1
|
Sehrawat S, Shevchenko A. Octupole plasmon resonance improves light enhancement by a metal nanodimer. OPTICS LETTERS 2024; 49:3432-3435. [PMID: 38875638 DOI: 10.1364/ol.525124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Metal nanoparticles are extensively used in science and technology to resonantly confine and enhance optical fields. Highest enhancement factors are achieved in nanosized gaps of metal dimers. It is commonly assumed that higher-order plasmon resonances, such as electric quadrupole and octupole, are in nanoparticles much weaker than a dipole resonance. Indeed, in the classical multipole expansion that deals with the scattered fields, these "dark" multipoles can be invisible. In this work, we show that an octupole resonance in a metal nanodimer can lead to a substantially larger field enhancement than a dipole resonance. The effect is explained by the fact that the near-field enhancement provided by the excited electric currents can be strong when the excitation is dark. This finding extends the design principles of a plasmonic nanostructure toward higher-order multipoles that, being naturally narrowband, can be useful for a variety of applications, especially in plasmonic sensing and detection.
Collapse
|
2
|
Sugawa K, Ono K, Tomii R, Hori Y, Aoki Y, Honma K, Tamada K, Otsuki J. Development of Au Nanoparticle Two-Dimensional Assemblies Dispersed with Au Nanoparticle-Nanostar Complexes and Surface-Enhanced Raman Scattering Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:764. [PMID: 38727358 PMCID: PMC11085563 DOI: 10.3390/nano14090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
We recently found that polyvinylpyrrolidone (PVP)-protected metal nanoparticles dispersed in water/butanol mixture spontaneously float to the air/water interface and form two-dimensional assemblies due to classical surface excess theory and Rayleigh-Bénard-Marangoni convection induced by butanol evaporation. In this study, we found that by leveraging this principle, a unique structure is formed where hetero gold nanospheres (AuNPs)/gold nanostars (AuNSs) complexes are dispersed within AuNP two-dimensional assemblies, obtained from a mixture of polyvinylpyrrolidone-protected AuNPs and AuNSs that interact electrostatically with the AuNPs. These structures were believed to form as a result of AuNPs/AuNSs complexes formed in the water/butanol mixture floating to the air/water interface and being incorporated into the growth of AuNP two-dimensional assemblies. These structures were obtained by optimizing the amount of mixed AuNSs, with excessive addition resulting in the formation of random three-dimensional network structures. The AuNP assemblies dispersed with AuNPs/AuNSs complexes exhibited significantly higher Raman (surface-enhanced resonance Raman scattering: SERRS) activity compared to simple AuNP assemblies, while the three-dimensional network structure did not show significant SERRS activity enhancement. These results demonstrate the excellent SERRS activity of AuNP two-dimensional assemblies dispersed with hetero AuNPs/AuNSs complexes.
Collapse
Affiliation(s)
- Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kaichi Ono
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Ritsurai Tomii
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Yuka Hori
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Yu Aoki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Koki Honma
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| |
Collapse
|
3
|
Gomrok S, Eldridge BK, Chaffin EA, Barr JW, Huang X, Hoang TB, Wang Y. Plasmonic couplings in Ag-Au heterodimers. J Chem Phys 2024; 160:144706. [PMID: 38591683 PMCID: PMC11006426 DOI: 10.1063/5.0196256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The plasmonic coupling between silver (Ag) and gold (Au) nanoparticles (NPs) under four polarization modes was examined: a longitudinal mode (L-mode), where the electric field of a linearly polarized incident light parallels the dimer axis, and three transverse modes (T-modes), where the electric field of the light is perpendicular to the dimer axis. The coupling was studied using the discrete dipole approximation followed by an in-house postprocessing code that determines the extinction (Qext), absorption (Qabs), and near-field (Qnf) spectra from the individual NPs as well as the whole system. In agreement with the literature results, the extinction/absorption spectra of the whole dimer have two peaks, one near the Ag localized surface plasmon resonance (LSPR) region and the other at the Au LSPR region, with the peak at Ag LSPR being reduced in all modes and the peak at Au LSPR being red-shifted and increased in the L-mode but not in the T-modes. It is further shown that the scattering at the Ag LSPR region is reduced and becomes less than the isolated Ag NPs, but the absorption at the Ag LSPR is increased and becomes greater than the isolated Ag NPs for the 50 nm Ag-Au heterodimer. This suggests that the scattering from Ag NPs is being reabsorbed by the neighboring Au NPs due to the interband electronic transition in Au at that wavelength range. The Qext from the individual NP in the heterodimer shows the presence of the Fano profile on the Au NP but not on the Ag NP. This phenomenon was further investigated by using a dielectric particle (DP) placed near the Ag or Au NPs. The Fano profile appears in the absorbing DP spectra placed near either Ag or Au NPs. However, the Fano profile is masked upon further increases in the refractive index value of the DP particle. This explains the absence of a Fano profile on the Ag NPs in the Ag-Au heterodimer. The large near-field enhancement on both Ag and Au NPs at the Au plasmonic wavelength in the L-mode for large NPs was investigated through a DP-Au system. The large enhancement was shown to arise from a large imaginary component of the DP refractive index and a small real component. Through examination of both the near- and far-field properties of the individual NPs as well as the whole system and examinations of DP-Ag and DP-Au systems, our study provides a new understanding of the couplings between Ag and Au NPs.
Collapse
Affiliation(s)
- Saghar Gomrok
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | | | - Elise A. Chaffin
- Department of Chemistry, Freed-Hardeman University, Henderson, Tennessee 38340, USA
| | - James W. Barr
- Department of Chemistry, Freed-Hardeman University, Henderson, Tennessee 38340, USA
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Thang B. Hoang
- Department of Physics, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
4
|
Zeng P, Yang F, Chen Z, Wei Y, Cao A, Wen L, Zhong S, Wang Y, Zhang T, Li Y. Antielectric Potential Synthesis of Plasmonic Au-Ag Multidimensional Dimers Array for High-Resolution Encrypted Information. NANO LETTERS 2024; 24:3793-3800. [PMID: 38484388 DOI: 10.1021/acs.nanolett.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Plasmonic superstructures hold great potential in encrypted information chips but are still unsatisfactory in terms of resolution and maneuverability because of the limited fabrication strategies. Here, we develop an antielectric potential method in which the interfacial energy from the modification of 5-amino-2-mercapto benzimidazole (AMBI) ligand is used to overcome the electric resistance between the Au nanospheres (NSs) and substrate, thereby realizing the in situ growth of a Au-Ag heterodimers array in large scale. The morphology, number, and size of Ag domains on Au units can be controlled well by modulating the reaction kinetics and thermodynamics. Experiments and theoretical simulations reveal that patterned 3D Au-2D Ag and 3D Au-3D Ag dimer arrays with line widths of 400 nm exhibit cerulean and cyan colors, respectively, and achieve fine color modulation and ultrahigh information resolution. This work not only develops a facile strategy for fabricating patterned plasmonic superstructures but also pushes the plasmon-based high-resolution encrypted information chip into more complex applications.
Collapse
Affiliation(s)
- Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fan Yang
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Zhiming Chen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Wei
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Yifan Wang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
5
|
Fernandes J, Kang S. Thermal dynamics of gold nanoshell dimers under femtosecond laser pulse irradiation: A numerical approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3773. [PMID: 37723125 DOI: 10.1002/cnm.3773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
We present a numerical investigation of the photothermal response of gold nanoshell (AuNS) dimers when subjected to femtosecond laser pulse irradiation. The time-varying temperature fields for core-shell AuNS dimers are quantified by implementing finite element modeling, integrating the electromagnetic and thermal dual-physics simulations. Given the ultrafast nature of laser pulses, we employ a two-temperature model to accurately portray the energy transfer from excited electrons to the lattice system, a process typically completed post pulse-termination. The temporal analysis of the temperature in the AuNS and the surrounding medium, together with the spatial temperature distribution under different separation distances, elucidates the processes that drive the AuNS dimers' transient temperature distribution and heat dissipation. We report on the critical effects of geometrical parameters on the photothermal response, demonstrating that thinner shells maximize the total deposited energy per unit volume, resulting in increased temperature fields, while decreasing separation distances result in excessive field amplification due to plasmonic modes' production. Our robust numerical approach, enabling simulations with tunable material properties and configurations, may help design nanomaterials with desired features for photothermal cancer treatment and imaging.
