1
|
Jan A, Sofi S, Jan N, Mir MA. An update on cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 2025:1-21. [PMID: 39936282 DOI: 10.1080/14796694.2025.2461443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) presents a formidable global health challenge, marked by its aggressive behavior and significant treatment resistance. This subtype, devoid of estrogen, progesterone, and HER2 receptors, largely relies on breast cancer stem cells (BCSCs) for its progression, metastasis, and recurrence. BCSCs, characterized by their self-renewal capacity and resistance to conventional therapies, exploit key surface markers and critical signaling pathways like Wnt, Hedgehog, Notch, TGF-β, PI3K/AKT/mTOR and Hippo-YAP/TAZ to thrive. Their adaptability is underscored by mechanisms including drug efflux and enhanced DNA repair, contributing to poor prognosis and high recurrence rates. The tumor microenvironment (TME) further facilitates BCSC survival through complex interactions with stromal and immune cells. Emerging therapeutic strategies targeting BCSCs - ranging from immunotherapy and nanoparticle-based drug delivery systems to gene-editing technologies - aim to disrupt these resistant cells. Additionally, innovative approaches focusing on exosome-mediated signaling and metabolic reprogramming show promise in overcoming chemoresistance. By elucidating the distinct characteristics of BCSCs and their role in TNBC, researchers are paving the way for novel treatments that may effectively eradicate these resilient cells, mitigate metastasis, and ultimately improve patient outcomes. This review highlights the urgent need for targeted strategies that address the unique biology of BCSCs in the pursuit of more effective therapeutic interventions for TNBC.
Collapse
Affiliation(s)
- Asma Jan
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shazia Sofi
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Nusrat Jan
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Manzoor Ahmad Mir
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
2
|
Izadiyan Z, Misran M, Kalantari K, Webster TJ, Kia P, Basrowi NA, Rasouli E, Shameli K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int J Nanomedicine 2025; 20:1213-1262. [PMID: 39911259 PMCID: PMC11794392 DOI: 10.2147/ijn.s488961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Liposomal nanomedicines have emerged as a pivotal approach for the treatment of various diseases, notably cancer and infectious diseases. This manuscript provides an in-depth review of recent advancements in liposomal formulations, highlighting their composition, targeted delivery strategies, and mechanisms of action. We explore the evolution of liposomal products currently in clinical trials, emphasizing their potential in addressing diverse medical challenges. The integration of immunotherapeutic agents within liposomes marks a paradigm shift, enabling the design of 'immuno-modulatory hubs' capable of orchestrating precise immune responses while facilitating theranostic applications. The recent COVID-19 pandemic has accelerated research in liposomal-based vaccines and antiviral therapies, underscoring the need for improved delivery mechanisms to overcome challenges like rapid clearance and organ toxicity. Furthermore, we discuss the potential of "smart" liposomes, which can respond to specific disease microenvironments, enhancing treatment efficacy and precision. The integration of artificial intelligence and machine learning in optimizing liposomal designs promises to revolutionize personalized medicine, paving the way for innovative strategies in disease detection and therapeutic interventions. This comprehensive review underscores the significance of ongoing research in liposomal technologies, with implications for future clinical applications and enhanced patient outcomes.
Collapse
Affiliation(s)
- Zahra Izadiyan
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Biomedical Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- School of Engineering, Saveetha University, Chennai, India
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Elisa Rasouli
- Department of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Li F, Li Z, Wei C, Xu L, Liang Y, Yan J, Li Y, He B, Sun C. Application of hydrogels for targeting cancer stem cells in cancer treatment. Biomed Pharmacother 2024; 180:117486. [PMID: 39321506 DOI: 10.1016/j.biopha.2024.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cancer stem cells (CSCs) are a major hindrance to clinical cancer treatment. Owing to their high tumorigenic and metastatic potential, CSCs are vital in malignant tumor initiation, growth, metastasis, and therapeutic resistance, leading to tumorigenesis and recurrence. Compared with normal tumor cells, CSCs express high levels of surface markers (CD44, CD90, CD133, etc.) and activate specific signaling pathways (Wnt/β-catenin, Notch, and Hedgehog). Although Current drug delivery systems (DDS) precisely target CSCs, the heterogeneity and multidrug resistance of CSCs impede CSC isolation and screening. Conversely, hydrogel DDSs exhibit good biocompatibility and high drug delivery efficiency. Hydrogels are three-dimensional (3D) spatial structures for drug encapsulation that facilitate the controlled release of bioactive molecules. Hence, hydrogels can be loaded with drugs to precisely target CSCs. Their 3D structure can also culture non-CSCs and facilitate their transformation into CSCs. for identification and isolation. Given that their elastic modulus and stiffness characteristics reflect those of the cellular microenvironment, hydrogels can simulate extracellular matrix pathways and markers to regulate CSCs, disrupting the equilibrium between CSC and non-CSC transformation. This article reviews the CSC microenvironment, metabolism, signaling pathway, and surface markers. Additionally, we summarize the existing CSC targeting strategies and explore the application of hydrogels for CSC screening and treatment. Finally, we discuss potential advances in CSC research that may lead to curative measures for tumors through targeted and precise attacks on CSCs.
Collapse
Affiliation(s)
- Fashun Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chong Sun
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
4
|
Carvalho AM, Greene MK, Smyth P, Mutch A, McLaughlin KM, Cairns LV, Mills KI, McCloskey KD, Scott CJ. Development of CD33-Targeted Dual Drug-Loaded Nanoparticles for the Treatment of Pediatric Acute Myeloid Leukemia. Biomacromolecules 2024; 25:6503-6514. [PMID: 39235263 PMCID: PMC11480974 DOI: 10.1021/acs.biomac.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Paediatric acute myeloid leukemia (AML) is a heterogeneous hematological malignancy still heavily reliant on traditional chemotherapeutic approaches. Combination treatments have shown to be a superior approach, but their success is often hindered by side effects and different drugs' pharmacokinetics. Here, we investigated ABT-737 and Purvalanol A as a potential drug pairing for pediatric AML and described the development of CD33-targeted polymeric nanoparticles (NPs) to enable their simultaneous targeted codelivery. Separate drug encapsulation within poly(lactic-co-glycolic acid) (PLGA) NPs was optimized prior to coencapsulation of both drugs at a synergistic ratio in PEGylated PLGA NPs. The therapeutic effects of formulations were evaluated in a panel of pediatric AML cells, and dual drug-loaded NPs (dual NPs) demonstrated significantly enhanced apoptotic cell death. Moreover, conjugation to gemtuzumab resulted in improved NP binding and internalization in CD33-positive cells. Finally, CD33-targeted dual-loaded NPs showed enhanced cytotoxicity to CD33-positive AML cells via CD33-mediated targeted drug delivery.
Collapse
Affiliation(s)
- Ana M. Carvalho
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Michelle K. Greene
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Peter Smyth
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Alexander Mutch
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Kirsty M. McLaughlin
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Lauren V. Cairns
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Ken I. Mills
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Karen D. McCloskey
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| | - Christopher J. Scott
- The Patrick G Johnston Centre
for Cancer Research, School of Medicine, Dentistry and Biomedical
Sciences, Queen’s University Belfast, Belfast BT9 7AE, U.K.
