1
|
Zeng L, Huang J, Wang Y, Hu Y, Zhou S, Lu Y. Oleanolic acid induces hepatic injury by disrupting hepatocyte tight junction and dysregulation of farnesoid X receptor-mediated bile acid efflux transporters. J Appl Toxicol 2024; 44:1725-1741. [PMID: 39030772 DOI: 10.1002/jat.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Oleanolic acid (OA) is a naturally occurring pentacyclic triterpene compound that has been reported to cause cholestatic liver injury. However, the regulation and pathogenic role of bile acids in OA-induced development of cholestatic liver injury remains largely unclear. Farnesoid X receptor (FXR) is a metabolic nuclear receptor that plays an important role in bile acid homeostasis in the liver by regulating efflux transporters bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). The aim of this study was to investigate the effect of OA on hepatocyte tight junction function and determine the role of FXR, BSEP, and MRP2 in the mechanism of impairment of transport of bile acids induced by OA. Both in vivo and in vitro models were used to characterize the OA-induced liver injury. The liquid chromatography-tandem mass spectrometry (LC-MS) was employed to characterize the efflux function of the transporters, and the results showed that OA caused a blockage of bile acids efflux. OA treatment resulted in decreased expression levels of the tight junction proteins zonula occludens-1 and occludin. Immunofluorescence results showed that OA treatment significantly reduced the number of bile ducts and the immunofluorescence intensity. Pretreatment with agonists of FXR and MRP2, respectively, in animal experiments attenuated OA-induced liver injury, while pretreatment with inhibitors of BSEP and MRP2 further aggravated OA-induced liver injury. These results suggest that OA inhibits FXR-mediated BSEP and MRP2, leading to impaired bile acid efflux and disruption of tight junctions between liver cells, resulting in liver damage.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianxiang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Yi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Sun B, Liang Z, Wang Y, Yu Y, Zhou X, Geng X, Li B. A 3D spheroid model of quadruple cell co-culture with improved liver functions for hepatotoxicity prediction. Toxicology 2024; 505:153829. [PMID: 38740170 DOI: 10.1016/j.tox.2024.153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the major concerns during drug development. Wide acceptance of the 3 R principles and the innovation of in-vitro techniques have introduced various novel model options, among which the three-dimensional (3D) cell spheroid cultures have shown a promising prospect in DILI prediction. The present study developed a 3D quadruple cell co-culture liver spheroid model for DILI prediction via self-assembly. Induction by phorbol 12-myristate 13-acetate at the concentration of 15.42 ng/mL for 48 hours with a following 24-hour rest period was used for THP-1 cell differentiation, resulting in credible macrophagic phenotypes. HepG2 cells, PUMC-HUVEC-T1 cells, THP-1-originated macrophages, and human hepatic stellate cells were selected as the components, which exhibited adaptability in the designated spheroid culture conditions. Following establishment, the characterization demonstrated the competence of the model in long-term stability reflected by the maintenance of morphology, viability, cellular integration, and cell-cell junctions for at least six days, as well as the reliable liver-specific functions including superior albumin and urea secretion, improved drug metabolic enzyme expression and CYP3A4 activity, and the expression of MRP2, BSEP, and P-GP accompanied by the bile acid efflux transport function. In the comparative testing using 22 DILI-positive and 5 DILI-negative compounds among the novel 3D co-culture model, 3D HepG2 spheroids, and 2D HepG2 monolayers, the 3D culture method significantly enhanced the model sensitivity to compound cytotoxicity compared to the 2D form. The novel co-culture liver spheroid model exhibited higher overall predictive power with margin of safety as the classifying tool. In addition, the non-parenchymal cell components could amplify the toxicity of isoniazid in the 3D model, suggesting their potential mediating role in immune-mediated toxicity. The proof-of-concept experiments demonstrated the capability of the model in replicating drug-induced lipid dysregulation, bile acid efflux inhibition, and α-SMA upregulation, which are the key features of liver steatosis and phospholipidosis, cholestasis, and fibrosis, respectively. Overall, the novel 3D quadruple cell co-culture spheroid model is a reliable and readily available option for DILI prediction.
Collapse
Affiliation(s)
- Baiyang Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Zihe Liang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Yupeng Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Yue Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China.
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
3
|
Wang Y, Fu X, Zeng L, Hu Y, Gao R, Xian S, Liao S, Huang J, Yang Y, Liu J, Jin H, Klaunig J, Lu Y, Zhou S. Activation of Nrf2/HO-1 signaling pathway exacerbates cholestatic liver injury. Commun Biol 2024; 7:621. [PMID: 38783088 PMCID: PMC11116386 DOI: 10.1038/s42003-024-06243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Nuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI. Inhibiting HO-1 or ameliorating bilirubin transport alleviates liver injury in CLI models. Nrf2 knockout confers hepatoprotection in CLI mice, whereas in non-CLI mice, Nrf2 knockout aggravates liver damage. In the CLI setting, oxidative stress activates Nrf2/HO-1, leads to bilirubin accumulation, and impairs mitochondrial function. High levels of bilirubin reciprocally upregulate the activation of Nrf2 and HO-1, while antioxidant and mitochondrial-targeted SOD2 overexpression attenuate bilirubin toxicity. The expression of Nrf2 and HO-1 is elevated in serum of patients with CLI. These results reveal an unrecognized function of Nrf2 signaling in exacerbating liver injury in cholestatic disease.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Li Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Rongyang Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Songjie Liao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianxiang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jilong Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - James Klaunig
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Tokito F, Kiyofuji M, Choi H, Nishikawa M, Takezawa T, Sakai Y. Modulation of hepatic cellular tight junctions via coculture with cholangiocytes enables non-destructive bile recovery. J Biosci Bioeng 2024; 137:403-411. [PMID: 38413317 DOI: 10.1016/j.jbiosc.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Estimation of the biliary clearance of drugs and their metabolites in humans is crucial for characterizing hepatobiliary disposition and potential drug-drug interactions. Sandwich-cultured hepatocytes, while useful for in vitro bile analysis, require cell destruction for bile recovery, limiting long-term or repeated dose drug effect evaluations. To overcome this limitation, we investigated the feasibility of coculturing a human hepatic carcinoma cell line (HepG2-NIAS cells) and a human cholangiocarcinoma cell line (TFK-1 cells) using the collagen vitrigel membrane in a variety of coculture configurations. The coculture configuration with physiological bile flow increased the permeability of fluorescein-labeled bile acids (CLF) across the HepG2-NIAS cell layer by approximately 1.2-fold compared to the HepG2-NIAS monoculture. This enhancement was caused by paracellular leakage due to the loosened tight junctions of HepG2-NIAS, confirmed by the use of an inhibitor for bile acid transporters, the increase of permeability of dextran, and the decrease of the transepithelial electrical resistance (TEER) value. Based on the results of loosening hepatic tight junctions via coculture with TFK-1 in the CLF permeability assay, we next attempted to collect the CLF accumulated in the bile canaliculi of HepG2-NIAS. The recovery of the CLF accumulated in the bile canaliculi was increased 1.4 times without disrupting hepatic tight junctions by the coculture of HepG2-NIAS cells and TFK-1 cells compared to the monoculture of HepG2-NIAS cells. This non-destructive bile recovery has the potential as a tool for estimating the biliary metabolite and provides valuable insights to improve in vitro bile analysis.
Collapse
Affiliation(s)
- Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Mikito Kiyofuji
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hyunjin Choi
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiaki Takezawa
- Department of Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba 288-0025, Japan; Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Xue Q, Wang Y, Liu Y, Hua H, Zhou X, Xu Y, Zhang Y, Xiong C, Liu X, Yang K, Huang Y. Dysregulated Glucuronidation of Bilirubin Exacerbates Liver Inflammation and Fibrosis in Schistosomiasis Japonica through the NF-κB Signaling Pathway. Pathogens 2024; 13:287. [PMID: 38668242 PMCID: PMC11054532 DOI: 10.3390/pathogens13040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
Hepatic fibrosis is an important pathological manifestation of chronic schistosome infection. Patients with advanced schistosomiasis show varying degrees of abnormalities in liver fibrosis indicators and bilirubin metabolism. However, the relationship between hepatic fibrosis in schistosomiasis and dysregulated bilirubin metabolism remains unclear. In this study, we observed a positive correlation between total bilirubin levels and the levels of ALT, AST, LN, and CIV in patients with advanced schistosomiasis. Additionally, we established mouse models at different time points following S. japonicum infection. As the infection time increased, liver fibrosis escalated, while liver UGT1A1 consistently exhibited a low expression, indicating impaired glucuronidation of bilirubin metabolism in mice. In vitro experiments suggested that SEA may be a key inhibitor of hepatic UGT1A1 expression after schistosome infection. Furthermore, a high concentration of bilirubin activated the NF-κB signaling pathway in L-O2 cells in vitro. These findings suggested that the dysregulated glucuronidation of bilirubin caused by S. japonicum infection may play a significant role in schistosomiasis liver fibrosis through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qingkai Xue
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Yuyan Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Yiyun Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Haiyong Hua
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Xiangyu Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Ying Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| | - Kun Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Yuzheng Huang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| |
Collapse
|
6
|
Omori H, Chikamoto J, Nagahara M, Hirata M, Otoi T. Evaluating variations in bilirubin glucuronidation activity by protease inhibitors in canine and human primary hepatocytes cultured in a 3D culture system. Toxicol In Vitro 2023; 93:105689. [PMID: 37660998 DOI: 10.1016/j.tiv.2023.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Bilirubin is excreted into the bile from hepatocytes, mainly as monoglucuronosyl and bisglucuronosyl conjugates, reflecting bilirubin glucuronidation activity. However, there is limited information on the in vitro evaluation of liver cell lines or primary hepatocytes. This study aimed to investigate variations in the bilirubin metabolic function of canine and human hepatocyte spheroids formed in a three-dimensional (3D) culture system indicated by the formation of bilirubin glucuronides when protease inhibitors such as atazanavir, indinavir, ritonavir, and nelfinavir were treated with bilirubin. The culture supernatant was collected for bilirubin glucuronidation assessment and the cells were used to evaluate viability. On day 8 of culture, both canine and human hepatocyte spheroids showed high albumin secretion and distinct spheroid formation, and their bilirubin glucuronidation activities were evaluated considering cell viability. Treatment with atazanavir and ritonavir remarkably inhibited bilirubin glucuronide formation, wherein atazanavir showed the highest inhibition, particularly in human hepatocyte spheroids. These results may reflect the effects on cellular uptake of bilirubin and its intracellular metabolic function. Thus, primary hepatocytes cultured in a 3D culture system may be a useful in vitro system for the comprehensive evaluation of bilirubin metabolic function and risk assessment in bilirubin metabolic disorders for drug development.