Collapse
Affiliation(s)
- Joshua Fernandes
- Department of Mechanical Engineering, Dong-A University, Busan, Republic of Korea
| | - Sangmo Kang
- Department of Mechanical Engineering, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
6
|
Ye M, Song L, Ye Y, Deng Z. Assembly and Healing: Capacitive and Conductive Plasmonic Interfacing via a Unified and Clean Wet Chemistry Route. J Am Chem Soc 2023; 145:25653-25663. [PMID: 37963330 DOI: 10.1021/jacs.3c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Solution-based nanoparticle assembly represents a highly promising way to build functional metastructures based on a wealth of synthetic nanomaterial building blocks with well-controlled morphology and crystallinity. In particular, the involvement of DNA molecular programming in these bottom-up processes gradually helps the ambitious goal of customizable chemical nanofabrication. However, a fundamental challenge is to realize strong interunit coupling in an assembly toward emerging functions and applications. Herein, we present a unified and clean strategy to address this critical issue based on a H2O2-redox-driven "assembly and healing" process. This facile solution route is able to realize both capacitively coupled and conductively bridged colloidal boundaries, simply switchable by the reaction temperature, toward bottom-up nanoplasmonic engineering. In particular, such a "green" process does not cause surface contamination of nanoparticles by exogenous active metal ions or strongly passivating ligands, which, if it occurs, could obscure the intrinsic properties of as-formed structures. Accordingly, previously raised questions regarding the activities of strongly coupled plasmonic structures are clarified. The reported process is adaptable to DNA nanotechnology, offering molecular programmability of interparticle charge conductance. This work represents a new generation of methods to make strongly coupled nanoassemblies, offering great opportunities for functional colloidal technology and even metal self-healing.
Collapse
Affiliation(s)
- Meiyun Ye
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yichen Ye
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Yun S, Yoon S. Mode-Selective Plasmon Coupling between Au Nanorods and Au Nanospheres. J Phys Chem Lett 2023; 14:10225-10232. [PMID: 37931252 DOI: 10.1021/acs.jpclett.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Plasmons play a central role in the properties of gold nanoparticles (AuNPs). Plasmons in a AuNP are influenced by neighboring ones, resulting in hybridized bonding dipole modes and red-shifted resonance peaks in the extinction spectra. Previous studies have mainly focused on plasmon coupling among spherical AuNPs (AuNSs). Here, we explore plasmonic interactions between AuNSs and anisotropic gold nanorods (AuNRs), which have longitudinal (LO) and transverse (TR) plasmon modes. We successfully assemble AuNSs around AuNRs ("AuNR@AuNS"), observing shifts in both the LO and TR modes in the extinction spectra due to directional coupling. Selectively binding AuNSs to the ends of AuNRs ("AuNR═AuNS") leads to predominant plasmon coupling along the LO direction. Our simulation studies reveal that exclusive LO or TR coupling occurs only when AuNSs attach to the center of either the end or the side of AuNRs. This study provides a valuable guideline for selectively exciting plasmons in desired nanogaps when multiple nanogaps are present.
Collapse
Affiliation(s)
- Seokhyun Yun
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea
| |
Collapse
|
8
|
Szenes A, Vass DI, Bánhelyi B, Csete M. Enhancing Diamond Color Center Fluorescence via Optimized Configurations of Plasmonic Core-Shell Nanoresonator Dimers. ACS OMEGA 2023; 8:41356-41362. [PMID: 37970031 PMCID: PMC10633910 DOI: 10.1021/acsomega.3c04902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Numerical optimization of silica-metal core-shell nanoresonator dimer geometries was realized to maximize the fluorescence of the NV and SiV diamond color centers. The configurations combine the advantages stemming from the elongation and reduced metal volume of hollow spheroids and the wide tunability and good antenna efficiency due to hybridization of composite modes on the core-shell dimers. The optimized coupled dimers sustain plasmonic modes that maximize the fluorescence by ensuring the simultaneous enhancement of excitation and emission. Asymmetry is advantageous in terms of good enhancement with a compromised corrected quantum efficiency. The directional fluorescence can be significantly increased in the optimized asymmetrically coupled dimer configurations.
Collapse
Affiliation(s)
- András Szenes
- Department
of Optics and Quantum Electronics, University
of Szeged, Dóm tér 9, Szeged 6720, Hungary
- Wigner
Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest 1121, Hungary
| | - Dávid Imre Vass
- Department
of Optics and Quantum Electronics, University
of Szeged, Dóm tér 9, Szeged 6720, Hungary
- Wigner
Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest 1121, Hungary
| | - Balázs Bánhelyi
- Wigner
Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest 1121, Hungary
- Department
of Computational Optimization, University
of Szeged, Árpád
tér 2, Szeged 6720, Hungary
| | - Mária Csete
- Department
of Optics and Quantum Electronics, University
of Szeged, Dóm tér 9, Szeged 6720, Hungary
- Wigner
Research Centre for Physics, Konkoly-Thege Miklós út 29-33, Budapest 1121, Hungary
| |
Collapse
|
9
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
McCarthy L, Verma O, Naidu GN, Bursi L, Alabastri A, Nordlander P, Link S. Chiral Plasmonic Pinwheels Exhibit Orientation-Independent Linear Differential Scattering under Asymmetric Illumination. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:30-39. [PMID: 37122830 PMCID: PMC10131493 DOI: 10.1021/cbmi.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2023]
Abstract
Plasmonic nanoantennas have considerably stronger polarization-dependent optical properties than their molecular counterparts, inspiring photonic platforms for enhancing molecular dichroism and providing fundamental insight into light-matter interactions. One such insight is that even achiral nanoparticles can yield strong optical activity when they are asymmetrically illuminated from a single oblique angle instead of evenly illuminated. This effect, called extrinsic chirality, results from the overall chirality of the experimental geometry and strongly depends on the orientation of the incident light. Although extrinsic chirality has been well-characterized, an analogous effect involving linear polarization sensitivity has not yet been discussed. In this study, we investigate the differential scattering of rotationally symmetric chiral plasmonic pinwheels when asymmetrically irradiated with linearly polarized light. Despite their high rotational symmetry, we observe substantial linear differential scattering that is maintained over all pinwheel orientations. We demonstrate that this orientation-independent linear differential scattering arises from the broken mirror and rotational symmetries of our overall experimental geometry. Our results underscore the necessity of considering both the rotational symmetry of the nanoantenna and the experimental setup, including illumination direction and angle, when performing plasmon-enhanced chiroptical characterizations. Our results demonstrate spectroscopic signatures of an effect analogous to extrinsic chirality for linear polarizations.
Collapse
Affiliation(s)
- Lauren
A. McCarthy
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ojasvi Verma
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Gopal Narmada Naidu
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Luca Bursi
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Soleimani M, Pourfath M. A comprehensive investigation of the plasmonic-photocatalytic properties of gold nanoparticles for CO 2 conversion to chemicals. NANOSCALE 2023; 15:7051-7067. [PMID: 36974912 DOI: 10.1039/d3nr00566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between plasmonic gold (Au) nanoparticles and the adsorbate is essential for photocatalytic and plasmonic applications. However, it is often challenging to identify a specific reaction mechanism in the ground state and to explore the optical properties in the excited states because of the complicated pathways of carriers. In this study, photocatalytic reduction of carbon dioxide (CO2) to C1 products (for example, CO and CH4) on the Au(111) nanoparticle (NP) surface was studied based on reaction pathway analysis, adsorbate reactivity, and its ability to stabilize or deactivate the surface. The calculated reaction Gibbs free energies and activation barriers revealed that the first step in CO reduction via a direct hydrogen transfer mechanism on Au(111) is the formation of formyl (*CHO) instead of hydroxymethylidyne (*COH). Furthermore, the size enhanced and symmetry sensitive optical responses of cuboctahedral Au(111) NPs on localized surface plasmon resonance (LSPR) were investigated by using time-dependent DFT (TDDFT) calculations. Although near field enhancement around cuboctahedral Au(111) NPs is only weakly dependent on the morphology of NPs, it was observed that corner sites stabilize *C-species to drive the CO2 reduction to CO. The density of active surface states interacting with the adsorbate states near the Fermi level gradually decreases from the (111) on-top site toward the corner site of the Au(111) NP-CO system, which strongly affects the molecule's binding on catalytic sites and, in particular, electronic excitation. Finally, the spatial distribution of the charge oscillations was determined as a guide for the fabrication of Au NPs with an optimal LSPR response.
