intended to provide recent updates on stroke-related direct thrombus imaging using MR imaging, positron emission tomography, or CT.
Collapse
Affiliation(s)
- Jongseong Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital, Goyang, Korea.,Global Research Laboratory for Thrombus-targeted Theranostics at Dongguk University Ilsan Hospital (Korea) and Massachusetts General Hospital ( USA )
| | - Jung E Park
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Matthias Nahrendorf
- Global Research Laboratory for Thrombus-targeted Theranostics at Dongguk University Ilsan Hospital (Korea) and Massachusetts General Hospital ( USA ).,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital, Goyang, Korea.,Global Research Laboratory for Thrombus-targeted Theranostics at Dongguk University Ilsan Hospital (Korea) and Massachusetts General Hospital ( USA ).,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
28
|
Rezaeianpour S, Bozorgi AH, Moghimi A, Almasi A, Balalaie S, Ramezanpour S, Nasoohi S, Mazidi SM, Geramifar P, Bitarafan-Rajabi A, Shahhosseini S. Synthesis and Biological Evaluation of Cyclic [99mTc]-HYNIC-CGPRPPC as a Fibrin-Binding Peptide for Molecular Imaging of Thrombosis and Its Comparison with [99mTc]-HYNIC-GPRPP. Mol Imaging Biol 2016; 19:256-264. [DOI: 10.1007/s11307-016-1004-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Litvinov RI, Weisel JW. What Is the Biological and Clinical Relevance of Fibrin? Semin Thromb Hemost 2016; 42:333-43. [PMID: 27056152 DOI: 10.1055/s-0036-1571342] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As our knowledge of the structure and functions of fibrinogen and fibrin has increased tremendously, several key findings have given some people a superficial impression that the biological and clinical significance of these clotting proteins may be less than earlier thought. Most strikingly, studies of fibrinogen knockout mice demonstrated that many of these mice survive to weaning and beyond, suggesting that fibrin(ogen) may not be entirely necessary. Humans with afibrinogenemia also survive. Furthermore, in recent years, the major emphasis in the treatment of arterial thrombosis has been on inhibition of platelets, rather than fibrin. In contrast to the initially apparent conclusions from these results, it has become increasingly clear that fibrin is essential for hemostasis; is a key factor in thrombosis; and plays an important biological role in infection, inflammation, immunology, and wound healing. In addition, fibrinogen replacement therapy has become a preferred, major treatment for severe bleeding in trauma and surgery. Finally, fibrin is a unique biomaterial and is used as a sealant or glue, a matrix for cells, a scaffold for tissue engineering, and a carrier and/or a vector for targeted drug delivery.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Gale EM, Atanasova IP, Blasi F, Ay I, Caravan P. A Manganese Alternative to Gadolinium for MRI Contrast. J Am Chem Soc 2015; 137:15548-57. [PMID: 26588204 PMCID: PMC4764508 DOI: 10.1021/jacs.5b10748] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used to diagnose soft tissue and vascular abnormalities. However, safety concerns limit the use of iodinated and gadolinium (Gd)-based CT and MRI contrast media in renally compromised patients. With an estimated 14% of the US population suffering from chronic kidney disease (CKD), contrast media compatible with renal impairment is sorely needed. We present the new manganese(II) complex [Mn(PyC3A)(H2O)](-) as a Gd alternative. [Mn(PyC3A)(H2O)](-) is among the most stable Mn(II) complexes at pH 7.4 (log KML = 11.40). In the presence of 25 mol equiv of Zn at pH 6.0, 37 °C, [Mn(PyC3A)(H2O)](-) is 20-fold more resistant to dissociation than [Gd(DTPA)(H2O)](2-). Relaxivity of [Mn(PyC3A)(H2O)](-) in blood plasma is comparable to commercial Gd contrast agents. Biodistribution analysis confirms that [Mn(PyC3A)(H2O)](-) clears via a mixed renal/hepatobiliary pathway with >99% elimination by 24 h. [Mn(PyC3A)(H2O)](-) was modified to form a bifunctional chelator and 4 chelates were conjugated to a fibrin-specific peptide to give Mn-FBP. Mn-FBP binds the soluble fibrin fragment DD(E) with Kd = 110 nM. Per Mn relaxivity of Mn-FBP is 4-fold greater than [Mn(PyC3A)(H2O)](-) and increases 60% in the presence of fibrin, consistent with binding. Mn-FBP provided equivalent thrombus enhancement to the state of the art Gd analogue, EP-2104R, in a rat model of arterial thrombosis. Mn metabolite analysis reveals no evidence of dechelation and the probe was >99% eliminated after 24 h. [Mn(PyC3A)(H2O)](-) is a lead development candidate for an imaging probe that is compatible with renally compromised patients.