Collapse
Affiliation(s)
- Hisayoshi Omori
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Preclinical Basic Research, Taiho Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Junko Chikamoto
- Preclinical Basic Research, Taiho Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.
| |
Collapse
|
7
|
Shintani T, Imamura C, Ueyama-Toba Y, Inui J, Watanabe A, Mizuguchi H. Establishment of UGT1A1-knockout human iPS-derived hepatic organoids for UGT1A1-specific kinetics and toxicity evaluation. Mol Ther Methods Clin Dev 2023; 30:429-442. [PMID: 37663646 PMCID: PMC10471830 DOI: 10.1016/j.omtm.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Uridine diphosphate glucuronosyltransferases (UGTs) are highly expressed in the liver and are involved in the metabolism of many drugs. In particular, UGT1A1 has a genetic polymorphism that causes decreased activity, leading to drug-induced hepatotoxicity. Therefore, an in vitro evaluation system that accurately predicts the kinetics of drugs involving UGT1A1 is required. However, there is no such evaluation system because of the absence of the UGT1A1-selective inhibitor. Here, using human induced pluripotent stem (iPS) cells, genome editing technology, and organoid technology, we generated UGT1A1-knockout human iPS hepatocyte-derived liver organoids (UGT1A1-KO i-HOs) as a model for UGT1A1-specific kinetics and toxicity evaluation. i-HOs showed higher gene expression of many drug-metabolizing enzymes including UGT1A1 than human iPS cell-derived hepatocyte-like cells (iPS-HLCs), suggesting that hepatic organoid technology improves liver functions. Wild-type (WT) i-HOs showed similar levels of UGT1A1 activity to primary human (cryopreserved) hepatocytes, while UGT1A1-KO i-HOs completely lost the activity. Additionally, to evaluate whether this model can be used to predict drug-induced hepatotoxicity, UGT1A1-KO i-HOs were exposed to SN-38, the active metabolite of irinotecan, an anticancer drug, and acetaminophen and confirmed that these cells could predict UGT1A1-mediated toxicity. Thus, we succeeded in generating model cells that enable evaluation of UGT1A1-specific kinetics and toxicity.
Collapse
Affiliation(s)
- Tomohiro Shintani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Chiharu Imamura
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Akira Watanabe
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
9
|
Yang X, Zhu G, Zhang Y, Wu X, Liu B, Liu Y, Yang Q, Du W, Liang J, Hu J, Yang P, Ge G, Cai W, Ma G. Inhibition of Human UGT1A1-Mediated Bilirubin Glucuronidation by the Popular Flavonoids Baicalein, Baicalin and Hyperoside is responsible for Herbs (Shuang-huang-lian) -Induced Jaundice. Drug Metab Dispos 2022; 50:552-565. [PMID: 35241486 DOI: 10.1124/dmd.121.000714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Bilirubin-related adverse drug reactions (ADRs) or malady (e.g., jaundice) induced by some herbs rich in certain flavonoids have been widely reported. However, the causes and mechanisms of the ADRs are not well understood. The aim of this paper was to explore the mechanism of Shuang-huang-lian injections (SHL) and its major constituents-induced jaundice via inhibiting human UDP-glucuronosyltransferases1A1 (hUGT1A1)-mediated bilirubin glucuronidation. The inhibitory effects of SHL and its major constituents in the herbal medicine including baicalein (BAI), baicalin (BA) and hyperoside (HYP) on bilirubin glucuronidation were investigated. This study indicated that the average formation rates of bilirubin glucuronides (i.e., BMG1, BMG2, BDG) displayed significant differences (P <0.05), specially, the formation of mono-glucuronides (BMGs) was favored regardless whether an inhibitor was absent or presence. SHL, BAI, BA and HYP dose-dependently inhibit bilirubin glucuronidation, showing the IC50 values against total bilirubin glucuronidation (TBG) were in the range of (7.69 {plus minus} 0.94) μg/mL - (37.09 {plus minus} 2.03) μg/mL, (4.51 {plus minus} 0.27) μM - (20.84 {plus minus} 1.99) μM, (22.36 {plus minus} 5.74) μM - (41.35 {plus minus} 2.40) μM, and (15.16 {plus minus} 1.12) μM - (42.80 {plus minus} 2.63) μM for SHL, BAI, BA, and HYP, respectively. Both inhibition kinetics assays and molecular docking simulations suggested that SHL, BAI, BA, and HYP significantly inhibited hUGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibition. Collectively, some naturally occurring flavonoids (BAI, BA and HYP) in SHL have been identified as the inhibitors against hUGT1A1-mediated bilirubin glucuronidation, which well-explains the bilirubin-related ADRs or malady triggered by SHL in clinical settings. Significance Statement Herbal products and their components (e.g., flavonoids), which been widely used in the whole world, may cause liver injury. As a commonly used herbal products rich in flavonoids, Shuang-huang-lian injections (SHL), easily lead to symptoms of liver injury (e.g., jaundice) owing to significant inhibition of hUGT1A1-mediated bilirubin glucuronidation by its flavonoid components (i.e., baicalein, baicalin, hyperoside). Herbs-induced bilirubin-related ADRs and its associated clinical significance should be seriously considered.
Collapse
Affiliation(s)
| | - Guanghao Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Ying Zhang
- School of Pharmacy, Fudan University, China
| | - Xubo Wu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, China
| | - Bei Liu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; School of Pharmacy, Fudan University, China
| | - Ye Liu
- School of Pharmacy, Fudan University, China
| | - Qing Yang
- School of Pharmacy, Fudan University, China
| | - Wandi Du
- School of Pharmacy, Fudan University, China
| | | | - Jiarong Hu
- School of Pharmacy, Fudan University, China
| | - Ping Yang
- School of Pharmacy, Fudan University, China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, China
| | | | - Guo Ma
- School of Pharmacy, Fudan University, China
| |
Collapse
|
10
|
Potential Effects of Dietary Isoflavones on Drug-Induced Liver Injury. J FOOD QUALITY 2021. [DOI: 10.1155/2021/2870969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous prescribed drugs and herbal and dietary supplements have been reported to cause drug-induced acute liver injury, which is a frequent cause of acute liver failure (ALF). It is a tremendous challenge with ever-increasing drug application in the medication system for huge populations. Drug-induced acute liver injury can lead to diverse pathologies similar to acute and chronic hepatitis, acute liver failure, biliary obstruction, fatty liver disease, and so on. Recently, extensive work demonstrated that isoflavones play an essential and protecting role in drug-induced liver injury (DILI). The isoflavones mediated hepatoprotection by modulating specific genes linked with control of cellular redox homeostasis and inflammatory responses. Isoflavones upregulate oxidative stress-responsive nuclear factor erythroid 2-like 2 (Nrf2), downregulate inflammatory nuclear factor-κB (NF-κB) signaling pathways, and modulate a balance between cell survival and death. Moreover, isoflavones actively inhibit the expression of cytochromes P450 (CYPs) enzyme during drug metabolism. Moreover, isoflavones are also linked with farnesoid X receptor (FXR) activation and signal transducer and activator of transcription factor 3 (STAT3) phosphorylation in hepatoprotection DILI. In vivo and in vitro studies clearly stated that isoflavones bear strong antioxidant potential and promising agents for hepatotoxicity prevention and stressed their potential role as therapeutic supplements in DILI. The current review will elaborate on isoflavones’ preventive and therapeutic potential concisely and highlight various molecular targets to exert a protective effect on DILI.