Collapse
Affiliation(s)
- Maryam Soleimani
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran.
| | - Mahdi Pourfath
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran.
- Institute for Microelectronics/E360, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|
12
|
Cencillo-Abad P, Franklin D, Mastranzo-Ortega P, Sanchez-Mondragon J, Chanda D. Ultralight plasmonic structural color paint. SCIENCE ADVANCES 2023; 9:eadf7207. [PMID: 36888718 PMCID: PMC9995036 DOI: 10.1126/sciadv.adf7207] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
All present commercial colors are based on pigments. While such traditional pigment-based colorants offer a commercial platform for large-volume and angle insensitiveness, they are limited by their instability in atmosphere, color fading, and severe environmental toxicity. Commercial exploitation of artificial structural coloration has fallen short due to the lack of design ideas and impractical nanofabrication techniques. Here, we present a self-assembled subwavelength plasmonic cavity that overcomes these challenges while offering a tailorable platform for rendering angle and polarization-independent vivid structural colors. Fabricated through large-scale techniques, we produce stand-alone paints ready to be used on any substrate. The platform offers full coloration with a single layer of pigment, surface density of 0.4 g/m2, making it the lightest paint in the world.
Collapse
Affiliation(s)
- Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL 32826, USA
| | - Daniel Franklin
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL 32826, USA
- Department of Physics, University of Central Florida, 4111 Libra Drive, Physical Sciences Bldg. 430, Orlando, FL 32816, USA
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Ontario, Canada
| | - Pamela Mastranzo-Ortega
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL 32826, USA
- National Institute of Astrophysics, Optics, and Electronics (INAOE), Luis Enrique Erron.1, Sta. María Tonanzintla, Puebla 72840, Mexico
| | - Javier Sanchez-Mondragon
- National Institute of Astrophysics, Optics, and Electronics (INAOE), Luis Enrique Erron.1, Sta. María Tonanzintla, Puebla 72840, Mexico
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL 32826, USA
- Department of Physics, University of Central Florida, 4111 Libra Drive, Physical Sciences Bldg. 430, Orlando, FL 32816, USA
- CREOL, The College of Optics and Photonics, University of Central Florida, 4304 Scorpius St., Orlando, FL 32816, USA
| |
Collapse
|
13
|
Pal M, Niv A. Parametric optical rectification due to the near-field interaction between nanosized metallic domains. OPTICS EXPRESS 2023; 31:4873-4883. [PMID: 36785444 DOI: 10.1364/oe.476346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In this paper, we study parametric optical rectification that is not due to material properties but emerges from the electrostatic near-field interaction between nanosized metallic domains. The ability to demonstrate this effect comes from samples based on a unique slab waveguide with deeply buried nanometer-thin metallic layers. These samples intensify the presumed rectification mechanism while suppressing competing effects. We describe three experiments that, combined, indicate a non-material-based nonlinear mechanism in our samples. The origin of the nonlinear mechanism responsible for rectification is elucidated by invoking a toy model whose sole nonlinearity comes from the interaction between strictly linear oscillators.
Collapse
|
14
|
Wang J, Hao Q, Dong H, Zhu M, Wu L, Liu L, Wang W, Schmidt OG, Ma L. Ultra-dense plasmonic nanogap arrays for reorientable molecular fluorescence enhancement and spectrum reshaping. NANOSCALE 2023; 15:1128-1135. [PMID: 35726711 DOI: 10.1039/d2nr01543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding interactions between molecular transition and intense electromagnetic fields confined by plasmon nanostructures is of great significance due to their huge potential in fundamental cavity quantum electrodynamics and practical applications. Here, we report reorientable plasmon-enhanced fluorescence leveraging the flexibilities in densely-packed gold nanogap arrays by template-assisted depositions. By finely adjusting the symmetry of the unit structure, arrays of nanogaps along two nearly-orthogonal axes can be tailored collectively with spacing down to sub-10 nm on a single chip, facilitating distinct "inter-cell" and "intra-cell" plasmon couplings. Through engineering two sets of nanogaps, the varying hybridization-induced plasmonic bonding modes lead to adjustable splitting of the fluorescence emission peak with a width up to 81 nm and narrowing of linewidths up to a factor of 3. Besides, polarization anisotropy with a ratio up to 63% is obtained on the basis of spectrally separated local hotspots with discrepant oscillation directions. The developed plasmonic nanogap array is envisaged to provide a promising chip-scale, cost-effective platform for advancing fluorescence-based detection and emission technologies in both classical and quantum regimes.
Collapse
Affiliation(s)
- Jiawei Wang
- School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| | - Qi Hao
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- School of Physics, Southeast University, Nanjing 211189, China.
- Quantum Information Research Center, Southeast University, Nanjing 211189, China
| | - Haiyun Dong
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Minshen Zhu
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| | - Lan Wu
- School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Lixiang Liu
- Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| | - Wenxing Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Oliver G Schmidt
- Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| | - Libo Ma
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| |
Collapse
|
15
|
Lin Y, Hu J, Zhang W, Jiang L, Yi D, Rujiralai T, Ma J. Broadband single-molecule fluorescence enhancement based on self-assembled Ag@Au dimer plasmonic nanoantennas. NANOSCALE 2022; 14:17550-17560. [PMID: 36318052 DOI: 10.1039/d2nr03466b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dimer optical antennas (OAs) enable great fluorescence enhancement and excitation volume reduction and hence potentially can be a very useful tool for single-molecule detection. The realization of broadband fluorescence enhancement with a dimer OA remains an essential step for its usage in multi-color single-molecule fluorescence (SMF) detection. Although silver dimer OAs have been shown to be able to yield broadband fluorescence enhancement over the visible spectrum, they are amenable to oxidization, hard to functionalize, and could cause cytotoxicity. To overcome these limitations, in this work, we took advantage of nano-sized silver due to its optical properties and gold due to its chemical properties and developed an ameliorated Ag@Au dimer OA in terms of its overall performance. The Ag@Au nanoparticle in the dimer OA contains a 70 nm silver core and an ultra-thin (∼1-5 nm) gold shell which play a key role in its optical responses. Furthermore, we employed three typical dyes, i.e., FAM, TAMRA and Cy5, representing the blue, yellow and red ranges, respectively, and characterized their single-molecule fluorescence enhancements in the presence of Au or Ag@Au OAs. Our results indicate that, in contrast to its Au counterpart, the Ag@Au dimer OA prepared here can greatly improve its optical response in the blue range and eventually achieve broadband fluorescence enhancement throughout almost the whole visible spectral range. Meanwhile, it also maintains good chemical stability and accessibility to functionalization. Such Ag@Au dimer OAs are thus expected to have many important applications in the future, including single-molecule sequencing and multi-color biosensing.
