1
|
Okuda M, Akiyama M, Funahashi K, Masuda J, Kohata A, Nakagawa S, Kashiwagi K, Sugiyama N, Okazoe T, Kawaguchi D. Highly Alternating Copolymer of [1.1.1]Propellane and Perfluoro Vinyl Ether: Forming a Hydrophobic and Oleophobic Surface with <50% Fluorine Monomer Content. ACS Macro Lett 2024; 13:1383-1389. [PMID: 39392230 DOI: 10.1021/acsmacrolett.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Utilizing the unique properties of fluorine substitution is an effective strategy for constructing highly functional materials. Here, we synthesized a novel copolymer composed of [1.1.1]propellane and perfluoro(propyl vinyl ether) (PPVE), rich in alternating sequences. The spin-coated copolymer film was amorphous, and its surface exhibited an extremely low surface free energy (γ). The γ value was lower than that of polytetrafluoroethylene despite containing only 40 mol % PPVE units. This can be attributed to the cancellation of the C-F dipole moments by the entirely random orientation of the fluorine units.
Collapse
Affiliation(s)
- Mizuki Okuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Midori Akiyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510 Japan
| | - Kosuke Funahashi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Junki Masuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Kimiaki Kashiwagi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Norihide Sugiyama
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Takashi Okazoe
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Qin X, Chen AA, Fang J, Sarker P, Uline MJ, Wei T. Atomistic Simulations of Hydration and Antibiofouling Behavior of Amphiphilic Polymer Brush Surfaces Functionalized with TMAO and Short Fluorocarbon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23994-24001. [PMID: 39471246 DOI: 10.1021/acs.langmuir.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Developing fouling-resistant materials is of paramount interest in marine industries and biomedical applications. In this work, we studied the interfacial hydration and surface-protein interactions of the amphiphilic brush surface functionalized with hybrid hydrophilic trimethylamine N-oxide (TMAO) and hydrophobic pentafluoroethyl groups using a combination of atomistic molecular dynamics simulations and free-energy computations. Our results show that while the interfacial hydration density of the amphiphilic surface slightly decreases with the introduction of small fluorocarbons compared to that of the pure TMAO-functionalized surface, the amphiphilic surface remains relatively strong in resisting protein adsorption. The nanosized clustering of hydrophobic fluorine atoms on the top of the amphiphilic brush surface introduces weak protein adsorption; however, due to the strong interfacial hydration and weak hydrophobic interaction, the amphiphilic surface exhibits sufficient antibiofouling activities. Our fundamental studies will be critical for the discovery of marine fouling-resistant coating surfaces.
Collapse
Affiliation(s)
- Xiaoxue Qin
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Jiahuiyu Fang
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Pranab Sarker
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark J Uline
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Tao Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
3
|
Steppan CG, Simon L, Blackwood C, Emrick T. Sulfobetaine Zwitterions with Embedded Fluorocarbons: Synthesis and Interfacial Properties. ACS Macro Lett 2024; 13:761-767. [PMID: 38828757 DOI: 10.1021/acsmacrolett.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We describe the preparation of a new set of fluorinated sulfobetaine (FSB) zwitterionic polymers in which fluorocarbon moieties are attached directly to the zwitterionic components. An efficient two-step modification to the conventional sulfobetaine methacrylate monomer synthesis gave access to a series of polymer zwitterions containing varying extents of fluorocarbon character. FSB methacrylates proved amenable to homo- and copolymerizations using reversible addition-fragmentation chain transfer (RAFT) conditions, affording polymers with molecular weights ranging from 5 to 20 kDa and with low molecular weight distributions. Thin films of FSB homopolymers on glass proved stable to aqueous environments and exhibited increasing hydrophobicity with fluorocarbon content, as well as remarkably large water contact angle hysteresis values that enable pinning of water droplets on hydrophobic surfaces, reminiscent of the "petal effect" found in nature. FSB-containing copolymers in aqueous media demonstrated markedly reduced oil-water interfacial tension values, even with moderate (20-50 mol %) FSB incorporation.
Collapse
Affiliation(s)
- Carla G Steppan
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lea Simon
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Chantae Blackwood
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Xia Y, Dong X, Chang H, Zhang X, Li J, Wang S, Lu Y, Yue T. Fabrication of an Antifouling Surface Plasmon Resonance Sensor with Stratified Zwitterionic Peptides for Highly Efficient Detection of Peanut Allergens in Biscuits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11259-11267. [PMID: 38691423 DOI: 10.1021/acs.jafc.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.
Collapse
Affiliation(s)
- Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinru Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Heng Chang
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiwen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jinyu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Siqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yang Lu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| |
Collapse
|
5
|
Yu B, Chang BS, Loo WS, Dhuey S, O’Reilly P, Ashby PD, Connolly MD, Tikhomirov G, Zuckermann RN, Ruiz R. Nanopatterned Monolayers of Bioinspired, Sequence-Defined Polypeptoid Brushes for Semiconductor/Bio Interfaces. ACS NANO 2024; 18:7411-7423. [PMID: 38412617 PMCID: PMC10938923 DOI: 10.1021/acsnano.3c10204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.
Collapse
Affiliation(s)
- Beihang Yu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Boyce S. Chang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Prizker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Scott Dhuey
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | | - Paul D. Ashby
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael D. Connolly
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Grigory Tikhomirov
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States
| | - Ronald N. Zuckermann
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ricardo Ruiz
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Mengel SD, Guo W, Wu G, Finlay JA, Allen P, Clare AS, Medhi R, Chen Z, Ober CK, Segalman RA. Diffusely Charged Polymeric Zwitterions as Loosely Hydrated Marine Antifouling Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:282-290. [PMID: 38131624 DOI: 10.1021/acs.langmuir.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Polymeric zwitterions exhibit exceptional fouling resistance through the formation of a strongly hydrated surface of immobilized water molecules. While being extensively tested for their performance in biomedical, membrane, and, to a lesser extent, marine environments, few studies have investigated how the molecular design of the zwitterion may enhance its performance. Furthermore, while theories of zwitterion antifouling mechanisms exist for molecular-scale foulant species (e.g., proteins and small molecules), it remains unclear how molecular-scale mechanisms influence the micro- and macroscopic interactions of relevance for marine applications. The present study addresses these gaps through the use of a modular zwitterion chemistry platform, which is characterized by a combination of surface-sensitive sum frequency generation (SFG) vibrational spectroscopy and marine assays. Zwitterions with increasingly delocalized cations demonstrate improved fouling resistance against the green alga Ulva linza. SFG spectra correlate well with the assay results, suggesting that the more diffuse charges exhibit greater surface hydration with more bound water molecules. Hence, the number of bound interfacial water molecules appears to be more influential in determining the marine antifouling activities of zwitterionic polymers than the binding strength of individual water molecules at the interface.