| |
Collapse
|
5
|
Alcala S, Serralta San Martin G, Muñoz-Fernández de Legaria M, Moreno-Rubio J, Salinas S, López-Gil JC, Rojo López JA, Martínez Alegre J, Cortes Bandy DA, Zambrana F, Jiménez-Gordo AM, Casado E, López-Gómez M, Sainz B. Autofluorescent Cancer Stem Cells: Potential Biomarker to Predict Recurrence in Resected Colorectal Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2575-2588. [PMID: 39225547 PMCID: PMC11445700 DOI: 10.1158/2767-9764.crc-24-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cancer stem cells (CSC) in colorectal cancer drive intratumoral heterogeneity and distant metastases. Previous research from our group showed that CSCs can be easily detected by autofluorescence (AF). The aim of the present study was to evaluate the potential role of AF CSCs as a prognostic biomarker for colorectal cancer relapse. Seventy-five freshly resected tumors were analyzed by flow cytometry. AF was categorized as high (H-AF) or low, and the results were correlated with histologic features [grade of differentiation, presence of metastases in lymph nodes (LN), perivascular and lymphovascular invasion] and clinical variables (time to relapse and overall survival). Nineteen of the 75 (25.3%) patients experienced relapse (local or distant); of these 19 patients, 13 showed positive LNs and 6 had H-AF. Of note, four of them died before 5 years. Although patients with H-AF CSC percentages in the global population experienced 1.5 times increased relapse [HR, 1.47; 95% confidence interval (0.60-3.63)], patients with H-AF CSC percentages and LN metastases had the highest risk of relapse [HR, 7.92; P < 0.004; 95% confidence interval (1.97-31.82)]. These data support AF as an accurate and feasible marker to identify CSCs in resected colorectal cancer. A strong statistical association between H-AF CSCs and the risk of relapse was observed, particularly in patients with positive LNs, suggesting that H-AF patients might benefit from adjuvant chemotherapy regimens and intensive surveillance due to their high propensity to experience disease recurrence. Significance: AF has been proven to be an accurate biomarker for CSC identification; however, to date, their role as a prognostic factor after resection of colorectal cancer tumors has not been investigated. Our results show that determining the presence of AF CSCs after tumor resection has prognostic value and represents a potentially important tool for the management of patients with colorectal cancer.
Collapse
Affiliation(s)
- Sonia Alcala
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Gonzalo Serralta San Martin
- Department of Internal Medicine, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Universidad Europea de Madrid, Madrid, Spain.
| | | | - Juan Moreno-Rubio
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain.
| | - Silvia Salinas
- Department of Pathology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
| | - Juan Carlos López-Gil
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - José Alberto Rojo López
- Department of General Surgery, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
| | - Javier Martínez Alegre
- Universidad Europea de Madrid, Madrid, Spain.
- Department of General Surgery, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
| | | | - Francisco Zambrana
- Universidad Europea de Madrid, Madrid, Spain.
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain.
| | - Ana-María Jiménez-Gordo
- Universidad Europea de Madrid, Madrid, Spain.
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain.
| | - Enrique Casado
- Universidad Europea de Madrid, Madrid, Spain.
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain.
| | - Miriam López-Gómez
- Universidad Europea de Madrid, Madrid, Spain.
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
| | - Bruno Sainz
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain.
| |
Collapse
|
6
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Ali K, Nabeel M, Mohsin F, Iqtedar M, Islam M, Rasool MF, Hashmi FK, Hussain SA, Saeed H. Recent developments in targeting breast cancer stem cells (BCSCs): a descriptive review of therapeutic strategies and emerging therapies. Med Oncol 2024; 41:112. [PMID: 38592510 DOI: 10.1007/s12032-024-02347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Despite recent advancements in the diagnosis and treatment of breast cancer (BC), patient outcomes in terms of survival, recurrence, and disease progression remain suboptimal. A significant factor contributing to these challenges is the cellular heterogeneity within BC, particularly the presence of breast cancer stem cells (BCSCs). These cells are thought to serve as the clonogenic nexus for new tumor growth, owing to their hierarchical organization within the tumor. This descriptive review focuses on the evolving strategies to target BCSCs, which have become a pivotal aspect of therapeutic development. We explore a variety of approaches, including targeting specific tumor surface markers (CD133 and CD44), transporters, heat shock proteins, and critical signaling pathways like Notch, Akt, Hedgehog, KLF4, and Wnt/β-catenin. Additionally, we discuss the modulation of the tumor microenvironment through the CXCR-12/CXCR4 axis, manipulation of pH levels, and targeting hypoxia-inducible factors, vascular endothelial growth factor, and CXCR1/2 receptors. Further, this review focuses on the roles of microRNA expression, strategies to induce apoptosis and differentiation in BCSCs, dietary interventions, dendritic cell vaccination, oncolytic viruses, nanotechnology, immunotherapy, and gene therapy. We particularly focused on studies reporting identification of BCSCs, their unique properties and the efficacy of various therapeutic modalities in targeting these cells. By dissecting these approaches, we aim to provide insights into the complex landscape of BC treatment and the potential pathways for improving patient outcomes through targeted BCSC therapies.
Collapse
Affiliation(s)
- Khubaib Ali
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Nabeel
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Fatima Mohsin
- Department of Biological Sciences, KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Bio-Technology, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Muhammad Islam
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Furqan K Hashmi
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Hamid Saeed
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
| |
Collapse
|
8
|
Abed A, Greene MK, Alsa’d AA, Lees A, Hindley A, Longley DB, McDade SS, Scott CJ. Nanoencapsulation of MDM2 Inhibitor RG7388 and Class-I HDAC Inhibitor Entinostat Enhances their Therapeutic Potential Through Synergistic Antitumor Effects and Reduction of Systemic Toxicity. Mol Pharm 2024; 21:1246-1255. [PMID: 38334409 PMCID: PMC10915795 DOI: 10.1021/acs.molpharmaceut.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Inhibitors of the p53-MDM2 interaction such as RG7388 have been developed to exploit latent tumor suppressive properties in p53 in 50% of tumors in which p53 is wild-type. However, these agents for the most part activate cell cycle arrest rather than death, and high doses in patients elicit on-target dose-limiting neutropenia. Recent work from our group indicates that combination of p53-MDM2 inhibitors with the class-I HDAC inhibitor Entinostat (which itself has dose-limiting toxicity issues) has the potential to significantly augment cell death in p53 wild-type colorectal cancer cells. We investigated whether coencapsulation of RG7388 and Entinostat within polymeric nanoparticles (NPs) could overcome efficacy and toxicity limitations of this drug combination. Combinations of RG7388 and Entinostat across a range of different molar ratios resulted in synergistic increases in cell death when delivered in both free drug and nanoencapsulated formats in all colorectal cell lines tested. Importantly, we also explored the in vivo impact of the drug combination on murine blood leukocytes, showing that the leukopenia induced by the free drugs could be significantly mitigated by nanoencapsulation. Taken together, this study demonstrates that formulating these agents within a single nanoparticle delivery platform may provide clinical utility beyond use as nonencapsulated agents.
Collapse
Affiliation(s)
- Anas Abed
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Pharmacological
and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19111, Jordan
| | - Michelle K. Greene
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Alhareth A. Alsa’d
- Pharmacological
and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19111, Jordan
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Andrea Lees
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Andrew Hindley
- Clinical
Haematology, Belfast City Hospital, 97 Lisburn Road, Belfast, BT9 7AB, United Kingdom
| | - Daniel B Longley
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Simon S McDade
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Christopher J. Scott
- The
Patrick G Johnston Centre for Cancer Research, School of Medicine,
Dentistry and Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
9
|
Basu SM, Chauhan M, Giri J. pH-Responsive Polypropylene Sulfide Magnetic Nanocarrier-Mediated Chemo-Hyperthermia Kills Breast Cancer Stem Cells by Long-Term Reversal of Multidrug Resistance and Chemotherapy Resensitization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58151-58165. [PMID: 38063494 DOI: 10.1021/acsami.3c12303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Cancer stem cells (CSCs) present a formidable challenge in cancer treatment due to their inherent resistance to chemotherapy, primarily driven by the overexpression of ABC transporters and multidrug resistance (MDR). Despite extensive research on pharmacological small-molecule inhibitors, effectively managing MDR and improving chemotherapeutic outcomes remain elusive. On the other hand, magnetic hyperthermia (MHT) holds great promise as a cancer therapeutic, but there is limited research on its potential to reverse MDR in breast CSCs and effectively eliminate CSCs through combined chemo-hyperthermia. To address these gaps, we developed tumor microenvironment-sensitive, drug-loaded poly(propylene sulfide) (PPS)-coated magnetic nanoparticles (PPS-MnFe). These nanoparticles were employed to investigate hyperthermia sensitivity and MDR reversion in breast CSCs, comparing their performance to that of small-molecule inhibitors. Additionally, we explored the efficacy of combined chemo-hyperthermia in killing CSCs. CSC-enriched breast cancer cells were subjected to low-dose MHT at 42 °C for 30 min and then treated with the chemical MDR inhibitor salinomycin (SAL). The effectiveness of each treatment in inhibiting MDR was assessed by measuring the efflux of the MDR substrate, rhodamine 123 (R123) dye. Notably, MHT induced a prolonged reversal of MDR activity compared with SAL treatment alone. After successfully inhibiting MDR, the breast CSCs were exposed to chemotherapy using paclitaxel to trigger synergistic cell death. The combination of MHT and chemotherapy demonstrated remarkable reductions in stemness properties, MDR reversal, and the effective eradication of breast CSCs in this innovative dual-modality approach.