Collapse
Affiliation(s)
- Yunpeng Lin
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jinyong Hu
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, P.R. China
| | - Wenbo Zhang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Li Jiang
- College of Science, Guilin University of Technology, Guilin 541004, P.R. China
| | - Deqi Yi
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Thitima Rujiralai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
16
|
Zhang J, Song C, Wang L. DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications. Phys Chem Chem Phys 2022; 24:23959-23979. [PMID: 36168789 DOI: 10.1039/d2cp02100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in DNA technology have made it possible to combine with the plasmonics to fabricate reconfigurable dynamic nanodevices with extraordinary property and function. These DNA-mediated plasmonic nanostructures have been investigated for a variety of unique and beneficial physicochemical properties and their dynamic behavior has been controlled by endogenous or exogenous stimuli for a variety of interesting biological applications. In this perspective, the recent efforts to use the DNA nanostructures as molecular linkers for fabricating dynamic plasmonic nanostructures are reviewed. Next, the actuation media for triggering the dynamic behavior of plasmonic nanostructures and the dynamic response in optical features are summarized. Finally, the applications, remaining challenges and perspectives of the DNA-mediated dynamic plasmonic nanostructures are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
17
|
Plasmonic coupling in transversely shifted symmetric Au nanocube trimer: New coupling mechanism and plasmonic scaling trend. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Kuszynski JE, Kays JC, Conti CR, McGill SA, Dennis AM, Strouse GF. Effective Mass for Holes in Paramagnetic, Plasmonic Cu 5FeS 4 Semiconductor Nanocrystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:12669-12679. [PMID: 37560086 PMCID: PMC10410696 DOI: 10.1021/acs.jpcc.2c03459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The impact of a magneto-structural phase transition on the carrier effective mass in Cu5FeS4 plasmonic semiconductor nanocrystals was examined using Magnetic Circular Dichroism (MCD). Through MCD, the sample was confirmed as p-type from variable temperature studies from 1.8 - 75 K. Magnetic field dependent behavior is observed, showing an asymptotic behavior at high field with an m ∗ value 5.98 m ∗ ∕ m e at 10 T and 2.73 m ∗ ∕ m e at 2 T. Experimentally obtained results are holistically compared to SQUID magnetization data and DFT results, highlighting a dependency on vacancy driven polaronic coupling, magnetocrystalline anisotropy, and plasmon coupling of the magnetic field all contributing to an overall decrease in the hole mean free path dependent on the magnetic field applied to Cu5FeS4.
Collapse
Affiliation(s)
- Jason E. Kuszynski
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee FL 32306, USA
| | - Joshua C. Kays
- Department of Biomedical Engineering, Boston University, Boston MA 02215, USA
| | - Carl R. Conti
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee FL 32306, USA
| | | | - Allison M. Dennis
- Department of Biomedical Engineering, Boston University, Boston MA 02215, USA
- Division of Materials Science & Engineering, Boston University, Boston MA 02215, USA
| | - Geoffrey F. Strouse
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee FL 32306, USA
| |
Collapse
|
19
|
Sahu AK, Raj S. Understanding the Coupling Mechanism of Gold Nanostructures by Finite-Difference Time-Domain Method. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
21
|
Minopoli A, Scardapane E, Ventura BD, Tanner JA, Offenhäusser A, Mayer D, Velotta R. Double-Resonant Nanostructured Gold Surface for Multiplexed Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6417-6427. [PMID: 35089707 PMCID: PMC8832399 DOI: 10.1021/acsami.1c23438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/17/2023]
Abstract
A novel double-resonant plasmonic substrate for fluorescence amplification in a chip-based apta-immunoassay is herein reported. The amplification mechanism relies on plasmon-enhanced fluorescence (PEF) effect. The substrate consists of an assembly of plasmon-coupled and plasmon-uncoupled gold nanoparticles (AuNPs) immobilized onto a glass slide. Plasmon-coupled AuNPs are hexagonally arranged along branch patterns whose resonance lies in the red band (∼675 nm). Plasmon-uncoupled AuNPs are sprinkled onto the substrate, and they exhibit a narrow resonance at 524 nm. Numerical simulations of the plasmonic response of the substrate through the finite-difference time-domain (FDTD) method reveal the presence of electromagnetic hot spots mainly confined in the interparticle junctions. In order to realize a PEF-based device for potential multiplexing applications, the plasmon resonances are coupled with the emission peak of 5-carboxyfluorescein (5-FAM) fluorophore and with the excitation/emission peaks of cyanine 5 (Cy5). The substrate is implemented in a malaria apta-immunoassay to detect Plasmodium falciparum lactate dehydrogenase (PfLDH) in human whole blood. Antibodies against Plasmodium biomarkers constitute the capture layer, whereas fluorescently labeled aptamers recognizing PfLDH are adopted as the top layer. The fluorescence emitted by 5-FAM and Cy5 fluorophores are linearly correlated (logarithm scale) to the PfLDH concentration over five decades. The limits of detection are 50 pM (1.6 ng/mL) with the 5-FAM probe and 260 fM (8.6 pg./mL) with the Cy5 probe. No sample preconcentration and complex pretreatments are required. Average fluorescence amplifications of 160 and 4500 are measured in the 5-FAM and Cy5 channel, respectively. These results are reasonably consistent with those worked out by FDTD simulations. The implementation of the proposed approach in multiwell-plate-based bioassays would lead to either signal redundancy (two dyes for a single analyte) or to a simultaneous detection of two analytes by different dyes, the latter being a key step toward high-throughput analysis.
Collapse
Affiliation(s)
- Antonio Minopoli
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Emanuela Scardapane
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
| | | | - Julian A. Tanner
- School
of Biomedical Sciences, University of Hong
Kong, Hong Kong, China
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Raffaele Velotta
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
| |
Collapse
|
22
|
Huang S, Song Y, Liang T, Zhang JR, Zhu JJ. CRISPR System-Linked Self-Assembling Nanoplatforms for Inspection and Screening of Gastric Cancer Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104622. [PMID: 34874610 DOI: 10.1002/smll.202104622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Cancer stem cells (CSCs) possess a high degree of plasticity, constituting a formidable challenge to identify and screen CSCs in situ with outstanding specificity and sensitivity. To overcome this limitation, a self-assembled heterodimer consisting of clustered regularly interspaced short palindromic repeats/Cas12a (named A-CCA) linkage is designed for in situ identification and screening of gastric CSCs (GCSCs) from gastric cancer cells (GCCs). In this system, the editable character of crRNA performs recognition of dual-targets in GCSCs, effectively boosting the specificity of identification, while the enzymatic reaction of Cas12a contributes meaningfully to the sensitivity of sensing, enabling in situ examination and screening of GCSCs. Specifically, the A-CCA nanoplatforms hybridized with ABCG 2 and ABCB 1 overexpress in GCSCs, which can generate heterodimers and simultaneously restore the function of trans-cleavage. At this time, the asymmetry of the heterodimer causes a circular dichroism signal, which together with the recovered fluorescence signal form a dual-signals output system that can further ensure the precision of screening GCSC. Therefore, fluorescence-enhanced GCSCs can be sorted out from GCCs by flow cytometry. Furthermore, GCSCs screened by this assay possess extremely aggressive tumorigenic efficiency, providing a fundamental research object for further developing CSC targeted drugs in vivo.
Collapse
Affiliation(s)
- Shan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuexin Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Tingxizi Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing, 210089, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
23
|
Shu Z, Chen Y, Feng Z, Liang H, Li W, Liu Y, Duan H. Asymmetric Nanofractures Determined the Nonreciprocal Peeling for Self-Aligned Heterostructure Nanogaps and Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1718-1726. [PMID: 34978176 DOI: 10.1021/acsami.1c19776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planar heterostructures composed of two or more adjacent structures with different materials are a kind of building blocks for various applications in surface plasmon resonance sensors, rectifiers, photovoltaic devices, and ambipolar devices, but their reliable fabrication with controllable shape, size, and positioning accuracy remains challenging. In this work, we propose a concept for fabricating planar heterostructures via directional stripping and controlled nanofractures of metallic films, with which self-aligned, multimaterial, multiscale heterostructures with arbitrary geometries and sub-20 nm gaps can be obtained. By using a split ring as the template, the asymmetric nanofracture of the deposited film at the split position results in nonreciprocal peeling of the film in the split ring. Compared to the conventional processes, the final heterostructures are defined only by their outlines, thus providing the ability to fabricate complex heterostructures with higher resolutions. We demonstrate that this method can be used to fabricate heterodimers, multimaterial oligomers, and multiscale asymmetrical electrodes. An Ag-MoS2-Au photodiode with a strong rectification effect is fabricated based on the nanogap heterostructures prepared by this method. This technology provides a unique and reliable approach to define nanogap heterostructures, which are supposed to have potential applications in nanoelectronics, nanoplasmonics, nano-optoelectronics, and electrochemistry.
