1
|
Kołodziej M, Ojha N, Budziałowski M, Załęski K, Fina I, Mishra YK, Pant KK, Coy E. Fundamentals of Flexoelectricity, Materials and Emerging Opportunities Toward Strain-Driven Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406726. [PMID: 39501989 DOI: 10.1002/smll.202406726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Indexed: 12/28/2024]
Abstract
Flexoelectricity, an intrinsic property observed in materials under nonuniform deformation, entails a coupling between polarization and strain gradients. Recent catalyst advancements have reignited interest in flexoelectricity, particularly at the nanoscale, where pronounced strain gradients promote robust flexoelectric effects. This paper comprehensively examines flexoelectricity, encompassing methodologies for precise measurement, elucidating its distinctions from related phenomena, and exploring its potential applications in augmenting catalytic properties. So far, the greatest potentials are based on lead strontium titanate (PST) and other metallic titanates such as titania (TiO2), strontium titanate (STO), barium strontium titanate (BST) sulfates (MoS2, ZnS) and halide perovskites (with archetype XPbI3). This review explores the promise of flexoelectric properties in addressing material and photocatalytic challenges, such as charge carrier recombination and ineffective surface charge separation. Additionally, it sheds light on the synergy with emerging paradigms like photo-flexo catalysis and synergistic flexo-piezo catalysis, specifically focusing on selective chemical transformations like green hydrogen production. Current limitations related to the usage of photoflexoelectricity for photocatalysis are mostly the stability of the used substance (susceptibility to photodegradation) or the voltage values, which represent the inferior potential for specific practical applications. This work underscores the indispensable role of flexoelectricity in catalysis and its capacity to steer future research and technological advancement.
Collapse
Affiliation(s)
- Mieszko Kołodziej
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Niwesh Ojha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Michał Budziałowski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Ignasi Fina
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Center for Sustainable Energy, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
- University of Saskatchewan, Saskatoon, SK, S7N 5A2, Canada
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| |
Collapse
|
2
|
Yun JM, Kwon G, Choi JH, Kim KH. Advancing High-Performance Piezoelectric Nanogenerators: Simple Electric Field Switching for Orientated and Aligned BaTiO 3/PDMS Composite. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39375944 DOI: 10.1021/acsami.4c14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Barium titanate (BaTiO3) is renowned for its high dielectric constant and remarkable piezoelectric attributes, positioning it as a key element in the advancement of environmentally sustainable devices. Nevertheless, the effectiveness of piezoelectric nanogenerators (PENGs) that integrate BaTiO3 nanoparticles (NPs) and poly(dimethylsiloxane) (PDMS) poses a challenge, thereby restricting their utility in energy harvesting applications. This study presents a direct approach involving the cyclic manipulation of direct current (DC) power supply terminals to achieve unidirectional alignment of BaTiO3 NPs within a PDMS matrix, aiming to enhance the performance of the PENGs. Examination of the morphology and evaluation of diffraction planes, notably (111) and (200), in the aligned BaTiO3 PENGs exhibited well-oriented structures resulting from the repetitive switching between two electrodes, leading to improved piezoelectric properties. The BaTiO3 PENGs manifested notably higher output power (∼15 V and 1.91 μA) in contrast to devices containing randomly distributed polarized BaTiO3-PDMS composite films. The generated power was sufficient to directly operate six light-emitting diodes (LEDs) connected in series, with a collective nominal voltage of around 14 V, encompassing red, green, and blue LEDs. Nanoindentation verified the enhanced piezoelectric characteristics attributed to the alignment, sensitivity to bending, and energy-cohesive effects of clustered BaTiO3 one-dimensional (1D) pillars. These findings suggest a widely applicable technique for aligning and situating nanoparticles vertically within a polymer matrix, exploiting the intrinsic dielectric properties of the nanoparticles through a straightforward electric field switching mechanism.
Collapse
Affiliation(s)
- Je Moon Yun
- Department of Polymer NanoEngineering, Dong-Eui University, 176 Eomgwang-ro, Busanjin-gu, Busan 47340, Republic of Korea
- Center for Brain Busan 21 Plus Program, Busan 47340, Republic of Korea
| | - Guhyun Kwon
- Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Guemjeong-gu, Busan 46241, Republic of Korea
| | - Jae-Hak Choi
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Kwang-Ho Kim
- Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Guemjeong-gu, Busan 46241, Republic of Korea
- School of Materials Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Kim MJ, Song Z, Yun TG, Kang MJ, Son DH, Pyun JC. Wearable fabric-based ZnO nanogenerator for biomechanical and biothermal monitoring. Biosens Bioelectron 2023; 242:115739. [PMID: 37826880 DOI: 10.1016/j.bios.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Wearable devices that can mechanically conform to human skin are a necessity for reliable monitoring and decoding of biomechanical activities through skin. Most inorganic piezoelectrics, however, lack deformability and damage tolerance, impeding stable motion monitoring. Here, we present an air-permeable fabric-based ZnO nanogenerator with mechanical adaptivity to diverse deformations for wearable piezoelectric sensors, collecting biomechanical health data. We fabricate ZnO nanorods incorporated throughout the entire nylon fabric, with a strategically positioned neutral mechanical plane, for bending-sensitive electronics (2.59 μA mm). Its hierarchically interlocked geometry also permits sensitive tactile sensing (0.15 nA kPa-1). Various physiological information about activities, including pulse beating, breathing, saliva swallowing, and coughing, is attained using skin-mounted sensors. Further, the pyroelectric sensing capability of a mask-attached device is demonstrated by identifying specific respiratory patterns. Our wearable healthcare sensors hold great promise for real-time monitoring of health-related vital signs, informing individuals' health status without disrupting their daily lives.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Zhiquan Song
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Tae Gyeong Yun
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Jae-Chul Pyun
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
4
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
5
|
Kim MJ, Song Z, Lee CK, Yun TG, Noh JY, Park MK, Yong D, Kang MJ, Pyun JC. Breathing-Driven Self-Powered Pyroelectric ZnO Integrated Face Mask for Bioprotection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2200712. [PMID: 36385593 DOI: 10.1002/smll.202200712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Indexed: 06/16/2023]
Abstract
Rapid spread of infectious diseases is a global threat and has an adverse impact on human health, livelihood, and economic stability, as manifested in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Even though people wear a face mask as protective equipment, direct disinfection of the pathogens is barely feasible, which thereby urges the development of biocidal agents. Meanwhile, repetitive respiration generates temperature variation wherein the heat is regrettably wasted. Herein, a biocidal ZnO nanorod-modified paper (ZNR-paper) composite that is 1) integrated on a face mask, 2) harvests waste breathing-driven thermal energy, 3) facilitates the pyrocatalytic production of reactive oxygen species (ROS), and ultimately 4) exhibits antibacterial and antiviral performance is proposed. Furthermore, in situ generated compressive/tensile strain of the composite by being attached to a curved mask is investigated for high pyroelectricity. The anisotropic ZNR distortion in the bent composite is verified with changes in ZnO bond lengths and OZnO bond angles in a ZnO4 tetrahedron, resulting in an increased polarization state and possibly contributing to the following pyroelectricity. The enhanced pyroelectric behavior is demonstrated by efficient ROS production and notable bioprotection. This study exploring the pre-strain effect on the pyroelectricity of ZNR-paper might provide new insights into the piezo-/pyroelectric material-based applications.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Zhiquan Song
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chang Kyu Lee
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae Gyeong Yun
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Joo-Yoon Noh
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Pattipaka S, Bae YM, Jeong CK, Park KI, Hwang GT. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239506. [PMID: 36502209 PMCID: PMC9735637 DOI: 10.3390/s22239506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/12/2023]
Abstract
In the ongoing fourth industrial revolution, the internet of things (IoT) will play a crucial role in collecting and analyzing information related to human healthcare, public safety, environmental monitoring and home/industrial automation. Even though conventional batteries are widely used to operate IoT devices as a power source, these batteries have a drawback of limited capacity, which impedes broad commercialization of the IoT. In this regard, piezoelectric energy harvesting technology has attracted a great deal of attention because piezoelectric materials can convert electricity from mechanical and vibrational movements in the ambient environment. In particular, piezoelectric-based flexible energy harvesters can precisely harvest tiny mechanical movements of muscles and internal organs from the human body to produce electricity. These inherent properties of flexible piezoelectric harvesters make it possible to eliminate conventional batteries for lifetime extension of implantable and wearable IoTs. This paper describes the progress of piezoelectric perovskite material-based flexible energy harvesters for self-powered IoT devices for biomedical/wearable electronics over the last decade.
