1
|
De Filippo CA, Del Galdo S, Bianchi E, De Michele C, Capone B. Dilute suspensions of Janus rods: the role of bond and shape anisotropy. NANOSCALE 2024; 16:18545-18552. [PMID: 39283717 DOI: 10.1039/d4nr02397h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Nanometer-sized clusters are often targeted due to their potential applications as nanoreactors or storage/delivery devices. One route to assemble and stabilize finite structures consists of imparting directional bonding patterns between the nanoparticles. When only a portion of the particle surface is able to form an inter-particle bond, finite-size aggregates such as micelles and vesicles may form. Building on this approach, we combine particle shape anisotropy with the directionality of the bonding patterns and investigate the combined effect of particle elongation and surface patchiness on the low density assembly scenario. To this aim, we study the assembly of tip-functionalised Janus hard spherocylinders by means of Monte Carlo simulations. By exploring the effects of changing the interaction strength and range at different packing fractions, we highlight the role played by shape and bond anisotropy on the emerging aggregates (micelles, vesicles, elongated micelles, and lamellae). We observe that shape anisotropy plays a crucial role in suppressing phases that are typical to spherical Janus nanoparticles and that a careful tuning of the interaction parameters allows promoting the formation of spherical micelles. These finite-size spherical clusters composed of elongated particles might offer more interstitials and larger surface areas than those offered by micelles of spherical or almost-spherical units, thus enhancing their storage and catalytic properties.
Collapse
Affiliation(s)
| | - Sara Del Galdo
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Cristiano De Michele
- Physics Department, University of Roma "Sapienza", Piazzale Aldo Moro 2, 00186, Rome, Italy
| | - Barbara Capone
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| |
Collapse
|
2
|
Kumar C, Bhattacharjee S, Srivastava S. Shape anisotropy induced jamming of nanoparticles at liquid interfaces: a tensiometric study. NANOSCALE ADVANCES 2024; 6:4683-4692. [PMID: 39263396 PMCID: PMC11386127 DOI: 10.1039/d4na00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
The intersection of nanotechnology and interfacial science has opened up new avenues for understanding complex phenomena occurring at liquid interfaces. The assembly of nanoparticles at liquid/liquid interfaces provides valuable insights into their interactions with fluid interfaces, essential for various applications, including drug delivery. In this study, we focus on the shape and concentration effects of nanoscale particles on interfacial affinity. Using pendant drop tensiometry, we monitor the real-time interfacial tension between an oil droplet and an aqueous solution containing nanoparticles. We measure two different types of nanoparticles: spherical gold nanoparticles (AuNPs) and anisotropic gold nanorods (AuNRs), each functionalized with surfactants to facilitate interaction at the interface. We observe that the interface equilibrium behaviour is mediated by kinetic processes, namely, diffusion, adsorption and rearrangement of particles. For anisotropic AuNRs, we observe shape-induced jamming of particles at the interface, as evidenced by their slower diffusivity and invariant rearrangement rate. In contrast, the adsorption of spherical AuNPs is dynamic and requires more time to reach equilibrium, indicating weaker interface affinity. By detailed analysis of the interfacial tension data and interaction energy calculations, we show that the anisotropic particle shape achieves stable equilibrium inter-particle separation compared to the isotropic particles. Our findings demonstrate that anisotropic particles are a better design choice for drug delivery applications as they provide better affinity for fluid interface attachment, a crucial requirement for efficient drug transport across cell membranes. Additionally, anisotropic shapes can stabilize interfaces at low particle concentrations compared to isotropic particles, thus minimizing side effects associated with biocompatibility and toxicity.
Collapse
Affiliation(s)
- Chandan Kumar
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India +91-22-2576-7572
| | - Suman Bhattacharjee
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay Mumbai 400 076 India
| | - Sunita Srivastava
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India +91-22-2576-7572
| |
Collapse
|
3
|
Nauman A, Khaliq HS, Choi JC, Lee JW, Kim HR. Topologically Engineered Strain Redistribution in Elastomeric Substrates for Dually Tunable Anisotropic Plasmomechanical Responses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6337-6347. [PMID: 38285501 DOI: 10.1021/acsami.3c13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The prompt visual response is considered to be a highly intuitive tenet among sensors. Therefore, plasmomechanical strain sensors, which exhibit dynamic structural color changes, have recently been developed by using mechanical stimulus-based elastomeric substrates for wearable sensors. However, the reported plasmomechanical strain sensors either lack directional sensitivity or require complex signal processing and device design strategies to ensure anisotropic optical responses. To the best of our knowledge, there have been no reports on utilizing anisotropic mechanical substrates to obtain directional optical responses. Herein, we propose an anisotropic plasmomechanical sensor to distinguish between the applied force direction and the force magnitude. We employ a simple strain-engineered topological elastomer to mechanically transform closely packed metallic nanoparticles (NPs) into anisotropic directional rearrangements depending on the applied force direction. The proposed structure consists of a heterogeneous-modulus elastomer that exhibits a highly direction-dependent Poisson effect owing to the periodically line-patterned local strain redistribution occurring due to the same magnitude of applied external force. Consequently, the reorientation of the self-assembled gold (Au)-NP array manifests dual anisotropy, i.e., force- and polarization-direction-dependent plasmonic coupling. The cost-effectiveness and simple design of our proposed heterogeneous-modulus platform pave the way for numerous optical applications based on dynamic transformation and topological inhomogeneities.
