1
|
Gu C, So CM. Regio- and Chemoselective Palladium-Catalyzed Additive-Free Direct C─H Functionalization of Heterocycles with Chloroaryl Triflates Using Pyrazole-Alkyl Phosphine Ligands. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309192. [PMID: 38482750 DOI: 10.1002/advs.202309192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Indexed: 06/06/2024]
Abstract
A series of new pyrazole-alkyl phosphine ligands with varying cycloalkyl ring sizes that enable additive-free regio- and chemoselective C─H arylation of heterocycles are reported. Excellent α/β selectivity of various heterocycles such as benzo[b]thiophene, thiophene, furan, benzofuran, and thiazole can be achieved using these ligands, along with excellent chemoselectivity of C─Cl over C─OTf of chloroaryl triflates. Mechanistic studies supported by both experimental findings and density functional theory calculations indicate that the pyrazole phosphine ligands with optimal ring sizes allow the reaction to proceed with a lower energy barrier via a concerted metalation-deprotonation pathway.
Collapse
Affiliation(s)
- Changxue Gu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
2
|
Mustafa G, Shafiq I, Shaikh QUA, Mustafa A, Zahid R, Rasool F, Asghar MA, Baby R, Alshehri SM, Haroon M. Quantum Chemical Exploration of A-π 1-D 1-π 2-D 2-Type Compounds for the Exploration of Chemical Reactivity, Optoelectronic, and Third-order Nonlinear Optical Properties. ACS OMEGA 2023; 8:22673-22683. [PMID: 37396273 PMCID: PMC10308399 DOI: 10.1021/acsomega.3c01472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Organic compounds exhibit significant nonlinear optical (NLO) properties and can be utilized in various areas like optical parameters, fiber optics, and optical communication. Herein, a series of chromophores (DBTD1-DBTD6) with an A-π1-D1-π2-D2 framework was derived from a prepared compound (DBTR) by varying the structure of π-spacer and terminal acceptor. The DBTR and its investigated compounds were optimized at the M06/6-311G(d,p) level of theory. Frontier molecular orbitals (FMOs), nonlinear optical (NLO) properties, global reactivity parameters (GRPs), natural bonding orbital (NBO), transition density matrix (TDM), molecular electrostatic potential (MEP), and natural population analysis (NPA) were accomplished at the abovementioned level to describe the NLO findings. DBTD6 has the lowermost band gap (2.131 eV) among all of the derived compounds. The decreasing order of highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap values was DBTR > DBTD1 > DBTD2 > DBTD3 > DBTD4 > DBTD5 > DBTD6. The NBO analysis was carried out to describe noncovalent interactions such as conjugative interactions and electron delocalization. From all of the examined substances, DBTD5 showed the highest λmax value at 593.425 nm (in the gaseous phase) and 630.578 nm (in chloroform solvent). Moreover, the βtot and ⟨γ⟩ amplitudes of DBTD5 were noticed to be relatively greater at 1.140 × 10-27 and 1.331 × 10-32 esu, respectively. So, these outcomes disclosed that DBTD5 depicted the highest linear and nonlinear properties in comparison to the other designed compounds, which underlines that it could make a significant contribution to hi-tech NLO devices.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Iqra Shafiq
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Qurat-ul-ain Shaikh
- Institute
of Chemistry, Shah Abdul Latif University
Khairpur, Khairpur 66111, Pakistan
| | - Ayesha Mustafa
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Romaisa Zahid
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Faiz Rasool
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Rabia Baby
- Department
of education, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan
| | - Saad M. Alshehri
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Muhammad Haroon
- Department
of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
3
|
Meier A, Badalov SV, Biktagirov T, Schmidt WG, Wilhelm R. Diquat Based Dyes: A New Class of Photoredox Catalysts and Their Use in Aerobic Thiocyanation. Chemistry 2023; 29:e202203541. [PMID: 36700523 DOI: 10.1002/chem.202203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
A series of new organic donor-π-acceptor dyes incorporating a diquat moiety as a novel electron-acceptor unit have been synthesized and characterized. The analytical data were supported by DFT calculations. These dyes were explored in the aerobic thiocyanation of indoles and pyrroles. Here they showed a high photocatalytic activity under visible light, giving isolated yields of up to 97 %. In addition, the photocatalytic activity of standalone diquat and methyl viologen through formation of an electron donor acceptor complex is presented.
