1
|
Xue Y, Xie H, Wang Y, Feng S, Sun J, Huang J, Yang X. Novel and sensitive electrochemical/fluorescent dual-mode biosensing platform based on the cascaded cyclic amplification of enzyme-free DDSA and functional nucleic acids. Biosens Bioelectron 2022; 218:114762. [DOI: 10.1016/j.bios.2022.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
2
|
Forzani ES, He H, Hihath J, Lindsay S, Penner RM, Wang S, Xu B. Moving Electrons Purposefully through Single Molecules and Nanostructures: A Tribute to the Science of Professor Nongjian Tao (1963-2020). ACS NANO 2020; 14:12291-12312. [PMID: 32940998 PMCID: PMC7718722 DOI: 10.1021/acsnano.0c06017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemistry intersected nanoscience 25 years ago when it became possible to control the flow of electrons through single molecules and nanostructures. Many surprises and a wealth of understanding were generated by these experiments. Professor Nongjian Tao was among the pioneering scientists who created the methods and technologies for advancing this new frontier. Achieving a deeper understanding of charge transport in molecules and low-dimensional materials was the first priority of his experiments, but he also succeeded in discovering applications in chemical sensing and biosensing for these novel nanoscopic systems. In parallel with this work, the investigation of a range of phenomena using novel optical microscopic methods was a passion of his and his students. This article is a review and an appreciation of some of his many contributions with a view to the future.
Collapse
Affiliation(s)
- Erica S Forzani
- Biodesign Center for Bioelectronics and Biosensors, Departments of Chemical Engineering and Mechanical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Huixin He
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Joshua Hihath
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Stuart Lindsay
- Biodesign Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Bingqian Xu
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Lyalina TA, Goncharova EA, Prokofeva NY, Voroshilina ES, Kolpashchikov DM. A DNA minimachine for selective and sensitive detection of DNA. Analyst 2019; 144:416-420. [DOI: 10.1039/c8an02274g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic molecular machines have been explored to manipulate matter at the molecular level.
Collapse
Affiliation(s)
- Tatiana A. Lyalina
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Ekaterina A. Goncharova
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Nadezhda Y. Prokofeva
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Ekaterina S. Voroshilina
- Ural State Medical University
- Department of Microbiology
- Virology and immunology
- Ekaterinburg
- Russian Federation
| | - Dmitry M. Kolpashchikov
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
- Chemistry Department
| |
Collapse
|
4
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
5
|
Tang W, Cheng M, Dai D, Xiong Z, Liu F. Rational design of sequestered DNAzyme beacons to enable flexible control of catalytic activities. RSC Adv 2018; 8:29338-29343. [PMID: 35548005 PMCID: PMC9084462 DOI: 10.1039/c8ra05757e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 01/18/2023] Open
Abstract
DNAzymes as functional units play increasingly important roles for DNA nanotechnology, and fine control of the catalytic activities of DNAzymes is a crucial element in the design and construction of functional and dynamic devices. So far, attempts to control cleavage kinetics can be mainly achieved through varying the concentrations of the specific metal ions. Here we present a facile sequestered DNAzyme beacon strategy based on precisely blocking the catalytic core of the DNAzyme, which can flexibly regulate the DNAzyme cleavage kinetics without changing the concentrations of metal ions. This strategy can be extended to couple with a large number of other RNA-cleaving DNAzymes and was successfully applied in designing a dual stem-loop structure probe for arbitrary sequence biosensing, which provides the possibility of scaling up versatile and dynamic DNA devices that use DNAzymes as functional modules.
Collapse
Affiliation(s)
- Wei Tang
- Institute of Materials, China Academy of Engineering Physics Mianyang 621700 China
| | - Mengxi Cheng
- Institute of Materials, China Academy of Engineering Physics Mianyang 621700 China
| | - Danling Dai
- Institute of Materials, China Academy of Engineering Physics Mianyang 621700 China
| | - Zhonghua Xiong
- Institute of Materials, China Academy of Engineering Physics Mianyang 621700 China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
6
|
Campbell EA, Peterson E, Kolpashchikov DM. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles. Chemphyschem 2017; 18:1730-1734. [PMID: 28234410 DOI: 10.1002/cphc.201700109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 02/02/2023]
Abstract
DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions.
