1
|
Zhan Z, Liu Y, Wang W, Du G, Cai S, Wang P. Atomic-level imaging of beam-sensitive COFs and MOFs by low-dose electron microscopy. NANOSCALE HORIZONS 2024; 9:900-933. [PMID: 38512352 DOI: 10.1039/d3nh00494e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electron microscopy, an important technique that allows for the precise determination of structural information with high spatiotemporal resolution, has become indispensable in unravelling the complex relationships between material structure and properties ranging from mesoscale morphology to atomic arrangement. However, beam-sensitive materials, particularly those comprising organic components such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), would suffer catastrophic damage from the high energy electrons, hindering the determination of atomic structures. A low-dose approach has arisen as a possible solution to this problem based on the integration of advancements in several aspects: electron optical system, detector, image processing, and specimen preservation. This article summarizes the transmission electron microscopy characterization of MOFs and COFs, including local structures, host-guest interactions, and interfaces at the atomic level. Revolutions in advanced direct electron detectors, algorithms in image acquisition and processing, and emerging methodology for high quality low-dose imaging are also reviewed. Finally, perspectives on the future development of electron microscopy methodology with the support of computer science are presented.
Collapse
Affiliation(s)
- Zhen Zhan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Yuxin Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Weizhen Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Guangyu Du
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Peng Wang
- Department of Physics, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
2
|
Ochner H, Bharat TAM. Charting the molecular landscape of the cell. Structure 2023; 31:1297-1305. [PMID: 37699393 PMCID: PMC7615466 DOI: 10.1016/j.str.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Biological function of macromolecules is closely tied to their cellular location, as well as to interactions with other molecules within the native environment of the cell. Therefore, to obtain detailed mechanistic insights into macromolecular functionality, one of the outstanding targets for structural biology is to produce an atomic-level understanding of the cell. One structural biology technique that has already been used to directly derive atomic models of macromolecules from cells, without any additional external information, is electron cryotomography (cryoET). In this perspective article, we discuss possible routes to chart the molecular landscape of the cell by advancing cryoET imaging as well as by embedding cryoET into correlative imaging workflows.
Collapse
Affiliation(s)
- Hannah Ochner
- Structural Studies Division, MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| |
Collapse
|
3
|
Lewis GR, Wolf D, Lubk A, Ringe E, Midgley PA. WRAP: A wavelet-regularised reconstruction algorithm for magnetic vector electron tomography. Ultramicroscopy 2023; 253:113804. [PMID: 37481909 DOI: 10.1016/j.ultramic.2023.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Magnetic vector electron tomography (VET) is a promising technique that enables better understanding of micro- and nano-magnetic phenomena through the reconstruction of 3D magnetic fields at high spatial resolution. Here we introduce WRAP (Wavelet Regularised A Program), a reconstruction algorithm for magnetic VET that directly reconstructs the magnetic vector potential A using a compressed sensing framework which regularises for sparsity in the wavelet domain. We demonstrate that using WRAP leads to a significant increase in the fidelity of the 3D reconstruction and is especially robust when dealing with very limited data; using datasets simulated with realistic noise, we compare WRAP to a conventional reconstruction algorithm and find an improvement of ca. 60% when averaged over several performance metrics. Moreover, we further validate WRAP's performance on experimental electron holography data, revealing the detailed magnetism of vortex states in a CuCo nanowire. We believe WRAP represents a major step forward in the development of magnetic VET as a tool for probing magnetism at the nanoscale.
Collapse
Affiliation(s)
- George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK; Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Daniel Wolf
- Institute for Solid State Research, IFW Dresden, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Axel Lubk
- Institute for Solid State Research, IFW Dresden, Helmholtzstrasse 20, 01069, Dresden, Germany; Institute of Solid State and Materials Physics, TU Dresden, 01062 Dresden, Germany
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK; Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| |
Collapse
|
4
|
Lewis GR, Ringe E, Midgley PA. Cones and spirals: Multi-axis acquisition for scalar and vector electron tomography. Ultramicroscopy 2023; 252:113775. [PMID: 37295062 DOI: 10.1016/j.ultramic.2023.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Electron tomography (ET) has become an important tool for understanding the 3D nature of nanomaterials, with recent developments enabling not only scalar reconstructions of electron density, but also vector reconstructions of magnetic fields. However, whilst new signals have been incorporated into the ET toolkit, the acquisition schemes have largely kept to conventional single-axis tilt series for scalar ET, and dual-axis schemes for magnetic vector ET. In this work, we explore the potential of using multi-axis tilt schemes including conical and spiral tilt schemes to improve reconstruction fidelity in scalar and magnetic vector ET. Through a combination of systematic simulations and a proof-of-concept experiment, we show that spiral and conical tilt schemes have the potential to produce substantially improved reconstructions, laying the foundations of a new approach to electron tomography acquisition and reconstruction.