Collapse
Affiliation(s)
- Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Young Min Bae
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Dong W, Xiao H, Jia Y, Chen L, Geng H, Bakhtiar SUH, Fu Q, Guo Y. Engineering the Defects and Microstructures in Ferroelectrics for Enhanced/Novel Properties: An Emerging Way to Cope with Energy Crisis and Environmental Pollution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105368. [PMID: 35240724 PMCID: PMC9069204 DOI: 10.1002/advs.202105368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In the past century, ferroelectrics are well known in electroceramics and microelectronics for their unique ferroelectric, piezoelectric, pyroelectric, and photovoltaic effects. Nowadays, the advances in understanding and tuning of these properties have greatly promoted a broader application potential especially in energy and environmental fields, by harvesting solar, mechanical, and heat energies. For example, high piezoelectricity and high pyroelectricity can be designed by defect or microstructure engineering for piezo- and pyro-catalyst, respectively. Moreover, highly piezoelectric and broadband (UV-Vis-NIR) light-responsive ferroelectrics can be designed via defect engineering, giving rise to a new concept of photoferroelectrics for efficient photocatalysis, piezocatalysis, pyrocatalysis, and related cocatalysis. This article first summarizes the recent developments in ferroelectrics in terms of piezoelectricity, pyroelectricity, and photovoltaic effects based on defect and microstructure engineering. Then, the potential applications in energy generation (i.e., photovoltaic effect, H2 generation, and self-powered multisource energy harvesting and signal sensing) and environmental protection (i.e., photo-piezo-pyro- cocatalytic dye degradation and CO2 reduction) are reviewed. Finally, the outlook and challenges are discussed. This article not only covers an overview of the state-of-art advances of ferroelectrics, but also prospects their applications in coping with energy crisis and environmental pollution.
Collapse
Affiliation(s)
- Wen Dong
- State Key Laboratory of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Functional Ceramics of the Ministry of EducationSchool of Optical and Electronic Information and Engineering Research Centre & Wuhan National Lab for Optoelectronics & Optical Valley LaboratoryHuazhong University of Science and TechnologyWuhan430074China
| | - Hongyuan Xiao
- State Key Laboratory of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Yanmin Jia
- School of ScienceXi'an University of Posts & TelecommunicationsXi'an710121China
| | - Long Chen
- Functional Ceramics of the Ministry of EducationSchool of Optical and Electronic Information and Engineering Research Centre & Wuhan National Lab for Optoelectronics & Optical Valley LaboratoryHuazhong University of Science and TechnologyWuhan430074China
| | - Huangfu Geng
- State Key Laboratory of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Syed Ul Hasnain Bakhtiar
- Functional Ceramics of the Ministry of EducationSchool of Optical and Electronic Information and Engineering Research Centre & Wuhan National Lab for Optoelectronics & Optical Valley LaboratoryHuazhong University of Science and TechnologyWuhan430074China
| | - Qiuyun Fu
- Functional Ceramics of the Ministry of EducationSchool of Optical and Electronic Information and Engineering Research Centre & Wuhan National Lab for Optoelectronics & Optical Valley LaboratoryHuazhong University of Science and TechnologyWuhan430074China
| | - Yiping Guo
- State Key Laboratory of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
8
|
Choi S. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107902. [PMID: 35119203 DOI: 10.1002/smll.202107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Considerable research efforts into the promises of electrogenic bacteria and the commercial opportunities they present are attempting to identify potential feasible applications. Metabolic electrons from the bacteria enable electricity generation sufficient to power portable or small-scale applications, while the quantifiable electric signal in a miniaturized device platform can be sensitive enough to monitor and respond to changes in environmental conditions. Nanomaterials produced by the electrogenic bacteria can offer an innovative bottom-up biosynthetic approach to synergize bacterial electron transfer and create an effective coupling at the cell-electrode interface. Furthermore, electrogenic bacteria can revolutionize the field of bioelectronics by effectively interfacing electronics with microbes through extracellular electron transfer. Here, these new directions for the electrogenic bacteria and their recent integration with micro- and nanosystems are comprehensively discussed with specific attention toward distinct applications in the field of powering, sensing, and synthesizing. Furthermore, challenges of individual applications and strategies toward potential solutions are provided to offer valuable guidelines for practical implementation. Finally, the perspective and view on how the use of electrogenic bacteria can hold immeasurable promise for the development of future electronics and their applications are presented.
Collapse
Affiliation(s)
- Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
9
|
Amiri O, Ahmed HA, Abdan AA, Mahmood PH, Salavati-Niasari M. Efficient purification of wastewater by applying mechanical force and BaCO 3/TiO 2 and BaTiO 3/TiO 2 piezocatalysts. RSC Adv 2021; 11:37138-37149. [PMID: 35496442 PMCID: PMC9043623 DOI: 10.1039/d1ra07742b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
In typical advanced oxidation catalysis, a semiconductor should have a robust capacity to generate separated electron-hole pairs on a material's surface under irradiation of photons with energy more than the material's bandgap. However, rapid charge carrier recombination and low photon to current yield of semiconductor photocatalysts and low percentages of UV light in sunlight leads to a low level of photocatalytic efficiency for practical application. Mechanical energy is a natural energy that can be considered as a form of rich, clean and renewable energy which can be harvested by using piezoelectric materials. Here, we developed BaCO3/TiO2 and BaTiO3/TiO2 composites as mechanical harvesting materials to decontaminate pollutants. Results showed that BaCO3 has a great effect on the piezocatalytic activity of products. The control sample (sample without Ba) only degraded 11.2% of Acid Red 151 (AR151) , while the sample containing Ba degraded 96.7% of AR151. Besides, the effects of several parameters, including the natural surfactant, reaction time and temperature, calcination, and ultrasonic power and pulse on the catalytic activity of the as-prepared piezocatalysts were studied. Results showed that it is possible to degrade 99.1% of AR151 by controlling ultrasonic parameters during 2 h of mechanical energy force.
Collapse
Affiliation(s)
- Omid Amiri
- Department of Chemistry, College of Science, University of Raparin Rania Kurdistan Region Iraq +9647700581175
| | - Haval Aziz Ahmed
- Department of Chemistry, College of Science, University of Raparin Rania Kurdistan Region Iraq +9647700581175
| | - Abdulla Ahmed Abdan
- Department of Chemistry, College of Science, University of Raparin Rania Kurdistan Region Iraq +9647700581175
| | - Peshawa H Mahmood
- Department of Chemistry, College of Science, University of Raparin Rania Kurdistan Region Iraq +9647700581175
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan Kashan P. O. Box. 87317-51167 I. R. Iran +98 31 55913201 +98 31 55912383
| |
Collapse
|
10
|
Long Y, He P, Shao Z, Li Z, Kim H, Yao AM, Peng Y, Xu R, Ahn CH, Lee SW, Zhong J, Lin L. Moisture-induced autonomous surface potential oscillations for energy harvesting. Nat Commun 2021; 12:5287. [PMID: 34489424 PMCID: PMC8421362 DOI: 10.1038/s41467-021-25554-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
A variety of autonomous oscillations in nature such as heartbeats and some biochemical reactions have been widely studied and utilized for applications in the fields of bioscience and engineering. Here, we report a unique phenomenon of moisture-induced electrical potential oscillations on polymers, poly([2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide-co-acrylic acid), during the diffusion of water molecules. Chemical reactions are modeled by kinetic simulations while system dynamic equations and the stability matrix are analyzed to show the chaotic nature of the system which oscillates with hidden attractors to induce the autonomous surface potential oscillation. Using moisture in the ambient environment as the activation source, this self-excited chemoelectrical reaction could have broad influences and usages in surface-reaction based devices and systems. As a proof-of-concept demonstration, an energy harvester is constructed and achieved the continuous energy production for more than 15,000 seconds with an energy density of 16.8 mJ/cm2. A 2-Volts output voltage has been produced to power a liquid crystal display toward practical applications with five energy harvesters connected in series.