Collapse
|
11
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
12
|
Liu D, Yu Q, Li Z, Zhang L, Hu M, Wang C, Liu Z. UGT1A1 dysfunction increases liver burden and aggravates hepatocyte damage caused by long-term bilirubin metabolism disorder. Biochem Pharmacol 2021; 190:114592. [PMID: 33961837 DOI: 10.1016/j.bcp.2021.114592] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
UGT1A1 is the only enzyme that can metabolize bilirubin, and its encoding gene is frequently mutated. UGT1A1*6 (G71R) is a common mutant in Asia which leads to the decrease of UGT1A1 activity and abnormal bilirubin metabolism. However, it is not clear whether low UGT1A1 activity-induced bilirubin metabolism disorder increases hepatocyte fragility. ugt1a+/- mice were used to simulate the UGT1A1*6 (G71R) population. Under the same CCl4 induction condition, ugt1a+/- mice showed severer liver damage and fibrosis, indicating that ugt1a1 dysfunction increased liver burden and aggravated hepatocyte damage. In the animal experiment with a continuous intraperitoneal injection of bilirubin, the ugt1a+/- mice livers had more serious unconjugated bilirubin accumulation. The accumulated bilirubin leads to hyperphosphorylation of IκB-α, Ikk-β, and p65 and a significant increase of inflammatory factor. The α-SMA and Collagen I proteins markedly up-regulated in the ugt1a+/- mice livers. Immunofluorescence and confocal microscopy showed that hepatic stellate cells and Kupffer cells were activated in ugt1a+/- mice. Comprehensive results show that there was a crosstalk relationship between low UGT1A1 activity-bilirubin-liver damage. Furthermore, cell experiments confirmed that unconjugated bilirubin activated the NF-κB pathway and induced DNA damage in hepatocytes, leading to the significant increase of inflammatory factors. UGT1A1 knockdown in hepatocytes aggravated the toxicity of unconjugated bilirubin. Conversely, overexpression of UGT1A1 had a protective effect on hepatocytes. Finally, Schisandrin B, an active ingredient with hepatoprotective effects, extracted from a traditional Chinese medicinal herb, which could protect the liver from bilirubin metabolism disorders caused by ugt1a1 deficiency by downregulating p65 phosphorylation, inhibiting Kupffer cells, reducing inflammation levels. Our data clarified the mechanism of liver vulnerability caused by cross-talk between low UGT1A1 activity bilirubin, and provided a reference for individualized prevention of liver fragility in Gilbert's syndrome.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ming Hu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, United States
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
13
|
Chothe PP, Pemberton R, Hariparsad N. Function and Expression of Bile Salt Export Pump in Suspension Human Hepatocytes. Drug Metab Dispos 2021; 49:314-321. [PMID: 33472814 DOI: 10.1124/dmd.120.000057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
The mechanistic understanding of bile salt disposition is not well established in suspension human hepatocytes (SHH) because of the limited information on the expression and function of bile salt export protein (BSEP) in this system. We investigated the transport function of BSEP in SHH using a method involving in situ biosynthesis of bile salts from their precursor bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). Our data indicated that glycine- and taurine-conjugated CA and CDCA were generated efficiently and transported out of hepatocytes in a concentration- and time-dependent manner. We also observed that the membrane protein abundance of BSEP was similar between SHH and sandwich-cultured human hepatocytes. Furthermore, known cholestatic agents significantly inhibited G-CA and G-CDCA efflux in SHH. Interestingly, cyclosporine A, troglitazone, itraconazole, loratadine, and lovastatin inhibited G-CA efflux more potently than G-CDCA efflux (3- to 5-fold). Because of these significant differential effects on G-CA and G-CDCA efflux inhibition, we determined the IC50 values of troglitazone for G-CA (9.9 µM) and for G-CDCA (43.1 µM) efflux. The observed discrepancy in the IC50 was attributed to the fact that troglitazone also inhibits organic anion transporting polypeptides and Na+/taurocholate cotransporting polypeptide in addition to BSEP. The hepatocyte uptake study suggested that both active uptake and passive diffusion contribute to the liver uptake of CA, whereas CDCA primarily undergoes passive diffusion into the liver. In summary, these data demonstrated the expression and function of BSEP and its major role in transport of bile salts in cryopreserved SHH. SIGNIFICANCE STATEMENT: BSEP transport function and protein abundance was evident in SHH in the present study. The membrane abundance of BSEP protein was similar between SHH and sandwich-cultured human hepatocytes. The study also illustrated the major role of BSEP relative to basolateral MRP3 and MRP4 in transport of bile salts in SHH. Understanding of BSEP function in SHH may bolster the utility of this platform in mechanistic understanding of bile salt disposition and potentially in the assessment of drugs for BSEP inhibition.
Collapse
Affiliation(s)
- Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| |
Collapse
|
14
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
15
|
Tátrai P, Krajcsi P. Prediction of Drug-Induced Hyperbilirubinemia by In Vitro Testing. Pharmaceutics 2020; 12:pharmaceutics12080755. [PMID: 32796590 PMCID: PMC7465333 DOI: 10.3390/pharmaceutics12080755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
Bilirubin, the end product of heme catabolism, is produced continuously in the body and may reach toxic levels if accumulates in the serum and tissues; therefore, a highly efficient mechanism evolved for its disposition. Normally, unconjugated bilirubin enters hepatocytes through the uptake transporters organic anion transporting polypeptide (OATP) 1B1 and 1B3, undergoes glucuronidation by the Phase II enzyme UDP glucuronosyltransferase 1A1 (UGT1A1), and conjugated forms are excreted into the bile by the canalicular export pump multidrug resistance protein 2 (MRP2). Any remaining conjugated bilirubin is transported back to the blood by MRP3 and passed on for uptake and excretion by downstream hepatocytes or the kidney. The bile salt export pump BSEP as the main motor of bile flow is indirectly involved in bilirubin disposition. Genetic mutations and xenobiotics that interfere with this machinery may impede bilirubin disposition and cause hyperbilirubinemia. Several pharmaceutical compounds are known to cause hyperbilirubinemia via inhibition of OATP1Bs, UGT1A1, or BSEP. Herein we briefly review the in vitro prediction methods that serve to identify drugs with a potential to induce hyperbilirubinemia. In vitro assays can be deployed early in drug development and may help to minimize late-stage attrition. Based on current evidence, drugs that behave as mono- or multispecific inhibitors of OATP1B1, UGT1A1, and BSEP in vitro are at risk of causing clinically significant hyperbilirubinemia. By integrating inhibition data from in vitro assays, drug serum concentrations, and clinical reports of hyperbilirubinemia, predictor cut-off values have been established and are provisionally suggested in this review. Further validation of in vitro readouts to clinical outcomes is expected to enhance the predictive power of these assays.
Collapse
Affiliation(s)
- Péter Tátrai
- Solvo Biotechnology, Science Park, Building B1, 4-20 Irinyi József utca, H-1117 Budapest, Hungary;
| | - Péter Krajcsi
- Solvo Biotechnology, Science Park, Building B1, 4-20 Irinyi József utca, H-1117 Budapest, Hungary;
- Faculty of Health Sciences, Semmelweis University, H-1085 Budapest, Hungary
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, H-1083 Budapest, Hungary
- Correspondence:
| |
Collapse
|
16
|
Yadav AS, Shah NR, Carlson TJ, Driscoll JP. Metabolite Profiling and Reaction Phenotyping for the in Vitro Assessment of the Bioactivation of Bromfenac †. Chem Res Toxicol 2019; 33:249-257. [PMID: 31815452 DOI: 10.1021/acs.chemrestox.9b00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bromfenac is a nonsteroidal anti-inflammatory drug that was approved and subsequently withdrawn from the market because of reported cases of acute hepatotoxicity. Recently, in vitro studies have revealed that bromfenac requires UDPGA and alamethicin supplemented human liver microsomes (HLM) to form a major metabolite, bromfenac indolinone (BI). Bromfenac and BI form thioether adducts through a bioactivation pathway in HLM and hepatocytes. [J. P. Driscoll et al., Chem. Res. Toxicol. 2018, 31, 223-230.] Here, Cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) reaction phenotyping experiments using recombinant enzymes were performed on bromfenac and BI to identify the CYP and UGT enzymes responsible for bromfenac's metabolism and bioactivation. It was determined that UGT2B7 converts bromfenac to BI, and that while CYP2C8, CYP2C9, and CYP2C19 catalyze the hydroxylation of bromfenac, only CYP2C9 forms thioether adducts when incubated with NAC or GSH as trapping agents. Although CYP2C9 was shown to form a reactive intermediate, no inhibition of CYP2C9 was observed when an IC50 shift assay was performed. Reaction phenotyping experiments with BI and recombinant CYP enzymes indicated that CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4 were responsible for the formation of an aliphatic hydroxylated metabolite. An aromatic hydroxylation on the indolinone moiety was also formed by CYP1A2 and CYP3A4. The aromatic hydroxylated BI is a precursor to the quinone methide and quinone imine intermediates in the proposed bioactivation pathway. Through time-dependent inhibition (TDI) experiments, it was revealed that BI can cause an IC50 shift in CYP1A2 and CYP3A4. However, BI does not inhibit the other isoforms that were also responsible for the formation of the aliphatic hydroxylation, an alternative biotransformation that does not undergo further downstream bioactivation. The results of these metabolism studies with bromfenac and BI add to our understanding of the relationship between biotransformation, reactive intermediate generation, and a potential mechanistic link to the hepatotoxicity of this compound.