Collapse
Affiliation(s)
- Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| |
Collapse
|
10
|
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (Beijing) 2023; 4:e291. [PMID: 37337579 PMCID: PMC10276889 DOI: 10.1002/mco2.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Regeneration is a complex process affected by many elements independent or combined, including inflammation, proliferation, and tissue remodeling. Stem cells is a class of primitive cells with the potentiality of differentiation, regenerate with self-replication, multidirectional differentiation, and immunomodulatory functions. Stem cells and their cytokines not only inextricably linked to the regeneration of ectodermal and skin tissues, but also can be used for the treatment of a variety of chronic wounds. Stem cells can produce exosomes in a paracrine manner. Stem cell exosomes play an important role in tissue regeneration, repair, and accelerated wound healing, the biological properties of which are similar with stem cells, while stem cell exosomes are safer and more effective. Skin and bone tissues are critical organs in the body, which are essential for sustaining life activities. The weak repairing ability leads a pronounced impact on the quality of life of patients, which could be alleviated by stem cell exosomes treatment. However, there are obstacles that stem cells and stem cells exosomes trough skin for improved bioavailability. This paper summarizes the applications and mechanisms of stem cells and stem cells exosomes for skin and bone healing. We also propose new ways of utilizing stem cells and their exosomes through different nanoformulations, liposomes and nanoliposomes, polymer micelles, microspheres, hydrogels, and scaffold microneedles, to improve their use in tissue healing and regeneration.
Collapse
Affiliation(s)
- Ye Jin
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Shuangyang Li
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Qixuan Yu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Tianli Chen
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Da Liu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| |
Collapse
|
11
|
Anees M, Mehrotra N, Tiwari S, Kumar D, Kharbanda S, Singh H. Polylactic acid based biodegradable hybrid block copolymeric nanoparticle mediated co-delivery of salinomycin and doxorubicin for cancer therapy. Int J Pharm 2023; 635:122779. [PMID: 36842520 DOI: 10.1016/j.ijpharm.2023.122779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Existence of cancer stem cells (CSCs) are primarily responsible for chemoresistance, cancer reoccurrence and treatment failure in cancer patients. Eliminating CSCs along with bulk tumor is a necessity to achieve complete cancer inhibition. Salinomycin (SAL) has potential to specifically target and kill CSCs through blocking their multiple pathways simultaneously. SAL has also been reported to improve anti-cancer efficacy of numerous chemo-based drugs when used in combination therapy. However, clinical use of SAL is restricted due to its high off targeted toxicity. Herein, we have developed a PLA based hybrid block copolymer for concomitant delivery of SAL and doxorubicin (DOX) with an aim to reduce their adverse side effects and enhance the therapeutic efficacy of the treatment. Designed PLA based nanoplatform showed high encapsulation and sustained release profile for both the drugs. Cytotoxicity evaluation on cancer cell lines confirmed the synergistic effect of SAL:DOX co-loaded NPs. Additionally, prepared SAL NPs were also found to be highly effective against chemo-resistant cancer cells and CSCs derived from cancer patient. Most importantly, encapsulation of SAL in PLA NPs improved its pharmacokinetics and biodistribution profile. Consequently, undesired toxicity with SAL NPs was significantly reduced which in-turn increased the dose tolerability in mice as compared to free SAL. Treatment of EAC tumor bearing mice with SAL:DOX co-loaded NPs resulted in excellent tumor regression and complete inhibition of cancer reoccurrence. These results conclude that concomitant delivery of SAL and DOX using PLA based block copolymeric nano-carrier have a strong potential for cancer therapy.
Collapse
Affiliation(s)
- Mohd Anees
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sachchidanand Tiwari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dinesh Kumar
- National Institute of Health and Family Welfare (NIHFW), New Delhi 110067, India
| | | | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
12
|
Eid RA, Alaa Edeen M, Shedid EM, Kamal ASS, Warda MM, Mamdouh F, Khedr SA, Soltan MA, Jeon HW, Zaki MSA, Kim B. Targeting Cancer Stem Cells as the Key Driver of Carcinogenesis and Therapeutic Resistance. Int J Mol Sci 2023; 24:ijms24021786. [PMID: 36675306 PMCID: PMC9861138 DOI: 10.3390/ijms24021786] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
The emerging concept of cancer stem cells (CSCs) as the key driver behind carcinogenesis, progression, and diversity has displaced the prior model of a tumor composed of cells with similar subsequently acquired mutations and an equivalent capacity for renewal, invasion, and metastasis. This significant change has shifted the research focus toward targeting CSCs to eradicate cancer. CSCs may be characterized using cell surface markers. They are defined by their capacity to self-renew and differentiate, resist conventional therapies, and generate new tumors following repeated transplantation in xenografted mice. CSCs' functional capabilities are governed by various intracellular and extracellular variables such as pluripotency-related transcription factors, internal signaling pathways, and external stimuli. Numerous natural compounds and synthetic chemicals have been investigated for their ability to disrupt these regulatory components and inhibit stemness and terminal differentiation in CSCs, hence achieving clinical implications. However, no cancer treatment focuses on the biological consequences of these drugs on CSCs, and their functions have been established. This article provides a biomedical discussion of cancer at the time along with an overview of CSCs and their origin, features, characterization, isolation techniques, signaling pathways, and novel targeted therapeutic approaches. Additionally, we highlighted the factors endorsed as controlling or helping to promote stemness in CSCs. Our objective was to encourage future studies on these prospective treatments to develop a framework for their application as single or combined therapeutics to eradicate various forms of cancer.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Muhammad Alaa Edeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.A.E.); (B.K.)
| | - Eslam M. Shedid
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Al Shaimaa S. Kamal
- Biotechnology Department, Faculty of Agriculture, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Mona M. Warda
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Farag Mamdouh
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Sohila A. Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.A.E.); (B.K.)
| |
Collapse
|
13
|
Moudgil A, Salve R, Gajbhiye V, Chaudhari BP. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem Phys Lipids 2023; 250:105258. [PMID: 36375540 DOI: 10.1016/j.chemphyslip.2022.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage. But how eminent could liposomes and their advantages be in superseding these existing therapeutic modalities? A solution is reflected in this review that draws attention to a decade-long journey embarked upon by researchers in this wake. This text is a comprehensive discussion of liposomes, the front runners of the drug delivery systems, and their active and passive targeting approaches for breast cancer management. Active targeting has been studied over the decade by many receptors overexpressed on the breast cancer cells and passive targeting with many drug combinations. The results converge on the fact that the actively targeted formulations exhibit a superior efficacy over their non-targeted counterparts and the all liposomal formulations are efficacious over the free drugs. This undoubtedly underlines the dominion of liposomal formulations over conventional chemotherapy. These investigations have led to the development of different liposomal formulations with active and passive targeting capacities that could be explored in depth. Acknowledging and getting a deeper insight into the liposomal evolution through time also unveiled many imperfections and unchartered territories that can be explored to deliver dexterous liposomal formulations against breast cancer and more in the clinical trial pipeline.
Collapse
Affiliation(s)
- Aliesha Moudgil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India.
| |
Collapse
|
14
|
Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023; 13:105-134. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, Canada
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India. .,Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
15
|
Potential Nanotechnology-Based Therapeutics to Prevent Cancer Progression through TME Cell-Driven Populations. Pharmaceutics 2022; 15:pharmaceutics15010112. [PMID: 36678741 PMCID: PMC9864587 DOI: 10.3390/pharmaceutics15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of metastasis and therapeutic resistance. These issues are closely linked to the tumour microenvironment (TME) surrounding the tumour tissue. The association between residing TME components with tumour progression, survival, and metastasis has been well elucidated. Focusing on cancer cells alone is no longer considered a viable approach to therapy; thus, there is a high demand for TME targeting. The benefit of using nanoparticles is their preferential tumour accumulation and their ability to target TME components. Several nano-based platforms have been investigated to mitigate microenvironment-induced angiogenesis, therapeutic resistance, and tumour progression. These have been achieved by targeting mesenchymal originating cells (e.g., cancer-associated fibroblasts, adipocytes, and stem cells), haematological cells (e.g., tumour-associated macrophages, dendritic cells, and myeloid-derived suppressor cells), and the extracellular matrix within the TME that displays functional and architectural support. This review highlights the importance of nanotechnology-based therapeutics as a promising approach to target the TME and improve treatment outcomes for TNBC patients, which can lead to enhanced survival and quality of life. The role of different nanotherapeutics has been explored in the established TME cell-driven populations.
