1
|
Izquierdo-Garcia D, Désogère P, Philip AL, Sosnovik DE, Catana C, Caravan P. Dosimetry of [ 64Cu]FBP8: a fibrin-binding PET probe. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.27.24309589. [PMID: 38978675 PMCID: PMC11230308 DOI: 10.1101/2024.06.27.24309589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Purpose This study presents the biodistribution, clearance and dosimetry estimates of [64Cu]Fibrin Binding Probe #8 ([64Cu]FBP8) in healthy subjects. Procedures This prospective study included 8 healthy subjects to evaluate biodistribution, safety and dosimetry estimates of [64Cu]FBP8, a fibrin-binding positron emission tomography (PET) probe. All subjects underwent up to 3 sessions of PET/Magnetic Resonance Imaging (PET/MRI) 0-2 hours, 4h and 24h post injection. Dosimetry estimates were obtained using OLINDA 2.2 software. Results Subjects were injected with ~400 MBq of [64Cu]FBP8. Subjects did not experience adverse effects due to the injection of the probe. [64Cu]FBP8 PET images demonstrated fast blood clearance (half-life = 67 min) and renal excretion of the probe, showing low background signal across the body. The organs with the higher doses were: the urinary bladder (0.075 vs. 0.091 mGy/MBq for males and females, respectively); the kidneys (0.050 vs. 0.056 mGy/MBq respectively); and the liver (0.027 vs. 0.035 mGy/MBq respectively). The combined mean effective dose for males and females was 0.016 ± 0.0029 mSv/MBq, lower than the widely used [18F]fluorodeoxyglucose ([18F]FDG, 0.020mSv/MBq). Conclusions This study demonstrates the following properties of the [64Cu]FBP8 probe: low dosimetry estimates; fast blood clearance and renal excretion; low background signal; and whole-body acquisition within 20 minutes in a single session. These properties provide the basis for [64Cu]FBP8 to be an excellent candidate for whole-body non-invasive imaging of fibrin, an important driver/feature in many cardiovascular, oncological and neurological conditions.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
- Bioengineering Department, Universidad Carlos III, Madrid, Spain
| | - Pauline Désogère
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| | - Anne L. Philip
- Cardiovascular Research Center, Cardiology Division, Dept. of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - David E. Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Cardiology Division, Dept. of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
2
|
Ramogida C, Price E. Transition and Post-Transition Radiometals for PET Imaging and Radiotherapy. Methods Mol Biol 2024; 2729:65-101. [PMID: 38006492 DOI: 10.1007/978-1-0716-3499-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Radiometals are an exciting class of radionuclides because of the large number of metallic elements available that have medically useful isotopes. To properly harness radiometals, they must be securely bound by chelators, which must be carefully matched to the radiometal ion to maximize radiolabeling performance and the stability of the resulting complex. This chapter focuses on practical aspects of radiometallation chemistry including chelator selection, radiolabeling procedures and conditions, radiolysis prevention, purification, quality control, requisite equipment and reagents, and useful tips.
Collapse
Affiliation(s)
- Caterina Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.
| | - Eric Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Csupász T, Lihi N, Fekete Z, Nagy A, Botár R, Forgács V, Szikra D, May N, Tircsó G, Kálmán FK. Exceptionally fast formation of stable rigidified cross-bridged complexes formed with Cu(II) isotopes for Molecular Imaging. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
64Cu is considered to be one of the most promising radioisotope in radiotheragnostics (combining therapeutics with diagnostics) because its positron emission is suitable for PET imaging while the combination of...
Collapse
|
4
|
Tosato M, Pelosato M, Franchi S, Isse AA, May NV, Zanoni G, Mancin F, Pastore P, Badocco D, Asti M, Di Marco V. When ring makes the difference: coordination properties of Cu 2+/Cu + complexes with sulfur-pendant polyazamacrocycles for radiopharmaceutical applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj01032a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Cu2+/+ complexes formed by sulfur-containing polyazamacrocycles were studied in aqueous solution using potentiometry, UV-Vis, NMR, EPR, and cyclic voltammetry.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Matteo Pelosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Nóra Veronica May
- Centre for Structural Science, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Giordano Zanoni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
5
|
Johnston HM, Pota K, Barnett MM, Kinsinger O, Braden P, Schwartz TM, Hoffer E, Sadagopan N, Nguyen N, Yu Y, Gonzalez P, Tircsó G, Wu H, Akkaraju G, Chumley MJ, Green KN. Enhancement of the Antioxidant Activity and Neurotherapeutic Features through Pyridol Addition to Tetraazamacrocyclic Molecules. Inorg Chem 2019; 58:16771-16784. [PMID: 31774280 PMCID: PMC7323501 DOI: 10.1021/acs.inorgchem.9b02932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's and other neurodegenerative diseases are chronic conditions affecting millions of individuals worldwide. Oxidative stress is a consistent component described in the development of many neurodegenerative diseases. Therefore, innovative strategies to develop drug candidates that overcome oxidative stress in the brain are needed. To target these challenges, a new, water-soluble 12-membered tetraaza macrocyclic pyridinophane L4 was designed and produced using a building-block approach. Potentiometric data show that the neutral species of L4 provides interesting zwitterionic behavior at physiological pH, akin to amino acids, and a nearly ideal isoelectric point of 7.3. The copper(II) complex of L4 was evaluated by X-ray diffraction and cyclic voltammetry to show the potential modes of antioxidant activity derived, which was also demonstrated by 2,2-diphenyl-1-picrylhydrazyl and coumarin carboxylic acid antioxidant assays. L4 was shown to have dramatically enhanced antioxidant activity and increased biological compatibility compared to parent molecules reported previously. L4 attenuated hydrogen peroxide (H2O2)-induced cell viability loss more efficiently than precursor molecules in the mouse hippocampal HT-22 cell model. L4 also showed potent (fM) level protection against H2O2 cell death in a BV2 microglial cell culture. Western blot studies indicated that L4 enhanced the cellular antioxidant defense capacity via Nrf2 signaling activation as well. Moreover, a low-cost analysis and high metabolic stability in phase I and II models were observed. These encouraging results show how the rational design of lead compounds is a suitable strategy for the development of treatments for neurodegenerative diseases where oxidative stress plays a substantial role.