Collapse
Affiliation(s)
- Eric M. Gale
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Iliyana P. Atanasova
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Francesco Blasi
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Ilknur Ay
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| |
Collapse
|
31
|
Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Naha PC, Cormode DP, Izquierdo-Garcia D, Catana C, Caravan P. Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats. Arterioscler Thromb Vasc Biol 2015; 35:2114-21. [PMID: 26272938 DOI: 10.1161/atvbaha.115.306055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Thrombosis is a leading cause of morbidity and mortality worldwide. Current diagnostic strategies rely on imaging modalities that are specific for distinct vascular territories, but a thrombus-specific whole-body imaging approach is still missing. Moreover, imaging techniques to assess thrombus composition are underdeveloped, although therapeutic strategies may benefit from such technology. Therefore, our goal was to test whether positron emission tomography (PET) with the fibrin-binding probe (64)Cu-FBP8 allows multisite thrombus detection and fibrin content estimation. APPROACH AND RESULTS Thrombosis was induced in Sprague-Dawley rats (n=32) by ferric chloride application on both carotid artery and femoral vein. (64)Cu-FBP8-PET/CT imaging was performed 1, 3, or 7 days after thrombosis to detect thrombus location and to evaluate age-dependent changes in target uptake. Ex vivo biodistribution, autoradiography, and histopathology were performed to validate imaging results. Arterial and venous thrombi were localized on fused PET/CT images with high accuracy (97.6%; 95% confidence interval, 92-100). A single whole-body PET/MR imaging session was sufficient to reveal the location of both arterial and venous thrombi after (64)Cu-FBP8 administration. PET imaging showed that probe uptake was greater in younger clots than in older ones for both arterial and venous thrombosis (P<0.0001). Quantitative histopathology revealed an age-dependent reduction of thrombus fibrin content (P<0.001), consistent with PET results. Biodistribution and autoradiography further confirmed the imaging findings. CONCLUSIONS We demonstrated that (64)Cu-FBP8-PET is a feasible approach for whole-body thrombus detection and that molecular imaging of fibrin can provide, noninvasively, insight into clot composition.
Collapse
Affiliation(s)
- Francesco Blasi
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Bruno L Oliveira
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Tyson A Rietz
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Nicholas J Rotile
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Pratap C Naha
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - David P Cormode
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - David Izquierdo-Garcia
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Ciprian Catana
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Peter Caravan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.).
| |
Collapse
|
32
|
Oliveira BL, Blasi F, Rietz TA, Rotile NJ, Day H, Caravan P. Multimodal Molecular Imaging Reveals High Target Uptake and Specificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats. J Nucl Med 2015; 56:1587-92. [PMID: 26251420 DOI: 10.2967/jnumed.115.160754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F PET probes for noninvasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and SPECT. In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in 2 animal models of arterial thrombosis. The specificity of the probes was further evaluated using a triple-isotope approach with multimodal SPECT/PET/CT imaging. METHODS Radiotracers were synthesized using a known fibrin-binding peptide conjugated to 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide (DOTA-MA), or a diethylenetriamine ligand (DETA-propanoic acid [PA]), followed by labeling with 68Ga (FBP14, 68Ga-NODAGA), 111In (FBP15, 111In-DOTA-MA), or 99mTc (FBP16, 99mTc(CO)3-DETA-PA), respectively. PET or SPECT imaging, biodistribution, pharmacokinetics, and metabolic stability were evaluated in rat models of mural and occlusive carotid artery thrombosis. In vivo target specificity was evaluated by comparing the distribution of the SPECT and PET probes with preformed 125I-labeled thrombi and with a nonbinding control probe using SPECT/PET/CT imaging. RESULTS All 3 radiotracers showed affinity similar to soluble fibrin fragment DD(E) (inhibition constant=0.53-0.83 μM). After the kidneys, the highest uptake of 68Ga-FBP14 and 111In-FBP15 was in the thrombus (1.0±0.2 percentage injected dose per gram), with low off-target accumulation. Both radiotracers underwent fast systemic elimination (half-life, 8-15 min) through the kidneys, which led to highly conspicuous thrombi on PET and SPECT images. 