Collapse
|
16
|
Tefas LR, Toma I, Sesarman A, Banciu M, Jurj A, Berindan-Neagoe I, Rus L, Stiufiuc R, Tomuta I. Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer. J Liposome Res 2022:1-17. [PMID: 36472146 DOI: 10.1080/08982104.2022.2153139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer remains one of the major causes of morbidity and mortality in both developed and emerging countries. Cancer stem cells (CSCs) are a subpopulation of cells within the tumor mass harboring stem cell characteristics, considered responsible for tumor initiation, growth, relapse, and treatment failure. Lately, it has become clear that both CSCs and non-CSCs have to be eliminated for the successful eradication of cancer. Drug delivery systems have been extensively employed to enhance drug efficacy. In this study, salinomycin (SAL), a selective anti-CSC drug, and gemcitabine (GEM), a conventional anticancer drug, were co-loaded in liposomes and tested for optimal therapeutic efficacy. We employed the Design of Experiments approach to develop and optimize a liposomal delivery system for GEM and SAL. The antiproliferative effect of the liposomes was evaluated in SW-620 human colorectal cancer cells. The GEM and SAL-loaded liposomes exhibited adequate size, polydispersity, zeta potential, and drug content. The in vitro release study showed a sustained release of GEM and SAL from the liposomes over 72 h. Moreover, no sign of liposome aggregation was seen over 1 month and in a biological medium (FBS). The in vitro cytotoxic effects of the co-loaded liposomes were superior to that of single GEM either in free or liposomal form. The combination therapy using GEM and SAL co-loaded in liposomes could be a promising strategy for tackling colorectal cancer.
Collapse
Affiliation(s)
- Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Lucia Rus
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Rares Stiufiuc
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Brown J, Li Z, Wang X, Kim YJ, Wang YC, Zuo Y, Hong W, Wang P, Li B, Yang L. Nanoformulation improves antitumor efficacy of MAOI immune checkpoint blockade therapy without causing aggression-related side effects. Front Pharmacol 2022; 13:970324. [PMID: 36120311 PMCID: PMC9475110 DOI: 10.3389/fphar.2022.970324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
MAOIs, a well-established class of antidepressant that operate through the inhibition of monoamine oxidase to increase available serotonin, have recently been identified as a surprisingly effective candidate for the circumvention of tumor-induced immune suppression due to their abilities to enhance antitumor T cell activity through autocrine serotonin signaling and depolarize alternatively activated tumor-associated macrophages through a reduction in reactive oxygen species production. However, this impressive class of antidepressants-turned-cancer-drugs can induce aggressive behavioral side effects when administered in immunotherapeutic doses. In this study, we investigated the possibility of avoiding these neurological side effects while simultaneously improving antitumor activity by establishing crosslinked multilamellar liposomal vesicles (cMLVs) containing the MAOI phenelzine (PLZ). Our results showed that cMLV-PLZ treatment increases antitumor efficacy in a B16-OVA mouse melanoma model compared to treatment with free phenelzine. We also found that nanoformulation resulted in the complete elimination of MAOI-related aggression. These findings suggest a promising direction for the future of MAOIs repurposed for cancer immunotherapies.
Collapse
Affiliation(s)
- James Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Xi Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yu-Chen Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yanning Zuo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Weizhe Hong
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Pin Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Bo Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| |
Collapse
|
18
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
19
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
20
|
Tefas LR, Barbălată C, Tefas C, Tomuță I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13081120. [PMID: 34452081 PMCID: PMC8401311 DOI: 10.3390/pharmaceutics13081120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are reportedly responsible for the initiation and propagation of cancer. Since CSCs are highly resistant to conventional chemo- and radiotherapy, they are considered the main cause of cancer relapse and metastasis. Salinomycin (Sali), an anticoccidial polyether antibiotic, has emerged as a promising new candidate for cancer therapy, with selective cytotoxicity against CSCs in various malignancies. Nanotechnology provides an efficient means of delivering Sali to tumors in view of reducing collateral damage to healthy tissues and enhancing the therapeutic outcome. This review offers an insight into the most recent advances in cancer therapy using Sali-based nanocarriers.
Collapse
Affiliation(s)
- Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (L.R.T.); (C.B.); (I.T.)
| | - Cristina Barbălată
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (L.R.T.); (C.B.); (I.T.)
| | - Cristian Tefas
- Department of Gastroenterology, “Prof. Dr. Octavian Fodor” Regional Institute for Gastroenterology and Hepatology, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-740836136
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (L.R.T.); (C.B.); (I.T.)
| |
Collapse
|
21
|
Lipid nanocapsules co-encapsulating paclitaxel and salinomycin for eradicating breast cancer and cancer stem cells. Colloids Surf B Biointerfaces 2021; 204:111775. [PMID: 33940518 DOI: 10.1016/j.colsurfb.2021.111775] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) comprise a diminutive population of the tumor but pose major obstacles in cancer treatment, often their presence being correlated with poor prognosis, therapeutic resistance and relapse. Nanocarriers of combined drugs regimes demonstrate improved pharmacokinetics and decreased systemic toxicity by targeting the bulk tumor cells along with CSCs, holding the key to future successful chemotherapy. Herein, we developed lipid nanocapsules (LNCs) with co-encapsulated paclitaxel (PTX) and salinomycin (SAL) to eliminate breast cancer cells (MCF-7; non-bCSCs) and cancer stem cells (bCSCs) respectively. LNCs loaded with either PTX or SAL alone or in combination were fabricated by the phase inversion temperature (PIT) method. Physicochemical properties such as nano-size (90 ± 5 nm) and spherical morphology of LNCs were confirmed by dynamic light scattering (DLS) and scanning electron microscopy (SEM) respectively. More than 98 % encapsulation efficiency of drug, alone or in combination, and their controlled drug release was obtained. Drug loaded LNCs were efficiently internalized and exhibited cytotoxicity in non-bCSCs and bCSCs, with dual drug loaded LNCs offering superior cytotoxicity and anti-bCSCs property. Drug loaded nanocapsules induced apoptosis in bCSCs, potentiated with the co-delivery of paclitaxel and salinomycin. Synergistic cytotoxic effect on both cells, non-bCSCs and bCSCs and effective reduction of the tumor mammospheres growth by co-encapsulated paclitaxel and salinomycin suggest LNCs to be promising for treatment of breast cancer.
Collapse
|
22
|
Lv L, Shi Y, Wu J, Li G. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. Int J Nanomedicine 2021; 16:1487-1508. [PMID: 33654398 PMCID: PMC7914063 DOI: 10.2147/ijn.s282110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou, 511300, Guangdong, People's Republic of China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| |
Collapse
|
23
|
Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11:55-70. [PMID: 33532180 PMCID: PMC7838023 DOI: 10.1016/j.apsb.2020.09.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with functions similar to those of normal stem cells. Although few in number, they are capable of self-renewal, unlimited proliferation, and multi-directional differentiation potential. In addition, CSCs have the ability to escape immune surveillance. Thus, they play an important role in the occurrence and development of tumors, and they are closely related to tumor invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, specific targeting of CSCs may improve the efficiency of cancer therapy. A series of corresponding promising therapeutic strategies based on CSC targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria, are currently under development. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for CSC targeting are increasingly being developed. In this review, we summarize the advances in CSC-targeted DDSs. Furthermore, we highlight the latest developmental trends through the main line of CSC occurrence and development process; some considerations about the rationale, advantages, and limitations of different DDSs for CSC-targeted therapies were discussed.