Collapse
Affiliation(s)
- George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS, UK; Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS, UK; Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
5
|
Botifoll M, Pinto-Huguet I, Arbiol J. Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. NANOSCALE HORIZONS 2022; 7:1427-1477. [PMID: 36239693 DOI: 10.1039/d2nh00377e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the last few years, electron microscopy has experienced a new methodological paradigm aimed to fix the bottlenecks and overcome the challenges of its analytical workflow. Machine learning and artificial intelligence are answering this call providing powerful resources towards automation, exploration, and development. In this review, we evaluate the state-of-the-art of machine learning applied to electron microscopy (and obliquely, to materials and nano-sciences). We start from the traditional imaging techniques to reach the newest higher-dimensionality ones, also covering the recent advances in spectroscopy and tomography. Additionally, the present review provides a practical guide for microscopists, and in general for material scientists, but not necessarily advanced machine learning practitioners, to straightforwardly apply the offered set of tools to their own research. To conclude, we explore the state-of-the-art of other disciplines with a broader experience in applying artificial intelligence methods to their research (e.g., high-energy physics, astronomy, Earth sciences, and even robotics, videogames, or marketing and finances), in order to narrow down the incoming future of electron microscopy, its challenges and outlook.
Collapse
Affiliation(s)
- Marc Botifoll
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
| | - Ivan Pinto-Huguet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Jenkinson K, Liz-Marzán LM, Bals S. Multimode Electron Tomography Sheds Light on Synthesis, Structure, and Properties of Complex Metal-Based Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110394. [PMID: 35438805 DOI: 10.1002/adma.202110394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Electron tomography has become a cornerstone technique for the visualization of nanoparticle morphology in three dimensions. However, to obtain in-depth information about a nanoparticle beyond surface faceting and morphology, different electron microscopy signals must be combined. The most notable examples of these combined signals include annular dark-field scanning transmission electron microscopy (ADF-STEM) with different collection angles and the combination of ADF-STEM with energy-dispersive X-ray or electron energy loss spectroscopies. Here, the experimental and computational development of various multimode tomography techniques in connection to the fundamental materials science challenges that multimode tomography has been instrumental to overcoming are summarized. Although the techniques can be applied to a wide variety of compositions, the study is restricted to metal and metal oxide nanoparticles for the sake of simplicity. Current challenges and future directions of multimode tomography are additionally discussed.
Collapse
Affiliation(s)
- Kellie Jenkinson
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| |
Collapse
|
7
|
Löffler S. Unitary two-state quantum operators realized by quadrupole fields in the electron microscope. Ultramicroscopy 2022; 234:113456. [PMID: 35032788 DOI: 10.1016/j.ultramic.2021.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
In this work, a novel method for using a set of electromagnetic quadrupole fields is presented to implement arbitrary unitary operators on a two-state quantum system of electrons. In addition to analytical derivations of the required quadrupole and beam settings which allow an easy direct implementation, numerical simulations of realistic scenarios show the feasibility of the proposed setup. This is expected to pave the way not only for new measurement schemes in electron microscopy and related fields but even one day for the implementation of quantum computing in the electron microscope.
Collapse
Affiliation(s)
- Stefan Löffler
- University Service Centre for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10/E057-02, 1040, Wien, Austria.