99mTc-FBP16 displayed low target uptake and distribution consistent with aggregation or degradation. Triple-isotope imaging experiments showed that both 68Ga-FBP14 and 111In-FBP15, but not the nonbinding derivative 64Cu-D-Cys-FBP8, detected the location of the 125I-labeled thrombus, confirming high target specificity. CONCLUSION 68Ga-FBP14 and 111In-FBP15 have high fibrin affinity and thrombus specificity and represent useful PET and SPECT probes for thrombus detection.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Francesco Blasi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Tyson A Rietz
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Nicholas J Rotile
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Helen Day
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Peter Caravan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
33
|
Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Day H, Naha PC, Cormode DP, Izquierdo-Garcia D, Catana C, Caravan P. Radiation Dosimetry of the Fibrin-Binding Probe ⁶⁴Cu-FBP8 and Its Feasibility for PET Imaging of Deep Vein Thrombosis and Pulmonary Embolism in Rats. J Nucl Med 2015; 56:1088-93. [PMID: 25977464 DOI: 10.2967/jnumed.115.157982] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The diagnosis of deep venous thromboembolic disease is still challenging despite the progress of current thrombus imaging modalities and new diagnostic algorithms. We recently reported the high target uptake and thrombus imaging efficacy of the novel fibrin-specific PET probe (64)Cu-FBP8. Here, we tested the feasibility of (64)Cu-FBP8 PET to detect source thrombi and culprit emboli after deep vein thrombosis and pulmonary embolism (DVT-PE). To support clinical translation of (64)Cu-FBP8, we performed a human dosimetry estimation using time-dependent biodistribution in rats. METHODS Sprague-Dawley rats (n = 7) underwent ferric chloride application on the femoral vein to trigger thrombosis. Pulmonary embolism was induced 30 min or 2 d after DVT by intrajugular injection of a preformed blood clot labeled with (125)I-fibrinogen. PET imaging was performed to detect the clots, and SPECT was used to confirm in vivo the location of the pulmonary emboli. Ex vivo γ counting and histopathology were used to validate the imaging findings. Detailed biodistribution was performed in healthy rats (n = 30) at different time points after (64)Cu-FBP8 administration to estimate human radiation dosimetry. Longitudinal whole-body PET/MR imaging (n = 2) was performed after (64)Cu-FBP8 administration to further assess radioactivity clearance. RESULTS (64)Cu-FBP8 PET imaging detected the location of lung emboli and venous thrombi after DVT-PE, revealing significant differences in uptake between target and background tissues (P < 0.001). In vivo SPECT imaging and ex vivo γ counting confirmed the location of the lung emboli. PET quantification of the venous thrombi revealed that probe uptake was greater in younger clots than in older ones, a result confirmed by ex vivo analyses (P < 0.001). Histopathology revealed an age-dependent reduction of thrombus fibrin content (P = 0.006), further supporting the imaging findings. Biodistribution and whole-body PET/MR imaging showed a rapid, primarily renal, body clearance of (64)Cu-FBP8. The effective dose was 0.021 mSv/MBq for males and 0.027 mSv/MBq for females, supporting the feasibility of using (64)Cu-FBP8 in human trials. CONCLUSION We showed that (64)Cu-FBP8 PET is a feasible approach to image DVT-PE and that radiogenic adverse health effects should not limit the clinical translation of (64)Cu-FBP8.