Collapse
Affiliation(s)
- Shawn D Mengel
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Wen Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Guangyao Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Allen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Riddhiman Medhi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Ferrier RC, Kumbhar G, Crum-Dacon S, Lynd NA. A guide to modern methods for poly(thio)ether synthesis using Earth-abundant metals. Chem Commun (Camb) 2023; 59:12390-12410. [PMID: 37753731 DOI: 10.1039/d3cc03046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Polyethers and polythioethers have a long and storied history dating back to the start of polymer science as a distinct field. As such, these materials have been utilized in a wide range of commercial applications and fundamental studies. The breadth of their material properties and the contexts in which they are applied is ultimately owed to their diverse monomer pre-cursors, epoxides and thiiranes, respectively. The facile polymerization of these monomers, both historically and contemporaneously, across academia and industry, has occurred through the use of Earth-abundant metals as catalysts and/or initiators. Despite this, polymerization methods for these monomers are underutilized compared to other monomer classes like cyclic olefins, vinyls, and (meth)acrylates. We feel a focused review that clearly outlines the benefits and shortcomings of extant synthetic methods for poly(thio)ethers along with their proposed mechanisms and quirks will help facilitate the utilization of these methods and by extension the unique polymer materials they create. Therefore, this Feature Article briefly describes the applications of poly(thio)ethers before discussing the feature-set of each poly(thio)ether synthetic method and qualitatively scoring them on relevant metrics (e.g., ease-of-use, molecular weight control, etc.) to help would-be poly(thio)ether-makers find an appropriate synthetic approach. The article is concluded with a look ahead at the future of poly(thio)ether synthesis with Earth-abundant metals.
Collapse
Affiliation(s)
- Robert C Ferrier
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Gouree Kumbhar
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Shaylynn Crum-Dacon
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Nathaniel A Lynd
- University of Texas-Austin, McKetta Department of Chemical Engineering, Austin, TX, USA
| |
Collapse
|
8
|
Xue Y, Cao M, Chen C, Zhong M. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation. JACS AU 2023; 3:1284-1300. [PMID: 37234122 PMCID: PMC10207122 DOI: 10.1021/jacsau.3c00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
With the ever-growing demand for sustainability, designing polymeric materials using readily accessible feedstocks provides potential solutions to address the challenges in energy and environmental conservation. Complementing the prevailing strategy of varying chemical composition, engineering microstructures of polymer chains by precisely controlling their chain length distribution, main chain regio-/stereoregularity, monomer or segment sequence, and architecture creates a powerful toolbox to rapidly access diversified material properties. In this Perspective, we lay out recent advances in utilizing appropriately designed polymers in a wide range of applications such as plastic recycling, water purification, and solar energy storage and conversion. With decoupled structural parameters, these studies have established various microstructure-function relationships. Given the progress outlined here, we envision that the microstructure-engineering strategy will accelerate the design and optimization of polymeric materials to meet sustainability criteria.
Collapse
Affiliation(s)
- Yazhen Xue
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mengxue Cao
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Charles Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
9
|
Malouch D, Berchel M, Dreanno C, Stachowski-Haberkorn S, Chalopin M, Godfrin Y, Jaffrès PA. Evaluation of lipophosphoramidates-based amphiphilic compounds on the formation of biofilms of marine bacteria. BIOFOULING 2023; 39:591-605. [PMID: 37584265 DOI: 10.1080/08927014.2023.2241377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
The bacteriostatic and/or bactericidal properties of few phosphoramide-based amphiphilic compounds on human pathogenic bacteria were previously reported. In this study, the potential of two cationic (BSV36 and KLN47) and two zwitterionic (3 and 4) amphiphiles as inhibitors of marine bacterial growth and biofilm formation were investigated. Results showed that the four compounds have little impact on the growth of a panel of 18 selected marine bacteria at a concentration of 200 µM, and up to 700 µM for some bacterial strains. Interestingly, cationic lipid BSV36 and zwitterionic lipids 3 and 4 effectively disrupt biofilm formation of Paracoccus sp. 4M6 and Vibrio sp. D02 at 200 µM and to a lesser extent of seven other bacterial strains tested. Moreover, ecotoxicological assays on four species of microalgae highlighted that compounds 3 and 4 have little impact on microalgae growth with EC50 values of 51 µM for the more sensitive species and up to 200 µM for most of the others. Amphiphilic compounds, especially zwitterionic amphiphiles 3 and 4 seem to be promising candidates against biofilm formation by marine bacteria.
Collapse
Affiliation(s)
- Dorsaf Malouch
- Univ Brest, CNRS, CEMCA UMR 6521, Brest, France
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | - Catherine Dreanno
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | - Morgane Chalopin
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | | |
Collapse
|
10
|
O'Bryan CS, Murdoch TJ, Strickland DJ, Rose KA, Bendejacq D, Lee D, Composto RJ. Investigating the Sequence Specific Adsorption Behavior of Polypeptides at the Solid/Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1740-1749. [PMID: 36637895 DOI: 10.1021/acs.langmuir.2c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymer adsorption at the solid/liquid interface depends not only on the chemical composition of the polymer but also on the specific placement of the monomers along the polymer sequence. However, challenges in designing polymers with well-controlled sequences have limited explorations into the role of polymer sequence on adsorption behavior to molecular simulations. Here, we demonstrate how the sequence control offered by polypeptide synthesis can be utilized to study the effects small changes in polymer sequence have on polymer adsorption behavior at the solid/liquid interface. Through a combination of quartz crystal microbalance with dissipation monitoring and total internal reflection ellipsometry, we study the adsorption behavior of three polypeptides, consisting of 90% lysine and 10% cysteine, onto a gold surface. We find different mechanisms are responsible for the adsorption of polypeptides and the resulting conformation on the surface. The initial adsorption of the polypeptides is driven by electrostatic interactions between the polylysine and the gold surface. Once adsorbed, the cysteine undergoes a thiol-Au reaction with the surface, altering the conformation of the polymer layer. Our findings suggest the conformation of the polypeptide layer is dependent on the placement of the cysteines within the sequence; polypeptide chains with evenly spaced cysteine groups adopt a more tightly bound "train" conformation as compared to polypeptides with closely grouped cysteine groups. We envision that the methodologies presented here to study sequence specific adsorption behaviors using polypeptides could be a valuable tool to complement molecular simulations studies.
Collapse
Affiliation(s)
- Christopher S O'Bryan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Timothy J Murdoch
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Daniel J Strickland
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Katie A Rose
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Denis Bendejacq
- Complex Assemblies of Soft Matter Laboratory, IRL 3254, Solvay USA Inc., Bristol, Pennsylvania19007, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Russell J Composto
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
11
|
Shindler S, Yang R. Hydrolysis of Poly(fluoroacrylate) Thin Films Synthesized from the Vapor Phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1215-1226. [PMID: 36621891 DOI: 10.1021/acs.langmuir.2c03005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The post-synthesis surface reaction of vapor-deposited polymer thin films is a promising technique in engineering heterogeneous surface chemistry. Because the existing research has neglected marginally reactive precursor films in preference of their highly reactive counterparts, our knowledge of kinetics and loss of film integrity during the reaction are limited. To address these limitations, we characterize hydrolysis of two fluoroacrylates, poly(1H,1H,2H,2H-perfluorooctyl acrylate) (pPFOA) and poly(2,2,3,4,4,4-hexafluorobutyl acrylate) (pHFBA), with sodium hydroxide using X-ray photoelectron spectroscopy. Without crosslinking with di(ethylene glycol)divinyl ether (DEGDVE) and grafting with trichlorovinyl silane, the films degrade rapidly during hydrolysis. An SN2 mechanism describes hydrolysis well, with rate constants of 0.0029 ± 0.0004 and 0.011 ± 0.001 L mol-1s-1 at 30 °C for p(PFOA-co-DEGDVE) and p(HFBA-co-DEGDVE), respectively. Our detailed study of hydrolysis kinetics of marginally reactive fluoroacrylates demonstrates the full capability and limitations of the post-synthesis reaction. Importantly, copolymers are characterized using a density correction new to polymer chemical vapor deposition.