| |
Collapse
|
8
|
Böhning J, Bharat TAM, Collins SM. Compressed sensing for electron cryotomography and high-resolution subtomogram averaging of biological specimens. Structure 2022; 30:408-417.e4. [PMID: 35051366 PMCID: PMC8919266 DOI: 10.1016/j.str.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
Cryoelectron tomography (cryo-ET) and subtomogram averaging (STA) allow direct visualization and structural studies of biological macromolecules in their native cellular environment, in situ. Often, low signal-to-noise ratios in tomograms, low particle abundance within the cell, and low throughput in typical cryo-ET workflows severely limit the obtainable structural information. To help mitigate these limitations, here we apply a compressed sensing approach using 3D second-order total variation (CS-TV2) to tomographic reconstruction. We show that CS-TV2 increases the signal-to-noise ratio in tomograms, enhancing direct visualization of macromolecules, while preserving high-resolution information up to the secondary structure level. We show that, particularly with small datasets, CS-TV2 allows improvement of the resolution of STA maps. We further demonstrate that the CS-TV2 algorithm is applicable to cellular specimens, leading to increased visibility of molecular detail within tomograms. This work highlights the potential of compressed sensing-based reconstruction algorithms for cryo-ET and in situ structural biology. Compressed sensing (CS-TV2) for cryo-ET using 3D second-order total variation CS-TV2 increases signal contrast while retaining high-resolution information Improved subtomogram averaging from CS-TV2 reconstructions of small datasets Increased contrast and detail in CS-TV2 reconstructions of cellular specimens
Collapse
Affiliation(s)
- Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Sean M Collins
- School of Chemical and Process Engineering & School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
9
|
Ribet SM, Murthy AA, Roth EW, Dos Reis R, Dravid VP. Making the Most of your Electrons: Challenges and Opportunities in Characterizing Hybrid Interfaces with STEM. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:100-115. [PMID: 35241968 PMCID: PMC8887695 DOI: 10.1016/j.mattod.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inspired by the unique architectures composed of hard and soft materials in natural and biological systems, synthetic hybrid structures and associated soft-hard interfaces have recently evoked significant interest. Soft matter is typically dominated by fluctuations even at room temperature, while hard matter (which often serves as the substrate or anchor for the soft component) is governed by rigid mechanical behavior. This dichotomy offers considerable opportunities to leverage the disparate properties offered by these components across a wide spectrum spanning from basic science to engineering insights with significant technological overtones. Such hybrid structures, which include polymer nanocomposites, DNA functionalized nanoparticle superlattices and metal organic frameworks to name a few, have delivered promising insights into the areas of catalysis, environmental remediation, optoelectronics, medicine, and beyond. The interfacial structure between these hard and soft phases exists across a variety of length scales and often strongly influence the functionality of hybrid systems. While scanning/transmission electron microscopy (S/TEM) has proven to be a valuable tool for acquiring intricate molecular and nanoscale details of these interfaces, the unusual nature of hybrid composites presents a suite of challenges that make assessing or establishing the classical structure-property relationships especially difficult. These include challenges associated with preparing electron-transparent samples and obtaining sufficient contrast to resolve the interface between dissimilar materials given the dose sensitivity of soft materials. We discuss each of these challenges and supplement a review of recent developments in the field with additional experimental investigations and simulations to present solutions for attaining a nano or atomic-level understanding of these interfaces. These solutions present a host of opportunities for investigating and understanding the role interfaces play in this unique class of functional materials.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
| | - Eric W Roth
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| |
Collapse
|
10
|
Zheng S, Wang C, Yuan X, Xin HL. Super-compression of large electron microscopy time series by deep compressive sensing learning. PATTERNS (NEW YORK, N.Y.) 2021; 2:100292. [PMID: 34286306 PMCID: PMC8276025 DOI: 10.1016/j.patter.2021.100292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 11/14/2022]
Abstract
The development of ultrafast detectors for electron microscopy (EM) opens a new door to exploring dynamics of nanomaterials; however, it raises grand challenges for big data processing and storage. Here, we combine deep learning and temporal compressive sensing (TCS) to propose a novel EM big data compression strategy. Specifically, TCS is employed to compress sequential EM images into a single compressed measurement; an end-to-end deep learning network is leveraged to reconstruct the original images. Owing to the significantly improved compression efficiency and built-in denoising capability of the deep learning framework over conventional JPEG compression, compressed videos with a compression ratio of up to 30 can be reconstructed with high fidelity. Using this approach, considerable encoding power, memory, and transmission bandwidth can be saved, allowing it to be deployed to existing detectors. We anticipate the proposed technique will have far-reaching applications in edge computing for EM and other imaging techniques.