Collapse
Affiliation(s)
- Asad Nauman
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hafiz Saad Khaliq
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Chan Choi
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae-Won Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hak-Rin Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Das A, Kumar H, Hariharan S, Thampi SP, Chandiran AK, Basavaraj MG. Conducting Gold Nanoparticle Films via Sessile Drop Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2510-2518. [PMID: 38284381 DOI: 10.1021/acs.langmuir.3c02542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The deposit patterns obtained from the evaporation of drops containing insoluble solute particles are vital for several technologies, including inkjet printing and optical and electronic device manufacturing. In this work, we consider the evaporation of an aqueous reaction mixture typically used for gold nanoparticle (AuNP) synthesis. The patterns obtained from the evaporation-driven assembly of in situ generated AuNPs are studied using optical microscopy and SEM analyses. The evaporation of drops withdrawn at different reaction times is found to significantly influence the distribution of AuNPs in the dried patterns. The evolution of the deposit patterns is also explored by drying multiple drops on the solid substrate, wherein a drop of a fresh reaction mixture is introduced over the deposit pattern left by the evaporation of the drop dispensed at an earlier time. Using quantitative image analysis, we show that the interparticle separation between the AuNPs in the dried patterns left on the solid substrate decreases when the number of drops is increased. We find optimal conditions to achieve solid-supported AuNP films, wherein the particles are in close physical contact, leading to a conducting deposit. The current through the AuNP deposit is found to increase with increase in the number of drops due to evaporation-driven self-assembly of AuNPs into branch-like structures with reduced interparticle separation. In addition, we also show that it is possible to produce conducting AuNP deposits by drying multiple drops withdrawn from the same reaction mixture. The evaporation-driven assembly of the in situ grown nanoparticles from a reaction mixture presented in this work can be further exploited in optical and electronic device fabrication.
Collapse
Affiliation(s)
- Abinash Das
- Polymer Engineering and Colloid Science Lab (PECS Lab), Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Hemant Kumar
- Polymer Engineering and Colloid Science Lab (PECS Lab), Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Sankar Hariharan
- Polymer Engineering and Colloid Science Lab (PECS Lab), Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Sumesh P Thampi
- Polymer Engineering and Colloid Science Lab (PECS Lab), Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Aravind Kumar Chandiran
- Solar Energy Research Group, Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai 600036, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Lab (PECS Lab), Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
5
|
Yi J, Qin Y, Zhang Y. Synthesis and Self-Assembly of Hyperbranched Multiarm Copolymer Lysozyme Conjugates Based on Light-Induced Metal-Free Atrp. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061017. [PMID: 36985911 PMCID: PMC10053904 DOI: 10.3390/nano13061017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023]
Abstract
In recent years, the coupling of structurally and functionally controllable polymers with biologically active protein materials to obtain polymer-protein conjugates with excellent overall properties and good biocompatibility has been important research in the field of polymers. In this study, the hyperbranched polymer hP(DEGMA-co-OEGMA) was first prepared by combining self-condensation vinyl polymerization (SCVP) with photo-induced metal-free atom transfer radical polymerization (ATRP), with 2-(2-bromo-2-methylpropanoyloxy) ethyl methacrylate (BMA) as inimer, and Di (ethylene glycol) methyl ether methacrylate (DEGMA) and (oligoethylene glycol) methacrylate (OEGMA, Mn = 300) as the copolymer monomer. Then, hP(DEGMA-co-OEGMA) was used as a macroinitiator to continue the polymerization of a segment of pyridyl disulfide ethyl methacrylate (DSMA) monomer to obtain the hyperbranched multiarm copolymers hP(DEGMA-co-OEGMA)-star-PDSMA. Finally, the lysozyme with sulfhydryl groups was affixed to the hyperbranched multiarm copolymers by the exchange reaction between sulfhydryl groups and disulfide bonds to obtain the copolymer protein conjugates hP(DEGMA-co-OEGMA)-star-PLZ. Three hyperbranched multiarm copolymers with relatively close molecular weights but different degrees of branching were prepared, and all three conjugates could self-assemble to form nanoscale vesicle assemblies with narrow dispersion. The biological activity and secondary structure of lysozyme on the assemblies remained essentially unchanged.
Collapse
Affiliation(s)
- Jianguo Yi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yan Qin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
6
|
Han X, Dang M, Gao H, Lu W, Tao J, Wu J, Chen D, Zhao J, Su X, Teng Z. Hierarchically organized gold nanoparticles by lecithin-directed mineralization approach. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
8
|
Azo-Dye-Functionalized Polycarbonate Membranes for Textile Dye and Nitrate Ion Removal. MICROMACHINES 2022; 13:mi13040577. [PMID: 35457883 PMCID: PMC9030370 DOI: 10.3390/mi13040577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
Challenges exist in the wastewater treatment of dyes produced by the world’s growing textiles industry. Common problems facing traditional wastewater treatments include low retention values and breaking the chemical bonds of some dye molecules, which in some cases can release byproducts that can be more harmful than the original dye. This research illustrates that track-etched polycarbonate filtration membranes with 100-nanometer diameter holes can be functionalized with azo dye direct red 80 at 1000 µM, creating a filter that can then be used to remove the entire negatively charged azo dye molecule for a 50 µM solution of the same dye, with a rejection value of 96.4 ± 1.4%, at a stable flow rate of 114 ± 5 µL/min post-functionalization. Post-functionalization, Na+ and NO3− ions had on average 17.9%, 26.0%, and 31.1% rejection for 750, 500, and 250 µM sodium nitrate solutions, respectively, at an average flow rate of 177 ± 5 µL/min. Post-functionalization, similar 50 µM azo dyes had increases in rejection from 26.3% to 53.2%. Rejection measurements were made using ultraviolet visible-light spectroscopy for dyes, and concentration meters using ion selective electrodes for Na+ and NO3− ions.