Collapse
Affiliation(s)
- Simon Shindler
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York14853, United States
| | - Rong Yang
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York14853, United States
| |
Collapse
|
12
|
Benda J, Narikiyo H, Stafslien SJ, VanderWal LJ, Finlay JA, Aldred N, Clare AS, Webster DC. Studying the Effect of Pre-Polymer Composition and Incorporation of Surface-Modifying Amphiphilic Additives on the Fouling-Release Performance of Amphiphilic Siloxane-Polyurethane Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37229-37247. [PMID: 35939765 DOI: 10.1021/acsami.2c10983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combining amphiphilic fouling-release (FR) coatings with the surface-active nature of amphiphilic additives can improve the antifouling/fouling-release (AF/FR) properties needed to offer broad-spectrum resistance to marine biofoulants. This work is focused on further tuning the amphiphilic character of a previously developed amphiphilic siloxane-polyurethane (SiPU) coating by varying the amount of PDMS and PEG in the base system. Furthermore, surface-modifying amphiphilic additives (SMAAs) were incorporated into these amphiphilic FR SiPU coatings in varying amounts. ATR-FTIR, contact angle and surface energy measurements, and AFM were performed to assess changes in surface composition, wettability, and morphology. AF/FR properties were evaluated using laboratory biological assays involving Cellulophaga lytica, Navicula incerta, Ulva linza, Amphibalanus amphitrite, and Geukensia demissa. The surfaces of these coatings varied significantly upon changes in PDMS and PEG content in the coating matrix, as well as with changes in SMAA incorporation. AF/FR properties were also significantly changed, with formulations containing the highest amounts of SMAA showing very high removal properties compared to other experimental formulations, in some cases better than that of commercial standard FR coatings.
Collapse
Affiliation(s)
- Jackson Benda
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Hayato Narikiyo
- Graduate School of Engineering, Department of Polymer Chemistry, Kyoto University, Sakyo Ward, Kyoto 606-8501, Japan
| | - Shane J Stafslien
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Lyndsi J VanderWal
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Dean C Webster
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
13
|
Materials Selection for Antifouling Systems in Marine Structures. Molecules 2022; 27:molecules27113408. [PMID: 35684344 PMCID: PMC9182286 DOI: 10.3390/molecules27113408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Fouling is the accumulation of unwanted substances, such as proteins, organisms, and inorganic molecules, on marine infrastructure such as pylons, boats, or pipes due to exposure to their environment. As fouling accumulates, it can have many adverse effects, including increasing drag, reducing the maximum speed of a ship and increasing fuel consumption, weakening supports on oil rigs and reducing the functionality of many sensors. In this review, the history and recent progress of techniques and strategies that are employed to inhibit fouling are highlighted, including traditional biocide antifouling systems, biomimicry, micro-texture and natural components systems, superhydrophobic, hydrophilic or amphiphilic systems, hybrid systems and active cleaning systems. This review highlights important considerations, such as accounting for the effects that antifouling strategies have on the sensing mechanism employed by the sensors. Additionally, due to the specialised requirements of many sensors, often a bespoke and tailored solution is preferential to general coatings or paints. A description of how both fouling and antifouling techniques affect maritime sensors, specifically acoustic sensors, is given.
Collapse
|
14
|
Gnanasampanthan T, Karthäuser JF, Spöllmann S, Wanka R, Becker HW, Rosenhahn A. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16062-16073. [PMID: 35377590 DOI: 10.1021/acsami.2c01809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic coatings are promising materials for fouling-release applications, especially when their building blocks are inexpensive, biodegradable, and readily accessible polysaccharides. Here, amphiphilic polysaccharides were fabricated by coupling hydrophobic pentafluoropropylamine (PFPA) to carboxylate groups of hydrophilic alginic acid, a natural biopolymer with high water-binding capacity. Layer-by-layer (LbL) coatings comprising unmodified or amphiphilic alginic acid (AA*) and polyethylenimine (PEI) were assembled to explore how different PFPA contents affect their physicochemical properties, resistance against nonspecific adsorption (NSA) of proteins, and antifouling activity against marine bacteria (Cobetia marina) and diatoms (Navicula perminuta). The amphiphilic multilayers, characterized through spectroscopic ellipsometry, water contact angle goniometry, elemental analysis, AFM, XPS, and SPR spectroscopy, showed similar or even higher swelling in water and exhibited higher resistance toward NSA of proteins and microfouling marine organisms than multilayers without fluoroalkyl groups.
Collapse
Affiliation(s)
| | - Jana F Karthäuser
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Stephan Spöllmann
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Robin Wanka
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Hans-Werner Becker
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Axel Rosenhahn
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
15
|
Solberg A, Mo IV, Omtvedt LA, Strand BL, Aachmann FL, Schatz C, Christensen BE. Carbohydr Polym Special Issue Invited contribution: Click chemistry for block polysaccharides with dihydrazide and dioxyamine linkers - A review. Carbohydr Polym 2022; 278:118840. [PMID: 34973722 DOI: 10.1016/j.carbpol.2021.118840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023]
Abstract
Engineered block polysaccharides is a relatively new class of biomacromolecules consisting of chemical assembly of separate block structures at the chain termini. In contrast to conventional, laterally substituted polysaccharide derivatives, the block arrangement allows for much higher preservation of inherent chain properties such as biodegradability and stimuli-responsive self-assembly, while at the same time inducing new macromolecular properties. Abundant, carbon neutral, and even recalcitrant biomass is an excellent source of blocks, opening for numerous new uses of biomass for a wide range of novel biomaterials. Among a limited range of methodologies available for block conjugation, bifunctional linkers allowing for oxyamine and hydrazide 'click' reactions have recently proven useful additions to the repertoire. This article focuses the chemistry and kinetics of these reactions. It also presents some new data with the aim to provide useful protocols and methods for general use towards new block polysaccharides.
Collapse
Affiliation(s)
- Amalie Solberg
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Ingrid V Mo
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Line Aa Omtvedt
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Christophe Schatz
- LCPO, Université de Bordeaux, UMR 5629, ENSCBP, 16, Avenue Pey Berland, 33607 Pessac Cedex, France.