Collapse
Affiliation(s)
- Aprajita S Yadav
- MyoKardia, Inc. , 333 Allerton Avenue , South San Francisco , California 94080 , United States
| | - Nina R Shah
- MyoKardia, Inc. , 333 Allerton Avenue , South San Francisco , California 94080 , United States
| | - Timothy J Carlson
- MyoKardia, Inc. , 333 Allerton Avenue , South San Francisco , California 94080 , United States
| | - James P Driscoll
- MyoKardia, Inc. , 333 Allerton Avenue , South San Francisco , California 94080 , United States
| |
Collapse
|
17
|
|
18
|
Chang JH, Sangaraju D, Liu N, Jaochico A, Plise E. Comprehensive Evaluation of Bile Acid Homeostasis in Human Hepatocyte Co-Culture in the Presence of Troglitazone, Pioglitazone, and Acetylsalicylic Acid. Mol Pharm 2019; 16:4230-4240. [DOI: 10.1021/acs.molpharmaceut.9b00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jae H. Chang
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Dewakar Sangaraju
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Ning Liu
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Allan Jaochico
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Emile Plise
- Genentech, Inc, South San Francisco, California 94080, United States
| |
Collapse
|
19
|
Khojasteh SC, Bumpus NN, Driscoll JP, Miller GP, Mitra K, Rietjens IMCM, Zhang D. Biotransformation and bioactivation reactions - 2018 literature highlights. Drug Metab Rev 2019; 51:121-161. [PMID: 31170851 DOI: 10.1080/03602532.2019.1615937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the past three decades, ADME sciences have become an integral component of the drug discovery and development process. At the same time, the field has continued to evolve, thus, requiring ADME scientists to be knowledgeable of and engage with diverse aspects of drug assessment: from pharmacology to toxicology, and from in silico modeling to in vitro models and finally in vivo models. Progress in this field requires deliberate exposure to different aspects of ADME; however, this task can seem daunting in the current age of mass information. We hope this review provides a focused and brief summary of a wide array of critical advances over the past year and explains the relevance of this research ( Table 1 ). We divided the articles into categories of (1) drug optimization, (2) metabolites and drug metabolizing enzymes, and (3) bioactivation. This annual review is the fourth of its kind (Baillie et al. 2016 ; Khojasteh et al. 2017 , 2018 ). We have followed the same format we used in previous years in terms of the selection of articles and the authoring of each section. This effort in itself also continues to evolve. I am pleased that Rietjens, Miller, and Mitra have again contributed to this annual review. We would like to welcome Namandjé N. Bumpus, James P. Driscoll, and Donglu Zhang as authors for this year's issue. We strive to maintain a balance of authors from academic and industry settings. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. Cyrus Khojasteh, on behalf of the authors.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc , South San Francisco , CA , USA
| | - Namandjé N Bumpus
- Department of Medicine - Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, MyoKardia Inc. , South San Francisco , CA , USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kaushik Mitra
- Department of Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories (MRL), Merck & Co., Inc , West Point , PA , USA
| | | | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc , South San Francisco , CA , USA
| |
Collapse
|
20
|
Han W, Duan Z. Different drug metabolism behavior between species in drug-induced hepatotoxicity: limitations and novel resolutions. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1639060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weijia Han
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Zhongping Duan
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| |
Collapse
|
21
|
Wang S, Lin Y, Zhou Z, Gao L, Yang Z, Li F, Wu B. Circadian Clock Gene Bmal1 Regulates Bilirubin Detoxification: A Potential Mechanism of Feedback Control of Hyperbilirubinemia. Theranostics 2019; 9:5122-5133. [PMID: 31410205 PMCID: PMC6691581 DOI: 10.7150/thno.35773] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 01/12/2023] Open
Abstract
Controlling bilirubin to a low level is necessary in physiology because of its severe neurotoxicity. Therefore, it is of great interest to understand the regulatory mechanisms for bilirubin homeostasis. In this study, we uncover a critical role for circadian clock in regulation of bilirubin detoxification and homeostasis. Methods: The mRNA and protein levels of Bmal1 (a core clock gene), metabolic enzymes and transporters were measured by qPCR and Western blotting, respectively. Luciferase reporter, mobility shift and chromatin immunoprecipitation were used to investigate transcriptional gene regulation. Experimental hyperbilirubinemia was induced by injection of bilirubin or phenylhydrazine. Unconjugated bilirubin (UCB) and conjugated bilirubin were assessed by ELISA. Results: We first demonstrated diurnal variations in plasma UCB levels and in main bilirubin-detoxifying genes Ugt1a1 and Mrp2. Of note, the circadian UCB levels were antiphase to the circadian expressions of Ugt1a1 and Mrp2. Bmal1 ablation abrogated the circadian rhythms of UCB and bilirubin-induced hepatotoxicity in mice. Bmal1 ablation also decreased mRNA and protein expressions of both Ugt1a1 and Mrp2 in mouse livers, and blunted their circadian rhythms. A combination of luciferase reporter, mobility shift, and chromatin immunoprecipitation assays revealed that Bmal1 trans-activated Ugt1a1 and Mrp2 through specific binding to the E-boxes in the promoter region. Further, Bmal1 ablation caused a loss of circadian time-dependency in bilirubin clearance and sensitized mice to chemical induced-hyperbilirubinemia. Moreover, bilirubin stimulated Bmal1 expression through antagonism of Rev-erbα, constituting a feedback mechanism in bilirubin detoxification. Conclusion: These data supported a dual role for circadian clock in regulation of bilirubin detoxification, generating circadian variations in bilirubin level via direct transactivation of detoxifying genes Ugt1a1 and Mrp2, and defending the body against hyperbilirubinemia via Rev-erbα antagonism. Thereby, our study provided a potential mechanism for management of bilirubin related diseases.
Collapse
Affiliation(s)
- Shuai Wang
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ziyue Zhou
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lu Gao
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zemin Yang
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Baojian Wu
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
22
|
|
23
|
Barnhill MS, Real M, Lewis JH. Latest advances in diagnosing and predicting DILI: what was new in 2017? Expert Rev Gastroenterol Hepatol 2018; 12:1033-1043. [PMID: 30111182 DOI: 10.1080/17474124.2018.1512854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-induced liver injury (DILI) remains an increasingly recognized cause of hepatotoxicity and liver failure worldwide. In 2017, we continued to learn about predicting, diagnosing, and prognosticating drug hepatotoxicity. Areas covered: In this review, we selected from over 1200 articles from 2017 to synopsize updates in DILI. There were new HLA haplotypes associated with medications including HLA-C0401 and HLA-B*14. There has been continued work with quantitative systems pharmacology, particularly with the DILIsym® initiative, which employs mathematical representations of DILI mechanisms to predict hepatotoxicity in simulated populations. Additionally, knowledge regarding microRNAs (miRNAs) continues to expand. Some new miRNAs this past year include miRNA-223 and miRNA-605. Aside from miRNAs, other biomarkers for diagnosis, prognosis, and even prediction of DILI were explored. Studies on K18, OPN, and MCSFR have correlated DILI and liver-associated death within 6 months. Conversely, a new prognostic panel using apolipoportein-A1 and haptoglobin has been proposed to predict recovery. Further study of CDH5 has also provided researchers a possible new biomarker for prediction and susceptibility to DILI. Expert commentary: Although research on DILI remains quite promising, there is yet to be a reliable, simple method to predict, diagnose, and risk assess this form of hepatotoxicity.
Collapse
Affiliation(s)
- Michele S Barnhill
- a Department of Internal Medicine , Medstar Georgetown University Hospital , Washington , DC , USA
| | - Mark Real
- a Department of Internal Medicine , Medstar Georgetown University Hospital , Washington , DC , USA
| | - James H Lewis
- b Department of Gastroenterology , Medstar Georgetown University Hospital , Washington , DC , USA
| |
Collapse
|
24
|
Qosa H, Avaritt BR, Hartman NR, Volpe DA. In vitro UGT1A1 inhibition by tyrosine kinase inhibitors and association with drug-induced hyperbilirubinemia. Cancer Chemother Pharmacol 2018; 82:795-802. [PMID: 30105461 DOI: 10.1007/s00280-018-3665-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Hyperbilirubinemia has been observed in patients treated with tyrosine kinase inhibitor (TKI) drugs. Therefore, it would be beneficial to understand whether there is a relationship between inhibition of uridine-5'-diphosphate glucuronosyltransferase (UGT) 1A1 activity and observed bilirubin elevations in TKI drug-treated patients. UGT1A1 is responsible for the glucuronidation of bilirubin which leads to its elimination in the bile. METHODS To examine this question, an in vitro glucuronidation assay was developed to determine the inhibitory effect of TKI drugs employing human liver microsomes (HLM) with varying UGT1A1 activity. Utilizing β-estradiol as the UGT1A1 probe substrate, 20 TKI drugs were evaluated at concentrations that represent clinical plasma levels. Adverse event reports were searched to generate an empirical Bayes geometric mean (EGBM) score for clinical hyperbilirubinemia with the TKI drugs. RESULTS Erlotinib, nilotinib, regorafenib, pazopanib, sorafenib and vemurafenib had IC50 values that were lower than their clinical steady-state Cmax concentrations. These TKI drugs had high incidences of hyperbilirubinemia and higher EBGM scores. The IC50 values and Cmax/IC50 ratios correlated well with EBGM scores for hyperbilirubinemia (P < 0.005). For the TKI drugs with higher incidence of hyperbilirubinemia in Gilbert syndrome patients, who have reduced UGT1A1 activity, six of eight had smaller ratios in the low UGT1A1 activity microsomes than the wild-type microsomes for drugs, indicating greater sensitivity to the drugs in this phenotype. CONCLUSIONS These results suggest that in vitro UGT1A1 inhibition assays have the potential to predict clinical hyperbilirubinemia.
Collapse
Affiliation(s)
- Hisham Qosa
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Brittany R Avaritt
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
- Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Neil R Hartman
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Donna A Volpe
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA.
| |
Collapse
|
25
|
Saini N, Bakshi S, Sharma S. In-silico approach for drug induced liver injury prediction: Recent advances. Toxicol Lett 2018; 295:288-295. [PMID: 29981923 DOI: 10.1016/j.toxlet.2018.06.1216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Drug induced liver injury (DILI) is the prime cause of liver disfunction which may lead to mild non-specific symptoms to more severe signs like hepatitis, cholestasis, cirrhosis and jaundice. Not only the prescription medications, but the consumption of herbs and health supplements have also been reported to cause these adverse reactions resulting into high mortality rates and post marketing withdrawal of drugs. Due to the continuously increasing DILI incidences in recent years, robust prediction methods with high accuracy, specificity and sensitivity are of priority. Bioinformatics is the emerging field of science that has been used in the past few years to explore the mechanisms of DILI. The major emphasis of this review is the recent advances of in silico tools for the diagnostic and therapeutic interventions of DILI. These tools have been developed and widely used in the past few years for the prediction of pathways induced from both hepatotoxic as well as hepatoprotective Chinese drugs and for the identification of DILI specific biomarkers for prognostic purpose. In addition to this, advanced machine learning models have been developed for the classification of drugs into DILI causing and non-DILI causing. Moreover, development of 3 class models over 2 class offers better understanding of multi-class DILI risks and at the same time providing authentic prediction of toxicity during drug designing before clinical trials.