Collapse
Affiliation(s)
- Yu Long
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Peisheng He
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Zhichun Shao
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Zhaoyang Li
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, China
| | - Han Kim
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Archie Mingze Yao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Yande Peng
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Renxiao Xu
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Christine Heera Ahn
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Junwen Zhong
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau, SAR, China.
| | - Liwei Lin
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
11
|
Mahapatra SD, Mohapatra PC, Aria AI, Christie G, Mishra YK, Hofmann S, Thakur VK. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100864. [PMID: 34254467 PMCID: PMC8425885 DOI: 10.1002/advs.202100864] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/17/2021] [Indexed: 05/21/2023]
Abstract
Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high-power densities compared to electro-magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non-conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self-powered sensors is highlighted, and the current challenges and future prospects are critically discussed.
Collapse
Affiliation(s)
- Susmriti Das Mahapatra
- Technology & Manufacturing GroupIntel Corporation5000 West Chandler BoulevardChandlerArizona85226USA
| | - Preetam Chandan Mohapatra
- Technology & Manufacturing GroupIntel Corporation5000 West Chandler BoulevardChandlerArizona85226USA
| | - Adrianus Indrat Aria
- Surface Engineering and Precision CentreSchool of AerospaceTransport and ManufacturingCranfield UniversityCranfieldMK43 0ALUK
| | - Graham Christie
- Institute of BiotechnologyDepartment of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB2 1QTUK
| | - Yogendra Kumar Mishra
- Mads Clausen InstituteNanoSYDUniversity of Southern DenmarkAlsion 2Sønderborg6400Denmark
| | - Stephan Hofmann
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB2 1PZUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings BuildingsEdinburghEH9 3JGUK
- Department of Mechanical EngineeringSchool of EngineeringShiv Nadar UniversityDelhiUttar Pradesh201314India
| |
Collapse
|
12
|
Liu L, Choi S. Miniature microbial solar cells to power wireless sensor networks. Biosens Bioelectron 2021; 177:112970. [PMID: 33429201 DOI: 10.1016/j.bios.2021.112970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/28/2022]
Abstract
Conventional wireless sensor networks (WSNs) powered by traditional batteries or energy storage devices such as lithium-ion batteries and supercapacitors have challenges providing long-term and self-sustaining operation due to their limited energy budgets. Emerging energy harvesting technologies can achieve the longstanding vision of self-powered, long-lived sensors. In particular, miniature microbial solar cells (MSCs) can be the most feasible power source for small and low-power sensor nodes in unattended working environments because they continuously scavenge power from microbial photosynthesis by using the most abundant resources on Earth; solar energy and water. Even with low illumination, the MSC can harvest electricity from microbial respiration. Despite the vast potential and promise of miniature MSCs, their power and lifetime remain insufficient to power potential WSN applications. In this overview, we will introduce the field of miniature MSCs, from early breakthroughs to current achievements, with a focus on emerging techniques to improve their performance. Finally, challenges and perspectives for the future direction of miniature MSCs to self-sustainably power WSN applications will be given.
Collapse
Affiliation(s)
- Lin Liu
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA; Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA.
| |
Collapse
|
13
|
Ryu H, Kim SW. Emerging Pyroelectric Nanogenerators to Convert Thermal Energy into Electrical Energy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1903469. [PMID: 31682066 DOI: 10.1002/smll.201903469] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Pyroelectric energy harvesting systems have recently received substantial attention for their potential applications as power generators. In particular, the pyroelectric effect, which converts thermal energy into electrical energy, has been utilized as an infrared (IR) sensor, but upcoming sensor technology that requires a miniscule amount of power is able to utilize pyroelectric nanogenerators (PyNGs) as a power source. Herein, an overview of the progress in the development of PyNGs for an energy harvesting system that uses environmental or artificial energies such as the sun, body heat, and heaters, is provided. It begins with a brief introduction of the pyroelectric effect, and various polymer and ceramic materials based PyNGs are reviewed in detail. Various approaches for developing polymer-based PyNGs and various ceramic materials-based PyNGs are summarized in particular. Finally, challenges and perspectives regarding the PyNGs are described.
Collapse
Affiliation(s)
- Hanjun Ryu
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
14
|
Orudzhev F, Ramazanov S, Sobola D, Alikhanov N, Holcman V, Škvarenina L, Kaspar P, Gadjilov G. Piezoelectric Current Generator Based on Bismuth Ferrite Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20236736. [PMID: 33255719 PMCID: PMC7728058 DOI: 10.3390/s20236736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Bismuth ferrite nanoparticles with an average particle diameter of 45 nm and spatial symmetry R3c were obtained by combustion of organic nitrate precursors. BiFeO3-silicone nanocomposites with various concentrations of nanoparticles were obtained by mixing with a solution of M10 silicone. Models of piezoelectric generators were made by applying nanocomposites on a glass substrate and using aluminum foil as contacts. The thickness of the layers was about 230 μm. There was a proportional relationship between the different concentrations of nanoparticles and the detected potential. The output voltages were 0.028, 0.055, and 0.17 V with mass loads of 10, 30, and 50 mass%, respectively.
Collapse
Affiliation(s)
- Farid Orudzhev
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, Makhachkala, st. M. Gadjieva 43-a, 367015 Dagestan Republic, Russia; (F.O.); (S.R.); (D.S.); (N.A.); (G.G.)
| | - Shikhgasan Ramazanov
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, Makhachkala, st. M. Gadjieva 43-a, 367015 Dagestan Republic, Russia; (F.O.); (S.R.); (D.S.); (N.A.); (G.G.)
| | - Dinara Sobola
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, Makhachkala, st. M. Gadjieva 43-a, 367015 Dagestan Republic, Russia; (F.O.); (S.R.); (D.S.); (N.A.); (G.G.)
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 616 00 Brno, Czech Republic; (L.Š.); (P.K.)
- Central European Institute of Technology BUT, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Nariman Alikhanov
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, Makhachkala, st. M. Gadjieva 43-a, 367015 Dagestan Republic, Russia; (F.O.); (S.R.); (D.S.); (N.A.); (G.G.)
| | - Vladimír Holcman
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 616 00 Brno, Czech Republic; (L.Š.); (P.K.)
| | - Lubomír Škvarenina
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 616 00 Brno, Czech Republic; (L.Š.); (P.K.)
| | - Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 616 00 Brno, Czech Republic; (L.Š.); (P.K.)
| | - Gamzat Gadjilov
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, Makhachkala, st. M. Gadjieva 43-a, 367015 Dagestan Republic, Russia; (F.O.); (S.R.); (D.S.); (N.A.); (G.G.)
| |
Collapse
|
15
|
Pu X, Wang ZL. Self-charging power system for distributed energy: beyond the energy storage unit. Chem Sci 2020; 12:34-49. [PMID: 34163582 PMCID: PMC8178954 DOI: 10.1039/d0sc05145d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Power devices for the smart sensor networks of Internet of things (IoT) are required with minimum or even no maintenance due to their enormous quantities and widespread distribution. Self-charging power systems (SCPSs) refer to integrated energy devices with simultaneous energy harvesting, power management and effective energy storage capabilities, which may need no extra battery recharging and can sustainably drive sensors. Herein, we focus on the progress made in the field of nanogenerator-based SCPSs, which harvest mechanical energy using the Maxwell displacement current arising from the variation in the surface-polarized-charge-induced electrical field. Prototypes of different nanogenerator-based SCPSs will be overviewed. Finally, challenges and prospects in this field will be discussed.