Collapse
Affiliation(s)
- Eleanor A Campbell
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Evan Peterson
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine and National Center for Forensic Science, University of Central Florida, Orlando, FL, 32816, USA)An invited contribution to a Special Issue on Molecular Logic
| |
Collapse
|
7
|
Cox AJ, Bengtson HN, Rohde KH, Kolpashchikov DM. DNA nanotechnology for nucleic acid analysis: multifunctional molecular DNA machine for RNA detection. Chem Commun (Camb) 2016; 52:14318-14321. [PMID: 27886299 PMCID: PMC5645153 DOI: 10.1039/c6cc06889h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Nobel prize in chemistry in 2016 was awarded for 'the design and synthesis of molecular machines'. Here we designed and assembled a molecular machine for the detection of specific RNA molecules. An association of several DNA strands, named multifunctional DNA machine for RNA analysis (MDMR1), was designed to (i) unwind RNA with the help of RNA-binding arms, (ii) selectively recognize a targeted RNA fragment, (iii) attract a signal-producing substrate and (iv) amplify the fluorescent signal by catalysis. MDMR1 enabled detection of 16S rRNA at concentrations ∼24 times lower than that by a traditional deoxyribozyme probe.
Collapse
Affiliation(s)
- A J Cox
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - H N Bengtson
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - K H Rohde
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - D M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| |
Collapse
|
8
|
Cox AJ, Bengtson HN, Gerasimova YV, Rohde KH, Kolpashchikov DM. DNA Antenna Tile-Associated Deoxyribozyme Sensor with Improved Sensitivity. Chembiochem 2016; 17:2038-2041. [PMID: 27620365 DOI: 10.1002/cbic.201600438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Some natural enzymes increase the rate of diffusion-limited reactions by facilitating substrate flow to their active sites. Inspired by this natural phenomenon, we developed a strategy for efficient substrate delivery to a deoxyribozyme (DZ) catalytic sensor. This resulted in a three- to fourfold increase in sensitivity and up to a ninefold improvement in the detection limit. The reported strategy can be used to enhance catalytic efficiency of diffusion-limited enzymes and to improve sensitivity of enzyme-based biosensors.
Collapse
Affiliation(s)
- Amanda J Cox
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Hillary N Bengtson
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA
| | - Kyle H Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA. .,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA. .,National Center for Forensic Science, University of Central Florida, 12354 Research Pkwy. Suite 225, Orlando, FL, 32826, USA.
| |
Collapse
|
9
|
Gerasimova YV, Kolpashchikov DM. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Gerasimova YV, Kolpashchikov DM. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits. Angew Chem Int Ed Engl 2016; 55:10244-7. [DOI: 10.1002/anie.201603265] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/05/2016] [Indexed: 11/06/2022]
|
11
|
Abstract
Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity of DNA is caused by force-induced changes in the π-π electronic coupling between neighbouring bases, and in the activation energy of hole hopping. We describe the results in terms of thermal activated hopping model together with the ladder-based mechanical model for DNA proposed by de Gennes.
Collapse
|
12
|
Bruot C, Xiang L, Palma JL, Tao N. Effect of mechanical stretching on DNA conductance. ACS NANO 2015; 9:88-94. [PMID: 25530305 DOI: 10.1021/nn506280t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studying the structural and charge transport properties in DNA is important for unraveling molecular scale processes and developing device applications of DNA molecules. Here we study the effect of mechanical stretching-induced structural changes on charge transport in single DNA molecules. The charge transport follows the hopping mechanism for DNA molecules with lengths varying from 6 to 26 base pairs, but the conductance is highly sensitive to mechanical stretching, showing an abrupt decrease at surprisingly short stretching distances and weak dependence on DNA length. We attribute this force-induced conductance decrease to the breaking of hydrogen bonds in the base pairs at the end of the sequence and describe the data with a mechanical model.