Collapse
Affiliation(s)
- Neha Saini
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Shikha Bakshi
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
26
|
Matsunaga N, Fukuchi Y, Imawaka H, Tamai I. Sandwich-Cultured Hepatocytes for Mechanistic Understanding of Hepatic Disposition of Parent Drugs and Metabolites by Transporter-Enzyme Interplay. Drug Metab Dispos 2018; 46:680-691. [PMID: 29352067 DOI: 10.1124/dmd.117.079236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Functional interplay between transporters and drug-metabolizing enzymes is currently one of the hottest topics in the field of drug metabolism and pharmacokinetics. Uptake transporter-enzyme interplay is important to determine intrinsic hepatic clearance based on the extended clearance concept. Enzyme and efflux transporter interplay, which includes both sinusoidal (basolateral) and canalicular efflux transporters, determines the fate of metabolites formed in the liver. As sandwich-cultured hepatocytes (SCHs) maintain metabolic activities and form a canalicular network, the whole interplay between uptake and efflux transporters and drug-metabolizing enzymes can be investigated simultaneously. In this article, we review the utility and applicability of SCHs for mechanistic understanding of hepatic disposition of both parent drugs and metabolites. In addition, the utility of SCHs for mimicking species-specific disposition of parent drugs and metabolites in vivo is described. We also review application of SCHs for clinically relevant prediction of drug-drug interactions caused by drugs and metabolites. The usefulness of mathematical modeling of hepatic disposition of parent drugs and metabolites in SCHs is described to allow a quantitative understanding of an event in vitro and to develop a more advanced model to predict in vivo disposition.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Yukina Fukuchi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Ikumi Tamai
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| |
Collapse
|
27
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
28
|
Ma G, Zhang Y, Chen W, Tang Z, Xin X, Yang P, Liu X, Cai W, Hu M. Inhibition of Human UGT1A1-Mediated Bilirubin Glucuronidation by Polyphenolic Acids Impact Safety of Popular Salvianolic Acid A/B-Containing Drugs and Herbal Products. Mol Pharm 2017; 14:2952-2966. [PMID: 28603997 DOI: 10.1021/acs.molpharmaceut.7b00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bilirubin-related adverse reactions (ADR, e.g., jaundice and hyperbilirubinemia) induced by herbs rich in certain polyphenolic acids are widely reported. However, the causes and the mechanisms underlying these ADR are not well understood. The purpose of this article is to determine the mechanism by which certain polyphenolic acids inhibit UGT1A1-mediated bilirubin glucuronidation, leading to jaundice or hyperbilirubinemia. We investigated in vitro inhibitory effects on bilirubin glucuronidation of salvianolic acid A (SAA), salvianolic acid B (SAB), danshensu (DSS), protocatechuic aldehyde (PA), and rosmarinic acid (RA), as well as two Salvia miltiorrhiza injections (DSI and CDI) rich in polyphenolic acids. The results showed that average formation rates of three bilirubin glucuronides displayed a significant difference (p < 0.05) and the formation of monoglucuronide was favored regardless if an inhibitor was present or not. SAA, SAB, DSI, and CDI, but not DSS, PA, and RA, significantly inhibited human UGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibitory mechanism. Average IC50 values of SAA, SAB, DSI, and CDI-mediated inhibition of bilirubin glucuronidation were bilirubin concentration-dependent, and their values (against total bilirubin glucuronidation) were in the range 0.44 ± 0.02 to 0.86 ± 0.04 μg/mL (for SAA), 4.22 ± 0.30 to 12.50 ± 0.93 μg/mL (for SAB), 9.29 ± 0.76 to 18.82 ± 0.63 μg/mL (for DSI), and 9.18 ± 2.00 to 22.36 ± 1.39 μg/mL (for CDI), respectively. In conclusion, SAA and its analog SAB are the main ingredients responsible for inhibition of bilirubin glucuronidation by DSI and CDI, whose use is associated with many high bilirubin-related ADR.
Collapse
Affiliation(s)
- Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Ying Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Wenyan Chen
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Zhifang Tang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Xiaoming Xin
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Ping Yang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Xiaoqin Liu
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , 1441 Moursund Street, Houston, Texas 77030, United States
| |
Collapse
|
29
|
Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol 2017; 13:1075-1087. [PMID: 28847160 DOI: 10.1080/17425255.2017.1372425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Membrane transport proteins play a central role in regulating the disposition of endobiotics, dietary nutrients and environmental toxins. The inhibition of transporters by drugs has potential physiologic consequences. The full extent of the effect of drugs on the function of transporters is poorly understood because only a small subset of the hundreds of transporters expressed in humans - primarily those mediating the rate-determining step in the elimination of specific drugs - are assessed during clinical development. Areas covered: We provide a comprehensive overview of literature reports implicating the inhibition of transporters as the mechanism for off-target effects of drugs. Expert opinion: Transporter inhibition, the mechanism of action of many marketed drugs, appears to play an underappreciated role in a number of side effects including vitamin deficiency, edema, dyslipidemia, cholestasis and gout. Cell systems more broadly expressing transporter networks and methods like unbiased metabolomics should be incorporated into the screening paradigm to expand our understanding of the impact of drugs on the physiologic function of transporters and to allow for these effects to be taken into account in drug discovery and clinical practice.
Collapse
Affiliation(s)
- Eve-Irene Lepist
- a Departments of Drug Metabolism , Gilead Sciences, Inc ., Foster City , CA , USA
| | - Adrian S Ray
- b Clinical Research , Gilead Sciences, Inc ., Foster City , CA , USA
| |
Collapse
|
30
|
Kotsampasakou E, Montanari F, Ecker GF. Predicting drug-induced liver injury: The importance of data curation. Toxicology 2017; 389:139-145. [PMID: 28652195 PMCID: PMC6422282 DOI: 10.1016/j.tox.2017.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/10/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a major issue for both patients and pharmaceutical industry due to insufficient means of prevention/prediction. In the current work we present a 2-class classification model for DILI, generated with Random Forest and 2D molecular descriptors on a dataset of 966 compounds. In addition, predicted transporter inhibition profiles were also included into the models. The initially compiled dataset of 1773 compounds was reduced via a 2-step approach to 966 compounds, resulting in a significant increase (p-value < 0.05) in model performance. The models have been validated via 10-fold cross-validation and against three external test sets of 921, 341 and 96 compounds, respectively. The final model showed an accuracy of 64% (AUC 68%) for 10-fold cross-validation (average of 50 iterations) and comparable values for two test sets (AUC 59%, 71% and 66%, respectively). In the study we also examined whether the predictions of our in-house transporter inhibition models for BSEP, BCRP, P-glycoprotein, and OATP1B1 and 1B3 contributed in improvement of the DILI mode. Finally, the model was implemented with open-source 2D RDKit descriptors in order to be provided to the community as a Python script.
Collapse
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Floriane Montanari
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
31
|
King JR, Menon RM. Ombitasvir/Paritaprevir/Ritonavir and Dasabuvir: Drug Interactions With Antiretroviral Agents and Drugs for Substance Abuse. Clin Pharmacol Drug Dev 2017; 6:201-205. [DOI: 10.1002/cpdd.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Jennifer R. King
- AbbVie, Clinical Pharmacology and Pharmacometrics; North Chicago IL USA
| | - Rajeev M. Menon
- AbbVie, Clinical Pharmacology and Pharmacometrics; North Chicago IL USA
| |
Collapse
|
32
|
Kotsampasakou E, Escher SE, Ecker GF. Curated human hyperbilirubinemia data and the respective OATP1B1 and 1B3 inhibition predictions. Data Brief 2017; 11:204-207. [PMID: 28243614 PMCID: PMC5320065 DOI: 10.1016/j.dib.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 01/20/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hyperbilirubinemia is a pathological condition, very often indicative of underlying liver condition that is characterized by excessive accumulation of conjugated or unconjugated bilirubin in sinusoidal blood. In literature there are several indications associating the inhibition of the basolateral hepatic transporters Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1 and 1B3) with hyperbilirubinemia. In this article, we present a curated human hyperbilirubinemia dataset and the respective OATP1B1 and 1B3 inhibition predictions obtained from an effort to generate a classification model for hyperbilirubinemia. These data originate from the research article "Linking organic anion transporting polypeptide 1b1 and 1b3 (oatp1b1 and oatp1b3) interaction profiles to hepatotoxicity- the hyperbilirubinemia use case" (E. Kotsampasakou, S.E. Escher, G.F. Ecker, 2017) [1]. We further provide the full list of descriptors used for generating the hyperbilirubinemia classification models as well as the calculated descriptors for each compound of the dataset that was used to build the classification model.
Collapse
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Sylvia E Escher
- Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
33
|
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F. Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
34
|
Yang K, Battista C, Woodhead JL, Stahl SH, Mettetal JT, Watkins PB, Siler SQ, Howell BA. Systems pharmacology modeling of drug-induced hyperbilirubinemia: Differentiating hepatotoxicity and inhibition of enzymes/transporters. Clin Pharmacol Ther 2017; 101:501-509. [PMID: 28074467 PMCID: PMC5367379 DOI: 10.1002/cpt.619] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Elevations in serum bilirubin during drug treatment may indicate global liver dysfunction and a high risk of liver failure. However, drugs also can increase serum bilirubin in the absence of hepatic injury by inhibiting specific enzymes/transporters. We constructed a mechanistic model of bilirubin disposition based on known functional polymorphisms in bilirubin metabolism/transport. Using physiologically based pharmacokinetic (PBPK) model-predicted drug exposure and enzyme/transporter inhibition constants determined in vitro, our model correctly predicted indinavir-mediated hyperbilirubinemia in humans and rats. Nelfinavir was predicted not to cause hyperbilirubinemia, consistent with clinical observations. We next examined a new drug candidate that caused both elevations in serum bilirubin and biochemical evidence of liver injury in rats. Simulations suggest that bilirubin elevation primarily resulted from inhibition of transporters rather than global liver dysfunction. We conclude that mechanistic modeling of bilirubin can help elucidate underlying mechanisms of drug-induced hyperbilirubinemia, and thereby distinguish benign from clinically important elevations in serum bilirubin.