Collapse
Key Words
- ABC, ATP binding cassette
- AFN, apoferritin
- ALDH, aldehyde dehydrogenase
- BM-MSCs-derived Exos, bone marrow mesenchymal stem cells-derived exosomes
- Biomarker
- CAFs, cancer-associated fibroblasts
- CL-siSOX2, cationic lipoplex of SOX2 small interfering RNA
- CMP, carbonate-mannose modified PEI
- CQ, chloroquine
- CSCs, cancer stem cells
- Cancer stem cells
- Cancer treatment
- Cellular level
- DCLK1, doublecortin-like kinase 1
- DDSs, drug delivery systems
- DLE, drug loading efficiency
- DOX, doxorubicin
- DQA-PEG2000-DSPE, dequlinium and carboxyl polyethylene glycol-distearoylphosphatidylethanolamine
- Dex, dexamethasone
- Drug delivery systems
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- EPND, nanodiamond-Epirubicin drug complex
- EpCAM, epithelial cell adhesion molecule
- GEMP, gemcitabine monophosphate
- GLUT1, glucose ligand to the glucose transporter 1
- Glu, glucose
- HCC, hepatocellular carcinoma
- HH, Hedgehog
- HIF1α, hypoxia-inducible factor 1-alpha
- HNSCC, head and neck squamous cell carcinoma
- IONP, iron oxide nanoparticle
- LAC, lung adenocarcinoma
- LNCs, lipid nanocapsules
- MAPK, mitogen-activated protein kinase
- MB, methylene blue
- MDR, multidrug resistance
- MNP, micellar nanoparticle
- MSNs, mesoporous silica nanoparticles
- Molecular level
- NF-κB, nuclear factor-kappa B
- Nav, navitoclax
- Niche
- PBAEs, poly(β-aminoester)
- PDT, photodynamic therapy
- PEG-PCD, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol)
- PEG-PLA, poly(ethylene glycol)-b-poly(d,l-lactide)
- PEG-b-PLA, poly(ethylene glycol)-block-poly(d,l-lactide)
- PLGA, poly(ethylene glycol)-poly(d,l-lactide-co-glycolide)
- PTX, paclitaxel
- PU-PEI, polyurethane-short branch-polyethylenimine
- SLNs, solid lipid nanoparticles
- SSCs, somatic stem cells
- Sali-ABA, 4-(aminomethyl) benzaldehyde-modified Sali
- TNBC, triple negative breast cancer
- TPZ, tirapazamine
- Targeting strategies
- cRGD, cyclic Arg-Gly-Asp
- iTEP, immune-tolerant, elastin-like polypeptide
- mAbs, monoclonal antibodies
- mPEG-b-PCC-g-GEM-g-DC-g-CAT, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cationic ligands)
- ncRNA, non-coding RNAs
- uPAR, urokinase plasminogen activator receptor
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Yi Qi Jie Du Formula and Salinomycin Combination Treatment Mediates Nasopharyngeal Carcinoma Stem Cell Proliferation, Migration and Apoptosis via CD44/Ras Signaling Pathway. DIGITAL CHINESE MEDICINE 2020. [DOI: 10.1016/j.dcmed.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
He L, Yu A, Deng L, Zhang H. Eradicating the Roots: Advanced Therapeutic Approaches Targeting Breast Cancer Stem Cells. Curr Pharm Des 2020; 26:2009-2021. [PMID: 32183663 DOI: 10.2174/1381612826666200317132949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
Abstract
Accumulating evidences have demonstrated that the existence of breast cancer-initiating cells, which drives the original tumorigenicity, local invasion and migration propensity of breast cancer. These cells, termed as breast cancer stem cells (BCSCs), possess properties including self-renewal, multidirectional differentiation and proliferative potential, and are believed to play important roles in the intrinsic drug resistance of breast cancer. One of the reasons why BCBCs cause difficulties in breast cancer treating is that BCBCs can control both genetic and non-genetic elements to keep their niches safe and sound, which allows BCSCs for constant self-renewal and differentiation. Therapeutic strategies designed to target BCSCs may ultimately result in effective interventions for the treatment of breast cancer. Novel strategies including nanomedicine, oncolytic virus therapy, immunotherapy and induced differentiation therapy are emerging and proved to be efficient in anti-BCSCs therapy. In this review, we summarized breast tumor biology and the current challenges of breast cancer therapies, focused on breast cancer stem cells, and introduced promising therapeutic strategies targeting BCSCs.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Anran Yu
- The State University of New York, Buffalo, NY 12246, United States
| | - Li Deng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hongwei Zhang
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| |
Collapse
|
26
|
Yadava SK, Basu SM, Valsalakumari R, Chauhan M, Singhania M, Giri J. Curcumin-Loaded Nanostructure Hybrid Lipid Capsules for Co-eradication of Breast Cancer and Cancer Stem Cells with Enhanced Anticancer Efficacy. ACS APPLIED BIO MATERIALS 2020; 3:6811-6822. [DOI: 10.1021/acsabm.0c00764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology (IIT Hyderabad), Hyderabad 502285, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology (IIT Hyderabad), Hyderabad 502285, India
| | - Remya Valsalakumari
- Department of Biomedical Engineering, Indian Institute of Technology (IIT Hyderabad), Hyderabad 502285, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT Hyderabad), Hyderabad 502285, India
| | - Mekhla Singhania
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55455, United States
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology (IIT Hyderabad), Hyderabad 502285, India
| |
Collapse
|
27
|
Wang Z, Sun M, Li W, Fan L, Zhou Y, Hu Z. A Novel CD133- and EpCAM-Targeted Liposome With Redox-Responsive Properties Capable of Synergistically Eliminating Liver Cancer Stem Cells. Front Chem 2020; 8:649. [PMID: 32850663 PMCID: PMC7431664 DOI: 10.3389/fchem.2020.00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells that sit atop the hierarchical ladder in many cancer types. Liver CSCs have been associated with high chemoresistance and recurrence rates in hepatocellular carcinoma (HCC). However, as of yet, no satisfactorily effective liver CSC-targeted treatment is available, which drove us to design and investigate the efficacy of a liposome-based delivery system. Here, we introduce a redox-triggered dual-targeted liposome, CEP-LP@S/D, capable of co-delivering doxorubicin (Dox) and salinomycin (Sal) for the synergistic treatment of liver cancer. This system is based on the association of CD133- and EpCAM-targeted peptides to form Y-shaped CEP ligands that were anchored to the surface of the liposome and allowed the selective targeting of CD133+ EpCAM+ liver CSCs. After arriving to the CSCs, the CEP-LP@S/D liposome undergoes endocytosis to the cytoplasm, where a high concentration of glutathione (GSH) breaks its disulfide bonds, thereby degrading the liposome. This then induces a rapid release of Dox and Sal to synergistically inhibit tumor growth. Notably, this effect occurs through Dox-induced apoptosis and concurrent lysosomal iron sequestration by Sal. Interestingly, both in vitro and in vivo studies indicated that our GSH-responsive co-delivery system not only effectively enhanced CSC targeting but also eliminated the non-CSC faction, thereby exhibiting high antitumor efficacy. We believe that the smart liposome nanocarrier-based co-delivery system is a promising strategy to combat liver cancer, which may also lay the groundwork for more enhanced approaches to target other cancer types as well.
Collapse
Affiliation(s)
- Zihua Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengqi Sun
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Wang Li
- Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Linyang Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Ying Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyuan Hu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for BiomedicalEffects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv 2020; 10:19089-19105. [PMID: 35518295 PMCID: PMC9054075 DOI: 10.1039/d0ra02801k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer stem(-like) cells (BCSCs) have been found to be responsible for therapeutic resistance and disease relapse. BCSCs are difficult to eradicate due to their high resistance to conventional treatments and high plasticity. Functionalised nanoparticles have been investigated as smart vehicles to transport across various barriers and increase the interaction of therapeutic agents with cancer cells, as well as BCSCs. In this review, we discuss the different characteristics of BCSCs, and challenges to tackle BCSCs at cellular and molecular levels. The mechanisms of action and physicochemical properties of the current BCSC targeting agents are also covered. We will focus on the rational design and recent advances of "Nano + Nano" or single tumour targeting nanoparticle systems loaded with dual or multiple agents to kill all cancer cells including BCSCs. These cocktail therapies include the combination of a chemotherapy agent with a BCSC-specific inhibitor, a phytochemical agent or RNA based therapy. Given the heterogeneity of breast tumour tissue, targeting both BCSCs and bulk breast cancer cells simultaneously with multiple agents holds great promise in eliminating breast cancer. The future research needs to focus on overcoming various barriers in the 'clinical translation' of BCSC-targeting nanomedicines to cure breast cancer, which requires a significant multidisciplinary effort.