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway.
| |
Collapse
|
16
|
Barry ME, Aydogan Gokturk P, DeStefano AJ, Leonardi AK, Ober CK, Crumlin EJ, Segalman RA. Effects of Amphiphilic Polypeptoid Side Chains on Polymer Surface Chemistry and Hydrophilicity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7340-7349. [PMID: 35089024 DOI: 10.1021/acsami.1c22683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymers are commonly used in applications that require long-term exposure to water and aqueous mixtures, serving as water purification membranes, marine antifouling coatings, and medical implants, among many other applications. Because polymer surfaces restructure in response to the surrounding environment, in situ characterization is crucial for providing an accurate understanding of the surface chemistry under conditions of use. To investigate the effects of surface-active side chains on polymer surface chemistry and resultant interactions with interfacial water (i.e., water sorption), we present synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) studies performed on poly(ethylene oxide) (PEO)- and poly(dimethylsiloxane) (PDMS)-based polymer surfaces modified with amphiphilic polypeptoid side chains, previously demonstrated to be efficacious in marine fouling prevention and removal. The polymer backbone and environmental conditions were found to affect polypeptoid surface presentation: due to the surface segregation of its fluorinated polypeptoid monomers under vacuum, the PEO-peptoid copolymer showed significant polypeptoid content in both vacuum and hydrated conditions, while the modified PDMS-based copolymer showed increased polypeptoid content only in hydrated conditions due to the hydrophilicity of the ether monomers and polypeptoid backbone. Polypeptoids were found to bind approximately 2.8 water molecules per monomer unit in both copolymers, and the PEO-peptoid surface showed substantial water sorption that suggests a surface with a more diffuse water/polymer interface. This work implies that side chains are ideal for tuning water affinity without altering the base polymer composition, provided that surface-driving groups are present to ensure activity at the interface. These types of systematic modifications will generate novel polymers that maximize bound interfacial water and can deliver surface-active groups to the surface to improve the effectiveness of polymer materials.
Collapse
Affiliation(s)
- Mikayla E Barry
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Audra J DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Amanda K Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher K Ober
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rachel A Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Sathe D, Zhou J, Chen H, Schrage BR, Yoon S, Wang Z, Ziegler CJ, Wang J. Depolymerizable semi-fluorinated polymers for sustainable functional materials. Polym Chem 2022. [DOI: 10.1039/d2py00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemically recyclable semi-fluorinated polymers are demonstrated for the first time, and the hydrophobicity, self-assembly, and post-polymerization functionalization of these polymers are explored.
Collapse
Affiliation(s)
- Devavrat Sathe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - Junfeng Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - Hanlin Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - Briana R. Schrage
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, USA
| | - Seiyoung Yoon
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | | | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
19
|
Kumar A, Al-Jumaili A, Bazaka O, Ivanova EP, Levchenko I, Bazaka K, Jacob MV. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. MATERIALS HORIZONS 2021; 8:3201-3238. [PMID: 34726218 DOI: 10.1039/d1mh01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine biofouling remains one of the key challenges for maritime industries, both for seafaring and stationary structures. Currently used biocide-based approaches suffer from significant drawbacks, coming at a significant cost to the environment into which the biocides are released, whereas novel environmentally friendly approaches are often difficult to translate from lab bench to commercial scale. In this article, current biocide-based strategies and their adverse environmental effects are briefly outlined, showing significant gaps that could be addressed through advanced materials engineering. Current research towards the use of natural antifouling products and strategies based on physio-chemical properties is then reviewed, focusing on the recent progress and promising novel developments in the field of environmentally benign marine antifouling technologies based on advanced nanocomposites, synergistic effects and biomimetic approaches are discussed and their benefits and potential drawbacks are compared to existing techniques.
Collapse
Affiliation(s)
- Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Medical Physics Department, College of Medical Sciences Techniques, The University of Mashreq, Baghdad, Iraq
| | - Olha Bazaka
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
20
|
Filgueira D, Bolaño C, Gouveia S, Moldes D. Enzymatic Functionalization of Wood as an Antifouling Strategy against the Marine Bacterium Cobetia marina. Polymers (Basel) 2021; 13:3795. [PMID: 34771352 PMCID: PMC8587834 DOI: 10.3390/polym13213795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The protection of wood in marine environments is a major challenge due to the high sensitivity of wood to both water and marine microorganisms. Besides, the environmental regulations are pushing the industry to develop novel effective and environmentally friendly treatments to protect wood in marine environments. The present study focused on the development of a new green methodology based on the laccase-assisted grafting of lauryl gallate (LG) onto wood to improve its marine antifouling properties. Initially, the enzymatic treatment conditions (laccase dose, time of reaction, LG concentration) and the effect of the wood specie (beech, pine, and eucalyptus) were assessed by water contact angle (WCA) measurements. The surface properties of the enzymatically modified wood veneers were assessed by X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared spectroscopy (FTIR). Antifouling properties of the functionalized wood veneers against marine bacterium Cobetia marina were studied by scanning electron microscopy (SEM) and protein measurements. XPS and FTIR analysis suggested the stable grafting of LG onto the surface of wood veneers after laccase-assisted treatment. WCA measurements showed that the hydrophobicity of the wood veneers significantly increased after the enzymatic treatment. Protein measurements and SEM pictures showed that enzymatically-hydrophobized wood veneers modified the pattern of bacterial attachment and remarkably reduced the bacterium colonization. Thus, the results observed in the present study confirmed the potential efficiency of laccase-assisted treatments to improve the marine antifouling properties of wood.
Collapse
Affiliation(s)
- Daniel Filgueira
- CINTECX, Department of Chemical Engineering, Campus Universitario as Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (D.F.); (C.B.); (S.G.)
- TECNALIA, Basque Research and Technology Alliance (BRTA), Area Anardi 5, 20730 Azpeitia, Spain
| | - Cristian Bolaño
- CINTECX, Department of Chemical Engineering, Campus Universitario as Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (D.F.); (C.B.); (S.G.)
| | - Susana Gouveia
- CINTECX, Department of Chemical Engineering, Campus Universitario as Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (D.F.); (C.B.); (S.G.)
| | - Diego Moldes
- CINTECX, Department of Chemical Engineering, Campus Universitario as Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (D.F.); (C.B.); (S.G.)
- Research Group of Bioengineering and Sustainable Processes, Department of Chemical Engineering, Edificio Fundición, Lagoas Marcosende s/n, University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
21
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Dhyani A, Wang J, Halvey AK, Macdonald B, Mehta G, Tuteja A. Design and applications of surfaces that control the accretion of matter. Science 2021; 373:373/6552/eaba5010. [PMID: 34437123 DOI: 10.1126/science.aba5010] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surfaces that provide control over liquid, solid, or vapor accretion provide an evolutionary advantage to numerous plants, insects, and animals. Synthetic surfaces inspired by these natural surfaces can have a substantial impact on diverse commercial applications. Engineered liquid and solid repellent surfaces are often designed to impart control over a single state of matter, phase, or fouling length scale. However, surfaces used in diverse real-world applications need to effectively control the accrual of matter across multiple phases and fouling length scales. We discuss the surface design strategies aimed at controlling the accretion of different states of matter, particularly those that work across multiple length scales and different foulants. We also highlight notable applications, as well as challenges associated with these designer surfaces' scale-up and commercialization.