Collapse
Affiliation(s)
- K Yang
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - C Battista
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA.,University of North Carolina Institute for Drug Safety Sciences, The Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J L Woodhead
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - S H Stahl
- ADME Transporters, Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - J T Mettetal
- Drug Safety and Metabolism, AstraZeneca R&D, Waltham, Massachusetts, USA
| | - P B Watkins
- University of North Carolina Institute for Drug Safety Sciences, The Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - S Q Siler
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - B A Howell
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| |
Collapse
|
35
|
Kotsampasakou E, Escher SE, Ecker GF. Linking organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1 and OATP1B3) interaction profiles to hepatotoxicity - The hyperbilirubinemia use case. Eur J Pharm Sci 2017; 100:9-16. [PMID: 28063966 DOI: 10.1016/j.ejps.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/26/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Hyperbilirubinemia is a pathological condition of excessive accumulation of conjugated or unconjugated bilirubin in blood. It has been associated with neurotoxicity and non-neural organ dysfunctions, while it can also be a warning of liver side effects. Hyperbilirubinemia can either be a result of overproduction of bilirubin due to hemolysis or dyserythropoiesis, or the outcome of impaired bilirubin elimination due to liver transporter malfunction or inhibition. There are several reports in literature that inhibition of organic anion transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) might lead to hyperbilirubinemia. In this study we created a set of classification models for hyperbilirubinemia, which, besides physicochemical descriptors, also include the output of classification models of human OATP1B1 and 1B3 inhibition. Models were based on either human data derived from public toxicity reports or animal data extracted from the eTOX database VITIC. The generated models showed satisfactory accuracy (68%) and area under the curve (AUC) for human data and 71% accuracy and 70% AUC for animal data. However, our results did not indicate strong association between OATP inhibition and hyperbilirubinemia, neither for humans nor for animals.
Collapse
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Sylvia E Escher
- Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
36
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
37
|
Evaluation and Comparison of the Inhibition Effect of Astragaloside IV and Aglycone Cycloastragenol on Various UDP-Glucuronosyltransferase (UGT) Isoforms. Molecules 2016; 21:molecules21121616. [PMID: 27916843 PMCID: PMC6274106 DOI: 10.3390/molecules21121616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
As one of the main active ingredients from Radix Astragali (RA), orally dosed astragaloside IV (AST) is easily transformed to sapogenin-cycloastragenol (CAG) by deglycosylation in the gastrointestinal tract. Because the potential adverse effects of AST and CAG remain unclear, the present study in this article was carried out to investigate the inhibition effects of AST and CAG on UDP-glucuronosyltransferases (UGTs) to explore potential clinical toxicity. An in vitro UGTs incubation mixture was employed to study the inhibition of AST and CAG towards UGT isoforms. Concentrations of 100 μM for each compound were used to initially screen the inhibitory efficiency. Deglycosylation of AST to CAG could strongly increase the inhibitory effects towards almost all of the tested UGT isoforms, with an IC50 of 0.84 μM and 11.28 μM for UGT1A8 and UGT2B7, respectively. Ulteriorly, the inhibition type and kinetics of CAG towards UGT1A8 and UGT2B7 were evaluated depending on the initial screening results. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that CAG competitively inhibited UGT1A8 and noncompetitively inhibited UGT2B7. From the second plot drawn with the slopes from the Lineweaver-Burk plot versus the concentrations of CAG, the inhibition constant (Ki) was calculated to be 0.034 μM and 20.98 μM for the inhibition of UGT1A8 and UGT2B7, respectively. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1 > [I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), it was successfully predicted here that an in vivo herb-drug interaction between AST/CAG and drugs mainly undergoing UGT1A8- or UGT2B7-catalyzed metabolism might occur when the plasma concentration of CAG is above 0.034 μM and 20.98 μM, respectively.
Collapse
|
38
|
Lapham K, Novak J, Marroquin LD, Swiss R, Qin S, Strock CJ, Scialis R, Aleo MD, Schroeter T, Eng H, Rodrigues AD, Kalgutkar AS. Inhibition of Hepatobiliary Transport Activity by the Antibacterial Agent Fusidic Acid: Insights into Factors Contributing to Conjugated Hyperbilirubinemia/Cholestasis. Chem Res Toxicol 2016; 29:1778-1788. [DOI: 10.1021/acs.chemrestox.6b00262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | - Shuzhen Qin
- Biological
Screening and Assay Development, Cyprotex, Watertown, Massachusetts 02472, United States
| | - Christopher J. Strock
- Biological
Screening and Assay Development, Cyprotex, Watertown, Massachusetts 02472, United States
| | | | | | | | | | | | - Amit S. Kalgutkar
- Pharmacokinetics,
Dynamics, and Metabolism Department, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Rambanapasi C, Zeevaart JR, Buntting H, Bester C, Kotze D, Hayeshi R, Grobler A. Bioaccumulation and Subchronic Toxicity of 14 nm Gold Nanoparticles in Rats. Molecules 2016; 21:E763. [PMID: 27294904 PMCID: PMC6273121 DOI: 10.3390/molecules21060763] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/23/2022] Open
Abstract
Colloidal suspensions of 14 nm gold nanoparticles (AuNPs) were repeatedly administered intravenously at three dose levels (0.9, 9 and 90 µg) to male Sprague Dawley rats weekly for 7 weeks, followed by a 14-day washout period. After sacrificing, the amount of gold was quantified in the liver, lungs, spleen, skeleton and carcass using neutron activation analysis (NAA). During the study, pre- and post (24 h) administration blood samples were collected from both the test and control groups, the latter which received an equal injection volume of normal saline. General health indicators were monitored together with markers of kidney and liver damage for acute and subchronic toxicity assessment. Histopathological assessments were done on the heart, kidneys, liver, lungs and spleen to assess any morphological changes as a result of the exposure to AuNPs. The mass measurements of all the groups showed a steady increase with no signs of overt toxicity. The liver had the highest amount of gold (µg) per gram of tissue after 56 days followed by the spleen, lungs, skeleton and carcass. Markers of kidney and liver damage showed similar trends between the pre and post samples within each group and across groups. The histopathological examination also showed no hepatotoxicity and nephrotoxicity. There was accumulation of Au in tissues after repeated dosing, albeit with no observable overt toxicity, kidney or liver damage.
Collapse
Affiliation(s)
- Clinton Rambanapasi
- DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa.
| | - Jan Rijn Zeevaart
- DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa.
| | - Hylton Buntting
- DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa.
| | - Cornelius Bester
- DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa.
| | - Deon Kotze
- Necsa, South African Nuclear Energy Corporation (SOC) Ltd., Pelindaba 2025, South Africa.
| | - Rose Hayeshi
- DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa.
| | - Anne Grobler
- DST/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa.
| |
Collapse
|
40
|
Zhang Y, Han YH, Putluru SP, Matta MK, Kole P, Mandlekar S, Furlong MT, Liu T, Iyer RA, Marathe P, Yang Z, Lai Y, Rodrigues AD. Diclofenac and Its Acyl Glucuronide: Determination of In Vivo Exposure in Human Subjects and Characterization as Human Drug Transporter Substrates In Vitro. ACTA ACUST UNITED AC 2015; 44:320-8. [PMID: 26714763 DOI: 10.1124/dmd.115.066944] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/28/2015] [Indexed: 01/05/2023]
Abstract
Although the metabolism and disposition of diclofenac (DF) has been studied extensively, information regarding the plasma levels of its acyl-β-d-glucuronide (DF-AG), a major metabolite, in human subjects is limited. Therefore, DF-AG concentrations were determined in plasma (acidified blood derived) of six healthy volunteers following a single oral DF dose (50 mg). Levels of DF-AG in plasma were high, as reflected by a DF-AG/DF ratio of 0.62 ± 0.21 (Cmax mean ± S.D.) and 0.84 ± 0.21 (area under the concentration-time curve mean ± S.D.). Both DF and DF-AG were also studied as substrates of different human drug transporters in vitro. DF was identified as a substrate of organic anion transporter (OAT) 2 only (Km = 46.8 µM). In contrast, DF-AG was identified as a substrate of numerous OATs (Km = 8.6, 60.2, 103.9, and 112 µM for OAT2, OAT1, OAT4, and OAT3, respectively), two organic anion-transporting polypeptides (OATP1B1, Km = 34 µM; OATP2B1, Km = 105 µM), breast cancer resistance protein (Km = 152 µM), and two multidrug resistance proteins (MRP2, Km = 145 µM; MRP3, Km = 196 µM). It is concluded that the disposition of DF-AG, once formed, can be mediated by various candidate transporters known to be expressed in the kidney (basolateral, OAT1, OAT2, and OAT3; apical, MRP2, BCRP, and OAT4) and liver (canalicular, MRP2 and BCRP; basolateral, OATP1B1, OATP2B1, OAT2, and MRP3). DF-AG is unstable in plasma and undergoes conversion to parent DF. Therefore, caution is warranted when assessing renal and hepatic transporter-mediated drug-drug interactions with DF and DF-AG.
Collapse
Affiliation(s)
- Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yong-Hae Han
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Siva Prasad Putluru
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Murali Krishna Matta
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Prashant Kole
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Michael T Furlong
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Tongtong Liu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Ramaswamy A Iyer
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Zheng Yang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - A David Rodrigues
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
41
|
Montanari F, Pinto M, Khunweeraphong N, Wlcek K, Sohail MI, Noeske T, Boyer S, Chiba P, Stieger B, Kuchler K, Ecker GF. Flagging Drugs That Inhibit the Bile Salt Export Pump. Mol Pharm 2015; 13:163-71. [PMID: 26642869 DOI: 10.1021/acs.molpharmaceut.5b00594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis. Predictive computational models of BSEP inhibition may allow for fast identification of potentially harmful compounds in large databases. This article presents a predictive in silico model based on physicochemical descriptors that is able to flag compounds as potential BSEP inhibitors. This model was built using a training set of 670 compounds with available BSEP inhibition potencies. It successfully predicted BSEP inhibition for two independent test sets and was in a further step used for a virtual screening experiment. After in vitro testing of selected candidates, a marketed drug, bromocriptin, was identified for the first time as BSEP inhibitor. This demonstrates the usefulness of the model to identify new BSEP inhibitors and therefore potential cholestasis perpetrators.