Collapse
Affiliation(s)
- Yu Gao
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland Auckland 1023 New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Andrew Shelling
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland Auckland 1142 New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| |
Collapse
|
29
|
Recent advances in novel drug delivery systems and approaches for management of breast cancer: A comprehensive review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/pluronic polymeric micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102124. [DOI: 10.1016/j.nano.2019.102124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/15/2022]
|
31
|
Gao J, Liu J, Xie F, Lu Y, Yin C, Shen X. Co-Delivery of Docetaxel and Salinomycin to Target Both Breast Cancer Cells and Stem Cells by PLGA/TPGS Nanoparticles. Int J Nanomedicine 2019; 14:9199-9216. [PMID: 32063706 PMCID: PMC6884979 DOI: 10.2147/ijn.s230376] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Conventional chemotherapy is hampered by the presence of breast cancer stem cells (BCSCs). It is crucial to eradicating both the bulky breast cancer cells and BCSCs, using a combination of conventional chemotherapy and anti-CSCs drugs. However, the synergistic ratio of drug combinations cannot be easily maintained in vivo. In our previous studies, we demonstrated that the simultaneous delivery of two drugs via nanoliposomes could maintain the synergistic drug ratio for 12 h in vivo. However, nanoliposomes have the disadvantage of quick drug release, which makes it difficult to maintain the synergistic drug ratio for a long time. Herein, we developed a co-delivery system for docetaxel (DTX)-a first-line chemotherapy drug for breast cancer-and salinomycin (SAL)-an anti-BCSCs drug-in rigid nanoparticles constituted of polylactide-co-glycolide/D-alpha-tocopherol polyethylene glycol 1000 succinate (PLGA/TPGS). METHODS Nanoparticles loaded with SAL and DTX at the optimized ratio (NSD) were prepared by the nanoprecipitation method. The characterization, cellular uptake, and cytotoxicity of nanoparticles were investigated in vitro, and the pharmacokinetics, tissue distribution, antitumor and anti-CSCs activity of nanoparticles were evaluated in vivo. RESULTS We demonstrated that a SAL/DTX molar ratio of 1:1 was synergistic in MCF-7 cells and MCF-7-MS. Moreover, the enhanced internalization of nanoparticles was observed in MCF-7 cells and MCF-7-MS. Furthermore, the cytotoxicity of NSD against both MCF-7 cells and MCF-7-MS was stronger than the cytotoxicity of any single treatment in vitro. Significantly, NSD could prolong the circulation time and maintain the synergistic ratio of SAL to DTX in vivo for 24 h, thus exhibiting superior tumor targeting and anti-tumor activity compared to other treatments. CONCLUSION Co-encapsulation of SAL and DTX in PLGA/TPGS nanoparticles could maintain the synergistic ratio of drugs in vivo in a better manner; thus, providing a promising strategy for synergistic inhibition of breast cancer.
Collapse
Affiliation(s)
- Jie Gao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Scientific Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Junjie Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Department of Pharmaceutical Sciences, Second Military Medical University, Shanghai, People’s Republic of China
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, People’s Republic of China
| | - Ying Lu
- Department of Pharmaceutical Sciences, Second Military Medical University, Shanghai, People’s Republic of China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
32
|
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. NANO CONVERGENCE 2019; 6:23. [PMID: 31304563 PMCID: PMC6626766 DOI: 10.1186/s40580-019-0193-2] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/17/2019] [Indexed: 05/06/2023]
Abstract
Nanotechnology has the potential to circumvent several drawbacks of conventional therapeutic formulations. In fact, significant strides have been made towards the application of engineered nanomaterials for the treatment of cancer with high specificity, sensitivity and efficacy. Tailor-made nanomaterials functionalized with specific ligands can target cancer cells in a predictable manner and deliver encapsulated payloads effectively. Moreover, nanomaterials can also be designed for increased drug loading, improved half-life in the body, controlled release, and selective distribution by modifying their composition, size, morphology, and surface chemistry. To date, polymeric nanomaterials, metallic nanoparticles, carbon-based materials, liposomes, and dendrimers have been developed as smart drug delivery systems for cancer treatment, demonstrating enhanced pharmacokinetic and pharmacodynamic profiles over conventional formulations due to their nanoscale size and unique physicochemical characteristics. The data present in the literature suggest that nanotechnology will provide next-generation platforms for cancer management and anticancer therapy. Therefore, in this critical review, we summarize a range of nanomaterials which are currently being employed for anticancer therapies and discuss the fundamental role of their physicochemical properties in cancer management. We further elaborate on the topical progress made to date toward nanomaterial engineering for cancer therapy, including current strategies for drug targeting and release for efficient cancer administration. We also discuss issues of nanotoxicity, which is an often-neglected feature of nanotechnology. Finally, we attempt to summarize the current challenges in nanotherapeutics and provide an outlook on the future of this important field.
Collapse
Affiliation(s)
- P N Navya
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India.
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu, 638401, India.
| | - Anubhav Kaphle
- Melbourne Integrative Genomics, School of BioSciences/School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S P Srinivas
- School of Optometry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts (UMass) Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Hemant Kumar Daima
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India.
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3001, Australia.
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
33
|
Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother 2018; 110:803-817. [PMID: 30554119 DOI: 10.1016/j.biopha.2018.11.145] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are the promising targets for cancer chemotherapy that cannot be eliminated by conventional chemotherapy. In this study cationic liposomes of cabazitaxel (CBX) and silibinin (SIL) were prepared with an aim to kill cancer cells and CSCs for prostate cancer. CBX act as cancer cell inhibitor and SIL as CSC inhibitor. Hyaluronic acid (HA), an endogenous anionic polysaccharide was coated on cationic liposomes for targeting CD44 receptors over expressed on CSCs. Liposomes were prepared by ethanol injection method with particle size below 100 nm and entrapment efficiency of more than 90% at 10% w/w drug loading. Liposomes were characterized by dynamic light scattering, transmission electron microscopy, 1H nuclear magnetic resonance and scanning electron microscopy-energy dispersive x-ray spectroscopy. Liposomes were evaluated for their anticancer action in androgen independent human prostate cancer cell lines (PC-3 and DU-145). HA coated liposomes showed potential cytotoxicity over other groups with low IC50, significantly inhibited cell migration and induced apoptosis. Synergistic cytotoxic effect was also observed with HA coated liposomes that resulted in colony formation inhibition and G2/M phase arrest. Proficient cytotoxicity against CD44+ cells (14.87 ± 0.41% in PC-3 and 33.95 ± 0.68% in DU-145 cells) indicated the efficiency of HA coated liposomes towards CSC targeting. Hence, the outcome of this combinational therapy with CD44 targeting indicates the suitability of HA coated CBX and SIL co-loaded liposomes as a potential approach for eradicating prostate cancer and herein might provide a insight for future studies.
Collapse
|
34
|
Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. J Control Release 2018; 288:62-83. [DOI: 10.1016/j.jconrel.2018.08.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
|
35
|
Kaushik V, Yakisich JS, Kumar A, Azad N, Iyer AKV. Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers (Basel) 2018; 10:E360. [PMID: 30262730 PMCID: PMC6211070 DOI: 10.3390/cancers10100360] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Ion homeostasis is extremely important for the survival of both normal as well as neoplastic cells. The altered ion homeostasis found in cancer cells prompted the investigation of several ionophores as potential anticancer agents. Few ionophores, such as Salinomycin, Nigericin and Obatoclax, have demonstrated potent anticancer activities against cancer stem-like cells that are considered highly resistant to chemotherapy and responsible for tumor relapse. The preclinical success of these compounds in in vitro and in vivo models have not been translated into clinical trials. At present, phase I/II clinical trials demonstrated limited benefit of Obatoclax alone or in combination with other anticancer drugs. However, future development in targeted drug delivery may be useful to improve the efficacy of these compounds. Alternatively, these compounds may be used as leading molecules for the development of less toxic derivatives.