Collapse
Affiliation(s)
- Francesco Blasi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Bruno L Oliveira
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Tyson A Rietz
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Nicholas J Rotile
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Helen Day
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David Izquierdo-Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Peter Caravan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
34
|
Chaabane L, Tei L, Miragoli L, Lattuada L, von Wronski M, Uggeri F, Lorusso V, Aime S. In Vivo MR Imaging of Fibrin in a Neuroblastoma Tumor Model by Means of a Targeting Gd-Containing Peptide. Mol Imaging Biol 2015; 17:819-28. [DOI: 10.1007/s11307-015-0846-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Abstract
Fibrin-specific targeting capabilities have been highly sought for over 50 years due to their implications for bio-molecule delivery, diagnostics, and regenerative medicine. Yet only recently has our full knowledge of fibrin's complex polymerization dynamics and biological interactions begun to be fully exploited in pursuit of this goal. This highlight will discuss the range of rapidly changing strategies for specifically targeting fibrin over the precursor fibrinogen and the advantages and disadvantages of these approaches for various applications.
Collapse
Affiliation(s)
- Victoria L. Stefanelli
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Thomas H. Barker
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- The Parker H. Petit Institute for Bioengineering and biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
36
|
Comparison of DOTA and NODAGA as chelators for 64Cu-labeled immunoconjugates. Nucl Med Biol 2015; 42:177-83. [DOI: 10.1016/j.nucmedbio.2014.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022]
|
37
|
Houshmand S, Salavati A, Hess S, Ravina M, Alavi A. The role of molecular imaging in diagnosis of deep vein thrombosis. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:406-425. [PMID: 25143860 PMCID: PMC4138136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Venous thromboembolism (VTE) mostly presenting as deep venous thrombosis (DVT) and pulmonary embolism (PE) affects up to 600,000 individuals in United States each year. Clinical symptoms of VTE are nonspecific and sometimes misleading. Additionally, side effects of available treatment plans for DVT are significant. Therefore, medical imaging plays a crucial role in proper diagnosis and avoidance from over/under diagnosis, which exposes the patient to risk. In addition to conventional structural imaging modalities, such as ultrasonography and computed tomography, molecular imaging with different tracers have been studied for diagnosis of DVT. In this review we will discuss currently available and newly evolving targets and tracers for detection of DVT using molecular imaging methods.
Collapse
Affiliation(s)
- Sina Houshmand
- Department of Radiology, University of PennsylvaniaPhiladelphia, USA
| | - Ali Salavati
- Department of Radiology, University of PennsylvaniaPhiladelphia, USA
| | - Søren Hess
- Department of Nuclear Medicine, Odense University HospitalDenmark
| | - Mudalsha Ravina
- Department of Nuclear Medicine Army Hospital Research & Referral New DelhiIndia
| | - Abass Alavi
- Department of Radiology, University of PennsylvaniaPhiladelphia, USA
| |
Collapse
|
38
|
Affiliation(s)
- Hans J de Haas
- From the Icahn School of Medicine at Mount Sinai, New York, NY (H.J.d.H., J.N., V.F.); University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (H.J.d.H.); and Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (V.F.)
| | - Jagat Narula
- From the Icahn School of Medicine at Mount Sinai, New York, NY (H.J.d.H., J.N., V.F.); University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (H.J.d.H.); and Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (V.F.)
| | - Valentin Fuster
- From the Icahn School of Medicine at Mount Sinai, New York, NY (H.J.d.H., J.N., V.F.); University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (H.J.d.H.); and Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (V.F.).