Collapse
Affiliation(s)
- Floriane Montanari
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Marta Pinto
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Narakorn Khunweeraphong
- Max F. Perutz Laboratories, Medical University of Vienna , Vienna Biocenter, 1030 Vienna, Austria
| | - Katrin Wlcek
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - M Imran Sohail
- Institute of Medical Chemistry, Medical University of Vienna , Waehringerstrasse 10, 1090 Vienna, Austria
| | - Tobias Noeske
- Drug Safety and Metabolism, AstraZeneca R&D Mölndal , Pepparedsleden 1, Mölndal 43183, Sweden
| | - Scott Boyer
- Drug Safety and Metabolism, AstraZeneca R&D Mölndal , Pepparedsleden 1, Mölndal 43183, Sweden
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna , Waehringerstrasse 10, 1090 Vienna, Austria
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital , 8091 Zurich, Switzerland
| | - Karl Kuchler
- Max F. Perutz Laboratories, Medical University of Vienna , Vienna Biocenter, 1030 Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
42
|
Kotsampasakou E, Brenner S, Jäger W, Ecker GF. Identification of Novel Inhibitors of Organic Anion Transporting Polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) Using a Consensus Vote of Six Classification Models. Mol Pharm 2015; 12:4395-404. [PMID: 26469880 PMCID: PMC4674819 DOI: 10.1021/acs.molpharmaceut.5b00583] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Organic anion transporting polypeptides
1B1 and 1B3 are transporters
selectively expressed on the basolateral membrane of the hepatocyte.
Several studies reveal that they are involved in drug–drug
interactions, cancer, and hyperbilirubinemia. In this study, we developed
a set of classification models for OATP1B1 and 1B3 inhibition based
on more than 1700 carefully curated compounds from literature, which
were validated via cross-validation and by use of an external test
set. After combining several sets of descriptors and classifiers,
the 6 best models were selected according to their statistical performance
and were used for virtual screening of DrugBank. Consensus scoring
of the screened compounds resulted in the selection and purchase of
nine compounds as potential dual inhibitors and of one compound as
potential selective OATP1B3 inhibitor. Biological testing of the compounds
confirmed the validity of the models, yielding an accuracy of 90%
for OATP1B1 and 80% for OATP1B3, respectively. Moreover, at least
half of the new identified inhibitors are associated with hyperbilirubinemia
or hepatotoxicity, implying a relationship between OATP inhibition
and these severe side effects.
Collapse
Affiliation(s)
- Eleni Kotsampasakou
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Stefan Brenner
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
43
|
Li X, Zhong K, Guo Z, Zhong D, Chen X. Fasiglifam (TAK-875) Inhibits Hepatobiliary Transporters: A Possible Factor Contributing to Fasiglifam-Induced Liver Injury. Drug Metab Dispos 2015; 43:1751-9. [PMID: 26276582 DOI: 10.1124/dmd.115.064121] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
Fasiglifam (TAK-875), a selective G-protein-coupled receptor 40 agonist, was developed for the treatment of type 2 diabetes mellitus; however, its development was terminated in phase III clinical trials because of liver safety concerns. Our preliminary study indicated that intravenous administration of 100 mg/kg of TAK-875 increased the serum total bile acid concentration by 3 to 4 times and total bilirubin levels by 1.5 to 2.6 times in rats. In the present study, we examined the inhibitory effects of TAK-875 on hepatobiliary transporters to explore the mechanisms underlying its hepatotoxicity. TAK-875 decreased the biliary excretion index and the in vitro biliary clearance of d₈-taurocholic acid in sandwich-cultured rat hepatocytes, suggesting that TAK-875 impaired biliary excretion of bile acids, possibly by inhibiting bile salt export pump (Bsep). TAK-875 inhibited the efflux transporter multidrug resistance-associated protein 2 (Mrp2) in rat hepatocytes using 5 (and 6)-carboxy-2',7'-dichlorofluorescein as a substrate. Inhibition of MRP2 was further confirmed by reduced transport of vinblastine in Madin-Darby canine kidney cells overexpressing MRP2 with IC₅₀ values of 2.41 μM. TAK-875 also inhibited the major bile acid uptake transporter Na(+)/taurocholate cotransporting polypeptide (Ntcp), which transports d₈-taurocholic acid into rat hepatocytes, with an IC₅₀ value of 10.9 μM. TAK-875 significantly inhibited atorvastatin uptake in organic anion transporter protein (OATP) 1B1 and OATP1B3 cells with IC₅₀ values of 2.28 and 3.98 μM, respectively. These results indicate that TAK-875 inhibited the efflux transporter MRP2/Mrp2 and uptake transporters Ntcp and OATP/Oatp, which may affect bile acid and bilirubin homeostasis, resulting in hyperbilirubinemia and cholestatic hepatotoxicity.
Collapse
Affiliation(s)
- Xiuli Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kan Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zitao Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Barber JA, Stahl SH, Summers C, Barrett G, Park BK, Foster JR, Kenna JG. Quantification of Drug-Induced Inhibition of Canalicular Cholyl-l-Lysyl-Fluorescein Excretion From Hepatocytes by High Content Cell Imaging. Toxicol Sci 2015. [PMID: 26220638 DOI: 10.1093/toxsci/kfv159] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the use of a commercially available high content cell imaging algorithm (Cellomics Arrayscan Spot Detector) to quantify biliary excretion of the fluorescent probe substrate cholyl-l-lysyl-fluorescein (CLF) from rat hepatocytes cultured in collagen/matrigel sandwich configuration and to explore inhibition of this process by a variety of test compounds. The method provided robust, reproducible data. Twenty-nine pharmaceuticals inhibited biliary CLF efflux from hepatocytes and a broad range of potencies of inhibition were observed (IC50 values ranged between <1 and 794 µM). Thirteen drugs that inhibited CLF efflux also inhibited hepatocellular uptake of the probe substrate [(3)H]-taurocholate. Although no clear correlation between the potencies of inhibition of the 2 processes was evident, these data highlight the need to consider possible uptake transporter inhibition when interpreting hepatocyte CLF inhibition data. It has been reported that CLF is transported by MRP2. The CLF efflux inhibition data correlated closely with published data on inhibition by the drugs of the bile salt export pump (Bsep), which suggests that the tested drugs inhibit both Bsep and Mrp2. Calculation of the ratios between the maximum human plasma concentrations of the drugs and their CLF efflux inhibition IC50 values raised the possibility that for many, but not all, of them the in vitro effects may be functionally significant in vivo and that Mrp2 inhibition might be a drug-induced liver injury (DILI) risk factor. These data indicate that imaging hepatocyte CLF inhibition is a promising new method for quantification of biliary efflux inhibition by drugs, which could aid assessment of compound-related DILI risk.
Collapse
Affiliation(s)
- Jane A Barber
- *Innovative Medicines & Early Development, Discovery Safety, Drug Safety & Metabolism, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield SK10 4TG, UK; Department of Pharmacology & Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, Merseyside, UK;
| | | | - Claire Summers
- *Innovative Medicines & Early Development, Discovery Safety, Drug Safety & Metabolism, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield SK10 4TG, UK
| | - Gillian Barrett
- Oncology iMEDs, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, UK
| | - B Kevin Park
- Department of Pharmacology & Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, Merseyside, UK
| | - John R Foster
- *Innovative Medicines & Early Development, Discovery Safety, Drug Safety & Metabolism, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield SK10 4TG, UK
| | - J Gerald Kenna
- *Innovative Medicines & Early Development, Discovery Safety, Drug Safety & Metabolism, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield SK10 4TG, UK
| |
Collapse
|
45
|
Sun H, Zhou X, Wu B. Accurate identification of UDP-glucuronosyltransferase 1A1 (UGT1A1) inhibitors using UGT1A1-overexpressing HeLa cells. Xenobiotica 2015; 45:945-53. [DOI: 10.3109/00498254.2015.1033502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Chu X, Shih SJ, Shaw R, Hentze H, Chan GH, Owens K, Wang S, Cai X, Newton D, Castro-Perez J, Salituro G, Palamanda J, Fernandis A, Ng CK, Liaw A, Savage MJ, Evers R. Evaluation of cynomolgus monkeys for the identification of endogenous biomarkers for hepatic transporter inhibition and as a translatable model to predict pharmacokinetic interactions with statins in humans. Drug Metab Dispos 2015; 43:851-63. [PMID: 25813937 DOI: 10.1124/dmd.115.063347] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/26/2015] [Indexed: 12/31/2022] Open
Abstract
Inhibition of hepatic transporters such as organic anion transporting polypeptides (OATPs) 1B can cause drug-drug interactions (DDIs). Determining the impact of perpetrator drugs on the plasma exposure of endogenous substrates for OATP1B could be valuable to assess the risk for DDIs early in drug development. As OATP1B orthologs are well conserved between human and monkey, we assessed in cynomolgus monkeys the endogenous OATP1B substrates that are potentially suitable to assess DDI risk in humans. The effect of rifampin (RIF), a potent inhibitor for OATP1B, on plasma exposure of endogenous substrates of hepatic transporters was measured. From the 18 biomarkers tested, RIF (18 mg/kg, oral) caused significant elevation of plasma unconjugated and conjugated bilirubin, which may be attributed to inhibition of cOATP1B1 and cOATP1B3 based on in vitro to in vivo extrapolation analysis. To further evaluate whether cynomolgus monkeys are a suitable translational model to study OATP1B-mediated DDIs, we determined the inhibitory effect of RIF on in vitro transport and pharmacokinetics of rosuvastatin (RSV) and atorvastatin (ATV). RIF strongly inhibited the uptake of RSV and ATV by cOATP1B1 and cOATP1B3 in vitro. In agreement with clinical observations, RIF (18 mg/kg, oral) significantly decreased plasma clearance and increased the area under the plasma concentration curve (AUC) of intravenously administered RSV by 2.8- and 2.7-fold, and increased the AUC and maximum plasma concentration of orally administered RSV by 6- and 10.3-fold, respectively. In contrast to clinical findings, RIF did not significantly increase plasma exposure of either intravenous or orally administered ATV, indicating species differences in the rate-limiting elimination pathways.