Collapse
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anil Kumar
- Great Plains Health, North Platte, NE 69101, USA.
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anand K V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| |
Collapse
|
36
|
Siriwon N, Kim YJ, Siegler E, Chen X, Rohrs JA, Liu Y, Wang P. CAR-T Cells Surface-Engineered with Drug-Encapsulated Nanoparticles Can Ameliorate Intratumoral T-cell Hypofunction. Cancer Immunol Res 2018; 6:812-824. [PMID: 29720380 DOI: 10.1158/2326-6066.cir-17-0502] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/12/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
Abstract
One limiting factor of CAR T-cell therapy for treatment of solid cancers is the suppressive tumor microenvironment (TME), which inactivates the function of tumor-infiltrating lymphocytes (TIL) through the production of immunosuppressive molecules, such as adenosine. Adenosine inhibits the function of CD4+ and CD8+ T cells by binding to and activating the A2a adenosine receptor (A2aR) expressed on their surface. This suppression pathway can be blocked using the A2aR-specific small molecule antagonist SCH-58261 (SCH), but its applications have been limited owing to difficulties delivering this drug to immune cells within the TME. To overcome this limitation, we used CAR-engineered T cells as active chaperones to deliver SCH-loaded cross-linked, multilamellar liposomal vesicles (cMLV) to tumor-infiltrating T cells deep within the immune suppressive TME. Through in vitro and in vivo studies, we have demonstrated that this system can be used to effectively deliver SCH to the TME. This treatment may prevent or rescue the emergence of hypofunctional CAR-T cells within the TME. Cancer Immunol Res; 6(7); 812-24. ©2018 AACR.
Collapse
Affiliation(s)
- Natnaree Siriwon
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Yu Jeong Kim
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California
| | - Elizabeth Siegler
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Xianhui Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California
| | - Jennifer A Rohrs
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Yarong Liu
- R&D Department, HRAIN Biotechnology Co. Ltd., Shanghai, China
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California. .,Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
37
|
Liu Y, Kim YJ, Siriwon N, Rohrs JA, Yu Z, Wanga P. Combination drug delivery via multilamellar vesicles enables targeting of tumor cells and tumor vasculature. Biotechnol Bioeng 2018; 115:1403-1415. [PMID: 29457630 DOI: 10.1002/bit.26566] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/16/2018] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Blood vessel development is critical for the continued growth and progression of solid tumors and, therefore, makes an attractive target for improving cancer therapy. Indeed, vascular-targeted therapies have been extensively explored but they have shown minimal efficacy as monotherapies. Combretastatin A4 (CA-4) is a tubulin-binding vascular disrupting agent that selectively targets the established tumor endothelium, causing rapid vascular beak down. Despite its potent anticancer potential, the drug has dose-limiting side effects, particularly in the form of cardiovascular toxicity. Furthermore, its poor aqueous solubility and the resulting limited bioavailability hinder its antitumor activity in the clinic. To improve the therapeutic efficacy of CA-4, we investigated its application as a combination therapy with doxorubicin (Dox) in a tumor vasculature targeted delivery vehicle: peptide-modified cross-linked multilamellar liposomal vesicles (cMLVs). In vitro cell culture studies showed that a tumor vasculature-targeting peptide, RIF7, could facilitate higher cellular uptake of drug-loaded cMLVs, and consequently enhance the antitumor efficacy in both drug resistant B16 mouse melanoma and human MDA-MB-231 breast cancer cells. In vivo, upon intravenous injection, targeted cMLVs could efficiently deliver both Dox and CA-4 to significantly slow tumor growth through the specific interaction of the targeting peptide with its receptor on the surface of tumor vasculature. This study demonstrates the potential of our novel targeted combination therapy delivery vehicle to improve the outcome of cancer treatment.
Collapse
Affiliation(s)
- Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Yu J Kim
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California
| | - Natnaree Siriwon
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Jennifer A Rohrs
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, Guangdong, China
| | - Pin Wanga
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California.,Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
38
|
Siegler EL, Kim YJ, Chen X, Siriwon N, Mac J, Rohrs JA, Bryson PD, Wang P. Combination Cancer Therapy Using Chimeric Antigen Receptor-Engineered Natural Killer Cells as Drug Carriers. Mol Ther 2017; 25:2607-2619. [PMID: 28919377 DOI: 10.1016/j.ymthe.2017.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
The therapeutic limitations of conventional chemotherapeutic drugs include chemo-resistance, tumor recurrence, and metastasis. Numerous nanoparticle-based active targeting approaches have emerged to enhance the intracellular concentration of drugs in tumor cells; however, efficient delivery of these systems to the tumor site while sparing healthy tissue remains elusive. Recently, much attention has been given to human immune-cell-directed nanoparticle drug delivery, because immune cells can traffic to the tumor and inflammatory sites. Natural killer cells are a subset of cytotoxic lymphocytes that play critical roles in cancer immunosurveillance. Engineering of the human natural killer cell line, NK92, to express chimeric antigen receptors to redirect their antitumor specificity has shown significant promise. We demonstrate that the efficacy of chemotherapy can be enhanced in vitro and in vivo while reducing off-target toxicity by using chimeric antigen receptor-engineered NK92 cells as carriers to direct drug-loaded nanoparticles to the target site.
Collapse
Affiliation(s)
- Elizabeth L Siegler
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yu Jeong Kim
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xianhui Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Natnaree Siriwon
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - John Mac
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer A Rohrs
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul D Bryson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Pin Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
39
|
Magrath JW, Kim Y. Salinomycin's potential to eliminate glioblastoma stem cells and treat glioblastoma multiforme (Review). Int J Oncol 2017; 51:753-759. [PMID: 28766685 DOI: 10.3892/ijo.2017.4082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/12/2017] [Indexed: 12/09/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest form of primary brain tumor. Despite treatment with surgery, radiotherapy, and chemotherapy with the drug temozolomide, the expected survival after diagnosis remains low. The median survival is only 14.6 months and the two-year survival is a mere 30%. One reason for this is the heterogeneity of GBM including the presence of glioblastoma cancer stem cells (GSCs). GSCs are a subset of cells with the unique ability to proliferate, differentiate, and create tumors. GSCs are resistant to chemotherapy and radiation and thought to play an important role in recurrence. In order to effectively treat GBM, a drug must be identified that can kill GSCs. The ionophore salinomycin has been shown to kill cancer stem cells and is therefore a promising future treatment for GBM. This study focuses on salinomycin's potential to treat GBM including its ability to reduce the CSC population, its toxicity to normal brain cells, its mechanism of action, and its potential for combination treatment.
Collapse
Affiliation(s)
- Justin W Magrath
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| |
Collapse
|
40
|
Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1327-1341. [DOI: 10.1016/j.msec.2016.11.073] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
|
41
|
Zhang X, Liu Y, Kim YJ, Mac J, Zhuang R, Wang P. Co-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment. RSC Adv 2017; 7:19685-19693. [PMID: 28603607 PMCID: PMC5450007 DOI: 10.1039/c7ra01100h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cross-linked multilamellar liposomes offer an approach to achieve combinatorial delivery of hydrophobic paclitaxel and hydrophilic metallic carboplatin at a synergistic ratio to treat ovarian cancer.