Collapse
Affiliation(s)
- Zhiwen Shu
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Yiqin Chen
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Zhanyong Feng
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Huikang Liang
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Wanying Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| |
Collapse
|
24
|
Qiu J, Nguyen QN, Lyu Z, Wang Q, Xia Y. Bimetallic Janus Nanocrystals: Syntheses and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102591. [PMID: 34648198 DOI: 10.1002/adma.202102591] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/15/2021] [Indexed: 05/28/2023]
Abstract
Bimetallic Janus nanocrystals have received considerable interest in recent years owing to their unique properties and niche applications. The side-by-side distribution of two distinct metals provides a flexible platform for tailoring the optical and catalytic properties of nanocrystals. First, a brief introduction to the structural features of bimetallic Janus nanocrystals, followed by an extensive discussion of the synthetic approaches, is given. The strategies and experimental controls for achieving the Janus structure, as well as the mechanistic understandings, are specifically discussed. Then, a number of intriguing properties and applications enabled by the Janus nanocrystals are highlighted. Finally, this article is concluded with future directions and outlooks with respect to both syntheses and applications of this new class of functional nanomaterials.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Quynh N Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Qiuxiang Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
25
|
Song X, Wang Y, Hao Y, Zhu Q, Li Y, Song L, Deng Z. Sub-1.5 nm-gapped heterodimeric plasmonic nanomolecules. Chem Sci 2022; 13:4788-4793. [PMID: 35655881 PMCID: PMC9067581 DOI: 10.1039/d2sc01171a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
A whole set of plasmonic nanodimers with prescribed binary compositions are constructed in solution to enable symmetry-broken strong plasmonic coupling.
Collapse
Affiliation(s)
- Xiaojun Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueliang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Yan Hao
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingqing Zhu
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Le NH, Cathcart N, Kitaev V, Chen JIL. Core-satellite assembly of gold nanoshells on solid gold nanoparticles for a color coding plasmonic nanosensor. Analyst 2021; 147:155-164. [PMID: 34860213 DOI: 10.1039/d1an01421h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present core-satellite assemblies comprising a solid gold nanoparticle as the core and hollow decahedral gold nanoshells as satellites for tuning the optical properties of the plasmonic structure for sensing. The core-satellite assemblies were fabricated on a substrate via the layer-by-layer assembly of nanoparticles linked by DNA. We used finite-difference time-domain simulations to help guide the geometrical design, and characterized the optical properties and morphology of the solid-shell nanoparticle assemblies using darkfield microscopy, single-nanostructure spectroscopy, and scanning electron microscopy. Plasmon coupling yielded resonant peaks at longer wavelengths in the red to near-infrared range for solid-shell assemblies compared with solid-solid nanoparticle assemblies. We examined sensing with the solid-shell assemblies using adenosine triphosphate (ATP) as a model target and ATP-aptamer as the linker. Binding of ATP induced disassembly and led to a decrease in the scattering intensity and a color change from red to green. The new morphology of the core-satellite assembly enabled plasmonic color-coding of multiplexed sensors. We demonstrate this potential by fabricating two types of assemblies using DNA linkers that target different molecules - ATP and a model nucleic acid. Our work expands the capability of chip-based plasmonic nanoparticle assemblies for the analysis of multiple, different types of biomolecules in small sample sizes including the microenvironment and single cells.
Collapse
Affiliation(s)
- Nguyen H Le
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3, Canada.
| | - Nicole Cathcart
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3, Canada. .,Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario N2L 3C5, Canada
| | - Vladimir Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario N2L 3C5, Canada
| | - Jennifer I L Chen
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
27
|
Liu D, Xue C. Plasmonic Coupling Architectures for Enhanced Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005738. [PMID: 33891777 DOI: 10.1002/adma.202005738] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Plasmonic photocatalysis is a promising approach for solar energy transformation. Comparing with isolated metal nanoparticles, the plasmonic coupling architectures can provide further strengthened local electromagnetic field and boosted light-harvesting capability through optimal control over the composition, spacing, and orientation of individual nanocomponents. As such, when integrated with semiconductor photocatalysts, the coupled metal nanostructures can dramatically promote exciton generation and separation through plasmonic-coupling-driven charge/energy transfer toward superior photocatalytic efficiencies. Herein, the principles of the plasmonic coupling effect are presented and recent progress on the construction of plasmonic coupling architectures and their integration with semiconductors for enhanced photocatalytic reactions is summarized. In addition, the remaining challenges as to the rational design and utilization of plasmon coupling structures are elaborated, and some prospects to inspire new opportunities on the future development of plasmonic coupling structures for efficient and sustainable light-driven reactions are raised.
Collapse
Affiliation(s)
- Dong Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
28
|
Lee S, Sim K, Moon SY, Choi J, Jeon Y, Nam JM, Park SJ. Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007668. [PMID: 34021638 DOI: 10.1002/adma.202007668] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Indexed: 05/20/2023]
Abstract
The spatial arrangement of plasmonic nanoparticles can dramatically affect their interaction with electromagnetic waves, which offers an effective approach to systematically control their optical properties and manifest new phenomena. To this end, significant efforts were made to develop methodologies by which the assembly structure of metal nanoparticles can be controlled with high precision. Herein, recent advances in bottom-up chemical strategies toward the well-controlled assembly of plasmonic nanoparticles, including multicomponent and multifunctional systems are reviewed. Further, it is discussed how the progress in this area has paved the way toward the construction of smart dynamic nanostructures capable of on-demand, reversible structural changes that alter their properties in a predictable and reproducible manner. Finally, this review provides insight into the challenges, future directions, and perspectives in the field of controlled plasmonic assemblies.
Collapse
Affiliation(s)
- Sunghee Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Kyunjong Sim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So Yoon Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jisu Choi
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Yoojung Jeon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
29
|
Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. Mikrochim Acta 2021; 188:345. [PMID: 34537870 DOI: 10.1007/s00604-021-05002-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Heterodimers of metal nanoparticles consist of two metals, come in many sizes and adopt various shapes. They offer unique properties due to the presence of two metals and have the extraordinary flexibility needed to serve as a multipurpose platform for diverse applications in areas including photonics, sensing, and catalysis. Heterodimer nanoparticles contain different metals that contribute to extraordinary surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), and catalytic properties. These properties make them versatile molecules that can be used in intracellular imaging, as antibacterial agents, as photocatalytic and biological macromolecules and for the detection of chemical substances. Moreover, heterodimer nanoparticles are composed of the two metals within larger molecules that provide more choices for modification and application. In this review, we briefly summarize the lesser-known aspects of heterodimers, including some of their properties, and present concrete examples of recent progress in synthesis and applications. This review provides a perspective on achievements and suggests a framework for future research with a focus on the synthesis and application of heterodimers. We also explore the possible applications of heterodimer nanoparticles based on their unique properties.
Collapse
|
30
|
Jo CH, Voronina N, Sun YK, Myung ST. Gifts from Nature: Bio-Inspired Materials for Rechargeable Secondary Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006019. [PMID: 34337779 DOI: 10.1002/adma.202006019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/29/2021] [Indexed: 06/13/2023]
Abstract
Materials in nature have evolved to the most efficient forms and have adapted to various environmental conditions over tens of thousands of years. Because of their versatile functionalities and environmental friendliness, numerous attempts have been made to use bio-inspired materials for industrial applications, establishing the importance of biomimetics. Biomimetics have become pivotal to the search for technological breakthroughs in the area of rechargeable secondary batteries. Here, the characteristics of bio-inspired materials that are useful for secondary batteries as well as their benefits for application as the main components of batteries (e.g., electrodes, separators, and binders) are discussed. The use of bio-inspired materials for the synthesis of nanomaterials with complex structures, low-cost electrode materials prepared from biomass, and biomolecular organic electrodes for lithium-ion batteries are also introduced. In addition, nature-derived separators and binders are discussed, including their effects on enhancing battery performance and safety. Recent developments toward next-generation secondary batteries including sodium-ion batteries, zinc-ion batteries, and flexible batteries are also mentioned to understand the feasibility of using bio-inspired materials in these new battery systems. Finally, current research trends are covered and future directions are proposed to provide important insights into scientific and practical issues in the development of biomimetics technologies for secondary batteries.