Collapse
|
9
|
Prasad S, Gupta M. Solvation of gold nanoparticles passivated with functionalized alkylthiols: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Shi Q, Yong Z, Uddin MH, Fu R, Sikdar D, Yap LW, Fan B, Liu Y, Dong D, Cheng W. Cell Sheet-Like Soft Nanoreactor Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105630. [PMID: 34773416 DOI: 10.1002/adma.202105630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Tissues, which consist of groups of closely packed cell arrays, are essentially sheet-like biosynthesis plants. In tissues, individual cells are discrete microreactors working under highly viscous and confined environments. Herein, soft polystyrene-encased nanoframe (PEN) reactor arrays, as analogous nanoscale "sheet-like chemosynthesis plants", for the controlled synthesis of novel nanocrystals, are reported. Although the soft polystyrene (PS) is only 3 nm thick, it is elastic, robust, and permeable to aqueous solutes, while significantly slowing down their diffusion. PEN-associated palladium (Pd) crystallization follows a diffusion-controlled zero-order kinetics rather than a reaction-controlled first-order kinetics in bulk solution. Each individual PEN reactor has a volume in the zeptoliter range, which offers a unique confined environment, enabling a directional inward crystallization, in contrast to the conventional outward nucleation/growth that occurs in an unconfined bulk solution. This strategy makes it possible to generate a set of mono-, bi-, and trimetallic, and even semiconductor nanocrystals with tunable interior structures, which are difficult to achieve with normal systems based on bulk solutions.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Zijun Yong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Md Hemayet Uddin
- Melbourne Center for Nanofabrication, Clayton, Victoria, 3168, Australia
| | - Runfang Fu
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Debabrata Sikdar
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Lim Wei Yap
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Yiyi Liu
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Dashen Dong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
11
|
Supported MXene/GO Composite Membranes with Suppressed Swelling for Metal Ion Sieving. MEMBRANES 2021; 11:membranes11080621. [PMID: 34436384 PMCID: PMC8401878 DOI: 10.3390/membranes11080621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
Novel two-dimensional (2D) membranes have been utilized in water purification or seawater desalination due to their highly designable structure. However, they usually suffer from swelling problems when immersed in solution, which limits their further applications. In this study, 2D cross-linked MXene/GO composite membranes supported on porous polyamide substrates are proposed to improve the antiswelling property and enhance the ion-sieving performance. Transition-metal carbide (MXene) nanosheets were intercalated into GO nanosheets, where the carboxyl groups of GO combined the neighboring hydroxyl terminal groups of MXene with the formation of -COO- bonds between GO and MXene nanosheets via the cross-linking reaction (-OH + -COOH = -COO- + H2O) after heat treatment. The permeation rates of the metal ions (Li+, Na+, K+, Al3+) through the cross-linked MXene/GO composite membrane were 7-40 times lower than those through the pristine MXene/GO membrane. In addition, the cross-linked MXene/GO composite membrane showed excellent Na+ rejection performance (99.3%), which was significantly higher than that through pristine MXene/GO composite membranes (80.8%), showing improved ion exclusion performance. Such a strategy represents a new avenue to develop 2D material-derived high-performance membranes for water purification.
Collapse
|
12
|
Barry E, Burns R, Chen W, De Hoe GX, De Oca JMM, de Pablo JJ, Dombrowski J, Elam JW, Felts AM, Galli G, Hack J, He Q, He X, Hoenig E, Iscen A, Kash B, Kung HH, Lewis NHC, Liu C, Ma X, Mane A, Martinson ABF, Mulfort KL, Murphy J, Mølhave K, Nealey P, Qiao Y, Rozyyev V, Schatz GC, Sibener SJ, Talapin D, Tiede DM, Tirrell MV, Tokmakoff A, Voth GA, Wang Z, Ye Z, Yesibolati M, Zaluzec NJ, Darling SB. Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chem Rev 2021; 121:9450-9501. [PMID: 34213328 DOI: 10.1021/acs.chemrev.1c00069] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.
Collapse
Affiliation(s)
- Edward Barry
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Raelyn Burns
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Wei Chen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Guilhem X De Hoe
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Joan Manuel Montes De Oca
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Juan J de Pablo
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - James Dombrowski
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Jeffrey W Elam
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alanna M Felts
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Giulia Galli
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - John Hack
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Qiming He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xiang He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Eli Hoenig
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Aysenur Iscen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Benjamin Kash
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Harold H Kung
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Nicholas H C Lewis
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Chong Liu
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xinyou Ma
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anil Mane
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alex B F Martinson
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Karen L Mulfort
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Julia Murphy
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Kristian Mølhave
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Paul Nealey
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Yijun Qiao
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Vepa Rozyyev
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - George C Schatz
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Steven J Sibener
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Dmitri Talapin
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - David M Tiede
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Matthew V Tirrell
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Andrei Tokmakoff
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Gregory A Voth
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zhongyang Wang
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zifan Ye
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Murat Yesibolati
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Nestor J Zaluzec
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Photon Sciences Directorate, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Seth B Darling
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| |
Collapse
|
13
|
Jackson GL, Lin XM, Austin J, Wen J, Jaeger HM. Ultrathin Porous Hydrocarbon Membranes Templated by Nanoparticle Assemblies. NANO LETTERS 2021; 21:166-174. [PMID: 33301329 DOI: 10.1021/acs.nanolett.0c03450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous polymer membranes are widely desired as catalyst supports, sensors, and active layers for separation membranes. We demonstrate that electron beam irradiation of freely suspended gold or Fe3O4 nanoparticle (NP) monolayer sheets followed by wet chemical etching is a high-fidelity strategy to template two-dimensional (2D) porous cross-linked hydrocarbon membranes. This approach, which relies on secondary electrons generated by the NP cores, can further be used to transform three-dimensional (3D) terraced gold NP supercrystals into 3D porous hydrocarbon membranes. We utilize electron tomography to show how the number of NP layers (monolayer to pentalayer) controls attenuation and scattering of the primary e-beam, which in turn determines ligand cross-link density and 3D pore structure. Electron tomography also reveals that many nanopores are vertically continuous because of preferential sintering of NPs. This work demonstrates new routes for the construction of functional nanoporous media.