Collapse
Affiliation(s)
- Hannah M. Johnston
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Madalyn M. Barnett
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Olivia Kinsinger
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Paige Braden
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M. Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Emily Hoffer
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Nishanth Sadagopan
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Yu Yu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
| | - Paulina Gonzalez
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Hongli Wu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
- North Texas Eye Research Institute, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Michael J. Chumley
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
6
|
Kumar RS, Antonisamy P, Almansour AI, Arumugam N, Al-thamili DM, Kumar RR, Kim HR, Kwon KB. Discovery of novel cage-like heterocyclic hybrids as anti-inflammatory agents through the inhibition of nitrite, PGE2 and TNF-α. Bioorg Chem 2019; 91:103180. [DOI: 10.1016/j.bioorg.2019.103180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
|
7
|
Abstract
Nuclear medicine is composed of two complementary areas, imaging and therapy. Positron emission tomography (PET) and single-photon imaging, including single-photon emission computed tomography (SPECT), comprise the imaging component of nuclear medicine. These areas are distinct in that they exploit different nuclear decay processes and also different imaging technologies. In PET, images are created from the 511 keV photons produced when the positron emitted by a radionuclide encounters an electron and is annihilated. In contrast, in single-photon imaging, images are created from the γ rays (and occasionally X-rays) directly emitted by the nucleus. Therapeutic nuclear medicine uses particulate radiation such as Auger or conversion electrons or β- or α particles. All three of these technologies are linked by the requirement that the radionuclide must be attached to a suitable vector that can deliver it to its target. It is imperative that the radionuclide remain attached to the vector before it is delivered to its target as well as after it reaches its target or else the resulting image (or therapeutic outcome) will not reflect the biological process of interest. Radiochemistry is at the core of this process, and radiometals offer radiopharmaceutical chemists a tremendous range of options with which to accomplish these goals. They also offer a wide range of options in terms of radionuclide half-lives and emission properties, providing the ability to carefully match the decay properties with the desired outcome. This Review provides an overview of some of the ways this can be accomplished as well as several historical examples of some of the limitations of earlier metalloradiopharmaceuticals and the ways that new technologies, primarily related to radionuclide production, have provided solutions to these problems.
Collapse
Affiliation(s)
- Eszter Boros
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Alan B Packard
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States.,Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
8
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
9
|
Ouadi A, Bekaert V, Receveur N, Thomas L, Lanza F, Marchand P, Gachet C, Mangin PH, Brasse D, Laquerriere P. Imaging thrombosis with 99mTc-labeled RAM.1-antibody in vivo. Nucl Med Biol 2018; 61:21-27. [PMID: 29625391 DOI: 10.1016/j.nucmedbio.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Platelets play a major role in thrombo-embolic diseases, notably by forming a thrombus that can ultimately occlude a vessel. This may provoke ischemic pathologies such as myocardial infarction, stroke or peripheral artery diseases, which represent the major causes of death worldwide. The aim of this study was to evaluate the specificity of radiolabeled Rat-Anti-Mouse antibody (RAM.1). METHODS We describe a method to detect platelets by using a RAM.1 coupled with the chelating agent hydrazinonicotinic acid (HYNIC) conjugated to 99mTc, for Single Photon Emission Computed Tomography (SPECT). To induce platelet accumulation at a site of interest, we used a mouse model of FeCl3 induced injury of the carotid artery. 90 min after i.v. injection of [99mTc][Tc(HYNIC)-RAM.1], biodistribution of the radiolabeled RAM.1 was assessed, SPECT imaging and histological analysis were performed on the mice that underwent FeCl3-induced vessel damage. RESULTS We demonstrated a quick and strong affinity of the radiolabeled RAM.1 for the platelet thrombus. Results clearly demonstrated the ability of this radioimmunoconjugate for detecting thrombi from 10 min post injection with an exceptional thrombi uptake. Using FeCl3, the median ratio between the thrombus and the background was 12.4 (range 9.3-42.3) as compared to 1.0 (range: 0.86-2.7) p < 0.05 when using 0.9% NaCl. CONCLUSION Thanks to the high sensitivity of SPECT, we provided evidence that [99mTc][Tc(HYNIC)-RAM.1] represents a powerful tool to detect localized platelet thrombi which could potentially be used in humans. Because of the relative low cost and high sensitivity, these results encourage further study like the detection of non-induced thrombus and further developments toward clinical application. This is further supported by the fact that RAM.1 recognizes human platelets.