Carboplatin (CPT) and paclitaxel (PTX) used in combination is one of the most effective treatments for ovarian cancer. However, the traditional combination methods used to co-administrate CPT and PTX showed limited clinical efficacy due to their distinct pharmacokinetics. Although much effort has been devoted to developing nanoparticles capable of encapsulating drugs with different lipophilicites, co-delivery of carboplatin with paclitaxel by a single nanoparticle has rarely been reported. Here, we encapsulated and delivered this drug combination to ovarian cancer cells at a controlled ratio by a previously reported crosslinked multilamellar liposome vesicle (cMLV). A 1 : 1 CPT/PTX molar ratio for cMLVs (CPT/PTX) combination treatment was found to induce the strongest anti-tumor synergism and to target ALDH+ cancer stem cells (CSC) in vitro. Moreover, we demonstrated that this co-encapsulation strategy reduced systemic cytotoxicity and resulted in a stronger anti-tumor effect when compared to free drug combinations and individual drug-loaded cMLVs in an OVCAR8 ovarian cancer xenograft mouse model. Thus, this study suggests a potentially promising combination therapy for ovarian cancer in clinical practice.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Yu Jeong Kim
- Department of Pharmacology and Pharmaceutical Sciences , University of Southern California , Los Angeles , CA 90089 , USA
| | - John Mac
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Rachel Zhuang
- Department of Biomedical Engineering , University of Southern California , Los Angeles , CA 90089 , USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780.,Department of Pharmacology and Pharmaceutical Sciences , University of Southern California , Los Angeles , CA 90089 , USA.,Department of Biomedical Engineering , University of Southern California , Los Angeles , CA 90089 , USA
| |
Collapse
|
42
|
Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 2017; 14:123-136. [PMID: 27401941 PMCID: PMC5835024 DOI: 10.1080/17425247.2016.1208650] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Metastatic breast cancer is one of the most devastating cancers that have no cure. Many therapeutic and diagnostic strategies have been extensively studied in the past decade. Among these strategies, cancer nanotechnology has emerged as a promising strategy in preclinical studies by enabling early identification of primary tumors and metastases, and by effective killing of cancer cells. Areas covered: This review covers the recent progress made in targeting and imaging of metastatic breast cancer with nanoparticles, and treatment using nanoparticle-enabled chemo-, gene, photothermal- and radio-therapies. This review also discusses recent developments of nanoparticle-enabled stem cell therapy and immunotherapy. Expert opinion: Nanotechnology is expected to play important roles in modern therapy for cancers, including metastatic breast cancer. Nanoparticles are able to target and visualize metastasis in various organs, and deliver therapeutic agents. Through targeting cancer stem cells, nanoparticles are able to treat resistant tumors with minimal toxicity to healthy tissues/organs. Nanoparticles are also able to activate immune cells to eliminate tumors. Owing to their multifunctional, controllable and trackable features, nanotechnology-based imaging and therapy could be a highly potent approach for future cancer research and treatment.
Collapse
Affiliation(s)
- Qingxin Mu
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Hui Wang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Miqin Zhang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| |
Collapse
|
43
|
Liu J, Meng T, Yuan M, Wen L, Cheng B, Liu N, Huang X, Hong Y, Yuan H, Hu F. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 2016; 11:6713-6725. [PMID: 28003747 PMCID: PMC5161334 DOI: 10.2147/ijn.s111647] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background One of the major obstacles in the treatment of breast cancer is breast cancer stem cells (BCSC) which are resistant to standard chemotherapeutic drugs. It has been proven that microRNA-200c (miR-200c) can restore sensitivity to microtubule-targeting chemotherapeutic drugs by reducing the expression of class III β-tubulin. In this study, combination therapy with miR-200c and paclitaxel (PTX) mediated by lipid nanoparticles was investigated as an alternative strategy against BCSC. Materials and methods A cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane was strategically selected to formulate solid lipid nanoparticles (SLN) for miR-200c delivery. Nanostructured lipid carriers (NLC) with 20 wt% oleic acid were prepared for PTX delivery. Mammospheres, which gained the characteristics of BCSC, were used as a cell model to evaluate the efficiency of combination therapy. Results The cationic SLN could condense anionic miRNA to form SLN/miRNA complexes via charge interactions and could protect miRNA from degradation by ribonuclease. SLN/miR-200c complexes achieved 11.6-fold expression of miR-200c after incubation for 24 hours, compared with that of Lipofectamine™ 2000/miR-200c complexes (*P<0.05). Intracellular drug release assay proved that miRNA can be released from SLN/miRNA complexes efficiently in 12 hours after cellular uptake. After BCSC were transfected with SLN/miR-200c, the expression of class III β-tubulin was effectively downregulated and the cellular cytotoxicity of PTX-loaded NLC (NLC/PTX) against BCSC was enhanced significantly (**P<0.01). Conclusion The results indicated that the cationic SLN could serve as a promising carrier for miRNA delivery. In addition, the combination therapy of miR-200c and PTX revealed a novel therapeutic strategy for the treatment of BCSC.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Tingting Meng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Ming Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Lijuan Wen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Bolin Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Na Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Xuan Huang
- Department of Pharmacy, School of Medicine Science, Jiaxing University, Jiaxing
| | - Yun Hong
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hong Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Fuqiang Hu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| |
Collapse
|
44
|
He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells. Front Pharmacol 2016; 7:313. [PMID: 27679576 PMCID: PMC5020043 DOI: 10.3389/fphar.2016.00313] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Lee Y Lim
- Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA, Australia
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education Guangzhou, China
| |
Collapse
|
45
|
Chiotaki R, Polioudaki H, Theodoropoulos PA. Stem cell technology in breast cancer: current status and potential applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2016; 9:17-29. [PMID: 27217783 PMCID: PMC4853137 DOI: 10.2147/sccaa.s72836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer, the leading cause of cancer among females, is supported by the presence of a rare subset of undifferentiated cells within the tumor, identified as breast cancer stem cells (BCSCs). BCSCs underlie the mechanisms of tumor initiation and sustenance and are implicated in the dissemination of the primary tumor to metastatic sites, as they have been found circulating in the blood of breast cancer patients. The discovery of BCSCs has generated a great amount of interest among the scientific community toward their isolation, molecular characterization, and therapeutic targeting. In this review, after summarizing the literature on molecular characterization of BCSCs and methodologies used for their isolation, we will focus on recent data supporting their molecular and functional heterogeneity. Additionally, following a synopsis of the latest approaches for BCSC targeting, we will specifically emphasize on the therapeutic use of naïve or engineered normal stem cells in the treatment of breast cancer and present contradictory findings challenging their safety.
Collapse
Affiliation(s)
- Rena Chiotaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Hara Polioudaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
46
|
Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces 2016; 143:532-546. [PMID: 27045981 DOI: 10.1016/j.colsurfb.2016.03.075] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 12/11/2022]
Abstract
This combinational therapy is mainly aimed for complete eradication of tumor by killing both cancer cells and cancer stem cells. Salinomycin (SLM) was targeted towards cancer stem cells whereas paclitaxel (PTX) was used to kill cancer cells. Drug loaded poly (lactic-co-glycolic acid) nanoparticles were prepared by emulsion solvent diffusion method using cationic stabilizer. Size of the nanoparticles (below 150nm) was determined by dynamic light scattering technique and transmission electron microscopy. In vitro release study confirmed the sustained release pattern of SLM and PTX from nanoparticles more than a month. Cytotoxicity studies on MCF-7 cells revealed the toxicity potential of nanoparticles over drug solutions. Hyaluronic acid (HA) was coated onto the surface of SLM nanoparticles for targeting CD44 receptors over expressed on cancer stem cells and they showed the highest cytotoxicity with minimum IC50 on breast cancer cells. Synergistic cytotoxic effect was also observed with combination of nanoparticles. Cell uptake studies were carried out using FITC loaded nanoparticles. These particles showed improved cellular uptake over FITC solution and HA coating further enhanced the effect by 1.5 folds. CD44 binding efficiency of nanoparticles was studied by staining MDA-MB-231 cells with anti CD44 human antibody and CD44(+) cells were enumerated using flow cytometry. CD44(+) cell count was drastically decreased when treated with HA coated SLM nanoparticles indicating their efficiency towards cancer stem cells. Combination of HA coated SLM nanoparticles and PTX nanoparticles showed the highest cytotoxicity against CD44(+) cells. Hence combinational therapy using conventional chemotherapeutic drug and cancer stem cell inhibitor could be a promising approach in overcoming cancer recurrence due to resistant cell population.
Collapse
Affiliation(s)
- Eameema Muntimadugu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rajendra Kumar
- UGC Centre of Excellence in Applications of Nanomaterials, Nanoparticles, and Nanocomposites, Panjab University, Chandigarh 160014, India
| | - Shantikumar Saladi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Towseef Amin Rafeeqi
- Biochemistry, Cellular and Molecular Biology Laboratories, Central Research Institute of Unani Medicine (CRIUM), Hyderabad 500038, India
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|