Collapse
Affiliation(s)
- Abhishek Dhyani
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA
| | - Jing Wang
- Department of Mechanical Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Alex Kate Halvey
- Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Brian Macdonald
- Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Geeta Mehta
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Anish Tuteja
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA. .,Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Chemical Engineering, University of Michigan-Ann Arbor, MI, USA
| |
Collapse
|
23
|
Jiao S, DeStefano A, Monroe JI, Barry M, Sherck N, Casey T, Segalman RA, Han S, Shell MS. Quantifying Polypeptoid Conformational Landscapes through Integrated Experiment and Simulation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Jacob I. Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Thomas Casey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2021; 8:6867-6882. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogenic bacteria have become global threats to public health. Since the advent of antibiotics about 100 years ago, their use has been embraced with great enthusiasm because of their effective treatment of bacterial infections. However, the evolution of pathogenic bacteria with resistance to conventional antibiotics has resulted in an urgent need for the development of a new generation of antibiotics. The use of antimicrobial polymers offers the promise of enhancing the efficacy of antimicrobial agents. Of the various antibacterial polymers that effectively eradicate pathogenic bacteria, those that are nanoengineered have garnered significant research interest in their design and biomedical applications. Because of their high surface area and high reactivity, these polymers show greater antibacterial activity than conventional antibacterial agents, by inhibiting the growth or destroying the cell membrane of pathogenic bacteria. This review summarizes several strategies for designing nanoengineered antibacterial polymers, explores the factors that affect their antibacterial properties, and examines key features of their design. It then comments briefly on the future prospects for nanoengineered antibacterial polymers. This review thus provides a feasible guide to developing nanoengineered antibacterial polymers by presenting both broad and in-depth bench research, and it offers suggestions for their potential in biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | |
Collapse
|
25
|
Su X, Yang M, Hao D, Guo X, Jiang L. Marine antifouling coatings with surface topographies triggered by phase segregation. J Colloid Interface Sci 2021; 598:104-112. [PMID: 33895532 DOI: 10.1016/j.jcis.2021.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
Marine biofouling is a ubiquitous and longstanding challenge that causes both economic and environmental problems. To address this, several antifouling strategies have been proposed, such as the release of biocidal compounds or surface chemical/physical design. Here we report a coating with surface structures (chemical heterogeneity) triggered by phase segregation, which endues the good antifouling properties, alongside robust mechanical properties, low underwater oil adhesion, and excellent optical transparency. This is achieved by arranging the hydrophobic and hydrophilic components to control the assembly and phase separation under the cross-linking and localized swelling process. The structure designs are based on the poly(ethylene glycols) (PEG), zwitterions, and hydrophobic components, which may lower the entropic and enthalpic driving forces for the adsorption of the marine organisms. Our approach could provide an effective way of manufacturing novel coating with amphiphilic micro/nanodomains structure, particularly for the marine industry. And we also showed that the coatings were stable under different temperatures and shear environments. To illustrate the applicability of such a robust coating in marine biofouling, we demonstrated significantly reduced algal adhesion and barnacle attachment in the sea (p < 0.01). We envision that this work will provide great potential for the application in antifouling marine coatings.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Yang
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dezhao Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinglin Guo
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
26
|
Yang C, Wu KB, Deng Y, Yuan J, Niu J. Geared Toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Lett 2021; 10:243-257. [PMID: 34336395 PMCID: PMC8320758 DOI: 10.1021/acsmacrolett.0c00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequence-controlled polymers are an emerging class of synthetic polymers with a regulated sequence of monomers. In the past decade, tremendous progress has been made in the synthesis of polymers with the sophisticated sequence control approaching the level manifested in biopolymers. In contrast, the exploration of novel functions that can be achieved by controlling synthetic polymer sequences represents an emerging focus in polymer science. This Viewpoint will survey recent advances in the functional applications of sequence-controlled polymers and provide a perspective on the challenges and outlook for pursuing future applications of this fascinating class of macromolecules.
Collapse
Affiliation(s)
- Cangjie Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kevin B. Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yu Deng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingsong Yuan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
27
|
Wen S, Wang P, Wang L. Preparation and antifouling performance evaluation of fluorine-containing amphiphilic silica nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Monroe JI, Jiao S, Davis RJ, Robinson Brown D, Katz LE, Shell MS. Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution. Proc Natl Acad Sci U S A 2021; 118:e2020205118. [PMID: 33372161 PMCID: PMC7821046 DOI: 10.1073/pnas.2020205118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Performance of membranes for water purification is highly influenced by the interactions of solvated species with membrane surfaces, including surface adsorption of solutes upon fouling. Current efforts toward fouling-resistant membranes often pursue surface hydrophilization, frequently motivated by macroscopic measures of hydrophilicity, because hydrophobicity is thought to increase solute-surface affinity. While this heuristic has driven diverse membrane functionalization strategies, here we build on advances in the theory of hydrophobicity to critically examine the relevance of macroscopic characterizations of solute-surface affinity. Specifically, we use molecular simulations to quantify the affinities to model hydroxyl- and methyl-functionalized surfaces of small, chemically diverse, charge-neutral solutes represented in produced water. We show that surface affinities correlate poorly with two conventional measures of solute hydrophobicity, gas-phase water solubility and oil-water partitioning. Moreover, we find that all solutes show attraction to the hydrophobic surface and most to the hydrophilic one, in contrast to macroscopically based hydrophobicity heuristics. We explain these results by decomposing affinities into direct solute interaction energies (which dominate on hydroxyl surfaces) and water restructuring penalties (which dominate on methyl surfaces). Finally, we use an inverse design algorithm to show how heterogeneous surfaces, with multiple functional groups, can be patterned to manipulate solute affinity and selectivity. These findings, importantly based on a range of solute and surface chemistries, illustrate that conventional macroscopic hydrophobicity metrics can fail to predict solute-surface affinity, and that molecular-scale surface chemical patterning significantly influences affinity-suggesting design opportunities for water purification membranes and other engineered interfaces involving aqueous solute-surface interactions.
Collapse
Affiliation(s)
- Jacob I Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - R Justin Davis
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Lynn E Katz
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106;
| |
Collapse
|
29
|
Jahan Sajib MS, Sarker P, Wei Y, Tao X, Wei T. Protein Corona on Gold Nanoparticles Studied with Coarse-Grained Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13356-13363. [PMID: 33124831 DOI: 10.1021/acs.langmuir.0c02767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding protein corona formation in an aqueous environment at the molecular and atomistic levels is critical to applications such as biomolecule-detection and drug delivery. In this work, we employed mesoscopic coarse-grained simulations to study ovispirin-1 and lysozyme protein coronas on bare gold nanoparticles. Our study showed that protein corona formation is governed by protein-surface and protein-protein interactions, as well as the surface hydrophobic effect. The corona structure was found to be dependent on protein types and the size of nanoparticles. Ovispirin proteins form homogeneous single-layered adsorption in comparison with the lysozyme's inhomogeneous multilayered aggregates on gold NP surfaces. The decrease in nanoparticle size leads to more angular degrees of freedom for protein adsorption orientation. Subsequent atomistic molecular dynamics simulations further demonstrate the loss of secondary structure of ovispirin upon adsorption and the heterogeneity of its local structure.