Collapse
Affiliation(s)
- Ali Ouadi
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Virgile Bekaert
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Nicolas Receveur
- UMR-S949, Inserm, Strasbourg, F-67065, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg F-67065, France; Université de Strasbourg, FMTS, Strasbourg, F-67065, France
| | - Lionel Thomas
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - François Lanza
- UMR-S949, Inserm, Strasbourg, F-67065, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg F-67065, France; Université de Strasbourg, FMTS, Strasbourg, F-67065, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Christian Gachet
- UMR-S949, Inserm, Strasbourg, F-67065, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg F-67065, France; Université de Strasbourg, FMTS, Strasbourg, F-67065, France
| | - Pierre H Mangin
- UMR-S949, Inserm, Strasbourg, F-67065, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg F-67065, France; Université de Strasbourg, FMTS, Strasbourg, F-67065, France
| | - David Brasse
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | | |
Collapse
|
10
|
Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans 2018; 45:15702-15724. [PMID: 26865360 DOI: 10.1039/c5dt04706d] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key part of the development of metal based Positron Emission Tomography probes is the chelation of the radiometal. In this review the recent developments in the chelation of four positron emitting radiometals, 68Ga, 64Cu, 89Zr and 44Sc, are explored. The factors that effect the chelation of each radio metal and the ideal ligand system will be discussed with regards to high in vivo stability, complexation conditions, conjugation to targeting motifs and complexation kinetics. A series of cyclic, cross-bridged and acyclic ligands will be discussed, such as CP256 which forms stable complexes with 68Ga under mild conditions and PCB-TE2A which has been shown to form a highly stable complex with 64Cu. 89Zr and 44Sc have seen significant development in recent years with a number of chelates being applied to each metal - eight coordinate di-macrocyclic terephthalamide ligands were found to rapidly produce more stable complexes with 89Zr than the widely used DFO.
Collapse
Affiliation(s)
- Thomas W Price
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| | - John Greenman
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK.
| | - Graeme J Stasiuk
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| |
Collapse
|
11
|
Mansour N, Paquette M, Ait-Mohand S, Dumulon-Perreault V, Guérin B. Evaluation of a novel GRPR antagonist for prostate cancer PET imaging: [ 64 Cu]-DOTHA 2 -PEG-RM26. Nucl Med Biol 2018; 56:31-38. [DOI: 10.1016/j.nucmedbio.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/08/2023]
|
12
|
McInnes LE, Rudd SE, Donnelly PS. Copper, gallium and zirconium positron emission tomography imaging agents: The importance of metal ion speciation. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Gillet R, Roux A, Brandel J, Huclier-Markai S, Camerel F, Jeannin O, Nonat AM, Charbonnière LJ. A Bispidol Chelator with a Phosphonate Pendant Arm: Synthesis, Cu(II) Complexation, and 64Cu Labeling. Inorg Chem 2017; 56:11738-11752. [DOI: 10.1021/acs.inorgchem.7b01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raphaël Gillet
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Amandine Roux
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Jérémy Brandel
- Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sandrine Huclier-Markai
- GIP Arronax, 1 rue Aronnax, CS 10112, F-44817 Saint-Herblain, France
- Subatech Laboratory, UMR 6457, Ecole des Mines de Nantes, IN2P3/CNRS, Université de Nantes, 4 rue Alfred Kastler, F-44307 Nantes, France
| | - Franck Camerel
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Olivier Jeannin
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Aline M. Nonat
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Loïc J. Charbonnière
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
14
|
Mirra S, Strianese M, Pellecchia C. A Cyclam-Based Fluorescent Ligand as a Molecular Beacon for Cu2+
and H2
S Detection. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Silvia Mirra
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| |
Collapse
|
15
|
Maharani S, Vivek Kumar S, Almansour AI, Suresh Kumar R, Kandasamy A, Ranjith Kumar R. Synthesis of penta- and tetra-cyclic cage-like compounds and dispiro heterocycles through microwave-assisted solvent-free multi-component domino reactions. NEW J CHEM 2017. [DOI: 10.1039/c7nj01673e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Novel penta- and tetra-cyclic cage-like compounds and dispiro heterocycles were obtained as a result of a microwave-assisted three-component domino reaction.
Collapse
Affiliation(s)
- Seeni Maharani
- Department of Organic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Sundaravel Vivek Kumar
- Department of Organic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| | | | - Raju Suresh Kumar
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Anitha Kandasamy
- Department of Physics, School of Physics
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Raju Ranjith Kumar
- Department of Organic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| |
Collapse
|
16
|
Charron CL, Farnsworth AL, Roselt PD, Hicks RJ, Hutton CA. Recent developments in radiolabelled peptides for PET imaging of cancer. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Hilvano EGV, Yang G, Emnacen IA, Rybak-Akimova EV, Billones JB, Carrillo MCO, Noll BC, Organo VG. Synthesis and crystal structure of [2,7,12-trimethyl-3,7,11,17-tetra-aza-bicyclo-[11.3.1]hepta-deca-1(17),13,15-triene-κ(4) N]copper(II) bis-(perchlorate). Acta Crystallogr E Crystallogr Commun 2016; 72:1009-12. [PMID: 27555952 PMCID: PMC4992927 DOI: 10.1107/s2056989016009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022]
Abstract
The title copper(II) complex of a pyridine-containing macrocycle (PyMAC), [Cu(C16H28N4)](ClO4)2, has been prepared. The crystal structure reveals the Cu(II) atom to be octahedrally coordinated by a tetradentate aminopyridine macrocyclic ligand surrounding the metal cation in a square-planar geometry. Two weakly bound perchlorate counter-ions occupy the axial sites above and below the macrocyclic plane. The crystal studied was refined as a two-component pseudo-merohedral twin; the refined fractional contribution of the minor component is 38.77 (8).
