1
|
Poddar M, Chang YH, Chiu FC. Ionomeric Nanofibers: A Versatile Platform for Advanced Functional Materials. Polymers (Basel) 2024; 16:3564. [PMID: 39771415 PMCID: PMC11679054 DOI: 10.3390/polym16243564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The one-dimensional nanomaterials known as nanofibers have remarkable qualities, such as large surface areas, adjustable porosity, and superior mechanical strength. Ionomers, types of polymers, have ionic functional groups that give them special properties, including high mechanical strength, water absorption capacity, and ionic conductivity. Integrating ionomers and nanofibers with diverse materials and advanced methodologies has been shown to improve the mechanical strength, processing capacity, and multifunctional attributes of ionomeric nanofibers. One-dimensional ionomeric nanomaterials offer a versatile platform for developing functional materials with ionic functionalities. This mini review critically examines recent progress in the development of ionomeric nanofibers, highlighting innovative fabrication techniques and their expanding applications across energy storage, environmental remediation, healthcare, advanced textiles, and electronics.
Collapse
Affiliation(s)
- Mrinal Poddar
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Fang-Chyou Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan;
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| |
Collapse
|
2
|
Li J, Singh JP, Neklyudov V, Stolov M, Yuan Z, Schilt Y, Raviv U, Dekel DR, Freger V. Anisotropic membrane with high proton conductivity sustaining upon dehydration. SCIENCE ADVANCES 2024; 10:eadp1450. [PMID: 39441933 PMCID: PMC11498227 DOI: 10.1126/sciadv.adp1450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
In fuel cells and electrolyzers, suboptimal proton conductivity and its dramatic drop at low humidity remain major drawbacks in proton exchange membranes (PEMs), including current benchmark Nafion. Sustained through-plane (TP) alignment of nanochannels was proposed as a remedy but proved challenging. We report an anisotropic composite PEM, mimicking the water-conductive composite structure of bamboo that meets this challenge. Micro- and nanoscale alignment of conductive pathways is achieved by in-plane thermal compression of a mat composed of co-electrospun Nafion and poly(vinylidene fluoride) (PVDF) nanofibers stabilizing the alignment. This translates to pronounced TP-enhanced proton conductivity, twice that of pure Nafion at high humidity, 13 times larger at low humidity, and 10 times larger water diffusivity. This remarkable improvement is elucidated by molecular dynamics simulations, which indicate that stronger nanochannels alignment upon dehydration compensates for reduced water content. The presented approach paves the way to overcoming the major drawbacks of ionomers and advancing the development of next-generation membranes for energy applications.
Collapse
Affiliation(s)
- Jian Li
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Jay Prakash Singh
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Vadim Neklyudov
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Mikhail Stolov
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Ziyi Yuan
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yaelle Schilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Dario R. Dekel
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Grand Technion Energy Program, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Grand Technion Energy Program, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Russel-Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
Yalcinkaya F, Torres-Mendieta R, Hruza J, Vávrová A, Svobodová L, Pietrelli A, Ieropoulos I. Nanofiber applications in microbial fuel cells for enhanced energy generation: a mini review. RSC Adv 2024; 14:9122-9136. [PMID: 38500621 PMCID: PMC10945513 DOI: 10.1039/d4ra00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
Microbial fuel cells (MFCs) represent simple devices that harness the metabolic activities of microorganisms to produce electrical energy from diverse sources such as organic waste and sustainable biomass. Because of their unique advantage to generate sustainable energy, through the employment of biodegradable and repurposed waste materials, the development of MFCs has garnered considerable interest. Critical elements are typically the electrodes and separator. This mini-review article presents a critical assessment of nanofiber technology used as electrodes and separators in MFCs to enhance energy generation. In particular, the review highlights the application of nanofiber webs in each part of MFCs including anodes, cathodes, and membranes and their influence on energy generation. The role of nanofiber technology in this regard is then analysed in detail, focusing on improved electron transfer rate, enhanced biofilm formation, and enhanced durability and stability. In addition, the challenges and opportunities associated with integrating nanofibers into MFCs are discussed, along with suggestions for future research in this field. Significant developments in MFCs over the past decade have led to a several-fold increase in achievable power density, yet further improvements in performance and the exploration of cost-effective materials remain promising areas for further advancement. This review demonstrates the great promise of nanofiber-based electrodes and separators in future applications of MFCs.
Collapse
Affiliation(s)
- Fatma Yalcinkaya
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Rafael Torres-Mendieta
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec Studentská 1402/2 46117 Liberec Czech Republic
| | - Jakub Hruza
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Andrea Vávrová
- Department of Nursing and Emergency Care, Faculty of Health Studies, Technical University of Liberec Studentská 1402/2 46117 Liberec Czech Republic
| | - Lucie Svobodová
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec Studentská 1402/2 46117 Liberec Czech Republic
| | - Andrea Pietrelli
- Université de Lyon, INSA Lyon, Université Lyon 1, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005 F-69621 Villeurbanne France
| | - Ioannis Ieropoulos
- Civil, Maritime and Environmental Engineering Department, University of Southampton Southampton SO16 7QF UK
| |
Collapse
|
4
|
Yamada M, Yoshihara N. Anhydrous proton conductor consisting of protamine-monododecyl phosphate composite with self-assembled structure. RSC Adv 2023; 13:34877-34883. [PMID: 38035249 PMCID: PMC10687518 DOI: 10.1039/d3ra07191j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
We prepared a protamine-monododecyl phosphate composite by mixing protamine (P) and a monododecyl phosphate (MDP). This P-MDP composite formed an acid-base complex by the electrostatic interaction between cationic protamine and the negatively charged phosphate group. Additionally, according to the X-ray diffraction (XRD) measurements, the composite formed a self-assembled lamellar structure with an interaction between the long alkyl chains of MDP. As a result, the P-MDP composite showed the proton conductivity of 9.5 × 10-4 S cm-1 at 120-130 °C under anhydrous conditions. Furthermore, the activation energy of the proton conduction of the P-MDP composite was approximately 0.18 eV. These results suggested that the proton conduction of the P-MDP composite was based on an anhydrous proton conductive mechanism. In contrast, the anhydrous proton conduction of the P-methanediphosphonic acid (MP) composite, which did not form the self-assembled lamellar structure, was ca. 3 × 10-5 S cm-1 at 120-130 °C and this value was one order of magnitude lower than that of the P-MDP composite. Therefore, the two-dimensional self-assembled proton conductive pathway of the P-MDP composite plays a role in the anhydrous proton conduction.