Collapse
Affiliation(s)
- Armin Meier
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| | - Sabuhi V Badalov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Timur Biktagirov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Wolf Gero Schmidt
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| |
Collapse
|
4
|
Direct arylation polycondensation for the synthesis of medium-bandgap polymer donors (PBDB-T) for organic photovoltaics. Polym J 2022. [DOI: 10.1038/s41428-022-00712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Theoretical design, synthesis and third-order non-linear optical properties of thiophene and tetrafluorobenzene based low band gap conducting polymers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Zhang X, Shi Y, Dang Y, Liang Z, Wang Z, Deng Y, Han Y, Hu W, Geng Y. Direct Arylation Polycondensation of β-Fluorinated Bithiophenes to Polythiophenes: Effect of Side Chains in C–Br Monomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuwen Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ziqi Liang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongli Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
7
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
8
|
Xing L, Liu JR, Hong X, Houk KN, Luscombe CK. An Exception to the Carothers Equation Caused by the Accelerated Chain Extension in a Pd/Ag Cocatalyzed Cross Dehydrogenative Coupling Polymerization. J Am Chem Soc 2022; 144:2311-2322. [PMID: 35100507 DOI: 10.1021/jacs.1c12599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Carothers equation is often used to predict the utility of a small molecule reaction in a polymerization. In this study, we present the mechanistic study of Pd/Ag cocatalyzed cross dehydrogenative coupling (CDC) polymerization to synthesize a donor-acceptor (D-A) polymer of 3,3'-dihexyl-2,2'-bithiophene and 2,2',3,3',5,5',6,6'-octafluorobiphenyl, which go counter to the Carothers equation. It is uncovered that the second chain extension cross-coupling proceeds much more efficiently than the first cross-coupling and the homocoupling side reaction (at least 1 order of magnitude faster) leading to unexpectedly low homocoupling defects and high molecular weight polymers. Kinetic analyses show that C-H bond activation is rate-determining in the first cross-coupling but not in the second cross-coupling. Based on DFT calculations, the high cross-coupling rate in the second cross-coupling was ascribed to the strong Pd-thiophene interaction in the Pd-mediated C-H bond activation transition state, which decreases the energy barrier of the Pd-mediated C-H bond activation. These results have implications beyond polymerizations and can be used to ease the synthesis of a wide range of molecules where C-H bond activation may be the limiting factor.
Collapse
Affiliation(s)
- Liwen Xing
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Ji-Ren Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Kendall N Houk
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Christine K Luscombe
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Material Science & Engineering Department, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Chu B, Wu X, Fu Z, Wu W, Wang B, Zhu J. Rhodium-Catalyzed Redox-Neutral Cross-Dehydrogenative Alkenylation of Arylhydrazines for Polymer Synthesis. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Benfa Chu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Ziwen Fu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Bin Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| |
Collapse
|
11
|
Ye L, Thompson BC. p-Cymene: A Sustainable Solvent that is Highly Compatible with Direct Arylation Polymerization (DArP). ACS Macro Lett 2021; 10:714-719. [PMID: 35549099 DOI: 10.1021/acsmacrolett.1c00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For over a decade, Direct Arylation Polymerization (DArP) has been demonstrated to be an eco-friendly, facile, and low-cost alternative to conventional methodologies such as Stille polymerization for conjugated polymer synthesis. By accessing through a C-H activation pathway, DArP offers a reduction of synthetic steps while eliminating the generation of stoichiometric, highly toxic organotin byproducts. However, as the major component in these reactions, the solvents most prevalently employed for DArP are hazardous and produced from unsustainable sources, such as dimethylacetamide (DMA), tetrahydrofuran (THF), and toluene. Although the use of sustainable alternative solvents such as 2-MeTHF and cyclopentyl methyl ether (CPME) has recently emerged, drawbacks of ethereal solvents include the need for a pressurized reaction setup as well as potential peroxide formation. While aromatic solvents are superior in solubilizing conjugated polymers, very little has been done in searching for more sustainable, benign alternatives for this class of solvent. Herein, we report the application of a sustainable, naturally sourced, high-boiling aromatic solvent, p-cymene, to DArP for the first time. p-Cymene was found to display excellent solubilizing ability in the synthesis of a broad scope of alternating copolymers with Mn up to 51.3 kg/mol and yields up to 96.2%, outperforming those prepared using CPME and toluene. Structural analysis revealed the exclusion of defects in these polymers prepared using p-cymene as the solvent which, in the case of a 2,2'-bithiophene monomer, is challenging to access through the use of conventional solvents for DArP, such as DMA and toluene.