Collapse
Affiliation(s)
- Christopher Bruot
- Center for Bioelectronics and Biosensors, Biodesign Institute, School of Electrical, Energy and Computer Engineering, Arizona State University , Tempe, Arizona 85287-5801, United States
| | | | | | | |
Collapse
|
13
|
Ariga K, Ji Q, Mori T, Naito M, Yamauchi Y, Abe H, Hill JP. Enzyme nanoarchitectonics: organization and device application. Chem Soc Rev 2014; 42:6322-45. [PMID: 23348617 DOI: 10.1039/c2cs35475f] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fabrication of ultrasmall functional machines and their integration within ultrasmall areas or volumes can be useful for creation of novel technologies. The ultimate goal of the development of ultrasmall machines and device systems is to construct functional structures where independent molecules operate as independent device components. To realize exotic functions, use of enzymes in device structures is an attractive solution because enzymes can be regarded as efficient machines possessing high reaction efficiencies and specificities and can operate even under ambient conditions. In this review, recent developments in enzyme immobilization for advanced functions including device applications are summarized from the viewpoint of micro/nano-level structural control, or nanoarchitectonics. Examples are roughly classified as organic soft matter, inorganic soft materials or integrated/organized media. Soft matter such as polymers and their hybrids provide a medium appropriate for entrapment and encapsulation of enzymes. In addition, self-immobilization based on self-assembly and array formation results in enzyme nanoarchitectures with soft functions. For the confinement of enzymes in nanospaces, hard inorganic mesoporous materials containing well-defined channels play an important role. Enzymes that are confined exhibit improved stability and controllable arrangement, which are useful for formation of functional relays and for their integration into artificial devices. Layer-by-layer assemblies as well as organized lipid assemblies such as Langmuir-Blodgett films are some of the best media for architecting controllable enzyme arrangements. The ultrathin forms of these films facilitate their connection with external devices such as electrodes and transistors. Artificial enzymes and enzyme-mimicking catalysts are finally briefly described as examples of enzyme functions involving non-biological materials. These systems may compensate for the drawbacks of natural enzymes, such as their instabilities under harsh conditions. We believe that enzymes and their mimics will be freely coupled, organized and integrated upon demand in near future technologies.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Dutta PK, Varghese R, Nangreave J, Lin S, Yan H, Liu Y. DNA-Directed Artificial Light-Harvesting Antenna. J Am Chem Soc 2011; 133:11985-93. [DOI: 10.1021/ja1115138] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Palash K. Dutta
- Department of Chemistry and Biochemistry and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5601, United States
| | - Reji Varghese
- Department of Chemistry and Biochemistry and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5601, United States
| | - Jeanette Nangreave
- Department of Chemistry and Biochemistry and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5601, United States
| | - Su Lin
- Department of Chemistry and Biochemistry and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5601, United States
| | - Hao Yan
- Department of Chemistry and Biochemistry and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5601, United States
| | - Yan Liu
- Department of Chemistry and Biochemistry and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5601, United States
| |
Collapse
|
15
|
Alila KO, Baum DA. Modulation of an RNA-branching deoxyribozyme by a small molecule. Chem Commun (Camb) 2011; 47:3227-9. [PMID: 21258742 DOI: 10.1039/c0cc04971a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have engineered an RNA-branching deoxyribozyme to respond positively to ATP, resulting in modulated control of ligation activity that may be applicable to sensor and nanotechnology applications.
Collapse
Affiliation(s)
- Kennedy O Alila
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | | |
Collapse
|
16
|
Gao B, Sarveswaran K, Bernstein GH, Lieberman M. Guided deposition of individual DNA nanostructures on silicon substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12680-12683. [PMID: 20590122 DOI: 10.1021/la101343k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We demonstrate immobilization of DNA nanostructures (37 nm x 8 nm) on silicon by a combination of "top-down" fabrication and "bottom-up" self-assembly. Anchor lines and pads were defined using electron beam lithography and a cationic molecular monolayer. Individual DNA nanostructures bind in 85% yield onto the anchor pads and can be washed and imaged in air. The strength of the binding interaction between a DNA nanostructure and its anchor pad is at least -43 kJ/mol.