Collapse
Affiliation(s)
- Edward Gabrielle V. Hilvano
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines, Manila 1000, Philippines
| | - Guang Yang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | - Inno A. Emnacen
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines, Manila 1000, Philippines
| | | | - Junie B. Billones
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines, Manila 1000, Philippines
| | - Maria Constancia O. Carrillo
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines, Manila 1000, Philippines
| | - Bruce C. Noll
- Bruker AXS Inc., 5465 E. Cheryl Parkway, Madison, WI 53711, USA
| | - Voltaire G. Organo
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines, Manila 1000, Philippines
| |
Collapse
|
18
|
Gai Y, Sun L, Hui W, Ouyang Q, Anderson CJ, Xiang G, Ma X, Zeng D. New Bifunctional Chelator p-SCN-PhPr-NE3TA for Copper-64: Synthesis, Peptidomimetic Conjugation, Radiolabeling, and Evaluation for PET Imaging. Inorg Chem 2016; 55:6892-901. [PMID: 27347690 DOI: 10.1021/acs.inorgchem.6b00395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifunctional chelators play an important role in developing metallic radionuclide-based radiopharmaceuticals. In this study, a new bifunctional ligand, p-SCN-PhPr-NE3TA, was synthesized and conjugated to a very late antigen-4 targeting peptidomimetic, LLP2A, for evaluating its application in (64)Cu-based positron emission tomography (PET) imaging. The new ligand exhibited strong selective coordination of Cu(II), leading to a robust Cu complex, even in the presence of 10-fold Fe(III). The LLP2A conjugate of p-SCN-PhPr-NE3TA was prepared and successfully labeled with (64)Cu under mild conditions. The conjugate (64)Cu-NE3TA-PEG4-LLP2A showed significantly higher specific activity, compared with (64)Cu-NOTA-PEG4-LLP2A, while maintaining comparable serum stability. Subsequent biodistribution studies and PET imaging in mice bearing B16F10 xenografts confirmed its favorable in vivo performance and high tumor uptake with low background, rendering p-SCN-PhPr-NE3TA a promising bifunctional chelator for (64)Cu-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Yongkang Gai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , 13 Hangkong Road, Wuhan 430030, China.,Department of Radiology, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Lingyi Sun
- Department of Radiology, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Wenqi Hui
- College of Pharmacy, The Third Military Medical University , Chongqing 400038, China
| | - Qin Ouyang
- College of Pharmacy, The Third Military Medical University , Chongqing 400038, China
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States.,Departments of Pharmacology & Chemical Biology and Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , 13 Hangkong Road, Wuhan 430030, China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , 13 Hangkong Road, Wuhan 430030, China
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
19
|
Le Fur M, Beyler M, Le Poul N, Lima LMP, Le Mest Y, Delgado R, Platas-Iglesias C, Patinec V, Tripier R. Improving the stability and inertness of Cu(ii) and Cu(i) complexes with methylthiazolyl ligands by tuning the macrocyclic structure. Dalton Trans 2016; 45:7406-20. [PMID: 27041505 DOI: 10.1039/c6dt00385k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A tacn based ligand bearing two methylthiazolyl arms (no2th) was synthesized with the aim to find ligands forming very stable and inert complexes with Cu(ii) and Cu(i) in aqueous medium for radiopharmaceutical applications. The no2th ligand was efficiently prepared following the orthoamide intermediate synthesis. The complexes with Cu(2+) and Zn(2+) were obtained and analyzed by X-ray diffraction. The [Cu(no2th)](2+) complex presents a pentacoordinated distorted square pyramidal coordination geometry, while the metal ion in [Zn(no2th)](2+) adopts a hexacoordinated distorted trigonal prismatic geometry involving the coordination of a perchlorate counter ion. The acid-base properties of no2th have been studied using potentiometric titrations, and the stability constants of Cu(2+) and Zn(2+) complexes were determined by potentiometric and UV-vis titrations using H4edta as a competitor ligand. The stability constant determined for the Cu(2+) complex is rather high (log KCuL = 20.77 and pCu = 17.15), and moreover no2th exhibits a high selectivity for copper(ii) in relation to zinc(ii). The kinetics of the copper(ii) complexation process is very fast even in acidic medium. In addition, the [Cu(no2th)](2+) complex was found to be inert under rather harsh conditions (up to 2 M HCl and 60 °C), displaying a very high half-life time of about 15 days in 2 M HCl at 90 °C. The electrochemical reduction of the copper(ii) complex in water leads to the reversible formation of a stable copper(i) species. Spectroscopic studies performed by NMR, UV-vis and EPR, assisted by theoretical calculations, show that the [Cu(no2th)](2+) complex presents a structure in solution similar to that observed in the solid state. When compared to its cyclam di-N-methylthiazolyl counterpart, the results reported in this paper unambiguously show that replacing the cyclam unit by a tacn moiety improves the stability and inertness of its Cu(ii) and Cu(i) complexes.
Collapse
Affiliation(s)
- Mariane Le Fur
- Université de Bretagne Occidentale, UMR-CNRS 6521, SFR ScInBioS, Faculté des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tang W, Zhen Z, Wang M, Wang H, Chuang YJ, Zhang W, Wang GD, Todd T, Cowger T, Chen H, Liu L, Li Z, Xie J. Red Blood Cell-Facilitated Photodynamic Therapy for Cancer Treatment. ADVANCED FUNCTIONAL MATERIALS 2016; 26:1757-1768. [PMID: 31749670 PMCID: PMC6867707 DOI: 10.1002/adfm.201504803] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment modality for cancer management. So far, most PDT studies have focused on delivery of photosensitizers to tumors. O2, another essential component of PDT, is not artificially delivered but taken from the biological milieu. However, cancer cells demand a large amount of O2 to sustain their growth and that often leads to low O2 levels in tumors. The PDT process may further potentiate the oxygen deficiency, and in turn, adversely affect the PDT efficiency. In the present study, a new technology called red blood cell (RBC)-facilitated PDT, or RBC-PDT, is introduced that can potentially solve the issue. As the name tells, RBC-PDT harnesses erythrocytes, an O2 transporter, as a carrier for photosensitizers. Because photosensitizers are adjacent to a carry-on O2 source, RBC-PDT can efficiently produce 1O2 even under low oxygen conditions. The treatment also benefits from the long circulation of RBCs, which ensures a high intraluminal concentration of photosensitizers during PDT and hence maximizes damage to tumor blood vessels. When tested in U87MG subcutaneous tumor models, RBC-PDT shows impressive tumor suppression (76.7%) that is attributable to the codelivery of O2 and photosensitizers. Overall, RBC-PDT is expected to find wide applications in modern oncology.