Collapse
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
12
|
DFT study of structural and electronic properties of 1,4-diarylcyclopenta[d] pyridazines and oxazines for non-linear optical applications. J Mol Model 2021; 27:60. [PMID: 33517540 DOI: 10.1007/s00894-021-04676-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Polymer and molecular-based electronic materials incorporating heterocycles like thiophenes and pyrroles are attractive possibilities as substitutes for semimetal materials. Heterocyclic materials are heavily studied in this regard due to the large variations in possible substrates. Herein we evaluated four different 5,6-fused ring heterocycles to gain a better understanding of any favorable optical and electronic properties that were due to incorporation of certain moieties. The molecules chosen would highlight the effects that the central ring (pyridazine versus oxazine), aromatic substituent, and heterocyclic side group may have on electronic and optical properties. Computational analysis of these four molecules was done using density functional theory (B3LYP and PBEPBE) with 6-31G(d,p), 6-311 ++G(d,p), and cc-pVTZ basis sets. The constituent molecules were optimized, and calculations were done for the dipole moment, polarizability, first-order hyperpolarizability (β), HOMO and LUMO orbitals, and a natural bonding order (NBO) analysis. These calculations allow for the study of charge density via electrostatic potential mapping and bonding orbitals. The results indicated that the pyridazine molecules presented here are more favorable than the oxazines for non-linear optical (NLO) applications. It is also noted that side ring substituents (thienyl and furyl) in the two pyridazines studied showed very little calculated differences. Finally, heterocyclic rings showed more favorable properties when incorporated as substituents for NLO applications over hydrocarbon aromatics. Graphical abstract.
Collapse
|
13
|
Yamagishi H, Matsui T, Kitayama Y, Aikyo Y, Tong L, Kuwabara J, Kanbara T, Morimoto M, Irie M, Yamamoto Y. Fluorescence Switchable Conjugated Polymer Microdisk Arrays by Cosolvent Vapor Annealing. Polymers (Basel) 2021; 13:269. [PMID: 33467478 PMCID: PMC7829903 DOI: 10.3390/polym13020269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Depositing minute light emitters into a regular array is a basic but essential technique in display technology. However, conventional lithographic methodologies involve multistep and energy-consuming processes. Here, we develop a facile method in which organic and polymeric fluorescent dyes spontaneously aggregate to form a patterned microarray. We find that a thin film of fluorescent π-conjugated polymer transforms into micrometer-sized aggregates when exposed to binary organic vapor at ambient temperature. The arrayed microaggregates can be formed over the whole substrate surface when using a quartz substrate that is prepatterned with regular hydrophilic boxes and hydrophobic grids. The resultant microarray is applicable to optical memories and displays when photoswitchable fluorophores are doped into the polymer matrix.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan; (H.Y.); (T.M.); (Y.K.); (Y.A.); (L.T.); (J.K.); (T.K.)
- Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Tokiya Matsui
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan; (H.Y.); (T.M.); (Y.K.); (Y.A.); (L.T.); (J.K.); (T.K.)
| | - Yusuke Kitayama
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan; (H.Y.); (T.M.); (Y.K.); (Y.A.); (L.T.); (J.K.); (T.K.)
| | - Yusuke Aikyo
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan; (H.Y.); (T.M.); (Y.K.); (Y.A.); (L.T.); (J.K.); (T.K.)
| | - Liang Tong
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan; (H.Y.); (T.M.); (Y.K.); (Y.A.); (L.T.); (J.K.); (T.K.)
| | - Junpei Kuwabara
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan; (H.Y.); (T.M.); (Y.K.); (Y.A.); (L.T.); (J.K.); (T.K.)
- Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Takaki Kanbara
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan; (H.Y.); (T.M.); (Y.K.); (Y.A.); (L.T.); (J.K.); (T.K.)
- Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan; (M.M.); (M.I.)
| | - Masahiro Irie
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan; (M.M.); (M.I.)
| | - Yohei Yamamoto
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan; (H.Y.); (T.M.); (Y.K.); (Y.A.); (L.T.); (J.K.); (T.K.)
- Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| |
Collapse
|
14
|
Ye L, Hooshmand T, Thompson BC. “In-water” direct arylation polymerization (DArP) under aerobic emulsion conditions. Polym Chem 2021. [DOI: 10.1039/d1py01321a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To address the issue of generating large amounts of organic waste from conjugated polymer synthesis, the first direct arylation polymerization (DArP) protocol under emulsion conditions is disclosed with a 10-fold reduction of organic solvent utilized.