Collapse
Affiliation(s)
- Masanori Yamada
- Department of Chemistry, Faculty of Science, Okayama University of Science Ridaicho, Kita-ku Okayama 700-0005 Japan
| | - Naoaki Yoshihara
- Department of Chemistry, Faculty of Science, Okayama University of Science Ridaicho, Kita-ku Okayama 700-0005 Japan
| |
Collapse
|
5
|
Yao Y, Watanabe H, Hara M, Nagano S, Nagao Y. Lyotropic Liquid Crystalline Property and Organized Structure in High Proton-Conductive Sulfonated Semialicyclic Oligoimide Thin Films. ACS OMEGA 2023; 8:7470-7478. [PMID: 36872982 PMCID: PMC9979332 DOI: 10.1021/acsomega.2c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Fully aromatic sulfonated polyimides with a rigid backbone can form lamellar structures under humidified conditions, thereby facilitating the transmission of protons in ionomers. Herein, we synthesized a new sulfonated semialicyclic oligoimide composed of 1,2,3,4-cyclopentanetetracarboxylic dianhydride (CPDA) and 3,3'-bis-(sulfopropoxy)-4,4'-diaminobiphenyl to investigate the influence of molecular organized structure and proton conductivity with lower molecular weight. The weight-average molecular weight (M w) determined by gel permeation chromatography was 9300. Humidity-controlled grazing incidence X-ray scattering revealed that one scattering was observed in the out-of-plane direction and showed that the scattering position shifted to a lower angle as the humidity increased. A loosely packed lamellar structure was formed by lyotropic liquid crystalline properties. Although the ch-pack aggregation of the present oligomer was reduced by substitution to the semialicyclic CPDA from the aromatic backbone, the formation of a distinct organized structure in the oligomeric form was observed because of the linear conformational backbone. This report is the first-time observation of the lamellar structure in such a low-molecular-weight oligoimide thin film. The thin film exhibited a high conductivity of 0.2 (±0.01) S cm-1 under 298 K and 95% relative humidity, which is the highest value compared to the other reported sulfonated polyimide thin films with comparable molecular weight.
Collapse
Affiliation(s)
- Yuze Yao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hayato Watanabe
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mitsuo Hara
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shusaku Nagano
- Department
of Chemistry, College of Science, Rikkyo
University, 3-34-1 Nishi-ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
6
|
Samsudin AM, Roschger M, Wolf S, Hacker V. Preparation and Characterization of QPVA/PDDA Electrospun Nanofiber Anion Exchange Membranes for Alkaline Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3965. [PMID: 36432251 PMCID: PMC9693389 DOI: 10.3390/nano12223965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, there has been considerable interest in anion exchange membrane fuel cells (AEMFCs) as part of fuel cell technology. Anion exchange membranes (AEMs) provide a significant contribution to the development of fuel cells, particularly in terms of performance and efficiency. Polymer composite membranes composed of quaternary ammonium poly(vinyl alcohol) (QPVA) as electrospun nanofiber mats and a combination of QPVA and poly(diallyldimethylammonium chloride) (PDDA) as interfiber voids matrix filler were prepared and characterized. The influence of various QPVA/PDDA mass ratios as matrix fillers on anion exchange membranes and alkaline fuel cells was evaluated. The structural, morphological, mechanical, and thermal properties of AEMs were characterized. To evaluate the AEMs' performances, several measurements comprise swelling properties, ion exchange capacity (IEC), hydroxide conductivity (σ), alkaline stability, and single-cell test in fuel cells. The eQP-PDD0.5 acquired the highest hydroxide conductivity of 43.67 ms cm-1 at 80 °C. The tensile strength of the membranes rose with the incorporation of the filler matrix, with TS ranging from 23.18 to 24.95 Mpa. The peak power density and current density of 24 mW cm-2 and 131 mA cm-2 were achieved with single cells comprising eQP-PDD0.5 membrane at 57 °C.