Collapse
Affiliation(s)
- Bo Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
17
|
Numajiri K, Yamazaki T, Kimura M, Kuzuya A, Komiyama M. Discrete and Active Enzyme Nanoarrays on DNA Origami Scaffolds Purified by Affinity Tag Separation. J Am Chem Soc 2010; 132:9937-9. [DOI: 10.1021/ja104702q] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kentaro Numajiri
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takahiro Yamazaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Mayumi Kimura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
18
|
Mastrangeli M, Abbasi S, Varel C, Van Hoof C, Celis JP, Böhringer KF. Self-assembly from milli- to nanoscales: methods and applications. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2009; 19:83001. [PMID: 20209016 PMCID: PMC2832205 DOI: 10.1088/0960-1317/19/8/083001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed.
Collapse
|
19
|
Gu H, Chao J, Xiao SJ, Seeman NC. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. NATURE NANOTECHNOLOGY 2009; 4:245-8. [PMID: 19350035 PMCID: PMC2836238 DOI: 10.1038/nnano.2009.5] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/07/2009] [Indexed: 05/22/2023]
Abstract
The aim of nanotechnology is to put specific atomic and molecular species where we want them, when we want them there. Achieving such dynamic and functional control could lead to programmable chemical synthesis and nanoscale systems that are responsive to their environments. Structural DNA nanotechnology offers a powerful route to this goal by combining stable branched DNA motifs with cohesive ends to produce programmed nanomechanical devices and fixed or modified patterned lattices. Here, we demonstrate a dynamic form of patterning in which a pattern component is captured between two independently programmed DNA devices. A simple and robust error-correction protocol has been developed that yields programmed targets in all cases. This capture system can lead to dynamic control either on patterns or on programmed elements; this capability enables computation or a change of structural state as a function of information in the surroundings of the system.
Collapse
Affiliation(s)
- Hongzhou Gu
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | |
Collapse
|
20
|
A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures. Proc Natl Acad Sci U S A 2008; 105:5289-94. [PMID: 18391204 DOI: 10.1073/pnas.0800723105] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A unique DNA scaffold was prepared for the one-step self-assembly of hierarchical nanostructures onto which multiple proteins or nanoparticles are positioned on a single template with precise relative spatial orientation. The architecture is a topologically complex ladder-shaped polycatenane in which the "rungs" of the ladder are used to bring together the individual rings of the mechanically interlocked structure, and the "rails" are available for hierarchical assembly, whose effectiveness has been demonstrated with proteins, complementary DNA, and gold nanoparticles. The ability of this template to form from linear monomers and simultaneously bind two proteins was demonstrated by chemical force microscopy, transmission electron microscopy, and confocal fluorescence microscopy. Finally, fluorescence resonance energy transfer between adjacent fluorophores confirmed the programmed spatial arrangement between two different nanomaterials. DNA templates that bring together multiple nanostructures with precise spatial control have applications in catalysis, biosensing, and nanomaterials design.
Collapse
|
21
|
Cheglakov Z, Weizmann Y, Braunschweig AB, Wilner OI, Willner I. Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers. Angew Chem Int Ed Engl 2008; 47:126-30. [PMID: 18038440 DOI: 10.1002/anie.200703688] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zoya Cheglakov
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
22
|
Kumar AMS, Sivakova S, Fox JD, Green JE, Marchant RE, Rowan SJ. Molecular engineering of supramolecular scaffold coatings that can reduce static platelet adhesion. J Am Chem Soc 2008; 130:1466-76. [PMID: 18177047 DOI: 10.1021/ja0775927] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel supramolecular coatings that make use of low-molecular weight ditopic monomers with guanine end groups are studied using fluid tapping AFM. These molecules assemble on highly oriented pyrolytic graphite (HOPG) from aqueous solutions to form nanosized banding structures whose sizes can be systematically tuned at the nanoscale by tailoring the molecular structure of the monomers. The nature of the self-assembly in these systems has been studied through a combination of the self-assembly of structural derivatives and molecular modeling. Furthermore, we introduce the concept of using these molecular assemblies as scaffolds to organize functional groups on the surface. As a first demonstration of this concept, scaffold monomers that contain a monomethyl triethyleneglycol branch were used to organize these "functional" units on a HOPG surface. These supramolecular grafted assemblies have been shown to be stable at biologically relevant temperatures and even have the ability to significantly reduce static platelet adhesion.