Collapse
Affiliation(s)
- Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100049 China
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University Nanning 530004 China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100049 China
- CUSPEA Institute of Technology Wenzhou Zhejiang 325024 China
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0245 USA
| |
Collapse
|
16
|
Powering future body sensor network systems: A review of power sources. Biosens Bioelectron 2020; 166:112410. [DOI: 10.1016/j.bios.2020.112410] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
|
17
|
Jeong JB, Kim H, Yoo JI. Triboelectric touch sensor for position mapping during total hip arthroplasty. BMC Res Notes 2020; 13:395. [PMID: 32847611 PMCID: PMC7449089 DOI: 10.1186/s13104-020-05238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
Objective In this research, a triboelectric nanogenerator (TENG) was utilized to determine if a pressure-based sensor could detect bearing friction in a total hip arthroplasty (THA) and detect the contact of specific areas during ROM checks. Results The pressure-based sensor shows capability to sense bearing friction. In more detail, the TENG embedded in four different sides of the trial exhibits up to 1 V from peak-to-peak. Moreover, these flexible touch sensors with TENG describes a peak signal in output voltage which should lead to extremely sensitive detection of bearing friction induced by the THA.
Collapse
Affiliation(s)
- Jae Bum Jeong
- Department of Electrical Engineering, RIGET, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyeok Kim
- Department of Electrical and Computer Engineering, University of Seoul, Seoul, South Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, 90 Chilamdong, Jinju, Gyeongnamdo, 660-702, Republic of Korea.
| |
Collapse
|
18
|
Li Y, Chen W, Lu L. Wearable and Biodegradable Sensors for Human Health Monitoring. ACS APPLIED BIO MATERIALS 2020; 4:122-139. [DOI: 10.1021/acsabm.0c00859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
19
|
Qian W, Yang W, Zhang Y, Bowen CR, Yang Y. Piezoelectric Materials for Controlling Electro-Chemical Processes. NANO-MICRO LETTERS 2020; 12:149. [PMID: 34138166 PMCID: PMC7770897 DOI: 10.1007/s40820-020-00489-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 05/19/2023]
Abstract
Piezoelectric materials have been analyzed for over 100 years, due to their ability to convert mechanical vibrations into electric charge or electric fields into a mechanical strain for sensor, energy harvesting, and actuator applications. A more recent development is the coupling of piezoelectricity and electro-chemistry, termed piezo-electro-chemistry, whereby the piezoelectrically induced electric charge or voltage under a mechanical stress can influence electro-chemical reactions. There is growing interest in such coupled systems, with a corresponding growth in the number of associated publications and patents. This review focuses on recent development of the piezo-electro-chemical coupling multiple systems based on various piezoelectric materials. It provides an overview of the basic characteristics of piezoelectric materials and comparison of operating conditions and their overall electro-chemical performance. The reported piezo-electro-chemical mechanisms are examined in detail. Comparisons are made between the ranges of material morphologies employed, and typical operating conditions are discussed. In addition, potential future directions and applications for the development of piezo-electro-chemical hybrid systems are described. This review provides a comprehensive overview of recent studies on how piezoelectric materials and devices have been applied to control electro-chemical processes, with an aim to inspire and direct future efforts in this emerging research field.
Collapse
Affiliation(s)
- Weiqi Qian
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Weiyou Yang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315211, People's Republic of China.
| | - Yan Zhang
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AK, UK
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AK, UK.
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
20
|
Yang W, Wang Y, Hou Z, Li C. A facile hot-pressing process for fabricating flexible top electrodes of piezoelectric ZnO nanowire nanogenerators. NANOTECHNOLOGY 2019; 30:505402. [PMID: 31443096 DOI: 10.1088/1361-6528/ab3e14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile and effective hot-pressing strategy for fabricating the flexible top electrode for a piezoelectric nanogenerator (PENG). Flexible stainless steel (SUS) foil was employed as the bottom electrode and substrate of the device. Zinc oxide nanowires (ZnO NWs) were grown on SUS substrate through the hydrothermal synthesis method. The top electrode of Zn foil was combined with dielectric polydimethylsiloxane (PDMS) film using the hot-pressing process. The resulting top electrode is thick enough to enable the device to generate piezoelectric output differently under bending conditions. The PENG devices generated an output voltage of about 2.2 V and an output current of 8 nA under the optimum operating conditions. The devices fabricated by the hot-pressing process were robust enough to retain their generating ability after thousands of bending and releasing cycles.
Collapse
Affiliation(s)
- Wenliang Yang
- National Key Laboratory of Micro/Nano Fabrication Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China. Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Ismail M, Wu Z, Zhang L, Ma J, Jia Y, Hu Y, Wang Y. High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition. CHEMOSPHERE 2019; 228:212-218. [PMID: 31029967 DOI: 10.1016/j.chemosphere.2019.04.121] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 05/25/2023]
Abstract
In this work, it is found that the hydrothermally-synthesized bismuth oxychloride can behave both the piezocatalysis and photocatalysis for the Rhodamine B dye decomposition. ∼99% decomposition efficiency is achieved after both vibrating and lighting the Rhodamine B dye solution for ∼96 min with the addition of bismuth oxychloride catalyst, while the ∼72% and ∼26% decomposition efficiencies are obtained for only photocatalysis or only piezocatalysis respectively. In bi-catalysis, the mechanical strain produced due to vibration will directly provide an electric field that will increase the separation between the photo-induced electron-hole pairs, yielding to the enhanced decomposition performance of bi-catalysis. There is no significant change in the bi-catalytic performance of bismuth oxychloride nanomaterial observed after being recycled four times. Bismuth oxychloride catalyst is potential for the bi-catalytic decomposition treatment of wastewater through harvesting both the environmental vibration energy and light energy.
Collapse
Affiliation(s)
- Muhammad Ismail
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Department of Physics, Zhejiang Normal University, Jinhua, 321004, China
| | - Zheng Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Luohong Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
| | - Jiangping Ma
- Department of Physics, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanmin Jia
- School of Science, Xi'an University of Posts & Telecommunications, Xi'an, 710121, China; Department of Physics, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yongming Hu
- Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, 430062, China
| | - Yaojin Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
22
|
Liu L, Choi S. A self-charging cyanobacterial supercapacitor. Biosens Bioelectron 2019; 140:111354. [PMID: 31154252 DOI: 10.1016/j.bios.2019.111354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
Microliter-scale photosynthetic microbial fuel cells (micro-PMFC) can be the most suitable power source for unattended environmental sensors because the technique can continuously generate electricity from microbial photosynthesis and respiration through day-night cycles, offering a clean and renewable power source with self-sustaining potential. However, the promise of this technology has not been translated into practical applications because of its relatively low performance. By creating an innovative supercapacitive micro-PMFC device with maximized bacterial photoelectrochemical activities in a well-controlled, tightly enclosed micro-chamber, this work established innovative strategies to revolutionize micro-PMFC performance to attain stable high power and current density (38 μW/cm2 and 120 μA/cm2) that then potentially provides a practical and sustainable power supply for the environmental sensing applications. The proposed technique is based on a 3-D double-functional bio-anode concurrently exhibiting bio-electrocatalytic energy harvesting and charge storing. It offers the high-energy harvesting functionality of micro-PMFCs with the high-power operation of an internal supercapacitor for charging and discharging. The performance of the supercapacitive micro-PMFC improved significantly through miniaturizing innovative device architectures and connecting multiple miniature devices in series.
Collapse
Affiliation(s)
- Lin Liu
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
23
|
An Experimental and Computational Study on Inverted Flag Dynamics for Simultaneous Wind–Solar Energy Harvesting. FLUIDS 2019. [DOI: 10.3390/fluids4020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents results from experiments and simplified numerical simulations on the flow-induced dynamics and power generation of inverted flags that combine flexible piezoelectric strips with photovoltaic cells to simultaneously harvest kinetic wind energy and solar radiant energy. Experiments were conducted in a wind tunnel under controlled wind excitation and light exposure, focusing in particular on the dynamics and power generation of the inverted flag harvester. Numerical simulations were carried out using a lattice-Boltzmann fluid solver coupled with a finite element structural solver via the immersed-boundary method, focusing in particular on minimizing the simulation run time. The power generated during the tests shows that the proposed inverted flag harvester is a promising concept, capable of producing enough power (on the order of 1 mW) to supply low-power electronic devices in a range of applications where distributed power generation is needed. Notwithstanding key simplifications implemented in the numerical model to achieve a fast execution, simulations and measurements are in good agreement, confirming that the lattice-Boltzmann method is a viable and time-effective alternative to classic Navier–Stokes-based solvers when dealing with strongly coupled fluid–structure interaction problems characterized by large structural displacements.