Collapse
Affiliation(s)
- Asep Muhamad Samsudin
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8020 Graz, Austria
- Department of Chemical Engineering, Diponegoro University, Semarang 50275, Indonesia
| | - Michaela Roschger
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8020 Graz, Austria
| | - Sigrid Wolf
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8020 Graz, Austria
| | - Viktor Hacker
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8020 Graz, Austria
| |
Collapse
|
7
|
Samsudin AM, Bodner M, Hacker V. A Brief Review of Poly(Vinyl Alcohol)-Based Anion Exchange Membranes for Alkaline Fuel Cells. Polymers (Basel) 2022; 14:polym14173565. [PMID: 36080640 PMCID: PMC9460312 DOI: 10.3390/polym14173565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 01/20/2023] Open
Abstract
Anion exchange membrane fuel cells have unique advantages and are thus gaining increasing attention. Poly(vinyl alcohol) (PVA) is one of the potential polymers for the development of anion exchange membranes. This review provides recent studies on PVA-based membranes as alternative anion exchange membranes for alkaline fuel cells. The development of anion exchange membranes in general, including the types, materials, and preparation of anion exchange membranes in the last years, are discussed. The performances and characteristics of recently reported PVA-based membranes are highlighted, including hydroxide conductivity, water uptake, swelling degree, tensile strength, and fuel permeabilities. Finally, some challenging issues and perspectives for the future study of anion exchange membranes are discussed.
Collapse
Affiliation(s)
- Asep Muhamad Samsudin
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8010 Graz, Austria
- Department of Chemical Engineering, Diponegoro University, Semarang 50275, Indonesia
- Correspondence:
| | - Merit Bodner
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8010 Graz, Austria
| | - Viktor Hacker
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
8
|
Wang S, Wang Z, Xu J, Liu Q, Sui Z, Du X, Cui Y, Yuan Y, Yu J, Wang Y, Chang Y. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Palit S, Kreplak L, Frampton JP. Formation of Core-Sheath Polymer Fibers by Free Surface Spinning of Aqueous Two-Phase Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4617-4624. [PMID: 35390253 DOI: 10.1021/acs.langmuir.1c03472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Core-sheath fibers have numerous applications ranging from composite materials for advanced manufacturing to materials for drug delivery and regenerative medicine. Here, a simple and tunable approach for the generation of core-sheath fibers from immiscible solutions of dextran and polyethylene oxide is described. This approach exploits the entanglement of polymer molecules within the dextran and polyethylene oxide phases for free surface spinning into dry fibers. The mechanism by which these core-sheath fibers are produced after contact with a solid substrate (such as a microneedle) involves complex flows of the phase-separating polymer solutions, giving rise to a liquid-liquid core-sheath flow that is drawn into a liquid bridge. This liquid bridge then elongates into a core-sheath fiber through extensional flow as the contacting substrate is withdrawn. The core-sheath structure of the fibers produced by this approach is confirmed by attenuated total reflection Fourier-transform infrared spectroscopy and confocal microscopy. Tuning of the core diameter is also demonstrated by varying the weight percentage of dextran added to the reservoir from which the fibers are formed.
Collapse
Affiliation(s)
- Swomitra Palit
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
10
|
A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Wang M, Ma W, Yang C, Xia Z, Wang S, Sun G. Study on fiber-reinforced proton exchange membrane using high-surface-energy substrate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Micro-phase separation promoted by electrostatic field in electrospinning of alkaline polymer electrolytes: DFT and MD simulations. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Reddy VS, Tian Y, Zhang C, Ye Z, Roy K, Chinnappan A, Ramakrishna S, Liu W, Ghosh R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers (Basel) 2021; 13:3746. [PMID: 34771302 PMCID: PMC8587893 DOI: 10.3390/polym13213746] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/29/2023] Open
Abstract
Electrospun nanofibers have been exploited in multidisciplinary fields with numerous applications for decades. Owing to their interconnected ultrafine fibrous structure, high surface-to-volume ratio, tortuosity, permeability, and miniaturization ability along with the benefits of their lightweight, porous nanofibrous structure, they have been extensively utilized in various research fields for decades. Electrospun nanofiber technologies have paved unprecedented advancements with new innovations and discoveries in several fields of application including energy devices and biomedical and environmental appliances. This review article focused on providing a comprehensive overview related to the recent advancements in health care and energy devices while emphasizing on the importance and uniqueness of utilizing nanofibers. A brief description regarding the effect of electrospinning techniques, setup modifications, and parameters optimization on the nanofiber morphology was also provided. The article is concluded with a short discussion on current research challenges and future perspectives.
Collapse
Affiliation(s)
- Vundrala Sumedha Reddy
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Yilong Tian
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
- Key Laboratory for Information Photonic Technology of Shaanxi Province, School of Information and Electronics Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chuanqi Zhang
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Zhen Ye
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Kallol Roy
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore;
| | - Amutha Chinnappan
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Seeram Ramakrishna
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Wei Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing 211189, China
| | - Rituparna Ghosh
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| |
Collapse
|
14
|
Zhang S, Tanioka A, Matsumoto H. De Novo Ion-Exchange Membranes Based on Nanofibers. MEMBRANES 2021; 11:652. [PMID: 34564469 PMCID: PMC8469869 DOI: 10.3390/membranes11090652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
The unique functions of nanofibers (NFs) are based on their nanoscale cross-section, high specific surface area, and high molecular orientation, and/or their confined polymer chains inside the fibers. The introduction of ion-exchange (IEX) groups on the surface and/or inside the NFs provides de novo ion-exchangers. In particular, the combination of large surface areas and ionizable groups in the IEX-NFs improves their performance through indices such as extremely rapid ion-exchange kinetics and high ion-exchange capacities. In reality, the membranes based on ion-exchange NFs exhibit superior properties such as high catalytic efficiency, high ion-exchange and adsorption capacities, and high ionic conductivities. The present review highlights the fundamental aspects of IEX-NFs (i.e., their unique size-dependent properties), scalable production methods, and the recent advancements in their applications in catalysis, separation/adsorption processes, and fuel cells, as well as the future perspectives and endeavors of NF-based IEMs.