Collapse
Affiliation(s)
- Wei Tang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Zipeng Zhen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,
| | - Yen-Jun Chuang
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Geoffrey D Wang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Trever Todd
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Taku Cowger
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| |
Collapse
|
21
|
Rodríguez-Rodríguez A, Regueiro-Figueroa M, Esteban-Gómez D, Tripier R, Tircsó G, Kálmán FK, Bényei AC, Tóth I, Blas AD, Rodríguez-Blas T, Platas-Iglesias C. Complexation of Ln3+ Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties. Inorg Chem 2016; 55:2227-39. [DOI: 10.1021/acs.inorgchem.5b02627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, Cedex 3, France
| | - Martín Regueiro-Figueroa
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - David Esteban-Gómez
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, Cedex 3, France
| | - Gyula Tircsó
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
- Le Studium, Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| | | | | | | | - Andrés de Blas
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Teresa Rodríguez-Blas
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Carlos Platas-Iglesias
- Grupo QUICOOR,
Centro de Investigaciones Científicas Avanzadas (CICA) and
Departamento de Química Fundamental, Universidade da Coruña, Campus
da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| |
Collapse
|
22
|
Ramogida CF, Boros E, Patrick BO, Zeisler SK, Kumlin J, Adam MJ, Schaffer P, Orvig C. Evaluation of H2CHXdedpa, H2dedpa- and H2CHXdedpa-N,N′-propyl-2-NI ligands for 64Cu(ii) radiopharmaceuticals. Dalton Trans 2016; 45:13082-90. [DOI: 10.1039/c6dt00932h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hexadentate acyclic chelate H2CHXdedpa and related N,N′-alkylated ligands are radiolabeled with radioactive 64Cu(ii) under mild conditions forming kinetically inert complexes.
Collapse
Affiliation(s)
- Caterina F. Ramogida
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Eszter Boros
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Brian O. Patrick
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | | | | | | | - Chris Orvig
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
23
|
Burke BP, Seemann J, Archibald SJ. Advanced Chelator Design for Metal Complexes in Imaging Applications. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Bhatt N, Soni N, Ha YS, Lee W, Pandya DN, Sarkar S, Kim JY, Lee H, Kim SH, An GI, Yoo J. Phosphonate Pendant Armed Propylene Cross-Bridged Cyclam: Synthesis and Evaluation as a Chelator for Cu-64. ACS Med Chem Lett 2015; 6:1162-6. [PMID: 26617972 DOI: 10.1021/acsmedchemlett.5b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022] Open
Abstract
A propylene cross-bridged macrocyclic chelator with two phosphonate pendant arms (PCB-TE2P) was synthesized from cyclam. Various properties of the synthesized chelator, including Cu-complexation, Cu-complex stability, (64)Cu-radiolabeling, and in vivo behavior, were studied and compared with those of a previously reported propylene cross-bridged chelator (PCB-TE2A).
Collapse
Affiliation(s)
- Nikunj Bhatt
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Nisarg Soni
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Yeong Su Ha
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Woonghee Lee
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Darpan N. Pandya
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Swarbhanu Sarkar
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Jung Young Kim
- Molecular
Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Hochun Lee
- Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873, South Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea
| | - Gwang Il An
- Molecular
Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Jeongsoo Yoo
- Department
of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| |
Collapse
|
25
|
Malathi K, Kanchithalaivan S, Ranjith Kumar R, Almansour AI, Suresh Kumar R, Arumugam N. Multicomponent [3+2] cycloaddition strategy: stereoselective synthesis of novel polycyclic cage-like systems and dispiro compounds. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Dale AV, An GI, Pandya DN, Ha YS, Bhatt N, Soni N, Lee H, Ahn H, Sarkar S, Lee W, Huynh PT, Kim JY, Gwon MR, Kim SH, Park JG, Yoon YR, Yoo J. Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for 64Cu Radiotracers. Inorg Chem 2015; 54:8177-86. [DOI: 10.1021/acs.inorgchem.5b01386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ajit V. Dale
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Gwang Il An
- Molecular
Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Darpan N. Pandya
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Nikunj Bhatt
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Nisarg Soni
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Hochun Lee
- Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873, South Korea
| | - Heesu Ahn
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Woonghee Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| | - Jung Young Kim
- Molecular
Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, South Korea
| | - Mi-Ri Gwon
- Department
of Biomedical Science and Clinical Trial Center, BK21 PLUS, KNU Bio-Medical
Convergence Program, Kyungpook National University Graduate School and Hospital, Daegu 700-422, South Korea
| | - Sung Hong Kim
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 702-701, South Korea
| | - Jae Gyu Park
- Pohang Center for Evaluation of Biomaterials, Pohang Technopark Foundation, Gyeongbuk 790-834, South Korea
| | - Young-Ran Yoon
- Department
of Biomedical Science and Clinical Trial Center, BK21 PLUS, KNU Bio-Medical
Convergence Program, Kyungpook National University Graduate School and Hospital, Daegu 700-422, South Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, BK21 Plus KNU Biomedical
Convergence Program, Kyungpook National University, Daegu 700-422, South Korea
| |
Collapse
|
27
|
Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Naha PC, Cormode DP, Izquierdo-Garcia D, Catana C, Caravan P. Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats. Arterioscler Thromb Vasc Biol 2015; 35:2114-21. [PMID: 26272938 DOI: 10.1161/atvbaha.115.306055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Thrombosis is a leading cause of morbidity and mortality worldwide. Current diagnostic strategies rely on imaging modalities that are specific for distinct vascular territories, but a thrombus-specific whole-body imaging approach is still missing. Moreover, imaging techniques to assess thrombus composition are underdeveloped, although therapeutic strategies may benefit from such technology. Therefore, our goal was to test whether positron emission tomography (PET) with the fibrin-binding probe (64)Cu-FBP8 allows multisite thrombus detection and fibrin content estimation. APPROACH AND RESULTS Thrombosis was induced in Sprague-Dawley rats (n=32) by ferric chloride application on both carotid artery and femoral vein. (64)Cu-FBP8-PET/CT imaging was performed 1, 3, or 7 days after thrombosis to detect thrombus location and to evaluate age-dependent changes in target uptake. Ex vivo biodistribution, autoradiography, and histopathology were performed to validate imaging results. Arterial and venous thrombi were localized on fused PET/CT images with high accuracy (97.6%; 95% confidence interval, 92-100). A single whole-body PET/MR imaging session was sufficient to reveal the location of both arterial and venous thrombi after (64)Cu-FBP8 administration. PET imaging showed that probe uptake was greater in younger clots than in older ones for both arterial and venous thrombosis (P<0.0001). Quantitative histopathology revealed an age-dependent reduction of thrombus fibrin content (P<0.001), consistent with PET results. Biodistribution and autoradiography further confirmed the imaging findings. CONCLUSIONS We demonstrated that (64)Cu-FBP8-PET is a feasible approach for whole-body thrombus detection and that molecular imaging of fibrin can provide, noninvasively, insight into clot composition.
Collapse
Affiliation(s)
- Francesco Blasi
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Bruno L Oliveira
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Tyson A Rietz
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Nicholas J Rotile
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Pratap C Naha
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - David P Cormode
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - David Izquierdo-Garcia
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Ciprian Catana
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.)
| | - Peter Caravan
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown (F.B., B.L.O., T.A.R., N.J.R., D.I.-G., C.C., P.C.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (P.C.N., D.P.C.); and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston (P.C.).
| |
Collapse
|
28
|
Oliveira BL, Blasi F, Rietz TA, Rotile NJ, Day H, Caravan P. Multimodal Molecular Imaging Reveals High Target Uptake and Specificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats. J Nucl Med 2015; 56:1587-92. [PMID: 26251420 DOI: 10.2967/jnumed.115.160754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F PET probes for noninvasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and SPECT. In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in 2 animal models of arterial thrombosis. The specificity of the probes was further evaluated using a triple-isotope approach with multimodal SPECT/PET/CT imaging. METHODS Radiotracers were synthesized using a known fibrin-binding peptide conjugated to 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide (DOTA-MA), or a diethylenetriamine ligand (DETA-propanoic acid [PA]), followed by labeling with 68Ga (FBP14, 68Ga-NODAGA), 111In (FBP15, 111In-DOTA-MA), or 99mTc (FBP16, 99mTc(CO)3-DETA-PA), respectively. PET or SPECT imaging, biodistribution, pharmacokinetics, and metabolic stability were evaluated in rat models of mural and occlusive carotid artery thrombosis. In vivo target specificity was evaluated by comparing the distribution of the SPECT and PET probes with preformed 125I-labeled thrombi and with a nonbinding control probe using SPECT/PET/CT imaging. RESULTS All 3 radiotracers showed affinity similar to soluble fibrin fragment DD(E) (inhibition constant=0.53-0.83 μM). After the kidneys, the highest uptake of 68Ga-FBP14 and 111In-FBP15 was in the thrombus (1.0±0.2 percentage injected dose per gram), with low off-target accumulation. Both radiotracers underwent fast systemic elimination (half-life, 8-15 min) through the kidneys, which led to highly conspicuous thrombi on PET and SPECT images. 99mTc-FBP16 displayed low target uptake and distribution consistent with aggregation or degradation. Triple-isotope imaging experiments showed that both 68Ga-FBP14 and 111In-FBP15, but not the nonbinding derivative 64Cu-D-Cys-FBP8, detected the location of the 125I-labeled thrombus, confirming high target specificity. CONCLUSION 68Ga-FBP14 and 111In-FBP15 have high fibrin affinity and thrombus specificity and represent useful PET and SPECT probes for thrombus detection.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Francesco Blasi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Tyson A Rietz
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Nicholas J Rotile
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Helen Day
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Peter Caravan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts; and Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
29
|
Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Day H, Naha PC, Cormode DP, Izquierdo-Garcia D, Catana C, Caravan P. Radiation Dosimetry of the Fibrin-Binding Probe ⁶⁴Cu-FBP8 and Its Feasibility for PET Imaging of Deep Vein Thrombosis and Pulmonary Embolism in Rats. J Nucl Med 2015; 56:1088-93. [PMID: 25977464 DOI: 10.2967/jnumed.115.157982] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The diagnosis of deep venous thromboembolic disease is still challenging despite the progress of current thrombus imaging modalities and new diagnostic algorithms. We recently reported the high target uptake and thrombus imaging efficacy of the novel fibrin-specific PET probe (64)Cu-FBP8. Here, we tested the feasibility of (64)Cu-FBP8 PET to detect source thrombi and culprit emboli after deep vein thrombosis and pulmonary embolism (DVT-PE). To support clinical translation of (64)Cu-FBP8, we performed a human dosimetry estimation using time-dependent biodistribution in rats. METHODS Sprague-Dawley rats (n = 7) underwent ferric chloride application on the femoral vein to trigger thrombosis. Pulmonary embolism was induced 30 min or 2 d after DVT by intrajugular