| |
Collapse
|
39
|
Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Day H, Looby RJ, Ay I, Caravan P. Effect of Chelate Type and Radioisotope on the Imaging Efficacy of 4 Fibrin-Specific PET Probes. J Nucl Med 2014; 55:1157-63. [PMID: 24790217 DOI: 10.2967/jnumed.113.136275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Thrombus formation plays a major role in cardiovascular diseases, but noninvasive thrombus imaging is still challenging. Fibrin is a major component of both arterial and venous thrombi and represents an ideal candidate for imaging of thrombosis. Recently, we showed that (64)Cu-DOTA-labeled PET probes based on fibrin-specific peptides are suitable for thrombus imaging in vivo; however, the metabolic stability of these probes was limited. Here, we describe 4 new probes using either (64)Cu or aluminum fluoride (Al(18)F) chelated to 2 NOTA derivatives. METHODS Probes were synthesized using a known fibrin-specific peptide conjugated to either NODAGA (FBP8, FBP10) or NOTA-monoamide (FBP9, FBP11) as chelators, followed by labeling with (64)Cu (FBP8 and FBP9) or Al(18)F (FBP10 and FBP11). PET imaging efficacy, pharmacokinetics, biodistribution, and metabolic stability were assessed in a rat model of arterial thrombosis. RESULTS All probes had similar nanomolar affinity (435-760 nM) for the soluble fibrin fragment DD(E). PET imaging allowed clear visualization of thrombus by all probes, with a 5-fold or higher thrombus-to-background ratio. Compared with the previous DOTA derivative, the new (64)Cu probes FBP8 and FBP9 showed substantially improved metabolic stability (>85% intact in blood at 4 h after injection), resulting in high uptake at the target site (0.5-0.8 percentage injected dose per gram) that persisted over 5 h, producing increasingly greater target-to-background ratios. The thrombus uptake was 5- to 20-fold higher than the uptake in the contralateral artery, blood, muscle, lungs, bone, spleen, large intestine, and heart at 2 h after injection and 10- to 40-fold higher at 5 h. The Al(18)F derivatives FBP10 and FBP11 were less stable, in particular the NODAGA conjugate (FBP10, <30% intact in blood at 4 h after injection), which showed high bone uptake and low thrombus-to-background ratios that decreased over time. The high thrombus-to-contralateral ratios for all probes were confirmed by ex vivo biodistribution and autoradiography. The uptake in the liver (<0.5 percentage injected dose per gram), kidneys, and blood were similar for all tracers, and they all showed predominant renal clearance. CONCLUSION FBP8, FBP9, and FBP11 showed excellent metabolic stability and high thrombus-to-background ratios and represent promising candidates for imaging of thrombosis in vivo.
Collapse
Affiliation(s)
- Francesco Blasi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Bruno L Oliveira
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Tyson A Rietz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Helen Day
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Richard J Looby
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
40
|
Ay I, Blasi F, Rietz TA, Rotile NJ, Kura S, Brownell AL, Day H, Oliveira BL, Looby RJ, Caravan P. In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe. Circ Cardiovasc Imaging 2014; 7:697-705. [PMID: 24777937 DOI: 10.1161/circimaging.113.001806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fibrin is a major component of arterial and venous thrombi and represents an ideal candidate for molecular imaging of thrombosis. Here, we describe imaging properties and target uptake of a new fibrin-specific positron emission tomographic probe for thrombus detection and therapy monitoring in 2 rat thrombosis models. METHODS AND RESULTS The fibrin-binding probe FBP7 was synthesized by conjugation of a known short cyclic peptide to a cross-bridged chelator (CB-TE2A), followed by labeling with copper-64. Adult male Wistar rats (n=26) underwent either carotid crush injury (mural thrombosis model) or embolic stroke (occlusive thrombosis model) followed by recombinant tissue-type plasminogen activator treatment (10 mg/kg, IV). FBP7 detected thrombus location in both animal models with a high positron emission tomographic target-to-background ratio that increased over time (>5-fold at 30-90 minutes, >15-fold at 240-285 minutes). In the carotid crush injury animals, biodistribution analysis confirmed high probe uptake in the thrombotic artery (≈0.5%ID/g; >5-fold greater than blood and other tissues of the head and thorax). Similar results were obtained from ex vivo autoradiography of the ipsilateral versus contralateral carotid arteries. In embolic stroke animals, positron emission tomographic-computed tomographic imaging localized the clot in the internal carotid/middle cerebral artery segment of all rats. Time-dependent reduction of activity at the level of the thrombus was detected in recombinant tissue-type plasminogen activator-treated rats but not in vehicle-injected animals. Brain autoradiography confirmed clot dissolution in recombinant tissue-type plasminogen activator-treated animals, but enduring high thrombus activity in control rats. CONCLUSIONS We demonstrated that FBP7 is suitable for molecular imaging of thrombosis and thrombolysis in vivo and represents a promising candidate for bench-to-bedside translation.