Collapse
Affiliation(s)
- Siming Zheng
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Chunyang Wang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Xin Yuan
- Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
11
|
Jacob M, Gueddari LE, Lin JM, Navarro G, Jannaud A, Mula G, Bayle-Guillemaud P, Ciuciu P, Saghi Z. Gradient-based and wavelet-based compressed sensing approaches for highly undersampled tomographic datasets. Ultramicroscopy 2021; 225:113289. [PMID: 33906008 DOI: 10.1016/j.ultramic.2021.113289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
Electron tomography is widely employed for the 3D morphological characterization at the nanoscale. In recent years, there has been a growing interest in analytical electron tomography (AET) as it is capable of providing 3D information about the elemental composition, chemical bonding and optical/electronic properties of nanomaterials. AET requires advanced reconstruction algorithms as the datasets often consist of a very limited number of projections. Total variation (TV)-based compressed sensing approaches were shown to provide high-quality reconstructions from undersampled datasets, but staircasing artefacts can appear when the assumption about piecewise constancy does not hold. In this paper, we compare higher-order TV and wavelet-based approaches for AET applications and provide an open-source Python toolbox, Pyetomo, containing 2D and 3D implementations of both methods. A highly sampled STEM-HAADF dataset of an Er-doped porous Si sample and a heavily undersampled STEM-EELS dataset of a Ge-rich GeSbTe (GST) thin film annealed at 450°C are used to evaluate the performance of the different approaches. We show that polynomial annihilation with order 3 (HOTV3) and the Bior4.4 wavelet outperform the classical TV minimization and the related Haar wavelet.
Collapse
Affiliation(s)
- Martin Jacob
- Univ. Grenoble Alpes, CEA, LETI, Grenoble F-38000, France.
| | - Loubna El Gueddari
- Univ. Paris Saclay, CEA-NeuroSpin, INRIA, Parietal, Gif-sur-Yvette, F-91191, France.
| | - Jyh-Miin Lin
- Univ. Grenoble Alpes, CEA, LETI, Grenoble F-38000, France.
| | | | - Audrey Jannaud
- Univ. Grenoble Alpes, CEA, LETI, Grenoble F-38000, France.
| | - Guido Mula
- Dipartimento di Fisica, Cittadella Universitaria di Monserrato, Università degli Studi di Cagliari, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy.
| | | | - Philippe Ciuciu
- Univ. Paris Saclay, CEA-NeuroSpin, INRIA, Parietal, Gif-sur-Yvette, F-91191, France.
| | - Zineb Saghi
- Univ. Grenoble Alpes, CEA, LETI, Grenoble F-38000, France.
| |
Collapse
|
12
|
Improved Acquisition and Reconstruction for Wavelength-Resolved Neutron Tomography. J Imaging 2021; 7:jimaging7010010. [PMID: 34460581 PMCID: PMC8321247 DOI: 10.3390/jimaging7010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
Wavelength-resolved neutron tomography (WRNT) is an emerging technique for characterizing samples relevant to the materials sciences in 3D. WRNT studies can be carried out at beam lines in spallation neutron or reactor-based user facilities. Because of the limited availability of experimental time, potential imperfections in the neutron source, or constraints placed on the acquisition time by the type of sample, the data can be extremely noisy resulting in tomographic reconstructions with significant artifacts when standard reconstruction algorithms are used. Furthermore, making a full tomographic measurement even with a low signal-to-noise ratio can take several days, resulting in a long wait time before the user can receive feedback from the experiment when traditional acquisition protocols are used. In this paper, we propose an interlaced scanning technique and combine it with a model-based image reconstruction algorithm to produce high-quality WRNT reconstructions concurrent with the measurements being made. The interlaced scan is designed to acquire data so that successive measurements are more diverse in contrast to typical sequential scanning protocols. The model-based reconstruction algorithm combines a data-fidelity term with a regularization term to formulate the wavelength-resolved reconstruction as minimizing a high-dimensional cost-function. Using an experimental dataset of a magnetite sample acquired over a span of about two days, we demonstrate that our technique can produce high-quality reconstructions even during the experiment compared to traditional acquisition and reconstruction techniques. In summary, the combination of the proposed acquisition strategy with an advanced reconstruction algorithm provides a novel guideline for designing WRNT systems at user facilities.
Collapse
|
13
|
Baba N, Kaneko K, Baba M. Novel nonlinear reconstruction method with grey-level quantisation units for electron tomography. Sci Rep 2020; 10:20146. [PMID: 33214577 PMCID: PMC7678869 DOI: 10.1038/s41598-020-77156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022] Open
Abstract
We report a new computed tomography reconstruction method, named quantisation units reconstruction technique (QURT), applicable to electron and other fields of tomography. Conventional electron tomography methods such as filtered back projection, weighted back projection, simultaneous iterative reconstructed technique, etc. suffer from the 'missing wedge' problem due to the limited tilt-angle range. QURT demonstrates improvements to solve this problem by recovering a structural image blurred due to the missing wedge and substantially reconstructs the structure even if the number of projection images is small. QURT reconstructs a cross-section image by arranging grey-level quantisation units (QU pieces) in three-dimensional image space via unique discrete processing. Its viability is confirmed by model simulations and experimental results. An important difference from recently developed methods such as discrete algebraic reconstruction technique (DART), total variation regularisation-DART, and compressed sensing is that prior knowledge of the conditions regarding the specimen or the expected cross-section image is not necessary.