Collapse
|
24
|
Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration. SENSORS 2019; 19:s19081895. [PMID: 31010076 PMCID: PMC6515215 DOI: 10.3390/s19081895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/05/2023]
Abstract
The increasing interest in the Internet of Things (IoT) has led to the rapid development of low-power sensors and wireless networks. However, there are still several barriers that make a global deployment of the IoT difficult. One of these issues is the energy dependence, normally limited by the capacitance of the batteries. A promising solution to provide energy autonomy to the IoT nodes is to harvest residual energy from ambient sources, such as motion, vibrations, light, or heat. Mechanical energy can be converted into electrical energy by using piezoelectric transducers. The piezoelectric generators provide an alternating electrical signal that must be rectified and, therefore, needs a power management circuit to adapt the output to the operating voltage of the IoT devices. The bonding and packaging of the different components constitute a large part of the cost of the manufacturing process of microelectromechanical systems (MEMS) and integrated circuits. This could be reduced by using a monolithic integration of the generator together with the circuitry in a single chip. In this work, we report the optimization, fabrication, and characterization of a vibration-driven piezoelectric MEMS energy harvester, and the design and simulation of a charge-pump converter based on a standard complementary metal–oxide–semiconductor (CMOS) technology. Finally, we propose combining MEMS and CMOS technologies to obtain a fully integrated system that includes the piezoelectric generator device and the charge-pump converter circuit without the need of external components. This solution opens new doors to the development of low-cost autonomous smart dust devices.
Collapse
|
25
|
Liu B, Wang M, Chen M, Wang J, Liu J, Hu D, Liu S, Yao X, Yang H. Effect of TC(002) on the Output Current of a ZnO Thin-Film Nanogenerator and a New Piezoelectricity Mechanism at the Atomic Level. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12656-12665. [PMID: 30844227 DOI: 10.1021/acsami.9b00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the piezoelectricity mechanism is crucial for developing new materials for better performance. Here, we developed a nanogenerator based on the ZnO thin films having various TC(002) values. The output current well correlated to the magnitude of (002) texture coefficient (TC(002)). Additionally, the TC(002)-dependent photovoltaic and rectification properties are observed. When the film is subjected to persistent compression, the photovoltaic, rectification, and piezoelectric properties fade away. Based on our observation that the ZnO polar structure always shows a spontaneous electron field (SEF), we thus propose a new piezoelectricity mechanism. The [001]-orientated ZnO thin film with the SEF is equivalent to a capacitor, the compression functions as a discharging process, and the removal of the external stress serves as a charging process. The physical mechanism provides an insight into various energy conversion processes that will inspire advanced designs of high-performance nanogenerators, solar cells, and other optoelectronic devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xi Yao
- Electronic Materials Research Laboratory , Xi'an Jiaotong University , Xi'an 710049 , China
| | | |
Collapse
|
26
|
Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Biosens Bioelectron 2019; 126:275-291. [DOI: 10.1016/j.bios.2018.10.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|
27
|
Ambhorkar P, Wang Z, Ko H, Lee S, Koo KI, Kim K, Cho DID. Nanowire-Based Biosensors: From Growth to Applications. MICROMACHINES 2018; 9:mi9120679. [PMID: 30572645 PMCID: PMC6316191 DOI: 10.3390/mi9120679] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023]
Abstract
Over the past decade, synthesized nanomaterials, such as carbon nanotube, nanoparticle, quantum dot, and nanowire, have already made breakthroughs in various fields, including biomedical sensors. Enormous surface area-to-volume ratio of the nanomaterials increases sensitivity dramatically compared with macro-sized material. Herein we present a comprehensive review about the working principle and fabrication process of nanowire sensor. Moreover, its applications for the detection of biomarker, virus, and DNA, as well as for drug discovery, are reviewed. Recent advances including self-powering, reusability, sensitivity in high ionic strength solvent, and long-term stability are surveyed and highlighted as well. Nanowire is expected to lead significant improvement of biomedical sensor in the near future.
Collapse
Affiliation(s)
- Pranav Ambhorkar
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Zongjie Wang
- Department of Electrical and Computer Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3M2, Canada.
| | - Hyuongho Ko
- Department of Electronics, Chungnam National University, Daejeon 34134, Korea.
| | - Sangmin Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Korea.
| | - Kyo-In Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea.
| | - Keekyoung Kim
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Dong-Il Dan Cho
- ASRI/ISRC, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
28
|
Liu L, Gao Y, Lee S, Choi S. 3D Bioprinting of Cyanobacteria for Solar-driven Bioelectricity Generation in Resource-limited Environments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5329-5332. [PMID: 30441540 DOI: 10.1109/embc.2018.8513490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We demonstrate a hybrid biological photovoltaic device by forming a 3D cooperative biofilm of cyanobacteria and heterotrophic bacteria. 3D bioprinting technique was applied to engineer a cyanobacterial encapsulation in hydrogels over the heterotrophic bacteria. The device continuously generated bioelectricity from the heterotrophic bacterial respiration with the organic biomass supplied by the cyanobacterial photosynthesis. This innovative device platform can be the most suitable power source for unattended sensors, especially for those deployed in remote and resource-limited field locations.
Collapse
|
29
|
Sabry RS, Kammel RS. Flexible Sandwich Piezoelectric Nanogenerators based ZnO Nanorods for Mechanical Energy Harvesting. AL-MUSTANSIRIYAH JOURNAL OF SCIENCE 2018. [DOI: 10.23851/mjs.v29i1.372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present a flexible sandwich piezoelectric nanogenerators (PENGs) device with gold-coated ZnO nanorods (Au@ ZNRs) as an efficient top electrode; this device was used to harvest energy from the human walking motion. ZNRs were synthesised on the two-piece of ZnO seed layer coated gold/flexible polyethylene terephthalate (Au/PET) substrates through a simple hydrothermal method of low temperature and low cost at molar concentration (0.01M). X-ray diffraction and field emission scanning electron microscopy images revealed that the as-grown ZNRs have high crystallinity and apparent vertical growth with hexagonal shapes, the average diameter of NRs is 120 nm. Flexible sandwich PENGs based ZNRs was fabricated with gold-coated one piece of ZNRs by DC-sputtering method as an efficient top electrode, which was placed on the uncoated ZNRs as-grown on another piece of substrate. The maximum output potential voltage (Vmax) under a periodic of pressing and releasing of human walking is 5.76 V. The results confirmed the top efficient electrode has created more contact area with uncoated NR when it is pressed, which increases the transfer efficiency effectively of piezoelectric potential that generated from uncoated ZNRs.
Collapse
|
30
|
Chae I, Jeong CK, Ounaies Z, Kim SH. Review on Electromechanical Coupling Properties of Biomaterials. ACS APPLIED BIO MATERIALS 2018; 1:936-953. [DOI: 10.1021/acsabm.8b00309] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Inseok Chae
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Zoubeida Ounaies
- Department of Mechanical and Nuclear Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seong H. Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
31
|
Savarimuthu K, Sankararajan R, Govindaraj R, Narendhiran S. A comparative study on a flexible ZnO-based nano-generator using Schottky and p-n junction contact for energy harvesting applications. NANOSCALE 2018; 10:16022-16029. [PMID: 30106075 DOI: 10.1039/c8nr02844c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vibration based piezoelectric energy harvesting from unused ambient sources is an efficient approach for a battery-free, sustainable and green power source for self-powered electronics. This paper presents the performance enhancement of a p-n junction based flexible nano-generator (NG). A stable, non-hazardous spiro and zinc oxide (ZnO) p-n junction based NG is proposed. The device performance is compared with a Schottky contact based NG. The experimental study is carried out using the tip excitation method. Most importantly, the contact modification with spiro improves the performance of the device by five times, thereby yielding an open circuit voltage of 300 mV, a short-circuit current density of 220 μA cm-2 and a maximum power density up to 48 μW cm-2 at 0.5 N. Furthermore, performance enhancement is achieved by reducing the external screening and the internal impedance. The results are validated using an RC time constant value derived from the impedance analysis.