Collapse
Affiliation(s)
- Ilknur Ay
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Francesco Blasi
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Tyson A Rietz
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Nicholas J Rotile
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Sreekanth Kura
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Anna Liisa Brownell
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Helen Day
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Bruno L Oliveira
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Richard J Looby
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Peter Caravan
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.
| |
Collapse
|
41
|
Zhou J, Guo D, Zhang Y, Wu W, Ran H, Wang Z. Construction and evaluation of Fe₃O₄-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5566-76. [PMID: 24693875 DOI: 10.1021/am406008k] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Thrombotic disease is extremely harmful to human health, but early detection and treatment can help improve prognoses and reduce mortality. To date, few studies have used MR molecular imaging in the early detection of thrombi and in the dynamic monitoring of the thrombolytic efficiency. In this article, we construct Fe3O4-based poly(lactic-co-glycolic acid) (PLGA) nanoparticles to use in the detection of thrombi and in targeted thrombolysis using MRI monitoring. Cyclic arginine-glycine-aspartic peptide (cRGD) was grafted onto the chitosan (CS) surface to synthesize a CS-cRGD film using carbodiimide-mediated amide bond formation. A double emulsion solvent evaporation method (water in oil in water [W/O/W]) was used to construct Fe3O4-based PLGA nanoparticles carrying recombinant tissue plasminogen activator (rtPA) (Fe3O4-PLGA-rtPA/CS-cRGD). Fe3O4-PLGA, Fe3O4-PLGA-rtPA, and Fe3O4-PLGA-rtPA/CS nanoparticles were constructed using the same W/O/W method. The results showed that the Fe3O4-based nanoparticles were constructed successfully and have a regular shape, a relatively uniform size, a high carrier rate of Fe3O4 and encapsulation efficiency of rtPA, and a relatively high activity of released rtPA. Transmission electron microscope (TEM) images revealed that the iron oxide particles were relatively uniformly distributed in the nano-spherical shell. The Fe3O4-based nanoparticles could be imaged using a clinical MRI scanner, and there were no significant differences in the transverse relaxation rate (R2*) or in the signal-to-noise ratio (SNR) values between the Fe3O4-based nanoparticles and an Fe3O4 solution with the same concentration of Fe3O4. In vitro and in vivo experiments confirmed that the Fe3O4-PLGA-rtPA/CS-cRGD nanoparticles specifically accumulated on the edge of the thrombus and that they had a significant effect on the thrombolysis compared with the Fe3O4-PLGA, Fe3O4-PLGA-rtPA, and Fe3O4-PLGA-rtPA/CS nanoparticles and with free rtPA solution. These results suggest the potential of the Fe3O4-PLGA-rtPA/CS-cRGD nanoparticles as a dual-function tool in the early detection of a thrombus and in the dynamic monitoring of the thrombolytic efficiency using MRI.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Radiology, and ‡Institute of Ultrasound Imaging, Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | | | | | | | | | | |
Collapse
|
42
|
Boros E, Rybak-Akimova E, Holland JP, Rietz T, Rotile N, Blasi F, Day H, Latifi R, Caravan P. Pycup--a bifunctional, cage-like ligand for (64)Cu radiolabeling. Mol Pharm 2013; 11:617-29. [PMID: 24294970 DOI: 10.1021/mp400686z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In developing targeted probes for positron emission tomography (PET) based on (64)Cu, stable complexation of the radiometal is key, and a flexible handle for bioconjugation is highly advantageous. Here, we present the synthesis and characterization of the chelator pycup and four derivatives. Pycup is a cross-bridged cyclam derivative with a pyridyl donor atom integrated into the cross-bridge resulting in a pentadentate ligand. The pycup platform provides kinetic inertness toward (64)Cu dechelation and offers versatile bioconjugation chemistry. We varied the number and type of additional donor atoms by alkylation of the remaining two secondary amines, providing three model ligands, pycup2A, pycup1A1Bn, and pycup2Bn, in 3-4 synthetic steps from cyclam. All model copper complexes displayed very slow decomplexation in 5 M HCl and 90 °C (t1/2: 1.5 h for pycup1A1Bn, 2.7 h for pycup2A, 20.3 h for pycup2Bn). The single crystal crystal X-ray structure of the [Cu(pycup2Bn)](2+) complex showed that the copper was coordinated in a trigonal, bipyramidal manner. The corresponding radiochemical complexes were at least 94% stable in rat plasma after 24 h. Biodistribution studies conducted in Balb/c mice at 2 h postinjection of (64)Cu labeled pycup2A revealed low residual activity in kidney, liver, and blood pool with predominantly renal clearance observed. Pycup2A was readily conjugated to a fibrin-targeted peptide and labeled with (64)Cu for successful PET imaging of arterial thrombosis in a rat model, demonstrating the utility of our new chelator in vivo.