Collapse
Affiliation(s)
- Shaoling Zhang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Akihiko Tanioka
- Interdisciplinary Cluster for Cutting Edge Research, Institute of Carbon Science and Technology, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan;
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
15
|
Wang L, Dou L, Yang Z. Electrospun and cross-linked nanofiber composite poly(aryl ether sulfone) for anion exchange membranes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02585-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Ogura T, Suzuki K, Tanaka M, Kawakami H. Fabrication and Characterizations of Polymer Electrolyte Composite Membranes Consisted of Polymer Nanofiber Framework Bearing Connected Proton Conductive Pathways. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takahiro Ogura
- Department of Applied Chemistry, Tokyo Metropolitan University
| | - Kazuto Suzuki
- Department of Applied Chemistry, Tokyo Metropolitan University
| | - Manabu Tanaka
- Department of Applied Chemistry, Tokyo Metropolitan University
| | | |
Collapse
|
17
|
Banitaba SN, Ehrmann A. Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review. Polymers (Basel) 2021; 13:1741. [PMID: 34073391 PMCID: PMC8197972 DOI: 10.3390/polym13111741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Electrochemical devices convert chemical reactions into electrical energy or, vice versa, electricity into a chemical reaction. While batteries, fuel cells, supercapacitors, solar cells, and sensors belong to the galvanic cells based on the first reaction, electrolytic cells are based on the reversed process and used to decompose chemical compounds by electrolysis. Especially fuel cells, using an electrochemical reaction of hydrogen with an oxidizing agent to produce electricity, and electrolytic cells, e.g., used to split water into hydrogen and oxygen, are of high interest in the ongoing search for production and storage of renewable energies. This review sheds light on recent developments in the area of electrospun electrochemical devices, new materials, techniques, and applications. Starting with a brief introduction into electrospinning, recent research dealing with electrolytic cells, batteries, fuel cells, supercapacitors, electrochemical solar cells, and electrochemical sensors is presented. The paper concentrates on the advantages of electrospun nanofiber mats for these applications which are mostly based on their high specific surface area and the possibility to tailor morphology and material properties during the spinning and post-treatment processes. It is shown that several research areas dealing with electrospun parts of electrochemical devices have already reached a broad state-of-the-art, while other research areas have large space for future investigations.
Collapse
Affiliation(s)
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
18
|
Fabrication and Electrolyte Characterizations of Nanofiber Framework-Based Polymer Composite Membranes with Continuous Proton Conductive Pathways. MEMBRANES 2021; 11:membranes11020090. [PMID: 33513962 PMCID: PMC7911994 DOI: 10.3390/membranes11020090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022]
Abstract
For future fuel cell operations under high temperature and low- or non-humidified conditions, high-performance polymer electrolyte membranes possessing high proton conductivity at low relative humidity as well as suitable gas barrier property and sufficient membrane stability are strongly desired. In this study, novel nanofiber framework (NfF)-based composite membranes composed of phytic acid (Phy)-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix electrolyte were fabricated through the compression process of the nanofibers. The NfF composite membrane prepared from the pressed Phy-PBINf showed higher proton conductivity and lower activation energy than the conventional NfF composite and recast-Nafion membranes, especially at low relative humidity. It is considered that the compression process increased the nanofiber contents in the composite membrane, resulting in the construction of the continuously formed effective proton conductive pathway consisting of the densely accumulated phosphoric acid and sulfonic acid groups at the interface of the nanofibers and the Nafion matrix. Since the NfF also improved the mechanical strength and gas barrier property through the compression process, the NfF composite polymer electrolyte membranes have the potential to be applied to future fuel cells operated under low- or non-humidified conditions.
Collapse
|
19
|
Zhou X, Zhu B, Zhu X, Miao J, Sun X, Zhou Q. Novel nanofiber-enhanced SPEEK proton-exchange membranes with high conductivity and stability. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kyselica R, Enikov ET, Anton R. Method for production of aligned nanofibers and fiber elasticity measurement. J Mech Behav Biomed Mater 2020; 113:104151. [PMID: 33152671 DOI: 10.1016/j.jmbbm.2020.104151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
A novel method for collection of electrospun polymer nanofibers is proposed. This method can be applied to extrusion of various polymers and deposition on various types of substrates or without use of a substrate at all. The fiber is forced to alternate in its deposit in between two different segments of a collector electrode by a pair of square electric potential functions in anti-phase applied to these two electrode segments. As the fiber oscillation frequency is equal to the potential function frequency, the fiber deposition rate in between these two collector segments can be controlled. If an electrically non-conductive material is placed in between the two segments of the collector electrode, aligned fibers are simply deposited on the surface of this material. The method is used to perform stiffness measurements of the fibers demonstrating Young's modulus of 200.1 MPa with a standard deviation of 30.7 MPa. The stiffness measurement does not require any specialized equipment and requires minimal sample preparation. A sample consists of known amount of aligned fibers collected between a pair of thin coaxial rods leading to a cylindrical bundle with known number of fibers. A tensile test is then performed to obtain stress-strain curve and to find the Young's modulus of the fiber material.