Collapse
Affiliation(s)
- Norio Baba
- Major of Informatics, Graduate School, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015, Japan.
| | - Kenji Kaneko
- Department of Materials Science and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Misuzu Baba
- Research Institute for Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015, Japan
| |
Collapse
|
14
|
Schwartz J, Zheng H, Hanwell M, Jiang Y, Hovden R. Dynamic compressed sensing for real-time tomographic reconstruction. Ultramicroscopy 2020; 219:113122. [PMID: 33091708 DOI: 10.1016/j.ultramic.2020.113122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
Electron tomography has achieved higher resolution and quality at reduced doses with recent advances in compressed sensing. Compressed sensing (CS) exploits the inherent sparse signal structure to efficiently reconstruct three-dimensional (3D) volumes at the nanoscale from undersampled measurements. However, the process bottlenecks 3D reconstruction with computation times that run from hours to days. Here we demonstrate a framework for dynamic compressed sensing that produces a 3D specimen structure that updates in real-time as new specimen projections are collected. Researchers can begin interpreting 3D specimens as data is collected to facilitate high-throughput and interactive analysis. Using scanning transmission electron microscopy (STEM), we show that dynamic compressed sensing accelerates the convergence speed by ~3-fold while also reducing its error by 27% for a Au/SrTiO3 nanoparticle specimen. Before a tomography experiment is completed, the 3D tomogram has interpretable structure within ~33% of completion and fine details are visible as early as ~66%. Upon completion of an experiment, a high-fidelity 3D visualization is produced without further delay. Additionally, reconstruction parameters that tune data fidelity can be manipulated throughout the computation without re-running the entire process.
Collapse
Affiliation(s)
- Jonathan Schwartz
- Department of Material Science and Engineering, Ann Arbor,University of Michigan, MI, USA.
| | - Huihuo Zheng
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL, USA
| | | | - Yi Jiang
- Advanced Photon Source Facility, Argonne National Laboratory, Lemont, IL, USA
| | - Robert Hovden
- Department of Material Science and Engineering, Ann Arbor,University of Michigan, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Hata S, Furukawa H, Gondo T, Hirakami D, Horii N, Ikeda KI, Kawamoto K, Kimura K, Matsumura S, Mitsuhara M, Miyazaki H, Miyazaki S, Murayama MM, Nakashima H, Saito H, Sakamoto M, Yamasaki S. Electron tomography imaging methods with diffraction contrast for materials research. Microscopy (Oxf) 2020; 69:141-155. [PMID: 32115659 PMCID: PMC7240780 DOI: 10.1093/jmicro/dfaa002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable the visualization of three-dimensional (3D) microstructures ranging from atomic to micrometer scales using 3D reconstruction techniques based on computed tomography algorithms. This 3D microscopy method is called electron tomography (ET) and has been utilized in the fields of materials science and engineering for more than two decades. Although atomic resolution is one of the current topics in ET research, the development and deployment of intermediate-resolution (non-atomic-resolution) ET imaging methods have garnered considerable attention from researchers. This research trend is probably not irrelevant due to the fact that the spatial resolution and functionality of 3D imaging methods of scanning electron microscopy (SEM) and X-ray microscopy have come to overlap with those of ET. In other words, there may be multiple ways to carry out 3D visualization using different microscopy methods for nanometer-scale objects in materials. From the above standpoint, this review paper aims to (i) describe the current status and issues of intermediate-resolution ET with regard to enhancing the effectiveness of TEM/STEM imaging and (ii) discuss promising applications of state-of-the-art intermediate-resolution ET for materials research with a particular focus on diffraction contrast ET for crystalline microstructures (superlattice domains and dislocations) including a demonstration of in situ dislocation tomography.