Collapse
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| | - Tanin Hooshmand
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| |
Collapse
|
15
|
Conelli D, Margiotta N, Grisorio R, Suranna GP. Implementation of Sustainable Solvents in Green Polymerization Approaches. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Conelli
- Dipartimento di Ingegneria Civile Ambientale del Territorio Edile e di Chimica (DICATECh) Politecnico di Bari Via Orabona 4 Bari 70125 Italy
| | - Nicola Margiotta
- Dipartimento di Chimica Università degli Studi di Bari Aldo Moro Via Orabona 4 Bari 70126 Italy
| | - Roberto Grisorio
- Dipartimento di Ingegneria Civile Ambientale del Territorio Edile e di Chimica (DICATECh) Politecnico di Bari Via Orabona 4 Bari 70125 Italy
| | - Gian Paolo Suranna
- Dipartimento di Ingegneria Civile Ambientale del Territorio Edile e di Chimica (DICATECh) Politecnico di Bari Via Orabona 4 Bari 70125 Italy
- CNR NANOTEC − Istituto di Nanotecnologia Via Monteroni Lecce 73100 Italy
| |
Collapse
|
16
|
Kuwabara J, Kanbara T. Step-Economical Synthesis of Conjugated Polymer Materials Composed of Three Components: Donor, Acceptor, and π Units. Macromol Rapid Commun 2020; 42:e2000493. [PMID: 33225550 DOI: 10.1002/marc.202000493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Indexed: 01/08/2023]
Abstract
Conjugated polymers have immense potential for their use as semiconducting materials in organic optoelectronic devices. The improvement of synthetic methods for conjugated polymers is important for the practical application of conjugated polymers. For mass production, synthetic methods must be developed by considering the concerns regarding cost and environment. Reduction in the number of synthetic steps is an efficient approach to address these concerns. The utilization of direct CH functionalization is a reasonable strategy in monomer and polymer syntheses, because the prefunctionalization steps for CC bond formation can be eliminated. This review summarizes the recent developments in the efficient syntheses of conjugated polymers as well as their monomers via direct arylation (CH/CX coupling) and cross-dehydrogenative coupling (CH/CH coupling) reactions.
Collapse
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
17
|
Uegaki K, Nakabayashi K, Yamamoto SI, Koizumi T, Hayashi S. Donor-acceptor random regioregular π-conjugated copolymers based on poly(3-hexylthiophene) with unsymmetrical monothienoisoindigo units. RSC Adv 2020; 10:19034-19040. [PMID: 35518285 PMCID: PMC9053906 DOI: 10.1039/d0ra03557b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
Donor-acceptor π-conjugated random copolymers based on regioregular poly(3-hexylthiophene), rr-P3HT, with unsymmetrical monothienoisoindigo moieties were obtained by direct arylation polycondensation of 2-bromo-3-hexylthiophene with unsymmetrical monothienoisoindigo motifs under the optimized conditions [palladium-immobilized on thiol-modified silica gel with chloride counter anions, PITS-Cl (2.5 mol%), PivOH (1.0 equiv.), K2CO3 (3.0 equiv.), DMAc, 100 °C, 24 h]. Incorporation of unsymmetrical monothienoisoindigo electron-acceptor units into the polymers tuned their highest occupied and lowest unoccupied molecular orbital levels, which were close to those of the hole transport material (PEDOT) and electron transport material (PCBM), respectively, in thin-film organic solar cells. Alkyl chains of the unsymmetrical monothienoisoindigo units in the polymers tuned their macrostructural order, resulting in the observation of crystalline patterns and specific absorption peaks in thin films. An organic solar cell containing the most crystalline random copolymer showed an efficiency of 1.91%.
Collapse
Affiliation(s)
- Kaoru Uegaki
- Department of Applied Chemistry, National Defence Academy 1-10-20 Hashirimizu Yokosuka Kanagawa 239-8686 Japan
| | - Kazuhiro Nakabayashi
- Graduate School of Organic Materials Science, Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Shin-Ichi Yamamoto
- Department of Applied Chemistry, National Defence Academy 1-10-20 Hashirimizu Yokosuka Kanagawa 239-8686 Japan
| | - Toshio Koizumi
- Department of Applied Chemistry, National Defence Academy 1-10-20 Hashirimizu Yokosuka Kanagawa 239-8686 Japan
| | - Shotaro Hayashi
- Research Center for Molecular Design, School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi Kami Kochi 782-8502 Japan
| |
Collapse
|
18
|
Amna B, Siddiqi HM, Hassan A, Ozturk T. Recent developments in the synthesis of regioregular thiophene-based conjugated polymers for electronic and optoelectronic applications using nickel and palladium-based catalytic systems. RSC Adv 2020; 10:4322-4396. [PMID: 35495258 PMCID: PMC9049189 DOI: 10.1039/c9ra09712k] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022] Open
Abstract
Thiophene-based conjugated polymers are important conjugated polymers due to their exceptional optical and conductive properties, over the past few decades many researchers have designed novel strategies to reach more efficient materials for electronic applications.