Collapse
Affiliation(s)
- R Kyselica
- Aerospace & Mechanical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - E T Enikov
- Aerospace & Mechanical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| | - R Anton
- Department of Surgery, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
21
|
Chang CW, Lai WC. A strategy for preparing solid polymer electrolytes via the electrospinning process. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Kim B, Das G, Park BJ, Lee DH, Yoon HH. A free-standing NiCr-CNT@C anode mat by electrospinning for a high-performance urea/H2O2 fuel cell. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Shimane T, Watanabe T, Yokota N, Matsumoto F, Tanaka M, Kawakami H. Secondary Battery Performance of Solid Polymer Electrolyte Membranes Based on Lithium Ion Conductive Polyimide Nanofibers. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takushi Shimane
- Department of Applied Chemistry, Tokyo Metropolitan University
| | | | - Nohara Yokota
- Department of Applied Chemistry, Tokyo Metropolitan University
| | | | - Manabu Tanaka
- Department of Applied Chemistry, Tokyo Metropolitan University
| | | |
Collapse
|
24
|
Wang J, Xu H, Huo Y, Wang Y, Dong M. Progress of electrospray and electrospinning in energy applications. NANOTECHNOLOGY 2020; 31:132001. [PMID: 31665706 DOI: 10.1088/1361-6528/ab52bb] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the promotion of energy strategies to address the global energy crisis, nanotechnology has been successfully used to generate novel energy materials with excellent characteristics, such as high specific surface area, good flexibility and large porosity. Among the various methods for fabricating nanoscale materials, electrospray and electrospinning technologies have unlocked low-cost, facile and industrial routes to nanotechnology over the past ten years. This review highlights research into the key parts and primary theory of these techniques and their application in preparing energy-related materials and devices: especially fuel cells, solar cells, lithium ion batteries, supercapacitors as well as hydrogen storage systems. The challenges and future prospects of the manufacturing technologies are also covered in this paper.
Collapse
Affiliation(s)
- Junfeng Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Svetlichnyi VM, Vaganov GV, Myagkova LA, Bugrov AN, Chiryat’eva AE, Vlasova EN, Ivan’kova EM, Elokhovskii YV, Popova EN, Smirnova VE, Yudin VE. Electrospinning of Aqueous Solutions of a Triethylammonium Salt of Polyamic Acid and Properties of the Nonwoven Polyimide Materials. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220010048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Affiliation(s)
- Lihua Lou
- Nonwovens & Advanced Materials Laboratory, the Institute of Environmental and Human Health, Texas Tech University, 1207 Gilbert Drive, Lubbock, Texas 79409, United States
- School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, Smith Building 355, Richmond, Virginia 23298, United States
| | - Odia Osemwegie
- Nonwovens & Advanced Materials Laboratory, the Institute of Environmental and Human Health, Texas Tech University, 1207 Gilbert Drive, Lubbock, Texas 79409, United States
| | - Seshadri S. Ramkumar
- Nonwovens & Advanced Materials Laboratory, the Institute of Environmental and Human Health, Texas Tech University, 1207 Gilbert Drive, Lubbock, Texas 79409, United States
| |
Collapse
|
27
|
Yuan Q, Fu Z, Wang Y, Chen W, Wu X, Gong X, Zhen D, Jian X, He G. Coaxial electrospun sulfonated poly (ether ether ketone) proton exchange membrane for conductivity-strength balance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Nagao Y. Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:79-91. [PMID: 32158509 PMCID: PMC7033726 DOI: 10.1080/14686996.2020.1722740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 05/08/2023]
Abstract
Several current topics are introduced in this review, with particular attention to highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Organized structure and molecularly oriented structure are anticipated as more promising approaches than conventional less-molecular-ordered structure to elucidate mechanisms of high proton conduction and control proton conduction. This review introduces related polymer materials and molecular design using lyotropic liquid crystals and hydrogen bond networks for high proton conduction. It also outlines the use of substrate surfaces and external fields, such as pressure and centrifugal force, for organizing structures and molecularly oriented structures.
Collapse
Affiliation(s)
- Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
29
|
Hu H, Wang S, Feng X, Pauly M, Decher G, Long Y. In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications. Chem Soc Rev 2020; 49:509-553. [DOI: 10.1039/c9cs00382g] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One-dimensional (1D) nanoobjects have strongly anisotropic physical properties which are averaged out and cannot be exploited in disordered systems. We reviewed the in plane alignment approaches and potential applications with perspectives shared.
Collapse
Affiliation(s)
- Hebing Hu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| | - Shancheng Wang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| | - Xueling Feng
- Key Laboratory of Science and Technology of Eco-Textile
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Matthias Pauly
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- F-67000 Strasbourg
- France
| | - Gero Decher
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- F-67000 Strasbourg
- France
| | - Yi Long
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| |
Collapse
|
30
|
Yamada M, Tanoue K. Synthesis of self-assembled nucleobases and their anhydrous proton conductivity. RSC Adv 2019; 9:36416-36423. [PMID: 35540609 PMCID: PMC9074914 DOI: 10.1039/c9ra06841d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022] Open
Abstract
We synthesized self-assembled nucleobases (SANs), such as 1-dodecylthymine (DOT) or 9-dodecyladenine (DOA), in which the nucleobase is immobilized on a long alkyl chain. The thermal stability of the SAN was increased by mixing with the acidic surfactant mono-dodecyl phosphate (MDP). Additionally, the SAN-MDP composite material showed proton conductivity of 4.62 × 10-4 S cm-1 at 160 °C under anhydrous conditions. Additionally, the activation energy of the proton conduction was approximately 0.2 eV and this value was one order of magnitude higher than that of a typical humidified perfluorinated membrane, in which the proton can be moved by vehicle molecules, such as water molecules. In contrast, when the nucleobase without the immobilization of a long alkyl chain was mixed with MDP, the proton conductivity of these composite materials was two orders of magnitude less than that of the SAN-MDP composite. Therefore, we measured the XRD spectra of the SAN-MDP composite material. As a result, the SAN-MDP composite material showed a self-assembled structure with a two-dimensional proton conducting pathway, such as a lamellar structure, and that the anhydrous proton conduction was related to the interaction between the nucleobase of the SAN and the phosphate group of MDP. Consequently, the self-assembled nucleobase derivatives have the potential for use as novel anhydrous proton conductors with a two-dimensional proton conducting pathway.