Collapse
Affiliation(s)
- Grayson L Jackson
- James Franck Institute, University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 United States
| | - Jotham Austin
- Advanced Electron Microscopy Facility, University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 United States
| | - Heinrich M Jaeger
- James Franck Institute, University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
- Department of Physics, University of Chicago, 5720 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Yin J, Zheng Z, Yang J, Liu Y, Cai L, Guo Q, Li M, Li X, Sun TL, Liu GX, Huang C, Cheng SZD, Russell TP, Yin P. Unexpected Elasticity in Assemblies of Glassy Supra‐Nanoparticle Clusters. Angew Chem Int Ed Engl 2021; 60:4894-4900. [DOI: 10.1002/anie.202013361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/26/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Jia‐Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Zhao Zheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Junsheng Yang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yuchu Liu
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Linkun Cai
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Qing‐Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Xinpei Li
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Tao Lin Sun
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Geng Xin Liu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Donghua University Shanghai 201620 China
| | - Caili Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
15
|
Yin J, Zheng Z, Yang J, Liu Y, Cai L, Guo Q, Li M, Li X, Sun TL, Liu GX, Huang C, Cheng SZD, Russell TP, Yin P. Unexpected Elasticity in Assemblies of Glassy Supra‐Nanoparticle Clusters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Zhao Zheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Junsheng Yang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yuchu Liu
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Linkun Cai
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Qing‐Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Xinpei Li
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Tao Lin Sun
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Geng Xin Liu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Donghua University Shanghai 201620 China
| | - Caili Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
16
|
Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. NANOMATERIALS 2020; 10:nano10091764. [PMID: 32906594 PMCID: PMC7558965 DOI: 10.3390/nano10091764] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology is an uppermost priority area of research in several nations presently because of its enormous capability and financial impact. One of the most promising environmental utilizations of nanotechnology has been in water treatment and remediation where various nanomaterials can purify water by means of several mechanisms inclusive of the adsorption of dyes, heavy metals, and other pollutants, inactivation and removal of pathogens, and conversion of harmful materials into less harmful compounds. To achieve this, nanomaterials have been generated in several shapes, integrated to form different composites and functionalized with active components. Additionally, the nanomaterials have been added to membranes that can assist to improve the water treatment efficiency. In this paper, we have discussed the advantages of nanomaterials in applications such as adsorbents (removal of dyes, heavy metals, pharmaceuticals, and organic contaminants from water), membrane materials, catalytic utilization, and microbial decontamination. We discuss the different carbon-based nanomaterials (carbon nanotubes, graphene, graphene oxide, fullerenes, etc.), and metal and metal-oxide based nanomaterials (zinc-oxide, titanium dioxide, nano zerovalent iron, etc.) for the water treatment application. It can be noted that the nanomaterials have the ability for improving the environmental remediation system. The examination of different studies confirmed that out of the various nanomaterials, graphene and its derivatives (e.g., reduced graphene oxide, graphene oxide, graphene-based metals, and graphene-based metal oxides) with huge surface area and increased purity, outstanding environmental compatibility and selectivity, display high absorption capability as they trap electrons, avoiding their recombination. Additionally, we discussed the negative impacts of nanomaterials such as membrane damage and cell damage to the living beings in the aqueous environment. Acknowledgment of the possible benefits and inadvertent hazards of nanomaterials to the environment is important for pursuing their future advancement.
Collapse
|
17
|
Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118064] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Das A N, Begam N, Chandran S, Swain A, Sprung M, Basu JK. Thermal stability and dynamics of soft nanoparticle membranes: role of entropy, enthalpy and membrane compressibility. SOFT MATTER 2020; 16:1117-1124. [PMID: 31894229 DOI: 10.1039/c9sm01946d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticle based ultra-thin membranes have been shown to have remarkable mechanical properties while also possessing novel electrical, optical or magnetic properties, which could be controlled by tailoring properties at the level of individual nanoparticles. Since in most cases the ultra-thin membranes are coupled to some substrates, the role of membrane-substrate interactions, apart from nanoparticle-nanoparticle interactions become very crucial in understanding their mechanical and thermal stability, as well as their plethora of applications. However, systematic studies in this direction have been conspicuously absent. Here we report thermal stability and the corresponding microscopic dynamics of polymer supported ultra-thin membranes comprising of self-assembled, ordered grains of polymer grafted nanoparticles having tunable mechanical properties. The initially ordered membranes show distinct pathways for temperature induced disordering depending on membrane flexibility as well as on interfacial entropic and enthalpic interactions with the underlying polymer thin film. We also observe contrasting temperature dependence of microscopic dynamics of these membranes depending on whether the graft polymer-substrate polymer interactions are predominantly entropic or enthalpic in nature. Our results suggest that apart from their varied applications, the soft nanoparticle-polymer hybrid membranes are a playground for rich physics involving subtle entropic and enthalpic effects along with the nanoparticles softness, which eventually determine their thermo-mechanical stability.
Collapse
Affiliation(s)
- Nimmi Das A
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Nafisa Begam
- Institute of Applied Physics, University of Tuebingen, 72076 Tuebingen, Germany
| | | | - Aparna Swain
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Michael Sprung
- Deutsches Elektronen Synchrotron DESY, Notkestresse 85, 22607 Hamburg, Germany
| | - J K Basu
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
19
|
Karner C, Dellago C, Bianchi E. Design of Patchy Rhombi: From Close-Packed Tilings to Open Lattices. NANO LETTERS 2019; 19:7806-7815. [PMID: 31580675 DOI: 10.1021/acs.nanolett.9b02829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the realm of functional materials, the production of two-dimensional structures with tunable porosity is of paramount relevance for many practical applications: surfaces with regular arrays of pores can be used for selective adsorption or immobilization of guest units that are complementary in shape and/or size to the pores, thus achieving, for instance, selective filtering or well-defined responses to external stimuli. The principles that govern the formation of such structures are valid at both the molecular and the colloidal scale. Here we provide simple design directions to combine the anisotropic shape of the building units-either molecules or colloids-and selective directional bonding. Using extensive computer simulations, we show that regular rhombic platelets decorated with attractive and repulsive interaction sites form specific tilings, going smoothly from close-packed arrangements to open lattices. The rationale behind the rich tiling scenario observed can be described in terms of steric incompatibilities, unsatisfied bonding geometries, and interplays between local and long-range order.