Collapse
Affiliation(s)
- Bibi Amna
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
- Istanbul Technical University
| | | | - Abbas Hassan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Turan Ozturk
- Istanbul Technical University
- Department of Chemistry
- 34469 Maslak
- Turkey
- TUBITAK-UME
| |
Collapse
|
19
|
Wakioka M, Morita H, Ichihara N, Saito M, Osaka I, Ozawa F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Synthesis of Donor–Acceptor Polymers Containing Unsubstituted Bithiophene Units. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Masayuki Wakioka
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hazuki Morita
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nobuko Ichihara
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiko Saito
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
20
|
|
21
|
TOGAWA Y, YAMAMOTO SI, HAYASHI S, KOIZUMI T. Direct Arylation Polycondensation of Fluoroarenes with Dibromoarenes. KOBUNSHI RONBUNSHU 2019. [DOI: 10.1295/koron.2019-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuki TOGAWA
- Department of Applied Chemistry, National Defense Academy
| | | | | | - Toshio KOIZUMI
- Department of Applied Chemistry, National Defense Academy
| |
Collapse
|
22
|
UEGAKI K, NAKABAYASHI K, YAMAMOTO SI, HAYASHI S, KOIZUMI T. Optoelectronic Properties of Alternating Copolymers Based on 3,4-Ethylenedioxythiophene and Various Dibromoarenes and Organic Solar Cells Prepared Thereof. KOBUNSHI RONBUNSHU 2019. [DOI: 10.1295/koron.2018-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kaoru UEGAKI
- Department of Applied Chemistry, National Defense Academy
| | | | | | | | - Toshio KOIZUMI
- Department of Applied Chemistry, National Defense Academy
| |
Collapse
|
23
|
Kuwabara J, Kanbara T. Facile Synthesis of π-Conjugated Polymers via Direct Arylation Polycondensation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180249] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
24
|
Pankow RM, Ye L, Thompson BC. Influence of an ester directing-group on defect formation in the synthesis of conjugated polymers via direct arylation polymerization (DArP) using sustainable solvents. Polym Chem 2019. [DOI: 10.1039/c9py00815b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the application of green solvents in DArP and the structure-dependent β-defect formation due to an ester directing group.
Collapse
Affiliation(s)
- Robert M. Pankow
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
25
|
Yamashita A, Nishiyama H, Inagi S, Tomita I. Synthesis of π-conjugated poly(arylene)s by polycondensation of 1,4-bis(3-methylpyridin-2-yl)benzene and aryl dibromides through regiospecific C-H functionalization process. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Akira Yamashita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Hiroki Nishiyama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| |
Collapse
|
26
|
Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RPH, Melkonyan FS, Facchetti A, Marks TJ. Suppressing Defect Formation Pathways in the Direct C–H Arylation Polymerization of Photovoltaic Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02297] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | | | - Lin X. Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | | | | | - Antonio Facchetti
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | | |
Collapse
|
27
|
Gao Y, Bai J, Sui Y, Han Y, Deng Y, Tian H, Geng Y, Wang F. High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation: Influence of Thiophene Moieties and Side Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01112] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yao Gao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Junhua Bai
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ying Sui
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Collaborative
Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
28
|
Blaskovits JT, Johnson PA, Leclerc M. Mechanistic Origin of β-Defect Formation in Thiophene-Based Polymers Prepared by Direct (Hetero)arylation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Paul A. Johnson
- Department of Chemistry, Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Mario Leclerc
- Department of Chemistry, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
29
|
Jang YJ, Hwang SH, Noh J, Choi TL. Library of Fluorescent Polysulfonamides and Polyamide Synthesized by Iridium-Catalyzed Direct C–H Amidation Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoon-Jung Jang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
30
|
|
31
|
Chávez P, Bulut I, Fall S, Ibraikulov OA, Chochos CL, Bartringer J, Heiser T, Lévêque P, Leclerc N. An Electron-Transporting Thiazole-Based Polymer Synthesized Through Direct (Hetero)Arylation Polymerization. Molecules 2018; 23:E1270. [PMID: 29799506 PMCID: PMC6100489 DOI: 10.3390/molecules23061270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022] Open
Abstract
In this work, a new n-type polymer based on a thiazole-diketopyrrolopyrrole unit has been synthesized through direct (hetero)arylation polycondensation. The molar mass has been optimized by systematic variation of the the monomer concentration. Optical and electrochemical properties have been studied. They clearly suggested that this polymer possess a high electron affinity together with a very interesting absorption band, making it a good non-fullerene acceptor candidate. As a consequence, its charge transport and photovoltaic properties in a blend with the usual P3HT electron-donating polymer have been investigated.