injection of a preformed blood clot labeled with (125)I-fibrinogen. PET imaging was performed to detect the clots, and SPECT was used to confirm in vivo the location of the pulmonary emboli. Ex vivo γ counting and histopathology were used to validate the imaging findings. Detailed biodistribution was performed in healthy rats (n = 30) at different time points after (64)Cu-FBP8 administration to estimate human radiation dosimetry. Longitudinal whole-body PET/MR imaging (n = 2) was performed after (64)Cu-FBP8 administration to further assess radioactivity clearance. RESULTS (64)Cu-FBP8 PET imaging detected the location of lung emboli and venous thrombi after DVT-PE, revealing significant differences in uptake between target and background tissues (P < 0.001). In vivo SPECT imaging and ex vivo γ counting confirmed the location of the lung emboli. PET quantification of the venous thrombi revealed that probe uptake was greater in younger clots than in older ones, a result confirmed by ex vivo analyses (P < 0.001). Histopathology revealed an age-dependent reduction of thrombus fibrin content (P = 0.006), further supporting the imaging findings. Biodistribution and whole-body PET/MR imaging showed a rapid, primarily renal, body clearance of (64)Cu-FBP8. The effective dose was 0.021 mSv/MBq for males and 0.027 mSv/MBq for females, supporting the feasibility of using (64)Cu-FBP8 in human trials. CONCLUSION We showed that (64)Cu-FBP8 PET is a feasible approach to image DVT-PE and that radiogenic adverse health effects should not limit the clinical translation of (64)Cu-FBP8.
Collapse
Affiliation(s)
- Francesco Blasi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Bruno L Oliveira
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Tyson A Rietz
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Nicholas J Rotile
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Helen Day
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David Izquierdo-Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Peter Caravan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
30
|
Wu J, Wang Y, Wang Y, Zhao M, Zhang X, Gui L, Zhao S, Zhu H, Zhao J, Peng S. Cu(2+)-RGDFRGDS: exploring the mechanism and high efficacy of the nanoparticle in antithrombotic therapy. Int J Nanomedicine 2015; 10:2925-38. [PMID: 25931819 PMCID: PMC4404989 DOI: 10.2147/ijn.s76691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thrombosis disease has been the leading cause of morbidity and mortality worldwide. In the discovery of antithrombotic agents, three complexes of Cu2+ and repetitive arginine-glycine-aspartic acid (RGD) sequences, Cu(II)-Arg-Gly-Asp-Ser-Arg-Gly-Asp-Ser (Cu[II]-4a), Cu(II)-Arg-Gly-Asp-Val-Arg-Gly-Asp-Val (Cu[II]-4b), and Cu(II)-Arg-Gly-Asp-Phe-Arg-Gly-Asp-Phe (Cu[II]-4c), were previously reported, of which Cu(II)-4a and Cu(II)-4c possessed the highest in vitro and in vivo activity, respectively. Transmission electron microscopy (TEM) images visualized that Cu(II)-4a and Cu(II)-4c formed nanoaggregates and nanoparticles, respectively. However, the details of the formation of the nanospecies complexes and of the mechanism for inhibiting thrombosis remain to be clarified. For this purpose, this study designed a novel complex of Cu(II) and the RGD octapeptide, Arg-Gly-Asp-Phe-Arg-Gly-Asp-Ser (RGDFRGDS), consisting of Arg-Gly-Asp-Phe of Cu(II)-4c and Arg-Gly-Asp-Ser of Cu(II)-4a, to colligate their biological and nanostructural benefits. In contrast with Cu(II)-4a, -4b, and -4c, Cu(II)-RGDFRGDS (Cu2+-FS) had high antiplatelet and antithrombotic activities, with the formed nanoparticles having a porous surface. Additionally, this paper evidenced the dimer had the basic structural unit of Cu2+-FS in water, theoretically simulated the formation of Cu2+-FS nanoparticles, and identified that Cu2+-FS activity in decreasing glycoprotein IIb/IIIa, P-selectin, and IL-8 was responsible for the antithrombotic action. Finally, adherence onto the surface and entry into the cytoplasm were considered the steps of a two-step model for the blocking of platelet activation by Cu2+-FS nanoparticles. Findings indicated that the antiplatelet aggregation activity of Cu2+-FS was 10–52 times higher than that of RGDFRGDS, while the effective dose for antithrombotic action was 5,000 times lower than that of RGDFRGDS.
Collapse
Affiliation(s)
- Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China ; Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Lin Gui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Haimei Zhu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jinghua Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
31
|
Roux A, Nonat AM, Brandel J, Hubscher-Bruder V, Charbonnière LJ. Kinetically Inert Bispidol-Based Cu(II) Chelate for Potential Application to 64/67Cu Nuclear Medicine and Diagnosis. Inorg Chem 2015; 54:4431-44. [DOI: 10.1021/acs.inorgchem.5b00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Amandine Roux
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Aline M. Nonat
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Jérémy Brandel
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Véronique Hubscher-Bruder
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Loïc J. Charbonnière
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
32
|
Ramogida CF, Cawthray JF, Boros E, Ferreira CL, Patrick BO, Adam MJ, Orvig C. H2CHXdedpa and H4CHXoctapa—Chiral Acyclic Chelating Ligands for 67/68Ga and 111In Radiopharmaceuticals. Inorg Chem 2015; 54:2017-31. [DOI: 10.1021/ic502942a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Caterina F. Ramogida
- Medicinal Inorganic
Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Jacqueline F. Cawthray
- Medicinal Inorganic
Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eszter Boros
- Medicinal Inorganic
Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Cara L. Ferreira
- Nordion, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Brian O. Patrick
- Medicinal Inorganic
Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael J. Adam
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Chris Orvig
- Medicinal Inorganic
Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
33
|
Brasse D, Nonat A. Radiometals: towards a new success story in nuclear imaging? Dalton Trans 2015; 44:4845-58. [DOI: 10.1039/c4dt02911a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of radiometal isotopes in positron emission tomography: a new success story in nuclear imaging?