Collapse
Affiliation(s)
- Carina Karner
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , A-1090 Vienna , Austria
| | - Christoph Dellago
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , A-1090 Vienna , Austria
| | - Emanuela Bianchi
- Institut für Theoretische Physik , TU Wien , Wiedner Hauptstraße 8-10 , A-1040 Wien , Austria
- CNR-ISC, Uos Sapienza , Piazzale A. Moro 2 , 00185 Roma , Italy
| |
Collapse
|
20
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
21
|
Liu L, Zhou Y, Xue J, Wang H. Enhanced antipressure ability through graphene oxide membrane by intercalating g‐C
3
N
4
nanosheets for water purification. AIChE J 2019. [DOI: 10.1002/aic.16699] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lingfei Liu
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou China
| | - Yisa Zhou
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou China
| | - Jian Xue
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou China
| | - Haihui Wang
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou China
| |
Collapse
|
22
|
Zhang R, Zhou T, Peng H, Li M, Zhu X, Yao Y. Nanostructured switchable pH-responsive membranes prepared via spherical polyelectrolyte brushes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
|
24
|
Mitchell NP, Carey RL, Hannah J, Wang Y, Cortes Ruiz M, McBride SP, Lin XM, Jaeger HM. Conforming nanoparticle sheets to surfaces with Gaussian curvature. SOFT MATTER 2018; 14:9107-9117. [PMID: 30339166 DOI: 10.1039/c8sm01640b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle monolayer sheets are ultrathin inorganic-organic hybrid materials that combine highly controllable optical and electrical properties with mechanical flexibility and remarkable strength. Like other thin sheets, their low bending rigidity allows them to easily roll into or conform to cylindrical geometries. Nanoparticle monolayers not only can bend, but also cope with strain through local particle rearrangement and plastic deformation. This means that, unlike thin sheets such as paper or graphene, nanoparticle sheets can much more easily conform to surfaces with complex topography characterized by non-zero Gaussian curvature, like spherical caps or saddles. Here, we investigate the limits of nanoparticle monolayers' ability to conform to substrates with Gaussian curvature by stamping nanoparticle sheets onto lattices of larger polystyrene spheres. Tuning the local Gaussian curvature by increasing the size of the substrate spheres, we find that the stamped sheet morphology evolves through three characteristic stages: from full substrate coverage, where the sheet extends over the interstices in the lattice, to coverage in the form of caps that conform tightly to the top portion of each sphere and fracture at larger polar angles, to caps that exhibit radial folds. Through analysis of the nanoparticle positions, obtained from scanning electron micrographs, we extract the local strain tensor and track the onset of strain-induced dislocations in the particle arrangement. By considering the interplay of energies for elastic and plastic deformations and adhesion, we construct arguments that capture the observed changes in sheet morphology as Gaussian curvature is tuned over two orders of magnitude.
Collapse
Affiliation(s)
- Noah P Mitchell
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Borówko M, Rżysko W, Sokołowski S, Pizio O. Molecular dynamics and density functional study of the structure of hairy particles at a hard wall. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
|
27
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
28
|
Chan H, Král P. Nanoparticles Self-Assembly within Lipid Bilayers. ACS OMEGA 2018; 3:10631-10637. [PMID: 30320248 PMCID: PMC6173477 DOI: 10.1021/acsomega.8b01445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 05/22/2023]
Abstract
Coarse-grained molecular dynamics simulations are used to model the self-assembly of small hydrophobic nanoparticles (NPs) within the interior of lipid bilayers. The simulation results reveal the conditions under which NPs form clusters and lattices within lipid bilayers of planar and spherical shapes, depending on the NP-lipid coupling strengths. The formation of nanopores within spherical bilayers with self-assembled planar NPs is also described. These observations can provide guidance in the preparation of functional bio-inorganic systems.
Collapse
Affiliation(s)
- Henry Chan
- Department
of Chemistry and Department of Physics, University of Illinois
at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United
States
- E-mail: (H.C.)
| | - Petr Král
- Department
of Chemistry and Department of Physics, University of Illinois
at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United
States
- Department
of Biopharmaceutical Sciences, University
of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United
States
- E-mail: (P.K.)
| |
Collapse
|
29
|
Preparation of carboxylated silver nanoparticles via a reverse micelle method and covalent stacking onto porous substrates via amide bond formation. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Jeon S, Park CH, Park SH, Shin MG, Kim HJ, Baek KY, Chan EP, Bang J, Lee JH. Star polymer-assembled thin film composite membranes with high separation performance and low fouling. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Borówko M, Rżysko W, Sokołowski S, Staszewski T. Self-assembly of hairy disks in two dimensions - insights from molecular simulations. SOFT MATTER 2018; 14:3115-3126. [PMID: 29624197 DOI: 10.1039/c8sm00213d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the results of large scale molecular dynamics simulations conducted for sparsely grafted disks in two-dimensional systems. The main goal of this work is to show how the ligand mobility influences the self-assembly of particles decorated with short chains. We also analyze the impact of the chain length on the structure of dense phases. A crossover between the systems controlled by the core-core or by the segment-segment interactions is discussed. We prove that the ligand mobility determines the structure of the system. The particles with fixed tethers are found to order into different structures, an amorphous phase, hexagonal or honeycomb lattices, and a "spaghetti"-like phase containing single strings of cores, depending on the length of attached chains. The disks with mobile monomers assemble into a hexagonal structure, while the particles with longer mobile chains attached to them form a lamellar phase consisting of double strings of cores.
Collapse
Affiliation(s)
- Małgorzata Borówko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland.
| | | | | | | |
Collapse
|
32
|
Nanofibrous Tubular Membrane for Blood Hemodialysis. Appl Biochem Biotechnol 2018; 186:443-458. [PMID: 29644596 DOI: 10.1007/s12010-018-2744-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
As the most important components of a hemodialysis device, nanofibrous membranes enjoy high interconnected porosity and specific surface area as well as excellect permeability. In this study, a tubular nanofibrous membrane of polysulfone nanofibers was produced via electrospinning method to remove urea and creatinine from urine and blood serums of dialysis patients. Nanofibrous membranes were electrospun at a concentration of 11.5 wt% of polysulfone (PS) and dimethylformamide (DMF)/tetrahydrofuran (THF) with a ratio of 70/30. The effects of the rotational speed of collectors, electrospinning duration, and inner diameter of the tubular nanofibrous membrane on the urea and creatinine removal efficiency of the tubular membrane were investigated through the hemodialysis simulation experiments. It was found that the tubular membrane with an inner diameter of 3 mm elecrospun at shorter duration with lower collecting speed had the highest urea and creatinine removal efficiency. The hemodialysis simulation experiment showed that the urea and creatinine removal efficiency of the tubular membrane with a diameter of 3 mm were 90.4 and 100%, respectively. Also, three patients' blood serums were tested with the nanofibrous membrane. The results showed that the creatinine and urea removal rates were 93.2 and 90.3%, respectively.