Collapse
Affiliation(s)
- Xiaoyan Chu
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Shian-Jiun Shih
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Rachel Shaw
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Hannes Hentze
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Grace H Chan
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Karen Owens
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Shubing Wang
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Xiaoxin Cai
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Deborah Newton
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Jose Castro-Perez
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Gino Salituro
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Jairam Palamanda
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Aaron Fernandis
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Choon Keow Ng
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Andy Liaw
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Mary J Savage
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| | - Raymond Evers
- Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C., G.H.C., K.O., S.W., X.C., D.N., J.C.P., G.S., J.P., A.L., M.J.S., R.E.); Translational Medicine Research Centre, Singapore (S.J.S., R.S., H.H., A.F., C.K.N.)
| |
Collapse
|
47
|
Watanabe T, Miyake M, Shimizu T, Kamezawa M, Masutomi N, Shimura T, Ohashi R. Utility of bilirubins and bile acids as endogenous biomarkers for the inhibition of hepatic transporters. Drug Metab Dispos 2015; 43:459-66. [PMID: 25581390 DOI: 10.1124/dmd.114.061051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is useful to identify endogenous substrates for the evaluation of drug-drug interactions via transporters. In this study, we investigated the utility of bilirubins, substrates of OATPs and MRP2, and bile acids and substrates of NTCP and BSEP, as biomarkers for the inhibition of transporters. In rats administered 20 and 80 mg/kg rifampicin, the plasma levels of bilirubin glucuronides were elevated, gradually decreased, and almost returned to the baseline level at 24 hours after administration without an elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This result indicates the transient inhibition of rOatps and/or rMrp2. Although the correlation between free plasma concentrations and IC50 values of rOatps depended on the substrates used in the in vitro studies, the inhibition of rOatps by rifampicin was confirmed in the in vivo study using valsartan as a substrate of rOatps. In rats administered 10 and 30 mg/kg cyclosporin A, the plasma levels of bile acids were elevated and persisted for up to 24 hours after administration without an elevation of ALT and AST. This result indicates the continuous inhibition of rNtcp and/or rBsep, although there were differences between the free plasma or liver concentrations and IC50 values of rNtcp or rBsep, respectively. This study suggests that the monitoring of bilirubins and bile acids in plasma is useful in evaluating the inhibitory potential of their corresponding transporters.
Collapse
Affiliation(s)
- Tomoko Watanabe
- DMPK Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan (T.W., M.K., Ta.S., R.O.); and Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan (M.M., To.S., N.M.)
| | - Manami Miyake
- DMPK Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan (T.W., M.K., Ta.S., R.O.); and Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan (M.M., To.S., N.M.)
| | - Toshinobu Shimizu
- DMPK Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan (T.W., M.K., Ta.S., R.O.); and Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan (M.M., To.S., N.M.)
| | - Miho Kamezawa
- DMPK Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan (T.W., M.K., Ta.S., R.O.); and Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan (M.M., To.S., N.M.)
| | - Naoya Masutomi
- DMPK Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan (T.W., M.K., Ta.S., R.O.); and Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan (M.M., To.S., N.M.)
| | - Takesada Shimura
- DMPK Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan (T.W., M.K., Ta.S., R.O.); and Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan (M.M., To.S., N.M.)
| | - Rikiya Ohashi
- DMPK Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan (T.W., M.K., Ta.S., R.O.); and Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan (M.M., To.S., N.M.)
| |
Collapse
|
48
|
Fujiwara R, Sumida K, Kutsuno Y, Sakamoto M, Itoh T. UDP-glucuronosyltransferase (UGT) 1A1 mainly contributes to the glucuronidation of trovafloxacin. Drug Metab Pharmacokinet 2014; 30:82-8. [PMID: 25760534 DOI: 10.1016/j.dmpk.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 11/26/2022]
Abstract
Identification of drug-metabolizing enzyme(s) responsible for the metabolism of drugs is an important step to understand not only interindividual variability in pharmacokinetics but also molecular mechanisms of metabolite-related toxicity. While it was reported that the major metabolic pathway of trovafloxacin, which is an antibiotic, was glucuronidation, the UDP-glucuronosyltransferase (UGT) isoform(s) responsible for the trovafloxacin glucuronidation has not been identified yet. In the present study, among the functional human UGT members, UGT1A1, UGT1A3, and UGT1A9 exhibited higher trovafloxacin acyl-glucuronidation activities. While other UGT members such as UGT1A8, UGT2B7, and UGT2B15 showed glucuronidation activity toward trovafloxacin, the metabolic velocity was extremely low. In human liver microsomes, trovafloxacin acyl-glucuronidation followed the Hill equation with S50 value of 95 μM, Vmax value of 243 pmol/min per mg, and a Hill coefficient of 2.0, while the UGT1A1-expressing system displayed Michaelis-Menten kinetics with a substrate inhibition, with Km value of 759 μM and Vmax value of 1160 pmol/min per mg. In human liver microsomes prepared from poor metabolizers (UGT1A1*28/*28), significantly reduced trovafloxacin acyl-glucuronide formation activity was observed, indicating that UGT1A1 mainly, while other UGT members such as UGT1A3 and UGT1A9 partially, contributes to the glucuronidation of trovafloxacin.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Kyohei Sumida
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Kutsuno
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaya Sakamoto
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
49
|
Sane RS, Steinmann GG, Huang Q, Li Y, Podila L, Mease K, Olson S, Taub ME, Stern JO, Nehmiz G, Böcher WO, Asselah T, Tweedie D. Mechanisms underlying benign and reversible unconjugated hyperbilirubinemia observed with faldaprevir administration in hepatitis C virus patients. J Pharmacol Exp Ther 2014; 351:403-12. [PMID: 25204339 DOI: 10.1124/jpet.114.218081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Faldaprevir, an investigational agent for hepatitis C virus treatment, is well tolerated but associated with rapidly reversible, dose-dependent, clinically benign, unconjugated hyperbilirubinemia. Multidisciplinary preclinical and clinical studies were used to characterize mechanisms underlying this hyperbilirubinemia. In vitro, faldaprevir inhibited key processes involved in bilirubin clearance: UDP glucuronosyltransferase (UGT) 1A1 (UGT1A1) (IC50 0.45 µM), which conjugates bilirubin, and hepatic uptake and efflux transporters, organic anion-transporting polypeptide (OATP) 1B1 (IC50 0.57 µM), OATP1B3 (IC50 0.18 µM), and multidrug resistance-associated protein (MRP) 2 (IC50 6.2 µM), which transport bilirubin and its conjugates. In rat and human hepatocytes, uptake and biliary excretion of [(3)H]bilirubin and/or its glucuronides decreased on coincubation with faldaprevir. In monkeys, faldaprevir (≥20 mg/kg per day) caused reversible unconjugated hyperbilirubinemia, without hemolysis or hepatotoxicity. In clinical studies, faldaprevir-mediated hyperbilirubinemia was predominantly unconjugated, and levels of unconjugated bilirubin correlated with the UGT1A1*28 genotype. The reversible and dose-dependent nature of the clinical hyperbilirubinemia was consistent with competitive inhibition of bilirubin clearance by faldaprevir, and was not associated with liver toxicity or other adverse events. Overall, the reversible, unconjugated hyperbilirubinemia associated with faldaprevir may predominantly result from inhibition of bilirubin conjugation by UGT1A1, with inhibition of hepatic uptake of bilirubin also potentially playing a role. Since OATP1B1/1B3 are known to be involved in hepatic uptake of circulating bilirubin glucuronides, inhibition of OATP1B1/1B3 and MRP2 may underlie isolated increases in conjugated bilirubin. As such, faldaprevir-mediated hyperbilirubinemia is not associated with any liver injury or toxicity, and is considered to result from decreased bilirubin elimination due to a drug-bilirubin interaction.
Collapse
Affiliation(s)
- Rucha S Sane
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Gerhard G Steinmann
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Qihong Huang
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Yongmei Li
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Lalitha Podila
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Kirsten Mease
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Stephen Olson
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Mitchell E Taub
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Jerry O Stern
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Gerhard Nehmiz
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Wulf O Böcher
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Tarik Asselah
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Donald Tweedie
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| |
Collapse
|
50
|
Tonomura Y, Kato Y, Hanafusa H, Morikawa Y, Matsuyama K, Uehara T, Ueno M, Torii M. Diagnostic and predictive performance and standardized threshold of traditional biomarkers for drug-induced liver injury in rats. J Appl Toxicol 2014; 35:165-72. [PMID: 25186495 DOI: 10.1002/jat.3053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 02/05/2023]
Abstract
Traditional biomarkers such as alanine and aspartate aminotransferase (ALT, AST) and total bilirubin (TBIL) have been widely used for detecting drug-induced liver injury (DILI). Although the Food and Drug Administration (FDA) proposed standardized thresholds for human as Hy's law, those for animals have not been determined, and predictability of these biomarkers for future onset of hepatic lesions remains unclear. In this study, we investigated these diagnostic and predictive performance of 10 traditional biomarkers for liver injury by receiver-operating characteristic (ROC) curve, using a free-access database where 142 hepatotoxic or non-hepatotoxic compounds were administrated to male rats (n=5253). Standardization of each biomarker value was achieved by calculating the ratio to control mean value, and the thresholds were determined under the condition of permitting 5% false positive. Of these 10 biomarkers, AST showed the best diagnostic performance. Furthermore, ALT and TBIL also showed high performance under the situation of hepatocellular necrosis and bile duct injury, respectively. Additionally, the availability of the diagnostic thresholds in difference testing facility was confirmed by the application of these thresholds to in-house prepared dataset. Meanwhile, incorrect diagnosis by the thresholds was also observed. Regarding prediction, all 10 biomarkers showed insufficient performance for future onset of hepatic lesions. In conclusion, the standardized diagnostic thresholds enable consistent evaluation of traditional biomarkers among different facilities, whereas it was suggested that novel biomarker is required for more accurate diagnosis and prediction of DILI.
Collapse
Affiliation(s)
- Yutaka Tonomura
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | | | | | | | | | | | | | | |
Collapse
|