Collapse
Affiliation(s)
- Md Symon Jahan Sajib
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| | - Pranab Sarker
- Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, United States
| | - Yong Wei
- Department of Computer Science and Information Systems, University of North Georgia, Dahlonega, Georgia 30597, United States
| | - Xiuping Tao
- Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, United States
| | - Tao Wei
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| |
Collapse
|
30
|
Xie C, Guo H, Zhao W, Zhang L. Environmentally Friendly Marine Antifouling Coating Based on a Synergistic Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2396-2402. [PMID: 32036655 DOI: 10.1021/acs.langmuir.9b03764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of environmentally friendly and long-term marine antifouling coating remains a huge challenge in the maritime industry. For this purpose, we developed a novel and efficient antifouling coating based on a synergistic strategy, incorporating contact inhibition, fouling repelling, and antifouling properties. Results demonstrated that the coating could efficiently resist the adhesion of protein, bacteria, and Navicula diatoms. More importantly, marine field tests showed the coating could efficiently inhibit biofouling for at least 8 months. This approach paves a new way for the development of environmentally friendly and long-term antifouling coating.
Collapse
Affiliation(s)
- Changhai Xie
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology, Tianjin University, Qingdao 266235, P. R. China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology, Tianjin University, Qingdao 266235, P. R. China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology, Tianjin University, Qingdao 266235, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology, Tianjin University, Qingdao 266235, P. R. China
| |
Collapse
|
31
|
Xu B, Feng C, Lv Y, Lin S, Lu G, Huang X. Biomimetic Asymmetric Polymer Brush Coatings Bearing Fencelike Conformation Exhibit Superior Protection and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1588-1596. [PMID: 31840506 DOI: 10.1021/acsami.9b19230] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antifouling surfaces with optimized conformation and compositional heterogeneities are presented with the goal of improving the efficacy of surface protection. The approach exploits the adhesive group (thiol or catechol chain end) to anchor asymmetric polymer brushes (APBs) bearing amphiphilic side chains with synergistic nonfouling and fouling-release abilities onto the surface. The conformation of the APB surface is close to the fencelike structure, which mimics lubricating protein lubricin, endowing the surface with capacity of enhanced protection and antiadhesivity, even facing the high compression of fouling. By utilizing a poly(Br-acrylate-alkyne) macroagent comprising alkynyl and 2-bromopropionate groups, we prepared a series of APB surfaces based on polyacrylate-g-poly(ethylene oxide)/poly(pentafluorophenyl methacrylate) (PA-g-PEO/PPFMA) APBs to explore the influence of the content of the fluorinated segment and bioinspired topological polymer chemistry on their antifouling performance. The APB surfaces can not only provide compositional heterogeneities of PEO and fluorinated segments in each side chain but also give a high surface coverage because of the characteristic of high grafting density of macromolecular brushes. It was found for the first time, as far as we are aware, the fencelike APB surface shows excellent antifouling performance with less protein adsorption (up to 91% off) and cell adhesion (up to 84% off) in comparison with the controlled substrate under relatively long incubation time.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Yisheng Lv
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
32
|
Xuan S, Zuckermann RN. Diblock copolypeptoids: a review of phase separation, crystallization, self-assembly and biological applications. J Mater Chem B 2020; 8:5380-5394. [DOI: 10.1039/d0tb00477d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diblock copolypeptoids have the capacity to phase separate, crystallize, and self-assemble into a variety of nanostructures, which have shown great potential in a variety of biological applications.
Collapse
Affiliation(s)
- Sunting Xuan
- Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Materials Sciences Division
| | - Ronald N. Zuckermann
- Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Materials Sciences Division
| |
Collapse
|
33
|
Affiliation(s)
- Gila E. Stein
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Travis S. Laws
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | |
Collapse
|
34
|
Leonardi AK, Ober CK. Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annu Rev Chem Biomol Eng 2019; 10:241-264. [DOI: 10.1146/annurev-chembioeng-060718-030401] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In marine industries, the accumulation of organic matter and marine organisms on ship hulls and instruments limits performance, requiring frequent maintenance and increasing fuel costs. Current coatings technology to combat this biofouling relies heavily on the use of toxic, biocide-containing paints. These pose a serious threat to marine ecosystems, affecting both target and nontarget organisms. Innovation in the design of polymers offers an excellent platform for the development of alternatives, but the creation of a broad-spectrum, nontoxic material still poses quite a hurdle for researchers. Surface chemistry, physical properties, durability, and attachment scheme have been shown to play a vital role in the construction of a successful coating. This review explores why these characteristics are important and how recent research accounts for them in the design and synthesis of new environmentally benign antifouling and fouling release materials.
Collapse
Affiliation(s)
- Amanda K. Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Christopher K. Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
35
|
Wu Z, Gan Z, Chen B, Chen F, Cao J, Luo X. pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers. Biomater Sci 2019; 7:3190-3203. [PMID: 31145392 DOI: 10.1039/c9bm00407f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Responding to the tumor microenvironment, functional polymers can serve as preeminent drug carriers for targeted cancer therapy. Stimuli-responsive polymeric drug carriers are reported with diverse anti-tumor effects for various polymer structures. Thus, three pH/redox dual-responsive amphiphilic zwitterionic polymer 'isomers' with different locations of pH/redox responsive units were prepared to understand the relationship between polymer structure and anti-tumor effect. Containing poly(ε-caprolactone) (PCL), poly(N,N-diethylaminoethyl methacrylate) (PDEA) and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), polymers PCL-ss-P(DEA-r-MPC) (SDRM), PCL-ss-PDEA-b-PMPC (SDBM) and PCL-PDEA-ss-PMPC (DSM) with a precisely controlled structure were constructed and confirmed through NMR, FITR and EA. The formed micellar drug carriers were characterized by their morphology, loading capacity, acid/redox sensitivity, drug release, in vitro cytotoxicity and in vivo antitumor effects. Micelles with uniform spherical morphologies can effectively encapsulate anti-tumor drugs such as DOX. Among these micelles, DSM@DOX displays the most excellent drug encapsulation capacity (13.4%) with neutral surface charge (-1.02 mV) and good stability, and is different from SDRM@DOX with positive charge (+11.1 mV) and SDBM@DOX with poor stability. All micelles respond to acid and reducing environments and present fast drug release at mildly acidic pH and high concentrations of GSH, exhibiting low burst release under the physiological conditions of plasma. There is no significant difference between these micelles in tumor cell cytotoxicity against MCF-7 and 4T1 cells. Internalization of SDRM@DOX and DSM@DOX by the tumor cells is stronger than that of SDBM@DOX. Notably, DSM@DOX has longer blood circulation and more effective accumulation at the tumor site than the other two micelles. As a result, DSM@DOX shows enhanced antitumor efficacy in 4T1 tumor-bearing mice with reduced side toxicities. Overall, structures of the above polymers significantly influence the in vivo antitumor effects of the drug carriers through blood circulation and cellular uptake.