Collapse
Affiliation(s)
- Satoshi Hata
- Department of Advanced Materials Science, Kyushu University, Fukuoka 816-8580, Japan
- The Ultramicroscopy Research Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromitsu Furukawa
- TEMography Division, System in Frontier Inc., Tachikawa-shi, Tokyo 190-0012, Japan
| | - Takashi Gondo
- Research Laboratory, Mel-Build Corporation, Fukuoka 819-0025, Japan
| | - Daisuke Hirakami
- Steel Research Laboratories, Nippon Steel Corporation, Chiba 293-8511, Japan
| | - Noritaka Horii
- TEMography Division, System in Frontier Inc., Tachikawa-shi, Tokyo 190-0012, Japan
| | - Ken-Ichi Ikeda
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Katsumi Kawamoto
- TEMography Division, System in Frontier Inc., Tachikawa-shi, Tokyo 190-0012, Japan
| | - Kosuke Kimura
- Morphological Research Laboratory, Toray Research Center, Inc., Shiga 520-8567, Japan
| | - Syo Matsumura
- The Ultramicroscopy Research Center, Kyushu University, Fukuoka 819-0395, Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masatoshi Mitsuhara
- Department of Advanced Materials Science, Kyushu University, Fukuoka 816-8580, Japan
| | - Hiroya Miyazaki
- Research Laboratory, Mel-Build Corporation, Fukuoka 819-0025, Japan
| | - Shinsuke Miyazaki
- Research Laboratory, Mel-Build Corporation, Fukuoka 819-0025, Japan
- Analytical Instruments, Materials and Structural Analysis, Thermo Fisher Scientific, Shinagawa-ku, Tokyo 140-0002, Japan
| | - Mitsu Mitsuhiro Murayama
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, WA 99352, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
| | - Hideharu Nakashima
- Department of Advanced Materials Science, Kyushu University, Fukuoka 816-8580, Japan
| | - Hikaru Saito
- Department of Advanced Materials Science, Kyushu University, Fukuoka 816-8580, Japan
| | - Masashi Sakamoto
- Steel Research Laboratories, Nippon Steel Corporation, Chiba 293-8511, Japan
| | - Shigeto Yamasaki
- Department of Advanced Materials Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
16
|
Field KG, Eftink BP, Parish CM, Maloy SA. High-Efficiency Three-Dimensional Visualization of Complex Microstructures via Multidimensional STEM Acquisition and Reconstruction. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:240-246. [PMID: 32172720 DOI: 10.1017/s1431927620000173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex material systems in which microstructure and microchemistry are nonuniformly dispersed require three-dimensional (3D) rendering(s) to provide an accurate determination of the physio-chemical nature of the system. Current scanning transmission electron microscope (STEM)-based tomography techniques enable 3D visualization but can be time-consuming, so only select systems or regions are analyzed in this manner. Here, it is presented that through high-efficiency multidimensional STEM acquisition and reconstruction, complex point cloud-like microstructural features can quickly and effectively be reconstructed in 3D. The proposed set of techniques is demonstrated, analyzed, and verified for a high-chromium steel with heterogeneously situated features induced using high-energy neutron bombardment.
Collapse
Affiliation(s)
- Kevin G Field
- Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI48109, USA
| | | | - Chad M Parish
- Oak Ridge National Laboratory, Oak Ridge, TN37831, USA
| | - Stuart A Maloy
- Los Alamos National Laboratory, Los Alamos, NM87544, USA
| |
Collapse
|
17
|
Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907619. [PMID: 32108394 DOI: 10.1002/adma.201907619] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Indexed: 05/15/2023]
Abstract
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
Collapse
Affiliation(s)
- Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Christian Dwyer
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonian Li
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200438, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
18
|
Reed BW, Moghadam AA, Bloom RS, Park ST, Monterrosa AM, Price PM, Barr CM, Briggs SA, Hattar K, McKeown JT, Masiel DJ. Electrostatic subframing and compressive-sensing video in transmission electron microscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:054303. [PMID: 31559318 PMCID: PMC6756919 DOI: 10.1063/1.5115162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 05/30/2023]
Abstract
We present kilohertz-scale video capture rates in a transmission electron microscope, using a camera normally limited to hertz-scale acquisition. An electrostatic deflector rasters a discrete array of images over a large camera, decoupling the acquisition time per subframe from the camera readout time. Total-variation regularization allows features in overlapping subframes to be correctly placed in each frame. Moreover, the system can be operated in a compressive-sensing video mode, whereby the deflections are performed in a known pseudorandom sequence. Compressive sensing in effect performs data compression before the readout, such that the video resulting from the reconstruction can have substantially more total pixels than that were read from the camera. This allows, for example, 100 frames of video to be encoded and reconstructed using only 15 captured subframes in a single camera exposure. We demonstrate experimental tests including laser-driven melting/dewetting, sintering, and grain coarsening of nanostructured gold, with reconstructed video rates up to 10 kHz. The results exemplify the power of the technique by showing that it can be used to study the fundamentally different temporal behavior for the three different physical processes. Both sintering and coarsening exhibited self-limiting behavior, whereby the process essentially stopped even while the heating laser continued to strike the material. We attribute this to changes in laser absorption and to processes inherent to thin-film coarsening. In contrast, the dewetting proceeded at a relatively uniform rate after an initial incubation time consistent with the establishment of a steady-state temperature profile.