Collapse
Affiliation(s)
- Kirubaveni Savarimuthu
- Department of Electronics and Communication, SSN College of Engineering, Chennai-603110, India.
| | | | | | | |
Collapse
|
32
|
Piezo-Potential Generation in Capacitive Flexible Sensors Based on GaN Horizontal Wires. NANOMATERIALS 2018; 8:nano8060426. [PMID: 29895755 PMCID: PMC6027467 DOI: 10.3390/nano8060426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
Abstract
We report an example of the realization of a flexible capacitive piezoelectric sensor based on the assembly of horizontal c¯-polar long Gallium nitride (GaN) wires grown by metal organic vapour phase epitaxy (MOVPE) with the Boostream® technique spreading wires on a moving liquid before their transfer on large areas. The measured signal (<0.6 V) obtained by a punctual compression/release of the device shows a large variability attributed to the dimensions of the wires and their in-plane orientations. The cause of this variability and the general operating mechanisms of this flexible capacitive device are explained by finite element modelling simulations. This method allows considering the full device composed of a metal/dielectric/wires/dielectric/metal stacking. We first clarify the mechanisms involved in the piezo-potential generation by mapping the charge and piezo-potential in a single wire and studying the time-dependent evolution of this phenomenon. GaN wires have equivalent dipoles that generate a tension between metallic electrodes only when they have a non-zero in-plane projection. This is obtained in practice by the conical shape occurring spontaneously during the MOVPE growth. The optimal aspect ratio in terms of length and conicity (for the usual MOVPE wire diameter) is determined for a bending mechanical loading. It is suggested to use 60⁻120 µm long wires (i.e., growth time less than 1 h). To study further the role of these dipoles, we consider model systems with in-plane 1D and 2D regular arrays of horizontal wires. It is shown that a strong electrostatic coupling and screening occur between neighbouring horizontal wires depending on polarity and shape. This effect, highlighted here only from calculations, should be taken into account to improve device performance.
Collapse
|
33
|
Zhu R, Xu Y, Bai Q, Wang Z, Guo X, Kimura H. Direct degradation of dyes by piezoelectric fibers through scavenging low frequency vibration. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Zhang C, Fan Y, Li H, Li Y, Zhang L, Cao S, Kuang S, Zhao Y, Chen A, Zhu G, Wang ZL. Fully Rollable Lead-Free Poly(vinylidene fluoride)-Niobate-Based Nanogenerator with Ultra-Flexible Nano-Network Electrodes. ACS NANO 2018; 12:4803-4811. [PMID: 29701953 DOI: 10.1021/acsnano.8b01534] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A fully rollable nanocomposite-based nanogenerator (NCG) is developed by integrating a lead-free piezoelectric hybrid layer with a type of nanofiber-supported silver nanowire (AgNW) network as electrodes. The thin-film nanocomposite is composed of electroactive polyvinylidene fluoride (PVDF) polymer matrix and compositionally modified potassium sodium niobate-based nanoparticles (NPs) with a high piezoelectric coefficient ( d33) of 53 pm/V, which is revealed by the piezoresponse force microscopy measurements. Under periodical agitation at a compressive force of 50 N and 1 Hz, the NCG can steadily render high electric output up to an open-circuit voltage of 18 V and a short-circuit current of 2.6 μA. Of particular importance is the decent rollability of the NCG, as indicated by the negligible decay in the electric output after it being repeatedly rolled around a gel pen for 200 cycles. Besides, the biocompatible NCG can potentially be used to scavenge biomechanical energy from low-frequency human motions, as demonstrated by the scenarios of walking and elbow joint movement. These results rationally expand the feasibility of the developed NCG toward applications in lightweight, diminutive, and multifunctional rollable or wearable electronic devices.
Collapse
Affiliation(s)
- Chen Zhang
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
| | - Youjun Fan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Huayang Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Yayuan Li
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
| | - Lei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Shubo Cao
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
| | - Shuangyang Kuang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Yongbin Zhao
- Shandong Oubo New Material Co. Ltd , Dongying , Shandong 257088 , China
| | - Aihua Chen
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
- Beijing Advanced Innovation Centre for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Guang Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- Department of Mechanical, Materials and Manufacturing Engineering , The University of Nottingham Ningbo China , Ningbo 315100 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
35
|
Chun J, Kishore RA, Kumar P, Kang MG, Kang HB, Sanghadasa M, Priya S. Self-Powered Temperature-Mapping Sensors Based on Thermo-Magneto-Electric Generator. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10796-10803. [PMID: 29473409 DOI: 10.1021/acsami.7b17686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate a thermo-magneto-electric generator (TMEG) based on second-order phase transition of soft magnetic materials that provides a promising pathway for scavenging low-grade heat. It takes advantage of the cyclic magnetic forces of attraction and repulsion arising through ferromagnetic-to-paramagnetic phase transition to create mechanical vibrations that are converted into electricity through piezoelectric benders. To enhance the mechanical vibration frequency and thereby the output power of the TMEG, we utilize the nonlinear behavior of piezoelectric cantilevers and enhanced thermal transport through silver (Ag) nanoparticles (NPs) applied on the surface of a soft magnet. This results in large enhancement of the oscillation frequency reaching up to 9 Hz (300% higher compared with that of the prior literature). Optimization of the piezoelectric beam and Ag NP distribution resulted in the realization of nonlinear TMEGs that can generate a high output power of 80 μW across the load resistance of 0.91 MΩ, which is 2200% higher compared with that of the linear TMEG. Using a nonlinear TMEG, we fabricated and evaluated self-powered temperature-mapping sensors for monitoring the thermal variations across the surface. Combined, our results demonstrate that nonlinear TMEGs can provide additional functionality including temperature monitoring, thermal mapping, and powering sensor nodes.
Collapse
Affiliation(s)
- Jinsung Chun
- Center for Energy Harvesting Materials and System (CEHMS), Bio-Inspired Materials and Devices Laboratory (BMDL) , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24060 , United States
| | - Ravi Anant Kishore
- Center for Energy Harvesting Materials and System (CEHMS), Bio-Inspired Materials and Devices Laboratory (BMDL) , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24060 , United States
| | - Prashant Kumar
- Center for Energy Harvesting Materials and System (CEHMS), Bio-Inspired Materials and Devices Laboratory (BMDL) , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24060 , United States
| | - Min-Gyu Kang
- Center for Energy Harvesting Materials and System (CEHMS), Bio-Inspired Materials and Devices Laboratory (BMDL) , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24060 , United States
| | - Han Byul Kang
- Center for Energy Harvesting Materials and System (CEHMS), Bio-Inspired Materials and Devices Laboratory (BMDL) , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24060 , United States
| | - Mohan Sanghadasa
- U.S. Army Aviation and Missile Research, Development, and Engineering Center , Redstone Arsenal , Huntsville , Alabama 35898 , United States
| | - Shashank Priya
- Center for Energy Harvesting Materials and System (CEHMS), Bio-Inspired Materials and Devices Laboratory (BMDL) , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24060 , United States
| |
Collapse
|
36
|
Rajagopalan P, Singh V, Palani IA. Enhancement of ZnO-based flexible nano generators via a sol-gel technique for sensing and energy harvesting applications. NANOTECHNOLOGY 2018; 29:105406. [PMID: 29388558 DOI: 10.1088/1361-6528/aaa6bd] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Zinc oxide (ZnO) is a remarkable inorganic semiconductor with exceptional piezoelectric properties compared to other semiconductors. However, in comparison to lead-based hazardous piezoelectric materials, its properties have undesired limitations. Here we report a 5∼6 fold enhancement in piezoelectric features via chemical doping of copper matched to intrinsic ZnO. A flexible piezoelectric nanogenerator (F-PENG) device was fabricated using an unpretentious solution process of spin coating, with other advantages such as robustness, low-weight, improved adhesion, and low cost. The device was used to demonstrate energy harvesting from a standard weight as low as 4 gm and can work as a self-powered mass sensor in a broad range of 4 to 100 gm. The device exhibited a novel energy harvesting technique from a wind source due to its inherent flexibility. At three different velocities (10∼30 m s-1) and five different angles of attack (0∼180 degrees), the device validated the ability to discern different velocities and directions of flow. The device will be useful for mapping the flow of air apart from harvesting the energy. The simulation was done to verify the underlining mechanism of aerodynamics involved.