Collapse
|
33
|
Self-assembly of rarely polymer-grafted nanoparticles in dilute solutions and on a surface: From non-spherical vesicles to graphene-like sheets. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Borówko M, Sokołowski S, Staszewski T, Pizio O. Adsorption of hairy particles with mobile ligands: Molecular dynamics and density functional study. J Chem Phys 2018; 148:044705. [PMID: 29390816 DOI: 10.1063/1.5010687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We study models of hairy nanoparticles in contact with a hard wall. Each particle is built of a spherical core with a number of ligands attached to it and each ligand is composed of several spherical, tangentially jointed segments. The number of segments is the same for all ligands. Particular models differ by the numbers of ligands and of segments per ligand, but the total number of segments is constant. Moreover, our model assumes that the ligands are tethered to the core in such a manner that they can "slide" over the core surface. Using molecular dynamics simulations we investigate the differences in the structure of a system close to the wall. In order to characterize the distribution of the ligands around the core, we have calculated the end-to-end distances of the ligands and the lengths and orientation of the mass dipoles. Additionally, we also employed a density functional approach to obtain the density profiles. We have found that if the number of ligands is not too high, the proposed version of the theory is capable to predict the structure of the system with a reasonable accuracy.
Collapse
Affiliation(s)
- M Borówko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Sklodowska University, Gliniana 33, Lublin, Poland
| | - S Sokołowski
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Sklodowska University, Gliniana 33, Lublin, Poland
| | - T Staszewski
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Sklodowska University, Gliniana 33, Lublin, Poland
| | - O Pizio
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, 04510 Ciudad de México, Mexico
| |
Collapse
|
35
|
Wang Y, Liu L, Xue J, Hou J, Ding L, Wang H. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid. AIChE J 2018. [DOI: 10.1002/aic.16076] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yanjie Wang
- School of Chemistry & Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lingfei Liu
- School of Chemistry & Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Jian Xue
- School of Chemistry & Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Jiamin Hou
- School of Chemistry & Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Li Ding
- School of Chemistry & Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Haihui Wang
- School of Chemistry & Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
36
|
Udayabhaskararao T, Altantzis T, Houben L, Coronado-Puchau M, Langer J, Popovitz-Biro R, Liz-Marzán LM, Vuković L, Král P, Bals S, Klajn R. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 2017; 358:514-518. [DOI: 10.1126/science.aan6046] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/21/2017] [Indexed: 01/03/2023]
|
37
|
Mireles M, Gaborski TR. Fabrication techniques enabling ultrathin nanostructured membranes for separations. Electrophoresis 2017; 38:2374-2388. [PMID: 28524241 PMCID: PMC5909070 DOI: 10.1002/elps.201700114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
The fabrication of nanostructured materials is an area of continuous improvement and innovative techniques that fulfill the demand of many fields of research and development. The continuously decreasing size of the smallest patternable feature has expanded the catalog of methods enabling the fabrication of nanostructured materials. Several of these nanofabrication techniques have sprouted from applications requiring nanoporous membranes such as molecular separations, cell culture, and plasmonics. This review summarizes methods that successfully produce through-pores in ultrathin films exhibiting an approximate pore size to thickness ratio of one, which has been shown to be beneficial due to high permeability and improved separation potential. The material reviewed includes large-area, parallel, and affordable approaches such as self-organizing polymers, nanosphere lithography, anodization, nanoimprint lithography as well as others such as solid phase crystallization and nanosphere lens lithography. The aim of this review is to provide a set of inexpensive fabrication techniques to produce nanostructured materials exhibiting pores ranging from 10 to 350 nm and a pore size to thickness ratio close to one. The fabrication methods described in this work have reported the successful manufacture of nanoporous membranes exhibiting the ideal characteristics to improve selectivity and permeability when applied as separation media in ultrafiltration.
Collapse
Affiliation(s)
- Marcela Mireles
- Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Thomas R Gaborski
- Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
38
|
Raveendran A, Meli MV. Tunable Mechanical Properties of Nanoparticle Monolayer Membranes via Ligand Phase Control and Defect Distribution. ACS OMEGA 2017; 2:4411-4416. [PMID: 31457732 PMCID: PMC6641765 DOI: 10.1021/acsomega.7b00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 06/10/2023]
Abstract
In this study, the effects of ligand phase, morphology, and temperature on the elastic modulus of free-standing alkanethiol-capped gold nanoparticle membranes are reported. Langmuir films of 2.5 nm gold nanoparticles capped with tetradecanethiol were prepared at temperatures above and below the phase transition temperature (T m) of the ligand shell and transferred to holey carbon grids (containing 1.2 μm holes) to form free-standing membranes. Force-indentation measurements are used to measure the elastic modulus of the membranes using an atomic force microscope in the temperature range 10-40 °C. These films are compared with membranes of dodecanethiol-capped gold nanoparticles, which do not undergo a ligand order-disorder transition in the temperature range investigated. The ligand phase effect is observed in the tetradecanethiol-capped gold nanoparticle films, where an abrupt change in the elastic modulus is seen near T m. The temperature (relative to T m) during the fabrication of the films is determined to play an important role in tuning the mechanical strength of these films in this temperature range by both changing the nature of the interparticle interactions and by affecting microscale film morphology.
Collapse
|
39
|
Schlicke H, Behrens M, Schröter CJ, Dahl GT, Hartmann H, Vossmeyer T. Cross-Linked Gold-Nanoparticle Membrane Resonators as Microelectromechanical Vapor Sensors. ACS Sens 2017; 2:540-546. [PMID: 28723182 DOI: 10.1021/acssensors.6b00831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a novel approach for the detection of volatile compounds employing electrostatically driven drumhead resonators as sensing elements. The resonators are based on freestanding membranes of alkanedithiol cross-linked gold nanoparticles (GNPs), which are able to sorb analytes from the gas phase. Under reduced pressure, the fundamental resonance frequency of a resonator is continuously monitored while the device is exposed to varying partial pressures of toluene, 4-methylpentan-2-one, 1-propanol, and water. The measurements reveal a strong, reversible frequency shift of up to ∼10 kHz, i.e., ∼5% of the fundamental resonance frequency, when exposing the sensor to toluene vapor with a partial pressure of ∼20 Pa. As this strong shift cannot be explained exclusively by the mass uptake in the membrane, our results suggest a significant impact of analyte sorption on the pre-stress of the freestanding GNP membrane. Thus, our findings point to the possibility of designing highly sensitive resonators, which utilize sorption induced changes in the membrane's pre-stress as primary transduction mechanism.