Collapse
Affiliation(s)
- Patricia Chávez
- ICPEES UMR 7515, Université de Strasbourg-CNRS, 25 rue Becquerel, Strasbourg 67087, France.
| | - Ibrahim Bulut
- ICPEES UMR 7515, Université de Strasbourg-CNRS, 25 rue Becquerel, Strasbourg 67087, France.
| | - Sadiara Fall
- ICube UMR 7357, Université de Strasbourg-CNRS, 23 rue du Loess, Strasbourg 67037, France.
| | - Olzhas A Ibraikulov
- ICube UMR 7357, Université de Strasbourg-CNRS, 23 rue du Loess, Strasbourg 67037, France.
| | - Christos L Chochos
- Advent Technologies SA, Patras Science Park, Stadiou Street, Platani-Rio, Patra 26504, Greece.
| | - Jérémy Bartringer
- ICube UMR 7357, Université de Strasbourg-CNRS, 23 rue du Loess, Strasbourg 67037, France.
| | - Thomas Heiser
- ICube UMR 7357, Université de Strasbourg-CNRS, 23 rue du Loess, Strasbourg 67037, France.
| | - Patrick Lévêque
- ICube UMR 7357, Université de Strasbourg-CNRS, 23 rue du Loess, Strasbourg 67037, France.
| | - Nicolas Leclerc
- ICPEES UMR 7515, Université de Strasbourg-CNRS, 25 rue Becquerel, Strasbourg 67087, France.
| |
Collapse
|
32
|
Wakioka M, Ozawa F. Highly Efficient Catalysts for Direct Arylation Polymerization (DArP). ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800227] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Masayuki Wakioka
- International Research Center for Elements Science (IRCELS); Institute for Chemical Research & IRCCS; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS); Institute for Chemical Research & IRCCS; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
33
|
Chu H, Lee K, Lim S, Kim TH. Enhancing the Performance of a Silicon Anode by Using a New Conjugated Polymer Binder Prepared by Direct Arylation. Macromol Res 2018. [DOI: 10.1007/s13233-018-6106-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Zimmermann D, Sprau C, Schröder J, Gregoriou VG, Avgeropoulos A, Chochos CL, Colsmann A, Janietz S, Krüger H. Synthesis of D-π
-A-π
type benzodithiophene-quinoxaline copolymers by direct arylation and their application in organic solar cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Diana Zimmermann
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | - Christian Sprau
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13; Karlsruhe 76131 Germany
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7; Karlsruhe 76131 Germany
| | - Jonas Schröder
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | | | - Apostolos Avgeropoulos
- Department of Materials Science Engineering; University of Ioannina; Ioannina 45110 Greece
| | - Christos L. Chochos
- Advent Technologies S.A., Stadiou Str; Platani Achaias Patras 26504 Greece
- Department of Materials Science Engineering; University of Ioannina; Ioannina 45110 Greece
| | - Alexander Colsmann
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13; Karlsruhe 76131 Germany
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7; Karlsruhe 76131 Germany
| | - Silvia Janietz
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | - Hartmut Krüger
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| |
Collapse
|
35
|
Wakioka M, Yamashita N, Mori H, Nishihara Y, Ozawa F. Synthesis of a 1,2-Dithienylethene-Containing Donor-Acceptor Polymer via Palladium-Catalyzed Direct Arylation Polymerization (DArP). Molecules 2018; 23:E981. [PMID: 29690616 PMCID: PMC6017491 DOI: 10.3390/molecules23040981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022] Open
Abstract
This paper reports the synthesis of D-A polymers containing 1,2-dithienylethene (DTE) units via palladium-catalyzed direct arylation polymerization (DArP). The reaction of dibromoisoindigo (1-Br) and DTE (2-H), in the presence of Pd₂(dba)₃·CHCl₃ (0.5 mol%), P(2-MeOC₆H₄)₃ (L1) (2 mol%), pivalic acid (1 equiv) as catalyst precursors, and Cs₂CO₃ (3 equiv) as a base affords poly(1-alt-2) with a high molecular weight (Mn up to 44,900). Although, it has been known that monomers, with plural C⁻H bonds, tend to form insoluble materials via direct arylation at undesirable C⁻H positions; the reaction of 1-Br and 2-H cleanly proceeds without insolubilization. The resulting polymer has a well-controlled structure and exhibits good charge transfer characteristics in an organic field-effect transistor (OFET), compared to the polymer produced by Migita⁻Kosugi⁻Stille cross-coupling polymerization. The DArP product displays an ideal linear relationship in the current⁻voltage curve, whereas the Migita⁻Kosugi⁻Stille product shows a VG-dependent change in the charge mobility.