Collapse
Affiliation(s)
- Zhengzhong Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Ziying Gan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Bin Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Fan Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jun Cao
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China. and State Key Lab of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
36
|
Nowalk JA, Fang C, Short AL, Weiss RM, Swisher JH, Liu P, Meyer TY. Sequence-Controlled Polymers Through Entropy-Driven Ring-Opening Metathesis Polymerization: Theory, Molecular Weight Control, and Monomer Design. J Am Chem Soc 2019; 141:5741-5752. [PMID: 30714723 PMCID: PMC6685222 DOI: 10.1021/jacs.8b13120] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bulk properties of a copolymer are directly affected by monomer sequence, yet efficient, scalable, and controllable syntheses of sequenced copolymers remain a defining challenge in polymer science. We have previously demonstrated, using polymers prepared by a step-growth synthesis, that hydrolytic degradation of poly(lactic- co-glycolic acid)s is dramatically affected by sequence. While much was learned, the step-growth mechanism gave no molecular weight control, unpredictable yields, and meager scalability. Herein, we describe the synthesis of closely related sequenced polyesters prepared by entropy-driven ring-opening metathesis polymerization (ED-ROMP) of strainless macromonomers with imbedded monomer sequences of lactic, glycolic, 6-hydroxy hexanoic, and syringic acids. The incorporation of ethylene glycol and metathesis linkers facilitated synthesis and provided the olefin functionality needed for ED-ROMP. Ring-closing to prepare the cyclic macromonomers was demonstrated using both ring-closing metathesis and macrolactonization reactions. Polymerization produced macromolecules with controlled molecular weights on a multigram scale. To further enhance molecular weight control, the macromonomers were prepared with cis-olefins in the metathesis-active segment. Under these selectivity-enhanced (SEED-ROMP) conditions, first-order kinetics and narrow dispersities were observed and the effect of catalyst initiation rate on the polymerization was investigated. Enhanced living character was further demonstrated through the preparation of block copolymers. Computational analysis suggested that the enhanced polymerization kinetics were due to the cis-macrocyclic olefin being less flexible and having a larger population of metathesis-reactive conformers. Although used for polyesters in this investigation, SEED-ROMP represents a general method for incorporation of sequenced segments into molecular weight-controlled polymers.
Collapse
Affiliation(s)
- Jamie A. Nowalk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Cheng Fang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Amy L. Short
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan M. Weiss
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan H. Swisher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tara Yvonne Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, United States
| |
Collapse
|
37
|
Dai G, Xie Q, Ma C, Zhang G. Biodegradable Poly(ester- co-acrylate) with Antifoulant Pendant Groups for Marine Anti-Biofouling. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11947-11953. [PMID: 30843679 DOI: 10.1021/acsami.9b01247] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymer resins are critical for marine anti-biofouling coatings. In this study, degradable poly(ester- co-acrylate) with antifoulant pendant groups has been prepared by the radical ring-opening polymerization of 2-methylene-1,3-dioxepane, methyl methacrylate, and N-methacryloyloxy methyl benzoisothiazolinone. Such a polymer containing main-chain esters can hydrolytically and enzymatically degrade. Both degradation rates increase with main-chain ester content. Moreover, since the antifoulant groups are chemically grafted to the degradable main chain, their release can be controlled by the degradation besides the hydrolysis of side groups. Our study shows that the copolymer coating is efficient in inhibiting the accumulation of marine bacterial biofilm of Pseudomonas sp. and diatom Navicular incerta. Marine field test reveals that the copolymer has excellent efficiency in preventing biofouling for more than 6 months.
Collapse
Affiliation(s)
- Guoxiong Dai
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
38
|
Halvey AK, Macdonald B, Dhyani A, Tuteja A. Design of surfaces for controlling hard and soft fouling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180266. [PMID: 30967072 PMCID: PMC6335287 DOI: 10.1098/rsta.2018.0266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 05/29/2023]
Abstract
In this review, we present a framework to guide the design of surfaces which are resistant to solid fouling, based on the modulus and length scale of the fouling material. Solid fouling is defined as the undesired attachment of solid contaminants including ice, clathrates, waxes, inorganic scale, polymers, proteins, dust and biological materials. We first provide an overview of the surface design approaches typically applied across the scope of solid fouling and explain how these disparate research efforts can be united to an extent under a single framework. We discuss how the elastic modulus and the operating length scale of a foulant determine its ability or inability to elastically deform surfaces. When surface deformation occurs, minimization of the substrate elastic modulus is critical for the facile de-bonding of a solid contaminant. Foulants with low modulus or small deposition sizes cannot deform an elastic bulk material and instead de-bond more readily from surfaces with chemistries that minimize their interfacial free energy or induce a particular repellant interaction with the foulant. Overall, we review reported surface design strategies for the reduction in solid fouling, and provide perspective regarding how our framework, together with the modulus and length scale of a foulant, can guide future antifouling surface designs. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.
Collapse
Affiliation(s)
- Alex Kate Halvey
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Macdonald
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhishek Dhyani
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anish Tuteja
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
|
40
|
Campuzano S, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Antifouling (Bio)materials for Electrochemical (Bio)sensing. Int J Mol Sci 2019; 20:E423. [PMID: 30669466 PMCID: PMC6358752 DOI: 10.3390/ijms20020423] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/13/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
(Bio)fouling processes arising from nonspecific adsorption of biological materials (mainly proteins but also cells and oligonucleotides), reaction products of neurotransmitters oxidation, and precipitation/polymerization of phenolic compounds, have detrimental effects on reliable electrochemical (bio)sensing of relevant analytes and markers either directly or after prolonged incubation in rich-proteins samples or at extreme pH values. Therefore, the design of antifouling (bio)sensing interfaces capable to minimize these undesired processes is a substantial outstanding challenge in electrochemical biosensing. For this purpose, efficient antifouling strategies involving the use of carbon materials, metallic nanoparticles, catalytic redox couples, nanoporous electrodes, electrochemical activation, and (bio)materials have been proposed so far. In this article, biomaterial-based strategies involving polymers, hydrogels, peptides, and thiolated self-assembled monolayers are reviewed and critically discussed. The reported strategies have been shown to be successful to overcome (bio)fouling in a diverse range of relevant practical applications. We highlight recent examples for the reliable sensing of particularly fouling analytes and direct/continuous operation in complex biofluids or harsh environments. Opportunities, unmet challenges, and future prospects in this field are also pointed out.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
41
|
Pervaje AK, Tilly JC, Inglefield DL, Spontak RJ, Khan SA, Santiso EE. Modeling Polymer Glass Transition Properties from Empirical Monomer Data with the SAFT-γ Mie Force Field. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Gaw SL, Sakala G, Nir S, Saha A, Xu ZJ, Lee PS, Reches M. Rational Design of Amphiphilic Peptides and Its Effect on Antifouling Performance. Biomacromolecules 2018; 19:3620-3627. [DOI: 10.1021/acs.biomac.8b00587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sheng Long Gaw
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Gowripriya Sakala
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Sivan Nir
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Abhijit Saha
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zhichuan J. Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Meital Reches
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
43
|
Chan-Seng D, Louwsma J, Lutz JF, Joly S. Synthesis of Macromolecules Containing Phenylalanine and Aliphatic Building Blocks. Macromol Rapid Commun 2018; 39:e1700764. [DOI: 10.1002/marc.201700764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/13/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Delphine Chan-Seng
- Université de Strasbourg; CNRS; Institut Charles Sadron; F-67000 Strasbourg France
| | - Jeroen Louwsma
- PSA Groupe; Site de Vélizy; Chemin de Gisy 78943 Vélizy-Villacoublay France
| | - Jean-François Lutz
- Université de Strasbourg; CNRS; Institut Charles Sadron; F-67000 Strasbourg France
| | - Stéphane Joly
- PSA Groupe; Site de Vélizy; Chemin de Gisy 78943 Vélizy-Villacoublay France
| |
Collapse
|
44
|
Anastasaki A, Oschmann B, Willenbacher J, Melker A, Van Son MHC, Truong NP, Schulze MW, Discekici EH, McGrath AJ, Davis TP, Bates CM, Hawker CJ. One-Pot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and Semi-Fluorinated Segments. Angew Chem Int Ed Engl 2017; 56:14483-14487. [PMID: 28980360 DOI: 10.1002/anie.201707646] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/04/2017] [Indexed: 01/22/2023]
Abstract
The scope and accessibility of sequence-controlled multiblock copolymers is demonstrated by direct "in situ" polymerization of hydrophobic, hydrophilic and fluorinated monomers. Key to the success of this strategy is the ability to synthesize ABCDE, EDCBA and EDCBABCDE sequences with high monomer conversions (>98 %) through iterative monomer additions, yielding excellent block purity and low overall molar mass dispersities (Ð<1.16). Small-angle X-ray scattering showed that certain sequences can form well-ordered mesostructures. This synthetic approach constitutes a simple and versatile platform for expanding the availability of tailored polymeric materials from readily available monomers.