Collapse
Affiliation(s)
- Hendrik Schlicke
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Malte Behrens
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Clemens J. Schröter
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Gregor T. Dahl
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Hauke Hartmann
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Tobias Vossmeyer
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
40
|
Ling S, Qin Z, Huang W, Cao S, Kaplan DL, Buehler MJ. Design and function of biomimetic multilayer water purification membranes. SCIENCE ADVANCES 2017; 3:e1601939. [PMID: 28435877 PMCID: PMC5381955 DOI: 10.1126/sciadv.1601939] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/10/2017] [Indexed: 05/17/2023]
Abstract
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
Collapse
Affiliation(s)
- Shengjie Ling
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Sufeng Cao
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1067] [Impact Index Per Article: 133.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
42
|
Ling S, Jin K, Kaplan DL, Buehler MJ. Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes. NANO LETTERS 2016; 16:3795-800. [PMID: 27076389 DOI: 10.1021/acs.nanolett.6b01195] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report a new ultrathin filtration membrane prepared from silk nanofibrils (SNFs), directly exfoliated from natural Bombyx mori silk fibers to retain structure and physical properties. These membranes can be prepared with a thickness down to 40 nm with a narrow distribution of pore sizes ranging from 8 to 12 nm. Typically, 40 nm thick membranes prepared from SNFs have pure water fluxes of 13 000 L h(-1) m(-2) bar(-1), more than 1000 times higher than most commercial ultrathin filtration membranes and comparable with the highest water flux reported previously. The commercial membranes are commonly prepared from polysulfone, poly(ether sulfone), and polyamide. The SNF-based ultrathin membranes exhibit efficient separation for dyes, proteins, and colloids of nanoparticles with at least a 64% rejection of Rhodamine B. This broad-spectrum filtration membrane would have potential utility in applications such as wastewater treatment, nanotechnology, food industry, and life sciences in part due to the protein-based membrane polymer (silk), combined with the robust mechanical and separation performance features.
Collapse
Affiliation(s)
- Shengjie Ling
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Gauvin M, Grisolia J, Alnasser T, Viallet B, Xie S, Brugger J, Ressier L. Electro-mechanical sensing in freestanding monolayered gold nanoparticle membranes. NANOSCALE 2016; 8:11363-11370. [PMID: 27194578 DOI: 10.1039/c6nr02004f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The electro-mechanical sensing properties of freestanding monolayered membranes of dodecanethiol coated 7 nm gold nanoparticles (NPs) are investigated using AFM force spectroscopy and conductive AFM simultaneously. The electrical resistance of the NP membranes increases sensitively with the point-load force applied in the center of the membranes using an AFM tip. Numerical simulations of electronic conduction in a hexagonally close-packed two-dimensional (2D) array of NPs under point load-deformation are carried out on the basis of electronic transport measurements at low temperatures and strain modeling of the NP membranes by finite element analysis. These simulations, supporting AFM-based electro-mechanical measurements, attribute the high strain sensitivity of the monolayered NP membranes to the exponential dependence of the tunnel electron transport in 2D NP arrays on the strain-induced length variation of the interparticle junctions. This work thus evidences a new class of highly sensitive nano-electro-mechanical systems based on freestanding monolayered gold NP membranes.
Collapse
Affiliation(s)
- M Gauvin
- Université de Toulouse, LPCNO, INSA-CNRS-UPS, 135 avenue de Rangueil, Toulouse 31077, France.
| | - J Grisolia
- Université de Toulouse, LPCNO, INSA-CNRS-UPS, 135 avenue de Rangueil, Toulouse 31077, France.
| | - T Alnasser
- Université de Toulouse, LPCNO, INSA-CNRS-UPS, 135 avenue de Rangueil, Toulouse 31077, France.
| | - B Viallet
- Université de Toulouse, LPCNO, INSA-CNRS-UPS, 135 avenue de Rangueil, Toulouse 31077, France.
| | - S Xie
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, Station 17, 1015 Lausanne, Switzerland
| | - J Brugger
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, Station 17, 1015 Lausanne, Switzerland
| | - L Ressier
- Université de Toulouse, LPCNO, INSA-CNRS-UPS, 135 avenue de Rangueil, Toulouse 31077, France.
| |
Collapse
|
44
|
Kim JY, Kwon SJ, Chang JB, Ross CA, Hatton TA, Stellacci F. Two-Dimensional Nanoparticle Supracrystals: A Model System for Two-Dimensional Melting. NANO LETTERS 2016; 16:1352-8. [PMID: 26756789 DOI: 10.1021/acs.nanolett.5b04763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In a Langmuir trough, successive compression cycles can drive a two-dimensional (2D) nanoparticle supracrystal (NPSC) closer to its equilibrium structure. Here, we show a series of equilibrated 2D NPSCs consisting of gold NPs of uniform size, varying solely in the length of their alkanethiol ligands. The ordering of the NPSC is governed by the ligand length, thus providing a model system to investigate the nature of 2D melting in a system of NPs. As the ligand length increases the supracrystal transitions from a crystalline to a liquid-like phase with evidence of a hexatic phase at an intermediate ligand length. The phase change is interpreted as an entropy-driven phenomenon associated with steric constraints between ligand shells. The density of topological defects scales with ligand length, suggesting an equivalence between ligand length and temperature in terms of melting behavior. On the basis of this equivalence, the experimental evidence indicates a two-stage 2D melting of NPSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne , MXG Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Olichwer N, Koschine T, Meyer A, Egger W, Rätzke K, Vossmeyer T. Gold nanoparticle superlattices: structure and cavities studied by GISAXS and PALS. RSC Adv 2016. [DOI: 10.1039/c6ra24241c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study the sizes of cavities formed within the ligand matrix of gold nanoparticle superlattices were probed using positron annihilation lifetime spectroscopy.