Collapse
Affiliation(s)
- Chang-Heum Jo
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| | - Natalia Voronina
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Seung-Taek Myung
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| |
Collapse
|
31
|
Zhu X, Shi H, Zhang S, Yang Z, Liao J, Quan J, Xue S, Zou C, Zhang J, Duan H. Intraband hot-electron photoluminescence of a silver nanowire-coupled gold film via high-order gap plasmons. NANOSCALE 2021; 13:11204-11214. [PMID: 34143167 DOI: 10.1039/d1nr02002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a strong one-photon photoluminescence (PL) behavior of a silver nanowire directly coupled gold film. The PL peak position of the silver nanowire-coupled gold film deviates from the intrinsic interband transition of gold materials and is not sensitive to the diameter change of the silver nanowire. We attribute this strong PL behavior to the intraband transition of hot electrons dominated by high-order gap plasmons, which are excited in the ultra-small gap formed by an ultra-thin polyvinyl pyrrolidone (PVP) layer coated on the silver nanowire. The results show that the energy required for the strong PL of the heterogeneous system mainly comes from the gold film, acting as an incident energy absorber enhanced by the high-order gap plasmons, while the silver nanowire acts an efficient incident energy focusing antenna. In situ Raman scattering spectra and time-resolved PL intensity integral curves were used to record the carbonization and disappearance process of PVP. The understanding of the PL behavior of the silver nanowire directly coupled gold film proves the universality of plasmon-modulated PL theory and is also of great significance to improve the generation and utilization efficiency of hot electrons with high-order gap plasmons in the fields of catalysis and incident energy capture.
Collapse
Affiliation(s)
- Xupeng Zhu
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Huimin Shi
- Center for Research on Leading Technology of Special Equipment, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shi Zhang
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China.
| | - Zhengmei Yang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jun Liao
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Jun Quan
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Shuwen Xue
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Changwei Zou
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Jun Zhang
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China.
| |
Collapse
|
32
|
Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy. Sci Rep 2021; 11:10639. [PMID: 34017020 PMCID: PMC8137709 DOI: 10.1038/s41598-021-90061-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 02/03/2023] Open
Abstract
The coherent anti-Stokes Raman spectroscopy (CARS) techniques are recognized for their ability to detect and identify vibrational coherent processes down to the single-molecular levels. Plasmonic oligomers supporting full-range Fano-like line profiles in their scattering spectrum are one of the most promising class of substrates in the context of surface-enhanced (SE) CARS application. In this work, an engineered assembly of metallic disk-shaped nanoparticles providing two Fano-like resonance modes is presented as a highly-efficient design of SECARS substrate. We show that the scattering dips corresponding to the double-Fano spectral line shapes are originated from the mutual interaction of electric and toroidal dipole moments, leading to the so-called non-trivial first- and second-order anapole states. The anapole modes, especially the higher-order ones, can result in huge near-field enhancement due to their light-trapping capability into the so-called "hot spots". In addition, independent spectral tunability of the second Fano line shape is exhibited by modulating the gap distance of the corner particles. This feature is closely related to the electric current loop associated with the corner particles in the second-order anapole state and provides a simple design procedure of an optimum SECARS substrate, where the electric field hot spots corresponding to three involved wavelengths, i.e., anti-Stokes, pump, and Stokes, are localized at the same spatial position. These findings yield valuable insight into the plasmonic substrate design for SECARS applications as well as for other nonlinear optical processes, such as four-wave mixing and multi-photon surface spectroscopy.
Collapse
|
33
|
Li X, Liu X, Liu X. Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chem Soc Rev 2021; 50:2074-2101. [PMID: 33325927 DOI: 10.1039/d0cs00436g] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of colloidal nanoparticles has made it possible to bridge the nanoscopic and macroscopic worlds and to make complex nanostructures. The nanoparticle-mediated assembly enables many potential applications, from biodetection and nanomedicine to optoelectronic devices. Properties of assembled materials are determined not only by the nature of nanoparticle building blocks, but also by spatial positions of nanoparticles within the assemblies. A deep understanding of nanoscale interactions between nanoparticles is a prerequisite to controlling nanoparticle arrangement during assembly. In this review, we present an overview of interparticle interactions governing their assembly in a liquid phase. Considerable attention is devoted to examples that illustrate nanoparticle assembly into ordered superstructures using different types of building blocks, including plasmonic nanoparticles, magnetic nanoparticles, lanthanide-doped nanophosphors, and quantum dots. We also cover the physicochemical properties of nanoparticle ensembles, especially those arising from particle coupling effects. We further discuss future research directions and challenges in controlling self-assembly at a level of precision that is most crucial to technology development.
Collapse
Affiliation(s)
- Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Institute of Flexible Electronics (SIFE), 8. Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaogang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore. and Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, China and The N.1 Institute for Health, National University of Singapore, 117456, Singapore
| |
Collapse
|
34
|
Zakia M, Yoo SI. Core-satellite assemblies of Au@polydopamine@Ag nanoparticles for photothermal-mediated catalytic reaction. SOFT MATTER 2020; 16:10252-10259. [PMID: 33125027 DOI: 10.1039/d0sm01656j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Engineering plasmonic nanoparticles (NPs) into superstructures comprising two or more distinctive materials is highly desirable because these assemblies can unfold new properties that differ from those exhibited by their individual counterparts. In addition, metal NPs such as Au NPs and Ag NPs have played a major role in environmental remediation. In this study, we designed a heterogeneous NP assembly composed of an Au core and Ag satellite by utilizing a mussel-inspired polydopamine (PDA) strategy. This approach afforded substantial enhancement in the catalytic activity because of the synergistic effect between the Au core and Ag satellite. Specifically, the heat from the localized surface plasmon resonance excitation of the Au NPs can accelerate the reduction reaction of 4-nitrophenol, while the Ag NPs act as a catalyst for reducing the activation energy. Overall, we prepared a facile route to produce heterogeneous metal NP assemblies, which offers promise in scalable synthesis and application in heterogeneous catalysis.
Collapse
Affiliation(s)
- Maulida Zakia
- Department of Polymer Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| | | |
Collapse
|
35
|
Abnormal Fano Profile in Graphene-Wrapped Dielectric Particle Dimer. PHOTONICS 2020. [DOI: 10.3390/photonics7040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We give a theoretical study on the near field enhancement and far field spectrum of an adjacent graphene-wrapped sphere dimer with different radii. The Fano profile is found in the near field enhancement spectrum of such a symmetry-broken dimer system, which is, however, hidden in the far field spectrum. We demonstrate that this kind of Fano profile is rising from the coupling of dimer’s plasmon hybridization modes by analyzing the dipole moments of each sphere. Moreover, different orientation of incident wave polarization will lead to the different plasmon hybridization coupling, thus giving rise to a different Fano profile. By changing the Fermi energy level, we could achieve tunable Fano profile in near field enhancement.
Collapse
|
36
|
Shor Peled MH, Toledo E, Shital S, Maity A, Pal M, Sivan Y, Schvartzman M, Niv A. Second-harmonic generation from subwavelength metal heterodimers. OPTICS EXPRESS 2020; 28:31468-31479. [PMID: 33115119 DOI: 10.1364/oe.405247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
We experimentally study the optical second-harmonic generation (SHG) from deep subwavelength gold-silver heterodimers, and silver-silver and gold-gold homodimers. Our results indicate a heterodimer SHG that is an order of magnitude more intense than that of the homodimers. In contrast, full-wave calculations that consider the surface and bulk contribution of individual particles, which is the conventional view on such processes, suggest that it is the silver-silver homodimer that should prevail. Based on the deep subwavelength dimension of our structure, we propose that the heterodimer nonlinearity results from a Coulomb interaction between lumped oscillating charges and not from the surface nonlinearity of each particle, as convention would have it. Our proposed model can explain the larger SHG emission observed in gold-silver heterodimers and reproduces its unique spectral lineshape.