Collapse
Affiliation(s)
- Eszter Boros
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Loving GS, Caravan P. Activation and Retention: A Magnetic Resonance Probe for the Detection of Acute Thrombosis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Loving GS, Caravan P. Activation and retention: a magnetic resonance probe for the detection of acute thrombosis. Angew Chem Int Ed Engl 2013; 53:1140-3. [PMID: 24338877 DOI: 10.1002/anie.201308607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Indexed: 11/11/2022]
Abstract
Blood-clot formation that results in the complete occlusion of a blood vessel (thrombosis) often leads to serious life-threatening events, such as strokes and heart attacks. As the composition of a thrombus changes as it matures, new imaging methods that are capable of distinguishing new clots from old clots may yield important diagnostic and prognostic information. To address this need, an activatable magnetic resonance (MR) probe that is responsive to a key biochemical process associated with recently formed clots has been developed.
Collapse
Affiliation(s)
- Galen S Loving
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129 (USA)
| | | |
Collapse
|
45
|
Starmans LWE, van Duijnhoven SMJ, Rossin R, Berben M, Aime S, Daemen MJAP, Nicolay K, Grüll H. Evaluation of 111In-Labeled EPep and FibPep as Tracers for Fibrin SPECT Imaging. Mol Pharm 2013; 10:4309-21. [DOI: 10.1021/mp400406x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lucas W. E. Starmans
- Department
of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Center for Imaging Research and Education (CIRE), Eindhoven, The Netherlands
| | - Sander M. J. van Duijnhoven
- Department
of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Center for Imaging Research and Education (CIRE), Eindhoven, The Netherlands
| | - Raffaella Rossin
- Center for Imaging Research and Education (CIRE), Eindhoven, The Netherlands
- Department
of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Monique Berben
- Center for Imaging Research and Education (CIRE), Eindhoven, The Netherlands
- Department
of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Silvio Aime
- Department
of Chemistry IFM and Molecular Imaging Center, University of Torino, Torino, Italy
| | - Mat J. A. P. Daemen
- Department
of Pathology, Academical Medical Center, Amsterdam, The Netherlands
| | - Klaas Nicolay
- Department
of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Center for Imaging Research and Education (CIRE), Eindhoven, The Netherlands
| | - Holger Grüll
- Department
of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Center for Imaging Research and Education (CIRE), Eindhoven, The Netherlands
- Department
of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
46
|
Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR IN BIOMEDICINE 2013; 26:728-44. [PMID: 23703874 DOI: 10.1002/nbm.2971] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 05/07/2023]
Abstract
Liposomes are a versatile class of nanoparticles with tunable properties, and multiple liposomal drug formulations have been clinically approved for cancer treatment. In recent years, an extensive library of gadolinium (Gd)-containing liposomal MRI contrast agents has been developed for molecular and cellular imaging of disease-specific markers and for image-guided drug delivery. This review discusses the advances in the development and novel applications of paramagnetic liposomes in molecular and cellular imaging, and in image-guided drug delivery. A high targeting specificity has been achieved in vitro using ligand-conjugated paramagnetic liposomes. On targeting of internalizing cell receptors, the effective longitudinal relaxivity r1 of paramagnetic liposomes is modulated by compartmentalization effects. This provides unique opportunities to monitor the biological fate of liposomes. In vivo contrast-enhanced MRI studies with nontargeted liposomes have shown the extravasation of liposomes in diseases associated with endothelial dysfunction, such as tumors and myocardial infarction. The in vivo use of targeted paramagnetic liposomes has facilitated the specific imaging of pathophysiological processes, such as angiogenesis and inflammation. Paramagnetic liposomes loaded with drugs have been utilized for therapeutic interventions. MR image-guided drug delivery using such liposomes allows the visualization and quantification of local drug delivery.
Collapse
Affiliation(s)
- Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research Eindhoven, Eindhoven, the Netherlands
| | | | | | | | | |
Collapse
|