Collapse
Affiliation(s)
- Natalia Olichwer
- Institute of Physical Chemistry
- University of Hamburg
- 20146 Hamburg
- Germany
| | - Tönjes Koschine
- Institute for Materials Science
- Chair for Multicomponent Materials
- Faculty of Engineering
- Christian-Albrechts-University of Kiel
- D-24143 Kiel
| | - Andreas Meyer
- Institute of Physical Chemistry
- University of Hamburg
- 20146 Hamburg
- Germany
| | - Werner Egger
- Institut für Angewandte Physik und Messtechnik
- Universität der Bundeswehr München
- 85579 Neubiberg
- Germany
| | - Klaus Rätzke
- Institute for Materials Science
- Chair for Multicomponent Materials
- Faculty of Engineering
- Christian-Albrechts-University of Kiel
- D-24143 Kiel
| | - Tobias Vossmeyer
- Institute of Physical Chemistry
- University of Hamburg
- 20146 Hamburg
- Germany
| |
Collapse
|
46
|
McCold CE, Fu Q, Howe JY, Hihath J. Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays. NANOSCALE 2015; 7:14937-14945. [PMID: 26303001 DOI: 10.1039/c5nr04460j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.
Collapse
Affiliation(s)
- Cliff E McCold
- Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | | | |
Collapse
|
47
|
Salerno KM, Bolintineanu DS, Lane JMD, Grest GS. Ligand structure and mechanical properties of single-nanoparticle-thick membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062403. [PMID: 26172721 DOI: 10.1103/physreve.91.062403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 05/19/2023]
Abstract
The high mechanical stiffness of single-nanoparticle-thick membranes is believed to result from the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH(3)) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Moreover, the particular end group (COOH or CH(3)) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.
Collapse
Affiliation(s)
| | | | - J Matthew D Lane
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
48
|
Moon JS, Kim WG, Kim C, Park GT, Heo J, Yoo SY, Oh JW. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities. MINI-REV ORG CHEM 2015; 12:271-281. [PMID: 26146494 PMCID: PMC4485395 DOI: 10.2174/1570193x1203150429105418] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/09/2015] [Accepted: 04/05/2015] [Indexed: 01/16/2023]
Abstract
Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology.
Collapse
Affiliation(s)
- Jong-Sik Moon
- BK21 Plus Division of Nano Convergence Technology, Pusan National University, Busan 609-735, Republic of Korea
| | - Won-Geun Kim
- Department of Nanoenergy Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Chuntae Kim
- Department of Nano Fusion Technology, Pusan National University, Busan 609-735, Republic of Korea
| | - Geun-Tae Park
- Department of Nanoenergy Engineering, Pusan National University, Busan 609-735, Republic of Korea
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 609-735
| | - Jeong Heo
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan 602-739, Republic of Korea
| | - So Y Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 609-735
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan 602-739, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Republic of Korea
| | - Jin-Woo Oh
- BK21 Plus Division of Nano Convergence Technology, Pusan National University, Busan 609-735, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 609-735, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
49
|
Guan C, Zhang L, Liu S, Wang Y, Huang W, Zhang C, Liao J. Fabrication of freestanding nanoparticle membranes over wells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3738-3744. [PMID: 25741888 DOI: 10.1021/la504881n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Freestanding nanoparticle membranes over circular wells are prepared by utilizing surface engineering. The crucial step of this method is the hydrophobic treatment of the substrate surface, which causes the water droplet to be suspended over wells during drying. Consequently, the nanoparticle monolayer self-assembled at the surface of the water droplet would drape itself over wells instead of being dragged into wells and ruptured into patches after the evaporation of water. This scenario was confirmed by the results of control experiments with changes in the hydrophobicity of the surface and the depth of wells. Moreover, the NaCl crystallization experiment provides additional evidence for the dynamic process of drying. Freestanding nanoparticle membranes with different nanoparticle core sizes and different lengths of ligands have been successfully prepared using the same route. The Young's modulus of one typical kind of prepared freestanding nanoparticle membrane was measured with force microscopy.
Collapse
Affiliation(s)
- Changrong Guan
- †Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Li Zhang
- †Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Shuhai Liu
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing 100083, China
| | - Ying Wang
- †Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Wenhong Huang
- †Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Chaoying Zhang
- ‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing 100083, China
| | - Jianhui Liao
- †Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Wang Y, Kanjanaboos P, McBride SP, Barry E, Lin XM, Jaeger HM. Mechanical properties of self-assembled nanoparticle membranes: stretching and bending. Faraday Discuss 2015; 181:325-38. [DOI: 10.1039/c4fd00243a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monolayers composed of colloidal nanoparticles, with a thickness of less than ten nanometers, have remarkable mechanical strength and can suspend over micron-sized holes to form free-standing membranes. We discuss experiments probing the tensile strength and bending stiffness of these self-assembled nanoparticle sheets. The fracture behavior of monolayers and multilayers is investigated by attaching them to elastomer substrates which are then stretched. For different applied strain, the fracture patterns are imaged down to the scale of single particles. The resulting detailed information about the crack width distribution allows us to relate the measured overall tensile strength to the distribution of local bond strengths within a layer. We then introduce two methods by which freestanding nanoparticle monolayers can be rolled up into hollow, tubular “nano-scrolls”, either by electron beam irradiation during imaging with a scanning electron microscope or by spontaneous self-rolling. Indentation measurements on the nano-scrolls yield values for the bending stiffness that are significantly larger than expected from the response to stretching. The ability to stretch, bend, and roll up nanoparticle sheets offers new possibilities for a variety of applications, including sensors and mechanical transducers.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Physics
- University of Chicago
- Chicago
- USA
- James Franck Institute
| | | | | | - Edward Barry
- Center for Nanoscale Materials
- Argonne National Laboratory
- Argonne
- USA
| | - Xiao-Min Lin
- Center for Nanoscale Materials
- Argonne National Laboratory
- Argonne
- USA
| | - Heinrich M. Jaeger
- Department of Physics
- University of Chicago
- Chicago
- USA
- James Franck Institute
| |
Collapse
|