Collapse
|
37
|
Wang J, Heo J, Chen C, Wilson AJ, Jain PK. Ammonia Oxidation Enhanced by Photopotential Generated by Plasmonic Excitation of a Bimetallic Electrocatalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Wang
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jaeyoung Heo
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Changqiang Chen
- Materials Research Laboratory University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Andrew J. Wilson
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Prashant K. Jain
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Materials Research Laboratory Department of Physics, and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
38
|
Lin X, Ye S, Kong C, Webb K, Yi C, Zhang S, Zhang Q, Fourkas JT, Nie Z. Polymeric Ligand-Mediated Regioselective Bonding of Plasmonic Nanoplates and Nanospheres. J Am Chem Soc 2020; 142:17282-17286. [PMID: 32985879 DOI: 10.1021/jacs.0c08135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoparticle (NP) clusters are attractive for many applications, but controllable and regioselective assembly of clusters remains challenging. This communication reports a strategy to precisely assemble Ag nanoplates (NP-As) and Au nanospheres (NP-Bs) grafted with copolymer ligands into defined ABx clusters with controlled coordination number (x) and orientation of the NPs. The directional bonding of shaped NPs relies on the stoichiometric reaction of complementary reactive groups on copolymer ligands. The x value of NP clusters can be tuned from 1 to 4 by varying the number ratio of reactive groups on single NP-Bs to NP-As. The regioselective bonding of nanospheres to the edge or face of a central nanoplate is governed by the steric hindrance of copolymeric ligands on the nanoplate. The clusters exhibit distinctive plasmonic properties that are dependent on the bonding modes of NPs. This study paves a route to fabricating nanostructures with high precision and complexity for applications in plasmonics, catalysis, and sensing.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Chuncai Kong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kyle Webb
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shaoyi Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qian Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
39
|
Wang J, Heo J, Chen C, Wilson AJ, Jain PK. Ammonia Oxidation Enhanced by Photopotential Generated by Plasmonic Excitation of a Bimetallic Electrocatalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/anie.202007202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jun Wang
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jaeyoung Heo
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Changqiang Chen
- Materials Research Laboratory University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Andrew J. Wilson
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Prashant K. Jain
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Materials Research Laboratory Department of Physics, and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
40
|
Xu J, Zhu K, Hou Y. Magnetic Heterostructures: Interface Control to Optimize Magnetic Property and Multifunctionality. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36811-36822. [PMID: 32692537 DOI: 10.1021/acsami.0c09934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Generally, magnetic heterostructures are obtained by the growth of another component on the surface of seed nanoparticles. The direct electrical and magnetic interactions between the solid-state interfaces would endow the heterostructures with properties beyond the individual components. We have devoted the past few years to magnetic-optical, magnetic-catalytic, and exchange-coupled heterostructures, where the interface effects regulate and optimize the optical, catalytic, and magnetic properties, respectively. In this Spotlight on Applications, we describe our recent progress on magnetic heterostructures. Upon the understanding on the interface control, we then discuss our recent efforts to synthesize core-shell, dimer, and nanocomposite structures, while the regulation of their magnetic, optical, and catalytic properties is addressed in turn. Finally, we give the perspectives of magnetic heterostructures.
Collapse
Affiliation(s)
- Junjie Xu
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering College of Engineering, Peking University, Beijing 100871, China
| | - Kai Zhu
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering College of Engineering, Peking University, Beijing 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Nucleic acid hybridization on a plasmonic nanointerface of optical microfiber enables ultrahigh-sensitive detection and potential photothermal therapy. Biosens Bioelectron 2020; 156:112147. [DOI: 10.1016/j.bios.2020.112147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
|
42
|
Luo Y, Wang Y, Liu M, Zhu H, Chen O, Zou S, Zhao J. Colloidal Assembly of Au-Quantum Dot-Au Sandwiched Nanostructures with Strong Plasmon-Exciton Coupling. J Phys Chem Lett 2020; 11:2449-2456. [PMID: 32155339 DOI: 10.1021/acs.jpclett.0c00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strong plasmon-exciton coupling could occur in hybrid metal-dye/semiconductor nanostructures, where the fast energy exchange between plasmons and excitons leads to two new eigenmodes of the system, known as Rabi splitting. In experiments, strongly coupled nanosystems are difficult to obtain because they require some strict conditions, such as low plasmonic damping, small plasmon mode volume, and good spectral overlap. This work demonstrates strongly coupled metal-semiconductor nanostructures can be constructed using colloidal assembly. Specifically, sandwiched Au-quantum dot-Au nanostructures were created through the assembly of Au nanoparticles and colloidal quantum dots (QDs). The sizes of the QDs and the assembly conditions were varied to control the mode volume of the plasmonic cavity formed between the two Au nanoparticles. With a decreased gap size, Rabi splitting was observed in both dark-field scattering and fluorescence spectra of single Au-QD-Au nanostructures. Theoretical simulations revealed that the strong coupling occurred between the excitons and the octupolar plasmon modes.
Collapse
Affiliation(s)
- Yi Luo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Yongchen Wang
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Muqiong Liu
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2366, United States
| | - Hua Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shengli Zou
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2366, United States
| | - Jing Zhao
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
43
|
Peng T, Li X, Li K, Nie Z, Tan W. DNA-Modulated Plasmon Resonance: Methods and Optical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14741-14760. [PMID: 32154704 DOI: 10.1021/acsami.9b23608] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The near-field effects in the vicinity of metallic nanoparticle surfaces, as induced by electromagnetic radiation with specific wavelength, give rise to a variety of novel optical properties and attractive applications because of surface plasmons, which are the coherent oscillations of conduction electrons on a metal surface. The interdisciplinary field of plasmonics has witnessed vigorous growth, promoting research on the modulation of plasmon resonance by constructing advanced plasmonic nanoarchitectures with controllable size, morphology, or interparticle coupling. Among diversified tools, deoxyribonucleic nucleic acid (DNA) possesses prominent superiority as a result of its designability, programmability, addressability, and ease of nanomaterial modification. In this review, we focus on the methods and optical applications of plasmon resonance modulation accomplished by DNA nanotechnology. Recent developments in the construction of DNA-mediated plasmonic nanoarchitecture and key ongoing research directions utilizing unique optical features are highlighted. Obstacles and challenges in this field are pointed out, followed by preliminary suggestions on some areas of opportunity that deserve attention.
Collapse
Affiliation(s)
- Tianhuan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| | - Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Weihong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
44
|
Wang J, Lee BHJ, Arya G. Kinetically assembled binary nanoparticle networks. NANOSCALE 2020; 12:5091-5102. [PMID: 32068755 DOI: 10.1039/c9nr09900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Embedding percolating networks of nanoparticles (NPs) within polymers is a promising approach for mechanically reinforcing polymers and for introducing novel electronic, transport, and catalytic properties into otherwise inert polymers. While such networks may be obtained through kinetic assembly of unary system of NPs, the ensuing structures exhibit limited morphologies. Here, we investigate the possibility of increasing the diversity of NP networks through kinetic assembly of multiple species of NPs. Using lattice Monte Carlo simulations we show that networks obtained from co-assembly of two NP species of different sizes exhibit significantly more diverse morphology than those assembled from a single species. In particular, we achieved considerable variations in the particle spatial distribution, proportions of intra- and interspecies contacts, fractal dimension, and pore sizes of the networks by simply modulating the stoichiometry of the two species and their intra and inter-species affinities. We classified these distinct morphologies into "integrated", "coated", "leaved", and "blocked" phases, and provide relevant phase diagrams for achieving them. Our findings are relevant to controlled and predictable assembly of particle networks for creating multifunctional composites with improved properties.