Collapse
Affiliation(s)
- P Rajagopalan
- Mechatronics and Instrumentation Lab, Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore, India
| | | | | |
Collapse
|
37
|
Reddy S, He L, Ramakrishana S. Miniaturized-electroneurostimulators and self-powered/rechargeable implanted devices for electrical-stimulation therapy. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Deng W, Jin L, Chen Y, Chu W, Zhang B, Sun H, Xiong D, Lv Z, Zhu M, Yang W. An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator. NANOSCALE 2018; 10:843-847. [PMID: 29261199 DOI: 10.1039/c7nr07325a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, a piezoelectric nanogenerator (PENG) based on a tuning fork-shaped cantilever was designed and fabricated, aiming at harvesting low frequency vibration energy in the environment. In the PENG, a tuning fork-shaped elastic beam combined with ZnO nanorods (NRs), instead of conventional rectangular cantilever beams, was adopted to extract vibration energy. Benefiting from the high flexibility and the controllable shape of the substrate, this PENG was extremely sensitive to vibration and can harvest weak vibration energy at a low frequency. Moreover, a series of simulation models were established to compare the performance of the PENG with that of different shapes. On this basis, the experimental results further verify that this designed energy harvester could operate at a low frequency which was about 13 Hz. The peak output voltage and current could respectively reach about 160 mV and 11 nA, and a maximum instantaneous peak power of 0.92 μW cm-3 across a matched load of 9 MΩ was obtained. Evidently, this newly designed PENG could harvest vibration energy at a lower frequency, which will contribute to broaden the application range of the PENG in energy harvesting and self-powered systems.
Collapse
Affiliation(s)
- Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pu X, Hu W, Wang ZL. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702817. [PMID: 29194960 DOI: 10.1002/smll.201702817] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/21/2017] [Indexed: 05/23/2023]
Abstract
One major challenge for wearable electronics is that the state-of-the-art batteries are inadequate to provide sufficient energy for long-term operations, leading to inconvenient battery replacement or frequent recharging. Other than the pursuit of high energy density of secondary batteries, an alternative approach recently drawing intensive attention from the research community, is to integrate energy-generation and energy-storage devices into self-charging power systems (SCPSs), so that the scavenged energy can be simultaneously stored for sustainable power supply. This paper reviews recent developments in SCPSs with the integration of various energy-harvesting devices (including piezoelectric nanogenerators, triboelectric nanogenerators, solar cells, and thermoelectric nanogenerators) and energy-storage devices, such as batteries and supercapacitors. SCPSs with multiple energy-harvesting devices are also included. Emphasis is placed on integrated flexible or wearable SCPSs. Remaining challenges and perspectives are also examined to suggest how to bring the appealing SCPSs into practical applications in the near future.
Collapse
Affiliation(s)
- Xiong Pu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Weiguo Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
40
|
Li T, Feng ZQ, Yan K, Yuan T, Wei W, Yuan X, Wang C, Wang T, Dong W, Zheng J. Pure OPM nanofibers with high piezoelectricity designed for energy harvesting in vitro and in vivo. J Mater Chem B 2018; 6:5343-5352. [DOI: 10.1039/c8tb01702f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure OPM nanofibers with unprecedented high piezoelectricity are successfully fabricated and applied on the skin as a motion sensor and in arterial blood vessels as a nanogenerator for energy harvesting.
Collapse
Affiliation(s)
- Tong Li
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Zhang-Qi Feng
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
- State Key Laboratory of Bioelectronics
| | - Ke Yan
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Tao Yuan
- Department of Orthopedic
- Nanjing Jinling Hospital
- Nanjing
- China
| | - Wuting Wei
- Department of Orthopedic
- Nanjing Jinling Hospital
- Nanjing
- China
| | - Xu Yuan
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
- Nanjing Daniel New Mstar Technology Ltd
| | - Chao Wang
- Office of Science and Technology Research
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Ting Wang
- State Key Laboratory of Bioelectronics
- Southeast University
- Nanjing 210096
- China
- Department of Chemical and Biomolecular Engineering
| | - Wei Dong
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| |
Collapse
|
41
|
Nair A, Bhattacharya P, Sambandan S. Modulating Thin Film Transistor Characteristics by Texturing the Gate Metal. Sci Rep 2017; 7:17932. [PMID: 29263403 PMCID: PMC5738405 DOI: 10.1038/s41598-017-18111-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/05/2017] [Indexed: 11/20/2022] Open
Abstract
The development of reliable, high performance integrated circuits based on thin film transistors (TFTs) is of interest for the development of flexible electronic circuits. In this work we illustrate the modulation of TFT transconductance via the texturing of the gate metal created by the addition of a conductive pattern on top of a planar gate. Texturing results in the semiconductor-insulator interface acquiring a non-planar geometry with local variations in the radius of curvature. This influences various TFT parameters such as the subthreshold slope, gate voltage at the onset of conduction, contact resistance and gate capacitance. Specific studies are performed on textures based on periodic striations oriented along different directions. Textured TFTs showed upto ±40% variation in transconductance depending on the texture orientation as compared to conventional planar gate TFTs. Analytical models are developed and compared with experiments. Gain boosting in common source amplifiers based on textured TFTs as compared to conventional TFTs is demonstrated.
Collapse
Affiliation(s)
- Aswathi Nair
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Prasenjit Bhattacharya
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Sanjiv Sambandan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FF, United Kingdom.
| |
Collapse
|
42
|
Fuh YK, Huang ZM, Wang BS, Li SC. Self-Powered Active Sensor with Concentric Topography of Piezoelectric Fibers. NANOSCALE RESEARCH LETTERS 2017; 12:44. [PMID: 28097597 PMCID: PMC5241262 DOI: 10.1186/s11671-016-1786-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
In this study, we demonstrated a flexible and self-powered sensor based on piezoelectric fibers in the diameter range of nano- and micro-scales. Our work is distinctively different from previous electrospinning research; we fabricated this apparatus precisely via near-field electrospinning which has a spectacular performance to harvest mechanical deformation in arbitrary direction and a novel concentrically circular topography. There are many piezoelectric devices based on electrospinning polymeric fibers. However, the fibers were mostly patterned in parallel lines and they could be actuated in limited direction only. To overcome this predicament, we re-arranged the parallel alignment into concentric circle pattern which made it possible to collect the mechanical energy whenever the deformation is along same axis or not. Despite the change of topography, the output voltage and current could still reach to 5 V and 400 nA, respectively, despite the mechanical deformation was from different direction. This new arbitrarily directional piezoelectric generator with concentrically circular topography (PGCT) allowed the piezoelectric device to harvest more mechanical energy than the one-directional alignment fiber-based devices, and this PGCT could perform even better output which promised more versatile and efficient using as a wearable electronics or sensor.
Collapse
Affiliation(s)
- Yiin Kuen Fuh
- Department of Mechanical Engineering, National Central University, No.300, Jhongda Rd., Jhongli District, Taoyuan, 32001, Taiwan (R.O.C.).