Collapse
Affiliation(s)
- Masayuki Wakioka
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Natsumi Yamashita
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
36
|
Caron E, Wolf MO. Soluble Oligo- and Polythienyl Sulfides and Sulfones: Synthesis and Photophysics. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Elise Caron
- Department of Chemistry,
2036 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Michael O. Wolf
- Department of Chemistry,
2036 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
37
|
Hayashi S, Togawa Y, Yamamoto SI, Koizumi T, Nishi K, Asano A. Synthesis of π-conjugated network polymers based on fluoroarene and fluorescent units via direct arylation polycondensation and their porosity and fluorescent properties. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28770] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shotaro Hayashi
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Yuki Togawa
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Shin-Ichi Yamamoto
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Toshio Koizumi
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Koji Nishi
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Atsushi Asano
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| |
Collapse
|
38
|
Hayashi S, Kojima Y, Koizumi T. Direct arylation polycondensation of β-unprotected chalcogen heteroles under phosphine-free conditions. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Grenier F, Goudreau K, Leclerc M. Robust Direct (Hetero)arylation Polymerization in Biphasic Conditions. J Am Chem Soc 2017; 139:2816-2824. [DOI: 10.1021/jacs.6b12955] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- François Grenier
- Département de Chimie, Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Karine Goudreau
- Département de Chimie, Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Mario Leclerc
- Département de Chimie, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
40
|
Gao Y, Liu M, Zhang Y, Liu Z, Yang Y, Zhao L. Recent Development on Narrow Bandgap Conjugated Polymers for Polymer Solar Cells. Polymers (Basel) 2017; 9:E39. [PMID: 30970721 PMCID: PMC6432257 DOI: 10.3390/polym9020039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/04/2022] Open
Abstract
There have been exciting developments in the field of polymer solar cells (PSCs) as the potential competitor to the traditional silicon-based solar cells in the past decades. The most successful PSCs are based on the bulk hetero-junction (BHJ) structure, which contains a bicontinuous nanoscale interpenetrating network of a conjugated polymer and a fullerene blend. The power conversion efficiencies (PCEs) of BHJ PSCs have now exceeded 11%. In this review, we present an overview of recent emerging developments of narrow bandgap conjugated polymers for PSCs. We focus on a few important acceptors used in the donor-acceptor type conjugated polymers for highly efficient PSCs. We also reviewed the emerged donor-π-acceptor (D-π-A) side chains polymers. The band-gaps and energy levels as well as the photovoltaic performances of conjugated polymers are discussed.
Collapse
Affiliation(s)
- Yueyue Gao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Ming Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
- College of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhitian Liu
- College of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
41
|
Kojima Y, Hayashi S, Koizumi T. Palladium on carbon-catalyzed direct C-H arylation polycondensation of 3,4-ethylenedioxythiophene with various dibromoarenes. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshihisa Kojima
- Department of Applied Chemistry; National Defense Academy; Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| | - Shotaro Hayashi
- Department of Applied Chemistry; National Defense Academy; Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| | - Toshio Koizumi
- Department of Applied Chemistry; National Defense Academy; Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| |
Collapse
|
42
|
Wakioka M, Takahashi R, Ichihara N, Ozawa F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Highly Selective Synthesis of π-Conjugated Polymers with Diketopyrrolopyrrole Units. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02679] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Masayuki Wakioka
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Rina Takahashi
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nobuko Ichihara
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
43
|
Lombeck F, Marx F, Strassel K, Kunz S, Lienert C, Komber H, Friend R, Sommer M. To branch or not to branch: C–H selectivity of thiophene-based donor–acceptor–donor monomers in direct arylation polycondensation exemplified by PCDTBT. Polym Chem 2017. [DOI: 10.1039/c7py00879a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibility for unselective C–H activation of a thiophene-based, donor–acceptor–donor monomer during direct arylation polycondensation is investigated.