Collapse
Affiliation(s)
- Aryavarta M S Kumar
- Center for Cardiovascular Biomaterials, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cheglakov Z, Weizmann Y, Braunschweig A, Wilner O, Willner I. Increasing the Complexity of Periodic Protein Nanostructures by the Rolling-Circle-Amplified Synthesis of Aptamers. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200703688] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Palchetti I, Mascini M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008; 133:846-54. [DOI: 10.1039/b802920m] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Abstract
Structural DNA Nanotechnology uses unusual DNA motifs to build target shapes and arrangements. These unusual motifs are generated by reciprocal exchange of DNA backbones, leading to branched systems with many strands and multiple helical domains. The motifs may be combined by sticky ended cohesion, involving hydrogen bonding or covalent interactions. Other forms of cohesion involve edge-sharing or paranemic interactions of double helices. A large number of individual species have been developed by this approach, including polyhedral catenanes, a variety of single-stranded knots, and Borromean rings. In addition to these static species, DNA-based nanomechanical devices have been produced that are ultimately targeted to lead to nanorobotics. Many of the key goals of structural DNA nanotechnology entail the use of periodic arrays. A variety of 2D DNA arrays have been produced with tunable features, such as patterns and cavities. DNA molecules have be used successfully in DNA-based computation as molecular representations of Wang tiles, whose self-assembly can be programmed to perform a calculation. About 4 years ago, on the fiftieth anniversary of the double helix, the area appeared to be at the cusp of a truly exciting explosion of applications; this was a correct assessment, and much progress has been made in the intervening period.
Collapse
Affiliation(s)
- Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
26
|
Takada T, Lin C, Majima T. Relationship between Charge Transfer and Charge Recombination Determines Photocurrent Efficiency through DNA Films. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Takada T, Lin C, Majima T. Relationship between Charge Transfer and Charge Recombination Determines Photocurrent Efficiency through DNA Films. Angew Chem Int Ed Engl 2007; 46:6681-3. [PMID: 17665389 DOI: 10.1002/anie.200701525] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tadao Takada
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
28
|
Kuzuya A, Wang R, Sha R, Seeman NC. Six-helix and eight-helix DNA nanotubes assembled from half-tubes. NANO LETTERS 2007; 7:1757-63. [PMID: 17500580 PMCID: PMC2527457 DOI: 10.1021/nl070828k] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
DNA nanotubes are cylinder-like structures formed from DNA double-helical molecules whose helix axes are fused at least twice by crossovers. It is potentially useful to use such tubes as sheaths around rodlike species that arise in biological systems and in nanotechnology. It seems easiest to obtain such sheathing by joining two or more components around an object rather than attempting to thread the object through a cavity in the tube. We report two examples of tubes containing a specific number of helices that are assembled from half-tube components. These tubes are a six-helix bundle and an eight-helix bundle, constructed respectively from two bent triple-crossover (BTX) molecules and from two four-helix arched motifs. Both species contain single strands in one molecule that are missing in its mate. The six-helix bundle is formed from two different BTX molecules, whereas the eight-helix species is a closed cyclic dimer of the same molecule. We demonstrate the formation of these species by gel electrophoresis, and we examine their arrangement into long one-dimensional arrays by means of atomic force microscopy.