Collapse
Affiliation(s)
- Masanori Yamada
- Department of Chemistry, Faculty of Science, Okayama University of Science Ridaicho, Kita-ku Okayama 700-0005 Japan +81 86 256 9757 +81 86 256 9550
| | - Kento Tanoue
- Department of Chemistry, Faculty of Science, Okayama University of Science Ridaicho, Kita-ku Okayama 700-0005 Japan +81 86 256 9757 +81 86 256 9550
| |
Collapse
|
31
|
Aijaz MO, Karim MR, Alharbi HF, Alharthi NH. Novel optimised highly aligned electrospun PEI-PAN nanofibre mats with excellent wettability. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Li J, Zhang Q, Peng S, Zhang D, Yan X, Wu X, Gong X, Wang Q, He G. Electrospinning fiberization of carbon nanotube hybrid sulfonated poly (ether ether ketone) ion conductive membranes for a vanadium redox flow battery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Sarapulova V, Shkorkina I, Mareev S, Pismenskaya N, Kononenko N, Larchet C, Dammak L, Nikonenko V. Transport Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes АМХ and СМХ and to Heterogeneous Membranes MK-40 and MA-41. MEMBRANES 2019; 9:E84. [PMID: 31337131 PMCID: PMC6680501 DOI: 10.3390/membranes9070084] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
Abstract
Ion-exchange membranes (IEMs) find more and more applications; the success of an application depends on the properties of the membranes selected for its realization. For the first time, the results of a comprehensive characterization of the transport properties of IEMs from three manufactures (Astom, Japan; Shchekinoazot, Russia; and Fujifilm, The Netherlands) are reported. Our own and literature data are presented and analyzed using the microheterogeneous model. Homogeneous Neosepta AMX and CMX (Astom), heterogeneous MA-41 and MK-40 (Shchekinoazot), and AEM Type-I, AEM Type-II, AEM Type-X, as well as CEM Type-I, CEM Type-II, and CEM Type-X produced by the electrospinning method (Fujifim) were studied. The concentration dependencies of the conductivity, diffusion permeability, as well as the real and apparent ion transport numbers in these membranes were measured. The counterion transport number characterizing the membrane permselectivity increases in the following order: CEM Type-I ≅ MA-41 < AEM Type-I < MK-40 < CMX ≅ CEM Type-II ≅ CEM Type-X ≅ AEM Type-II < AMX < AEM Type-X. It is shown that the properties of the AEM Type-I and CEM Type-I membranes are close to those of the heterogeneous MA-41 and MK-40 membranes, while the properties of Fujifilm Type-II and Type-X membranes are close to those of the homogeneous AMX and CMX membranes. This difference is related to the fact that the Type-I membranes have a relatively high parameter f2, the volume fraction of the electroneutral solution filling the intergel spaces. This high value is apparently due to the open-ended pores, formed by the reinforcing fabric filaments of the Type-I membranes, which protrude above the surface of these membranes.
Collapse
Affiliation(s)
- Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Inna Shkorkina
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Semyon Mareev
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia.
| | - Natalia Kononenko
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est, UMR7182 CNRS-Université Paris-Est, 2 rue Henri Dunant, 94320 Thiais, France
| | - Lasaad Dammak
- Institut de Chimie et des Matériaux Paris-Est, UMR7182 CNRS-Université Paris-Est, 2 rue Henri Dunant, 94320 Thiais, France
| | - Victor Nikonenko
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| |
Collapse
|
34
|
Wang H, Zhuang X, Wang X, Li C, Li Z, Kang W, Yin Y, Guiver MD, Cheng B. Proton-Conducting Poly-γ-glutamic Acid Nanofiber Embedded Sulfonated Poly(ether sulfone) for Proton Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21865-21873. [PMID: 31185563 DOI: 10.1021/acsami.9b01200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Development and fabrication of novel proton exchange membranes (PEMs) with excellent performance have a great significance to the commercial application of PEM fuel cell. Inspired from the proton-conducting mechanism, γ-poly(glutamic acid) (γ-PGA) nanofibers (NFs) are first fabricated by solution blowing with the help of polylactic acid (PLA) and designed to form amino acid arrays as efficient proton channels for PEMs. The NFs with 50% γ-PGA exhibit a high proton conductivity of 0.572 S cm-1 at 80 °C/50% relative humidity (RH), and 1.28 S cm-1 at 40 °C/90% RH. Density functional theory is carried out to explain the mechanisms of proton hopping in γ-PGA, and the activation energy barriers from NH to COO- for trans and cis conformations under anhydrous conditions are only 0.64 and 0.62 eV, respectively. Then the γ-PGA/PLA NFs are incorporated into sulfonated poly(ether sulfone) to prepare PEMs, which show remarkable performance compared with the Nafion membrane. The composite membrane with 30 wt % NFs exhibits the highest proton conductivity (0.261 S cm-1 at 80 °C/100% RH). The direct methanol fuel cells with this membrane show a maximum power density (202.3 mW cm-2) among all of the PEMs, showing great application potential in the field of PEMs.