Collapse
Affiliation(s)
- Jiuling Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.
| | - Brian Hyun-Jong Lee
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
45
|
Li Y, Deng Z. Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond. Acc Chem Res 2019; 52:3442-3454. [PMID: 31742388 DOI: 10.1021/acs.accounts.9b00463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Self-assembly represents probably the most flexible way to construct metastructured materials and devices from a wealth of colloidal building blocks with synthetically controllable sizes, shapes, and elemental compositions. In principle, surface capping is unavoidable during the synthesis of nanomaterials with well-defined geometry and stability. The ligand layer also endows inorganic building blocks with molecular recognition ability responsible for their assembly into desired structures. In the case of plasmonic nanounits, precise positioning of them in a nanomolecule or an ordered nanoarray provides a chance to shape their electrodynamic behaviors and thereby assists experimental demonstration of modern nanoplasmonics toward practical uses. Despite previous achievements in bottom-up nanofabrication, a big challenge exists toward strong coupling and facile charge transfer between adjacent nanounits in an assembly. This difficulty has impeded a functional development of plasmonic nanoassemblies. The weakened interparticle coupling originates from the electrostatic and steric barriers of ionic/molecular adsorbates to guarantee a good colloidal stability. Such a dilemma is rooted in fundamental colloidal science, which lacks an effective solution. During the past several years, a chemical tool termed Ag ion soldering (AIS) has been developed to overcome the above situation toward functional colloidal nanotechnology. In particular, a dimeric assembly of plasmonic nanoparticles has been taken as an ideal model to study plasmonic coupling and interparticle charge transfer. This Account starts with a demonstration of the chemical mechanism of AIS, followed by a verification of its workability in various self-assembly systems. A further use of AIS to realize postsynthetic coupling of DNA-directed nanoparticle clusters evidences its compatibility with DNA nanotechnology. Benefiting from the sub-nanometer interparticle gap achieved by AIS, a conductive pathway is established between two nanoparticles in an assembly. Accordingly, light-driven charge transfer between the conductively bridged plasmonic units is realized with highly tunable resonance frequencies. These situations have been demonstrated by thermal/photothermal sintering of silica-isolated nanoparticle dimers as well as gap-specific electroless gold/silver deposition. The regioselective silver deposition is then combined with galvanic replacement to obtain catalytically active nanofoci (plasmonic nanogaps). The resulting structures are useful for real time and on-site Raman spectroscopic tracking of chemical reactions in the plasmonic hotspots (nanogaps) as well as for study of plasmon-mediated/field-enhanced catalysis. The Account is concluded by a deeper insight into the chemical mechanism of AIS and its adaption to conformation-rich structures. Finally, AIS-enabled functional pursuits are suggested for self-assembled materials with strongly coupled and easily reshapable physicochemical properties.
Collapse
Affiliation(s)
- Yulin Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
46
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
47
|
Zhao Y, Gao XY, Wang H, Wang J, Zhou J, Zhao W, Xu JJ, Chen HY. Ultrasensitive Detection of MicroRNA via a Au@Ag Nanosnowman. Anal Chem 2019; 91:15988-15992. [DOI: 10.1021/acs.analchem.9b04715] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Zhao
- State Key Laboratory of
Analytical Chemistry for
Life Science and Collaborative Innovation Center of Chemistry for
Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Gao
- State Key Laboratory of
Analytical Chemistry for
Life Science and Collaborative Innovation Center of Chemistry for
Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui Wang
- State Key Laboratory of
Analytical Chemistry for
Life Science and Collaborative Innovation Center of Chemistry for
Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Wang
- State Key Laboratory of
Analytical Chemistry for
Life Science and Collaborative Innovation Center of Chemistry for
Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Zhou
- State Key Laboratory of
Analytical Chemistry for
Life Science and Collaborative Innovation Center of Chemistry for
Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of
Analytical Chemistry for
Life Science and Collaborative Innovation Center of Chemistry for
Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of
Analytical Chemistry for
Life Science and Collaborative Innovation Center of Chemistry for
Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of
Analytical Chemistry for
Life Science and Collaborative Innovation Center of Chemistry for
Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
48
|
Kim M, Kwon H, Lee S, Yoon S. Effect of Nanogap Morphology on Plasmon Coupling. ACS NANO 2019; 13:12100-12108. [PMID: 31584259 DOI: 10.1021/acsnano.9b06492] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plasmon coupling is the fundamental principle by which the optical resonances in nanoparticle assemblies are tuned. Interactions of plasmons among nanoparticles in close proximity create plasmon coupling modes whose energies are sensitive to the nanogap parameters. Whereas many studies have focused on the gap distances, we herein probe the effect of gap morphology on plasmon coupling. Dimers that are prepared by adsorbing perfectly round ultrauniform Au nanospheres (AuNSs) onto the faces, edges, and vertices of Au nanocubes (AuNCs) present distinctly different nanogap morphologies. Dark-field single-particle scattering spectroscopy reveals that the longitudinal plasmon coupling mode shifts to lower energies as the AuNS forms a nanogap with parts of the AuNC with higher curvature. Simulation spectra are also consistent with this observation. Our calculations indicate that the much larger charge density at the vertex or edge of a AuNC lowers the plasmon coupling energy through the contribution of the Coulomb interaction when the AuNC combines with the AuNS. In comparison, the plasmon energies or anisotropic polarizability along the face, edge, and vertex directions of a AuNC differ only slightly and thus do not cause a shift in the plasmon coupling mode.
Collapse
Affiliation(s)
- Minkyu Kim
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Korea
| | - Hyuksang Kwon
- Korea Research Institute of Standards and Science , 267 Gajeong-ro , Yuseong-gu, Daejeon 34113 , Korea
| | - Sungwoon Lee
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Korea
| | - Sangwoon Yoon
- Department of Chemistry , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Korea
| |
Collapse
|
49
|
Kuttner C, Höller RPM, Quintanilla M, Schnepf MJ, Dulle M, Fery A, Liz-Marzán LM. SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures. NANOSCALE 2019; 11:17655-17663. [PMID: 31535119 DOI: 10.1039/c9nr06102a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The optical properties of nanoparticle assemblies can be tailored via hybridization of plasmon modes. Isotropic core/satellite superstructures made of spherical nanoparticles are known to exhibit coupled modes with a strongly scattering (radiative) character, and provide hot spots yielding high activity in surface-enhanced Raman scattering (SERS). However, to complement this functionality with plasmonic heating, additional absorbing (non-radiative) modes are required. We introduce herein anisotropic superstructures formed by decorating a central nanorod with spherical satellite nanoparticles, which feature two coupled modes that allow application for both SERS and heating. On the basis of diffuse reflectance spectroscopy, small-angle X-ray scattering (SAXS), and electromagnetic simulations, the origin of the coupled modes is disclosed and thus serves as a basis toward alternative designs of functional superstructures. This work represents a proof-of-principle for the combination of high SERS efficiency with efficient plasmonic heating by near-infrared irradiation.
Collapse
Affiliation(s)
- Christian Kuttner
- CIC biomaGUNE, BioNanoPlasmonics Laboratory, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Qiu J, Xie M, Lyu Z, Gilroy KD, Liu H, Xia Y. General Approach to the Synthesis of Heterodimers of Metal Nanoparticles through Site-Selected Protection and Growth. NANO LETTERS 2019; 19:6703-6708. [PMID: 31449753 DOI: 10.1021/acs.nanolett.9b03167] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Heterodimers of metal nanoparticles are widely sought for applications in photonics, sensing, and catalysis. In this work, we demonstrate a general approach to the fabrication of heterodimers of metal nanoparticles by leveraging the concept of site-selected growth under the protection of an inert material. When styrene is polymerized in the presence of Au nanoparticles, the resultant polystyrene (PS) can be controlled to grow from only one portion of the surface of a nanoparticle. Free of PS, the remaining portion can serve as an active site for the heterogeneous nucleation and growth of the second metal. After dissolving the PS component, we obtain heterodimers of metal nanoparticles with tunable elemental compositions and controllable physical dimensions. The contact area between the two metals can also be maneuvered by adjusting the concentration of divinylbenzene used for copolymerization with styrene. Using this method, we have prepared Au-Ag, Au-Pd, and Au-Pt heterodimers and further investigated their plasmonic properties. The capability of this approach should be extendible to the fabrication of heterodimers with a broader range of compositions and properties.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - Minghao Xie
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Kyle D Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
| | - Hong Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|