Collapse
Affiliation(s)
- Florian Lombeck
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
- Optoelectronics Group
| | - Franziska Marx
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Karen Strassel
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Susanna Kunz
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Richard Friend
- Optoelectronics Group
- Cavendish Laboratory
- J.J. Thomson Avenue
- University of Cambridge
- Cambridge CB3 0HE
| | - Michael Sommer
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
- Freiburger Materialforschungszentrum
| |
Collapse
|
44
|
|
45
|
Kuwabara J, Fujie Y, Maruyama K, Yasuda T, Kanbara T. Suppression of Homocoupling Side Reactions in Direct Arylation Polycondensation for Producing High Performance OPV Materials. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02380] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Junpei Kuwabara
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yohei Fujie
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Keisuke Maruyama
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeshi Yasuda
- Research
Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takaki Kanbara
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
46
|
Grolleau J, Gohier F, Cabanetos C, Allain M, Legoupy S, Frère P. Syntheses via a direct arylation method of push-pull molecules based on triphenylamine and 3-cyano-4-hexyloxythiophene moieties. Org Biomol Chem 2016; 14:10516-10522. [PMID: 27766343 DOI: 10.1039/c6ob02036d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic access to new push-pull molecules based on 3-cyano-4-hexyloxythiophene and triphenylamine moieties is presented herein using a clean methodology. The key step involves a direct heteroarylation coupling reaction in the presence of a homogeneous or heterogeneous [Pd] catalyst followed by Knoevenagel condensation performed in ethanol as a solvent. Structure-electronic property relationships of the new molecular materials are discussed and then their use as donors in bilayer planar heterojunction solar cells is investigated.
Collapse
Affiliation(s)
- Jérémie Grolleau
- University of Angers, MOLTECH-Anjou UMR CNRS 6200, 2 boulevard Lavoisier, 49045 Angers cedex, France.
| | - Frédéric Gohier
- University of Angers, MOLTECH-Anjou UMR CNRS 6200, 2 boulevard Lavoisier, 49045 Angers cedex, France.
| | - Clément Cabanetos
- University of Angers, MOLTECH-Anjou UMR CNRS 6200, 2 boulevard Lavoisier, 49045 Angers cedex, France.
| | - Magali Allain
- University of Angers, MOLTECH-Anjou UMR CNRS 6200, 2 boulevard Lavoisier, 49045 Angers cedex, France.
| | - Stéphanie Legoupy
- University of Angers, MOLTECH-Anjou UMR CNRS 6200, 2 boulevard Lavoisier, 49045 Angers cedex, France.
| | - Pierre Frère
- University of Angers, MOLTECH-Anjou UMR CNRS 6200, 2 boulevard Lavoisier, 49045 Angers cedex, France.
| |
Collapse
|
47
|
Pouliot JR, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chem Rev 2016; 116:14225-14274. [DOI: 10.1021/acs.chemrev.6b00498] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jean-Rémi Pouliot
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - François Grenier
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | | | - Serge Beaupré
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Mario Leclerc
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
48
|
Aikyo Y, Kushida S, Braam D, Kuwabara J, Kondo T, Kanbara T, Nakamura J, Lorke A, Yamamoto Y. Enwrapping Conjugated Polymer Microspheres with Graphene Oxide Nanosheets. CHEM LETT 2016. [DOI: 10.1246/cl.160504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Bura T, Blaskovits JT, Leclerc M. Direct (Hetero)arylation Polymerization: Trends and Perspectives. J Am Chem Soc 2016; 138:10056-71. [DOI: 10.1021/jacs.6b06237] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Bura
- Department of Chemistry, Université Laval, Quebec City, QC, Canada G1V 0A6
| | | | - Mario Leclerc
- Department of Chemistry, Université Laval, Quebec City, QC, Canada G1V 0A6
| |
Collapse
|
50
|
Nakabayashi K, Yamada M, Mori H. Perylene bisimide-based semiconducting polymers: Synthesis via palladium-catalyzed direct arylation, characterization, optoelectrical properties, and nanomorphology. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuhiro Nakabayashi
- Graduate School of Organic Materials Science; Yamagata University; Jonan Yonezawa 992-8510 Japan
| | - Masaya Yamada
- Graduate School of Organic Materials Science; Yamagata University; Jonan Yonezawa 992-8510 Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science; Yamagata University; Jonan Yonezawa 992-8510 Japan
| |
Collapse
|