Collapse
Affiliation(s)
| | | | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Nadrian C. Seeman
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
29
|
Okamoto K, Uchida S, Ito T, Mizuno N. Self-Organization of All-Inorganic Dodecatungstophosphate Nanocrystallites. J Am Chem Soc 2007; 129:7378-84. [PMID: 17506556 DOI: 10.1021/ja070694c] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystallinity and porosity of all-inorganic dodecatungstophosphate M3PW12O40 (M=Cs, NH4, Ag, denoted as MPW) particles are controlled by the changes in the synthetic temperatures and countercations. The MPW particles can be classified into three groups by the crystallinity and porosity: (i) mesoporous "disordered" aggregates, (ii) microporous "self-organized" aggregates, and (iii) nonporous single crystals. The formation and growth mechanism of MPW particles is expressed by three steps: formation of nanocrystallites, assembly of the nanocrystallites to form aggregates, and the growth of aggregates by the attachment of nanocrystallites. The time courses of the turbidity of the synthetic solution, the concentration of the nanocrystallites, and the average particle sizes of MPW particles are well reproduced by the calculation based on the mechanism.
Collapse
Affiliation(s)
- Keigo Okamoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
30
|
Lu Y, Liu J. Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 2007; 40:315-23. [PMID: 17474707 DOI: 10.1021/ar600053g] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-dimensional functional nanoscale assembly requires not only self-assembly of individual nanomaterials responsive to external stimuli, such as temperature, light, and concentrations, but also directed assembly of many different nanomaterials in one-pot responsive to multiple internal stimuli signaling the needs for such materials at a specific location and a particular time. The use of functional DNA (DNAzymes, aptamers, and aptazymes) to meet these challenges is reviewed. In addition, a biology-inspired proof-reading and error correction method is introduced to cope with errors in nanomaterials assembly.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana--Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
31
|
Sarveswaran K, Hu W, Huber PW, Bernstein GH, Lieberman M. Deposition of DNA rafts on cationic SAMs on silicon [100]. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:11279-83. [PMID: 17154616 DOI: 10.1021/la0615948] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We demonstrate a guided self-assembly approach to the fabrication of DNA nanostructures on silicon substrates. DNA oligonucleotides self-assemble into "rafts" 8 x 37 x 2 nm in size. The rafts bind to cationic SAMs on silicon wafers. Electron-beam lithography of a thin poly(methyl methacrylate) (PMMA) resist layer was used to define trenches, and (3-aminopropyl)triethoxysilane (APTES), a cationic SAM precursor, was deposited from aqueous solution onto the exposed silicon dioxide at the trench bottoms. The remaining PMMA can be cleanly stripped off with dichloromethane, leaving APTES layers 0.7-1.2 nm in thickness and 110 nm in width. DNA rafts bind selectively to the resulting APTES stripes. The coverage of DNA rafts on adjacent areas of silicon dioxide is 20 times lower than on the APTES stripes. The topographic features of the rafts, measured by AFM, are identical to those of rafts deposited on wide-area SAMs. Binding to the APTES stripes appears to be very strong as indicated by "jamming" of the rafts at a saturation coverage of 42% and the stability to repeated AFM scanning in air.
Collapse
Affiliation(s)
- Koshala Sarveswaran
- Department of Chemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
32
|
Lu Y, Liu J. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 2006; 17:580-8. [PMID: 17056247 DOI: 10.1016/j.copbio.2006.10.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/23/2006] [Accepted: 10/11/2006] [Indexed: 11/20/2022]
Abstract
In the past 25 years, DNA molecules have been utilized both as powerful synthetic building blocks to create nanoscale architectures and as versatile programmable templates for assembly of nanomaterials. In parallel, the functions of DNA molecules have been expanded from pure genetic information storage to catalytic functions like those of protein enzymes (DNAzymes) and specific binding functions like antibodies (aptamers). In the past few years, a new interdisciplinary field has emerged that aims to combine functional DNA biology with nanotechnology to generate more dynamic and controllable DNA-based nanostructures or DNA-templated nanomaterials that are responsive to chemical stimuli.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|