Collapse
Affiliation(s)
| | | | | | - Congju Li
- School of Energy and Environmental Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | | | | | - Yan Yin
- State Key Laboratory of Engines , Tianjin University , Tianjin 300072 , P. R. China
| | - Michael D Guiver
- State Key Laboratory of Engines , Tianjin University , Tianjin 300072 , P. R. China
| | | |
Collapse
|
35
|
Liu Y, Wu W, Li P, Lin J, Yang Z, Wang J. Constructing Long-Range Transfer Pathways with Ordered Acid-Base Pairs for Highly Enhanced Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9964-9973. [PMID: 30777742 DOI: 10.1021/acsami.8b21081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acid-base pairs hold great superiority in creating proton defects and facilitating proton transfer with less or no water. However, the existing acid-base complexes fail in assembling into ordered acid-base pairs and thus cannot always take full advantage of the acid-base synergetic effect. Herein, polymer quantum dots with inherent ordered acid-base pairs are utilized and anchored on dopamine-coated graphene oxide, thus forming into long-range conducting pathways. The resultant building blocks ( nPGO) are integrated in a sulfonated poly(ether ether ketone) matrix to fabricate composite membranes. The constructed long-range transfer highways with ordered acid-base pairs impart to the composite membrane significantly enhanced proton conduction ability. Under the hydrated state, the composite membrane attains 91% increase over the control membrane in conductivity, and the single-cell fuel based on the membrane achieves 71% promotion in maximum power density. Under anhydrous conditions, more striking augment in conduction is observed for the composite membrane, reaching 7.14 mS cm-1, almost 10 times of the control membrane value (0.78 mS cm-1). Remarkably, such anhydrous proton conduction performance is even comparable to that of the composite membrane impregnated with ionic liquids, which is hard to realize with conventional fillers. Collectively, these results endow composite membranes great potential for applications in hydrogen-based fuel cells, sensors, and catalysis.
Collapse
Affiliation(s)
- Yarong Liu
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Wenjia Wu
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
- Department of Civil and Environmental Engineering, Center for the Environmental Implications of NanoTechnology (CEINT) , Duke University , Durham , North Carolina 27708 , United States
| | - Ping Li
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Jianlong Lin
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Zhihao Yang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Jingtao Wang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| |
Collapse
|
36
|
Tsuksamoto M, Ebata K, Sakiyama H, Yamamoto S, Mitsuishi M, Miyashita T, Matsui J. Biomimetic Polyelectrolytes Based on Polymer Nanosheet Films and Their Proton Conduction Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3302-3307. [PMID: 30744379 DOI: 10.1021/acs.langmuir.8b04079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a biomimetic polyelectrolyte based on amphiphilic polymer nanosheet multilayer films. Copolymers of poly( N-dodecylacrylamide- co-vinylphosphonic acid) [p(DDA/VPA)] form a uniform monolayer at the air-water interface. By depositing such monolayers onto solid substrates using the Langmuir-Blodgett (LB) method, multilayer lamellae films with a structure similar to a bilayer membrane were fabricated. The proton conductivity at the hydrophilic interlayer of the lamellar multilayer films was studied by impedance spectroscopy under temperature- and humidity-controlled conditions. At 60 °C and 98% relative humidity (RH), the conductivity increased with increasing mole fraction of VPA ( n) up to 3.2 × 10-2 S cm-1 for n = 0.41. For a film with n = 0.45, the conductivity decreased to 2.2 × 10-2 S cm-1 despite the increase of proton sources. The reason for this decrease was evaluated by studying the effect of the distance between the VPAs ( lVPA) on the proton conductivity as well as their activation energy. We propose that for n = 0.41, lVPA is the optimal distance not only to form an efficient two-dimensional (2D) hydrogen bonding network but also to reorient water and VPA. For n = 0.45, on the other hand, the lVPA was too close for a reorientation. Therefore, we concluded that there should be an optimal distance to obtain high proton conductivity at the hydrophilic interlayer of such multilayer films.
Collapse
Affiliation(s)
| | | | | | - Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | - Masaya Mitsuishi
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | - Tokuji Miyashita
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | | |
Collapse
|
37
|
Introducing planar hydrophobic groups into an alkyl-sulfonated rigid polyimide and how this affects morphology and proton conductivity. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Fast surface proton conduction on acid-doped polymer nanofibers in polymer electrolyte composite membranes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Aruchamy K, Mahto A, Nataraj S. Electrospun nanofibers, nanocomposites and characterization of art: Insight on establishing fibers as product. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Wang H, Li X, Li X, Feng X, Kang W, Xu X, Zhuang X, Cheng B. Self-Assembly DBS Nanofibrils on Solution-Blown Nanofibers as Hierarchical Ion-Conducting Pathway for Direct Methanol Fuel Cells. Polymers (Basel) 2018; 10:E1037. [PMID: 30960962 PMCID: PMC6403695 DOI: 10.3390/polym10091037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/13/2023] Open
Abstract
In this work, we reported a novel proton exchange membrane (PEM) with an ion-conducting pathway. The hierarchical nanofiber structure was prepared via in situ self-assembling 1,3:2,4-dibenzylidene-d-sorbitol (DBS) supramolecular fibrils on solution-blown, sulfonated poly (ether sulfone) (SPES) nanofiber, after which the composite PEM was prepared by incorporating hierarchical nanofiber into the chitosan polymer matrix. Then, the effects of incorporating the hierarchical nanofiber structure on the thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeability of the composite membranes were investigated. The results show that incorporation of hierarchical nanofiber improves the water uptake, proton conductivity, and methanol permeability of the membranes. Furthermore, the composite membrane with 50% hierarchical nanofibers exhibited the highest proton conductivity of 0.115 S cm-1 (80 °C), which was 69.12% higher than the values of pure chitosan membrane. The self-assembly allows us to generate hierarchical nanofiber among the interfiber voids, and this structure can provide potential benefits for the preparation of high-performance PEMs.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiangxiang Li
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiaojie Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xi Feng
- Department of Industrial Design, Yanshan University, Qinhuang Dao 066004, China.