Collapse
Affiliation(s)
- Athina Anastasaki
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Bernd Oschmann
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Johannes Willenbacher
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Anna Melker
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Martin H C Van Son
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Morgan W Schulze
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Emre H Discekici
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alaina J McGrath
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Christopher M Bates
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
45
|
Anastasaki A, Oschmann B, Willenbacher J, Melker A, Van Son MHC, Truong NP, Schulze MW, Discekici EH, McGrath AJ, Davis TP, Bates CM, Hawker CJ. One‐Pot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and Semi‐Fluorinated Segments. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Athina Anastasaki
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Bernd Oschmann
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Johannes Willenbacher
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Anna Melker
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Martin H. C. Van Son
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville Melbourne Victoria 3052 Australia
| | - Morgan W. Schulze
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Emre H. Discekici
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Alaina J. McGrath
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville Melbourne Victoria 3052 Australia
| | - Christopher M. Bates
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
- Materials Department University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Craig J. Hawker
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
- Materials Department University of California, Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
46
|
Xu G, Liu X, Liu P, Pranantyo D, Neoh KG, Kang ET. Arginine-Based Polymer Brush Coatings with Hydrolysis-Triggered Switchable Functionalities from Antimicrobial (Cationic) to Antifouling (Zwitterionic). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6925-6936. [PMID: 28617605 DOI: 10.1021/acs.langmuir.7b01000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Arginine polymer based coatings with switchable properties were developed on glass slides (GS) to demonstrate the smart transition from antimicrobial (cationic) to fouling-resistant (zwitterionic) surfaces. l-Arginine methyl ester-methacryloylamide (Arg-Est) and l-arginine-methacryloylamide (Arg-Me) polymer brushes were grafted from the GS surface via surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. In comparison to the pristine GS and Arg-Me graft polymerized GS (GS-Arg-Me) surfaces, the Arg-Est polymer brushes-functionalized GS surfaces exhibit a superior antimicrobial activity. Upon hydrolysis treatment, the strong bactericidal efficacy switches to good resistance to adsorption of bovine serum albumin (BSA), the adhesion of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli, as well as the attachment of Amphora coffeaeformis. In addition, the switchable coatings are proven to be biocompatible. The stability and durability of the switchable coatings are also ascertained after exposure to filtered seawater for 30 days. Therefore, deposition of the proposed "smart coatings" offers another environmentally friendly alternative for combating biofouling.
Collapse
Affiliation(s)
- Gang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - Xianneng Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - Peng Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - Koon-Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| |
Collapse
|
47
|
Wenning BM, Martinelli E, Mieszkin S, Finlay JA, Fischer D, Callow JA, Callow ME, Leonardi AK, Ober CK, Galli G. Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16505-16516. [PMID: 28429593 DOI: 10.1021/acsami.7b03168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.
Collapse
Affiliation(s)
- Brandon M Wenning
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| | - Sophie Mieszkin
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - John A Finlay
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - Daniel Fischer
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - James A Callow
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - Maureen E Callow
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| |
Collapse
|
48
|
Xu B, Liu Y, Sun X, Hu J, Shi P, Huang X. Semifluorinated Synergistic Nonfouling/Fouling-Release Surface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16517-16523. [PMID: 28417636 DOI: 10.1021/acsami.7b03258] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The preparation of a fluorine-containing synergistic nonfouling/fouling-release surface, using a b-PFMA-PEO asymmetric molecular brush possessing both poly(ethylene glycol) (PEO) and poly(2,2,2-trifluoroethyl methacrylate) (PFMA) side chains densely distributed on the same repeat unit along the polymeric backbone, is reported. On the basis of the poly(Br-acrylate-alkyne) macroagent comprising two functionalities (alkynyl and 2-bromopropionate), which is prepared by reversible addition-fragmentation chain transfer homopolymerization of a new trifunctional acrylate monomer of Br-acrylate-alkyne, b-PFMA-PEO asymmetric molecular brushes are obtained by concurrent atom transfer radical polymerization and Cu-catalyzed azide/alkyne cycloaddition "click" reaction in a one-shot system. A spin-cast thin film of the b-PFMA-PEO asymmetric molecular brush exhibits a synergistic antifouling property, in which PEO side chains endow the surface with a nonfouling characteristic, whereas PFMA side chains display the fouling-release functionality because of their low surface energy. Both protein adsorption and cell adhesion tests provided estimates of the antifouling activity of the asymmetric molecular brush surfaces, which was demonstrated to be influenced by the degree of polymerization of the backbone and the length of the PEO and PFMA side chains. With compositional heterogeneities, all asymmetric molecular brush surfaces show considerable antifouling performance with much less protein adsorption (at least 45% off, up to 75% off) and cell adhesion (at least 70% off, up to 90% off) in comparison with a bare surface.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaowen Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
49
|
Rodriguez CG, Ferrier RC, Helenic A, Lynd NA. Ring-Opening Polymerization of Epoxides: Facile Pathway to Functional Polyethers via a Versatile Organoaluminum Initiator. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Christina G. Rodriguez
- McKetta Department of Chemical
Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert C. Ferrier
- McKetta Department of Chemical
Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alysha Helenic
- McKetta Department of Chemical
Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical
Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
50
|
Patterson AL, Wenning B, Rizis G, Calabrese DR, Finlay JA, Franco SC, Zuckermann RN, Clare AS, Kramer EJ, Ober CK, Segalman RA. Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02505] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | - John A. Finlay
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | - Sofia C. Franco
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | - Ronald N. Zuckermann
- The
Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anthony S. Clare
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | | | | | | |
Collapse
|