Collapse
Affiliation(s)
- David Brasse
- Université de Strasbourg
- 67037 Strasbourg
- France
- CNRS
- UMR7178
| | - Aline Nonat
- Université de Strasbourg
- 67087 Strasbourg
- France
- CNRS
- UMR7178
| |
Collapse
|
34
|
MATSUI C, OKAWARA T, NAGAMURA T, TAKEHARA K. Crystal Structure of Bis(acetone-<i>κ</i><i>O</i>)-1,4,8,11-tetraazacyclotetradecane Copper(II) Ditetraphenylborate Acetone Disolvate. X-RAY STRUCTURE ANALYSIS ONLINE 2015. [DOI: 10.2116/xraystruct.31.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Chihiro MATSUI
- Materials Science and Chemical Engineering Advanced Course, National Institute of Technology, Kitakyushu College
| | - Toru OKAWARA
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College
| | - Toshihiko NAGAMURA
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College
| | - Kenji TAKEHARA
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College
| |
Collapse
|
35
|
Ait-Mohand S, Denis C, Tremblay G, Paquette M, Guérin B. Development of Bifunctional Chelates Bearing Hydroxamate Arms for Highly Efficient 64Cu Radiolabeling. Org Lett 2014; 16:4512-5. [DOI: 10.1021/ol5020575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Samia Ait-Mohand
- Department
of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th
North Avenue Sherbrooke, Quebec J1H 5N4, Canada
| | - Céline Denis
- Department
of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th
North Avenue Sherbrooke, Quebec J1H 5N4, Canada
| | - Geneviève Tremblay
- Department
of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th
North Avenue Sherbrooke, Quebec J1H 5N4, Canada
| | - Michel Paquette
- Department
of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th
North Avenue Sherbrooke, Quebec J1H 5N4, Canada
| | - Brigitte Guérin
- Department
of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12th
North Avenue Sherbrooke, Quebec J1H 5N4, Canada
- Centre d’imagerie moléculaire de Sherbrooke (CIMS), 3001 12th North Avenue Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
36
|
Ay I, Blasi F, Rietz TA, Rotile NJ, Kura S, Brownell AL, Day H, Oliveira BL, Looby RJ, Caravan P. In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe. Circ Cardiovasc Imaging 2014; 7:697-705. [PMID: 24777937 DOI: 10.1161/circimaging.113.001806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fibrin is a major component of arterial and venous thrombi and represents an ideal candidate for molecular imaging of thrombosis. Here, we describe imaging properties and target uptake of a new fibrin-specific positron emission tomographic probe for thrombus detection and therapy monitoring in 2 rat thrombosis models. METHODS AND RESULTS The fibrin-binding probe FBP7 was synthesized by conjugation of a known short cyclic peptide to a cross-bridged chelator (CB-TE2A), followed by labeling with copper-64. Adult male Wistar rats (n=26) underwent either carotid crush injury (mural thrombosis model) or embolic stroke (occlusive thrombosis model) followed by recombinant tissue-type plasminogen activator treatment (10 mg/kg, IV). FBP7 detected thrombus location in both animal models with a high positron emission tomographic target-to-background ratio that increased over time (>5-fold at 30-90 minutes, >15-fold at 240-285 minutes). In the carotid crush injury animals, biodistribution analysis confirmed high probe uptake in the thrombotic artery (≈0.5%ID/g; >5-fold greater than blood and other tissues of the head and thorax). Similar results were obtained from ex vivo autoradiography of the ipsilateral versus contralateral carotid arteries. In embolic stroke animals, positron emission tomographic-computed tomographic imaging localized the clot in the internal carotid/middle cerebral artery segment of all rats. Time-dependent reduction of activity at the level of the thrombus was detected in recombinant tissue-type plasminogen activator-treated rats but not in vehicle-injected animals. Brain autoradiography confirmed clot dissolution in recombinant tissue-type plasminogen activator-treated animals, but enduring high thrombus activity in control rats. CONCLUSIONS We demonstrated that FBP7 is suitable for molecular imaging of thrombosis and thrombolysis in vivo and represents a promising candidate for bench-to-bedside translation.
Collapse
Affiliation(s)
- Ilknur Ay
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Francesco Blasi
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Tyson A Rietz
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Nicholas J Rotile
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Sreekanth Kura
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Anna Liisa Brownell
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Helen Day
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Bruno L Oliveira
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Richard J Looby
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Peter Caravan
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.
| |
Collapse
|
37
|
Lima LMP, Halime Z, Marion R, Camus N, Delgado R, Platas-Iglesias C, Tripier R. Monopicolinate Cross-Bridged Cyclam Combining Very Fast Complexation with Very High Stability and Inertness of Its Copper(II) Complex. Inorg Chem 2014; 53:5269-79. [DOI: 10.1021/ic500491c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luís M. P. Lima
- Instituto
de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Zakaria Halime
- Université
de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Ronan Marion
- Université
de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Nathalie Camus
- Université
de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Rita Delgado
- Instituto
de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- Université
de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| |
Collapse
|