| | - Weimin Kang
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xianlin Xu
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|
41
|
Chen M, Wang M, Yang Z, Ding X, Wang X. Long-term degradation behaviors research on a direct methanol fuel cell with more than 3000h lifetime. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Wang LM, Guan GY, Chen ZW. Electrospun Nanofiber-Based Cardo Poly(aryl ether sulfone) Containing Zwitterionic Side Groups as Novel Proton Exchange Membranes. INT POLYM PROC 2018. [DOI: 10.3139/217.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The sulfonated cardo poly(aryl ether sulfone) with zwitterionic side groups (PES-DS-70) was electrospun to bead-free nanofibers. The PES-DS-70 nanoporous mat was successfully filled with Nafion solution. Scanning electron microscopy observed that the PES-DS-70/Nafion composite membrane has bilayer morphology and good interfacial compatibility. Compared with the neat PES-DS-70, the PES-DS-70/Nafion bilayer membranes showed improved swelling resistance and proton conductivity. Moreover, methanol crossover of the composite film was suppressed due to incorporation of the PES-DS-70 nanofibers. The tensile strength and Young's modulus for the PES-DS-70/Nafion composite membranes were higher than Nafion117. Therefore, the composite membrane with superior combined properties has potential applications for polymer electrolyte membrane fuel cells.
Collapse
Affiliation(s)
- L.-M. Wang
- College of Materials Science and Engineering , Jilin Jianzhu University, Changchun , PRC
| | - G.-Y. Guan
- College of Materials Science and Engineering , Jilin Jianzhu University, Changchun , PRC
| | - Z.-W. Chen
- College of Materials Science and Engineering , Jilin Jianzhu University, Changchun , PRC
| |
Collapse
|
43
|
|
44
|
Zhang S, Li D, Kang J, Ma G, Liu Y. Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells. J Appl Polym Sci 2018. [DOI: 10.1002/app.46443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shaopeng Zhang
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Dan Li
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jingxin Kang
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Guiping Ma
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Yong Liu
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
45
|
Huang L, He Y, Jin L, Hou X, Miao L, Lü C. Fabrication and Properties of Graphene Oxide/Sulfonated Polyethersulfone Layer-by-layer Assembled Polyester Fiber Composite Proton Exchange Membranes. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7313-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Hou C, Zhang X, Li Y, Zhou G, Wang J. Porous nanofibrous composite membrane for unparalleled proton conduction. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
|
48
|
Shao Z, Yu L, Xu L, Wang M. High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning. NANOSCALE RESEARCH LETTERS 2017; 12:470. [PMID: 28754037 PMCID: PMC5529302 DOI: 10.1186/s11671-017-2240-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 05/21/2023]
Abstract
Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.
Collapse
Affiliation(s)
- Zhongbiao Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Liang Yu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Mingdi Wang
- School of Mechanical and Electric Engineering, Soochow University, 178 Ganjiang Road, Suzhou, 215021, China.
| |
Collapse
|
49
|
Sato T, Tsukamoto M, Yamamoto S, Mitsuishi M, Miyashita T, Nagano S, Matsui J. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12897-12902. [PMID: 29058441 DOI: 10.1021/acs.langmuir.7b03160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (lAA), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, lAA is too long to form such hydrogen bonding networks. The lAA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.
Collapse
Affiliation(s)
- Takuma Sato
- Graduate School of Science and Engineering, Yamagata University , 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Mayu Tsukamoto
- Graduate School of Science and Engineering, Yamagata University , 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Shunsuke Yamamoto
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaya Mitsuishi
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tokuji Miyashita
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shusaku Nagano
- Nagoya University Venture Business Laboratory, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Jun Matsui
- Faculty of Science, Yamagata University , 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| |
Collapse
|
50
|
Nagao Y. Proton-Conductivity Enhancement in Polymer Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12547-12558. [PMID: 28753304 DOI: 10.1021/acs.langmuir.7b01484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly proton conductive polymers have long attracted the attention of researchers for use in energy conversion, sensors, catalysts, and other applications. From the viewpoint of the scientific history of the creation of highly proton conductive polymers, one fundamental approach is based on the strategy of phase-segregated structures with strong acid groups. This Feature Article presents a new approach to enhancing the proton conductivity of the polymer thin films using an interface that can modify the degrees of freedom for a polymer structure through interaction between the substrate surface and polymers. I introduce suppressed proton conductivity into Nafion thin films and then specifically examine the enhancement in proton conductivity by the molecular orientation of the polymers. As the last topic, a highly proton conductive organized polyimide thin film is demonstrated using the lyotropic liquid-crystal property. Both molecular ordering and the in-plane oriented structure can enhance proton conductivity. Moreover, the optical domain and degree of molecular ordering derived from the molecular weight can contribute strongly to the proton transport property.
Collapse
Affiliation(s)
- Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology , 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|