Collapse
Affiliation(s)
- B W Reed
- Integrated Dynamic Electron Solutions, Inc., Pleasanton, California 94588, USA
| | - A A Moghadam
- Integrated Dynamic Electron Solutions, Inc., Pleasanton, California 94588, USA
| | - R S Bloom
- Integrated Dynamic Electron Solutions, Inc., Pleasanton, California 94588, USA
| | - S T Park
- Integrated Dynamic Electron Solutions, Inc., Pleasanton, California 94588, USA
| | - A M Monterrosa
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - P M Price
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - C M Barr
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | | | - K Hattar
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - J T McKeown
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - D J Masiel
- Integrated Dynamic Electron Solutions, Inc., Pleasanton, California 94588, USA
| |
Collapse
|
19
|
Hungría AB, Calvino JJ, Hernández-Garrido JC. HAADF-STEM Electron Tomography in Catalysis Research. Top Catal 2019. [DOI: 10.1007/s11244-019-01200-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Wang W, Svidrytski A, Wang D, Villa A, Hahn H, Tallarek U, Kübel C. Quantifying Morphology and Diffusion Properties of Mesoporous Carbon From High-Fidelity 3D Reconstructions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:891-902. [PMID: 31223100 DOI: 10.1017/s1431927619014600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A reliable quantitative analysis in electron tomography, which depends on the segmentation of the three-dimensional reconstruction, is challenging because of constraints during tilt-series acquisition (missing wedge) and reconstruction artifacts introduced by reconstruction algorithms such as the Simultaneous Iterative Reconstruction Technique (SIRT) and Discrete Algebraic Reconstruction Technique (DART). We have carefully evaluated the fidelity of segmented reconstructions analyzing a disordered mesoporous carbon used as support in catalysis. Using experimental scanning transmission electron microscopy (STEM) tomography data as well as realistic phantoms, we have quantitatively analyzed the effect on the morphological description as well as on diffusion properties (based on a random-walk particle-tracking simulation) to understand the role of porosity in catalysis. The morphological description of the pore structure can be obtained reliably both using SIRT and DART reconstructions even in the presence of a limited missing wedge. However, the measured pore volume is sensitive to the threshold settings, which are difficult to define globally for SIRT reconstructions. This leads to noticeable variations of the diffusion coefficients in the case of SIRT reconstructions, whereas DART reconstructions resulted in more reliable data. In addition, the anisotropy of the determined diffusion properties was evaluated, which was significant in the presence of a limited missing wedge for SIRT and strongly reduced for DART.
Collapse
Affiliation(s)
- Wu Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,Germany
| | - Artur Svidrytski
- Department of Chemistry,Philipps-Universität Marburg,Hans-Meerwein-Straße 4, 35032 Marburg,Germany
| | - Di Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,Germany
| | - Alberto Villa
- Dipartimento di Chimica,Università degli Studi Milano,via Golgi 19, 20133 Milano,Italy
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,Germany
| | - Ulrich Tallarek
- Department of Chemistry,Philipps-Universität Marburg,Hans-Meerwein-Straße 4, 35032 Marburg,Germany
| | - Christian Kübel
- Institute of Nanotechnology, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,Germany
| |
Collapse
|
21
|
Tomographic Collection of Block-Based Sparse STEM Images: Practical Implementation and Impact on the Quality of the 3D Reconstructed Volume. MATERIALS 2019; 12:ma12142281. [PMID: 31315199 PMCID: PMC6679239 DOI: 10.3390/ma12142281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/18/2023]
Abstract
The reduction of the electron dose in electron tomography of biological samples is of high significance to diminish radiation damages. Simulations have shown that sparse data collection can perform efficient electron dose reduction. Frameworks based on compressive-sensing or inpainting algorithms have been proposed to accurately reconstruct missing information in sparse data. The present work proposes a practical implementation to perform tomographic collection of block-based sparse images in scanning transmission electron microscopy. The method has been applied on sections of chemically-fixed and resin-embedded Trypanosoma brucei cells. There are 3D reconstructions obtained from various amounts of downsampling, which are compared and eventually the limits of electron dose reduction using this method are explored.