- Institute of Materials Science and Engineering, National Central University, Taoyuan, Taiwan.
| | - Zih Ming Huang
- Department of Mechanical Engineering, National Central University, No.300, Jhongda Rd., Jhongli District, Taoyuan, 32001, Taiwan (R.O.C.)
| | - Bo Sheng Wang
- Department of Mechanical Engineering, National Central University, No.300, Jhongda Rd., Jhongli District, Taoyuan, 32001, Taiwan (R.O.C.)
| | - Shan Chien Li
- Department of Mechanical Engineering, National Central University, No.300, Jhongda Rd., Jhongli District, Taoyuan, 32001, Taiwan (R.O.C.)
| |
Collapse
|
43
|
Yuan F, Li W, Lin S, Wu N, Chen S, Zhong J, Xu Z, Li X, Xiao Y, Huang L. Output optimized electret nanogenerators for self-powered long-distance optical communication systems. NANOSCALE 2017; 9:18529-18534. [PMID: 29164223 DOI: 10.1039/c7nr07141h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-speed optical communication systems are built for real-time, massive and remote information exchange. However, any power outage will paralyse the systems and cause a huge loss. Here we constructed a self-powered long-distance optical communication system (SLOCS) utilizing output enhanced parallel connected electret nanogenerators (NGs) as a backup power for the power outage. The output current of the electret NG was promoted from 1.45 μA to 8.14 μA through optimizing the thickness of the electret film. In the SLOCS, a coded message was successfully transmitted for 50 meters by pressing electret NGs. The as-fabricated SLOCS paves the way to a simple and cost-effective strategy for developing a reliable emergency communication system in case of power outage, simultaneously promoting the progress of self-powered electronics.
Collapse
Affiliation(s)
- Fang Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hasan Ul Banna GM, Park IK. Flexible ZnO nanorod-based piezoelectric nanogenerators on carbon papers. NANOTECHNOLOGY 2017; 28:445402. [PMID: 28809757 DOI: 10.1088/1361-6528/aa865d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on the fabrication of ZnO nanorod (NR)-based flexible piezoelectric nanogenerators (PENGs) on carbon paper (CP). Structural investigations indicate that the ZnO NRs grew well along the porous CP surface. Optical investigation shows that the crystal quality of the ZnO NRs on the CP was comparable to that of NRs grown on Si substrate. As the molar concentration increased from 10-70 mM, the output voltage and current increased consistently from 3.6-6.8 V and 0.79-1.45 μA, respectively. The enhancements of the voltage and current were attributed to the enhanced accumulation of the potentials generated by the increased number of ZnO NRs in the PENG devices. Therefore, the porous CP enhanced the PENG performance due to the higher surface area, and provided a super-flexible self-powering platform.
Collapse
Affiliation(s)
- G M Hasan Ul Banna
- Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749, Republic of Korea
| | | |
Collapse
|
45
|
Liu Y, He K, Chen G, Leow WR, Chen X. Nature-Inspired Structural Materials for Flexible Electronic Devices. Chem Rev 2017; 117:12893-12941. [DOI: 10.1021/acs.chemrev.7b00291] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yaqing Liu
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Geng Chen
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible
Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
46
|
Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci Rep 2017; 7:6759. [PMID: 28754916 PMCID: PMC5533785 DOI: 10.1038/s41598-017-07360-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/22/2017] [Indexed: 11/08/2022] Open
Abstract
Near-field electrospinning (NFES) is capable of precisely deposit one-dimensional (1D) or two-dimensional (2D) highly aligned micro/nano fibers (NMFs) by electrically discharged a polymer solution. In this paper, a new integration of three-dimensional (3D) architectures of NFES electrospun polyvinylidene fluoride (PVDF) NMFs with the 3D printed topologically tailored substrate are demonstrated in a direct-write and in-situ poled manner, called wavy- substrate self-powered sensors (WSS). The fabrication steps are composed of the additive manufacture of 3D printed flexible and sinusoidal wavy substrate, metallization and NFES electrospun fibers in the 3D topology. This 3D architecture is capable of greatly enhancing the piezoelectric output. Finally, the proposed piezoelectrically integrated 3D architecture is applied to the self-powered sensors such as foot pressure measurement, human motion monitoring and finger-induced power generation. The proposed technique demonstrates the advancement of existing electrospinning technologies in constructing 3D structures and several promising applications for biomedical and wearable electronics.
Collapse
|
47
|
Hassan G, Khan F, Hassan A, Ali S, Bae J, Lee CH. A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting. NANOTECHNOLOGY 2017; 28:175402. [PMID: 28278133 DOI: 10.1088/1361-6528/aa65c3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recently, many researchers have been paying attention to nanogenerators (NGs) as energy sources for self-powered mirco-nano systems, and studying how to achieve their higher power generation. Hence, we propose a hybrid-type NG for harvesting both the piezoelectric and triboelectric effect simultaneously. In the proposed hybrid NG, the piezoelectric NG (PNG) and triboelectric NG (TENG) are fabricated using polydimethylsiloxane (PDMS) and perovskite zinc stannite (ZnSnO3) nanocubes with a high charge polarization of 59 uC cm-2 composite (PDMS + ZnSnO3) and UV surface-treated PDMS, respectively. To effectively combine a high output current of PNG and a high voltage of TENG, these two NGs are stacked upon each other, and separated by sponge spacers providing a uniform air gap for the triboelectric effect. In particular, this fabricated structure has a low Young's modulus for piezoelectricity. The proposed hybrid NG device effectively achieves a combined peak voltage of 300 V on an open circuit, a power density of 10.41 mW cm-2 at 1 MΩ load, and a maximum short circuit current density of 16 mA cm-2 at 50 Ω load. It is feasible that the proposed NG can be utilized as a source for various self-powered systems.
Collapse
Affiliation(s)
- Gul Hassan
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Republic of Korea
| | | | | | | | | | | |
Collapse
|
48
|
Deng W, Zhang B, Jin L, Chen Y, Chu W, Zhang H, Zhu M, Yang W. Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator. NANOTECHNOLOGY 2017; 28:135401. [PMID: 28177297 DOI: 10.1088/1361-6528/aa5f34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, triboelectric nanogenerators (TENGs), harvesting energy from the environment as a sustainable power source, have attracted great attention. Currently, many reports focus on the effect of surface modification on the electrical output performance of the TENG. In this work, we have fabricated vertically grown ZnO microballoon (ZnOMB) arrays on top of pyramid-featured PDMS patterned film, contacted with PTFE film to construct the TENG. The electrical output performances of the designed TENG are presented under external forces with different frequencies. The corresponding output open-circuit voltage with ZnOMBs could reach about 57 V the current density about 59 mA m-2 at 100 Hz, which was about 2.3 times higher than without any ZnO. The global maximum of the instantaneous peak power could reach 1.1 W m-2 when the external load resistance was about 2 MΩ. Furthermore, the electrical output of the fabricated device could light 30 commercial LED bulbs without any rectifier circuits or energy-storage elements. This clearly suggests that this kind of surface modification can dramatically enhance the output performance of the TENG. Moreover, the design of TENG demonstrated here can be applied to various energy harvesting applications.
Collapse
Affiliation(s)
- Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
He Y, Wang Z, Hu X, Cai Y, Li L, Gao Y, Zhang X, Huang Z, Hu Y, Gu H. Orientation-dependent piezoresponse and high-performance energy harvesting of lead-free (K,Na)NbO3 nanorod arrays. RSC Adv 2017. [DOI: 10.1039/c7ra01359k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High-quality (K,Na)NbO3 nanorod arrays with [110]-oriented spontaneous polarization and piezoelectric response were utilized for building high-output piezoelectric energy harvesters.
Collapse
|
50
|
Canovas-Carrasco S, Garcia-Sanchez AJ, Garcia-Sanchez F, Garcia-Haro J. Conceptual Design of a Nano-Networking Device. SENSORS 2016; 16:s16122104. [PMID: 27973430 PMCID: PMC5191084 DOI: 10.3390/s16122104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 01/21/2023]
Abstract
Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated.
Collapse
Affiliation(s)
- Sebastian Canovas-Carrasco
- Department of Information and Communication Technologies, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, E-30202 Cartagena, Spain.
| | - Antonio-Javier Garcia-Sanchez
- Department of Information and Communication Technologies, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, E-30202 Cartagena, Spain.
| | - Felipe Garcia-Sanchez
- Department of Information and Communication Technologies, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, E-30202 Cartagena, Spain.
| | - Joan Garcia-Haro
- Department of Information and Communication Technologies, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, E-30202 Cartagena, Spain.
| |
Collapse
|