Collapse
|
22
|
Hayashida M, Cui K, Homeniuk D, Phengchat R, Blackburn AM, Malac M. Parameters affecting the accuracy of nanoparticle shape and size measurement in 3D. Micron 2019; 123:102680. [PMID: 31146186 DOI: 10.1016/j.micron.2019.102680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022]
Abstract
While electron tomography can be used to visualize objects at nanoscale, it is difficult to perform reproducible quantitative measurements. Here we measure the shape and size of nanoparticles (NPs) in three dimensions (3D) using electron tomography. We evaluated the accuracy of maximum Feret diameter (Feretmax), minimum Feret diameter (Feretmini) and volume of NPs measurements from reconstructed 3D images which were obtained from data acquired with varied electron dose. We perform both simulations and experiment to clarify what factors effect on the accuracy of the NP shape measurement. Based on the results, suitable reconstruction methods and threshold for binarization were evaluated. We also report comparison results obtained on exactly the same samples in two different laboratories.
Collapse
Affiliation(s)
- Misa Hayashida
- NRC-NANO, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
| | - Kai Cui
- NRC-NANO, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Darren Homeniuk
- NRC-NANO, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | | | - Arthur M Blackburn
- University of Victoria, 3800 Finnerty Road Victoria, British Colombia, V8W 2Y2, Canada
| | - Marek Malac
- NRC-NANO, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
23
|
Huber R, Haberfehlner G, Holler M, Kothleitner G, Bredies K. Total generalized variation regularization for multi-modal electron tomography. NANOSCALE 2019; 11:5617-5632. [PMID: 30864603 DOI: 10.1039/c8nr09058k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In multi-modal electron tomography, tilt series of several signals such as X-ray spectra, electron energy-loss spectra, annular dark-field, or bright-field data are acquired at the same time in a transmission electron microscope and subsequently reconstructed in three dimensions. However, the acquired data are often incomplete and suffer from noise, and generally each signal is reconstructed independently of all other signals, not taking advantage of correlation between different datasets. This severely limits both the resolution and validity of the reconstructed images. In this paper, we show how image quality in multi-modal electron tomography can be greatly improved by employing variational modeling and multi-channel regularization techniques. To achieve this aim, we employ a coupled Total Generalized Variation (TGV) regularization that exploits correlation between different channels. In contrast to other regularization methods, coupled TGV regularization allows to reconstruct both hard transitions and gradual changes inside each sample, and links different channels at the level of first and higher order derivatives. This favors similar interface positions for all reconstructions, thereby improving the image quality for all data, in particular, for 3D elemental maps. We demonstrate the joint multi-channel TGV reconstruction on tomographic energy-dispersive X-ray spectroscopy (EDXS) and high-angle annular dark field (HAADF) data, but the reconstruction method is generally applicable to all types of signals used in electron tomography, as well as all other types of projection-based tomographies.
Collapse
Affiliation(s)
- Richard Huber
- Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, A-8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
24
|
Wang YC, Slater TJA, Leteba GM, Roseman AM, Race CP, Young NP, Kirkland AI, Lang CI, Haigh SJ. Imaging Three-Dimensional Elemental Inhomogeneity in Pt-Ni Nanoparticles Using Spectroscopic Single Particle Reconstruction. NANO LETTERS 2019; 19:732-738. [PMID: 30681878 PMCID: PMC6378652 DOI: 10.1021/acs.nanolett.8b03768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The properties of nanoparticles are known to critically depend on their local chemistry but characterizing three-dimensional (3D) elemental segregation at the nanometer scale is highly challenging. Scanning transmission electron microscope (STEM) tomographic imaging is one of the few techniques able to measure local chemistry for inorganic nanoparticles but conventional methodologies often fail due to the high electron dose imparted. Here, we demonstrate realization of a new spectroscopic single particle reconstruction approach built on a method developed by structural biologists. We apply this technique to the imaging of PtNi nanocatalysts and find new evidence of a complex inhomogeneous alloying with a Pt-rich core, a Ni-rich hollow octahedral intermediate shell and a Pt-rich rhombic dodecahedral skeleton framework with less Pt at ⟨100⟩ vertices. The ability to gain evidence of local surface enrichment that varies with the crystallographic orientation of facets and vertices is expected to provide significant insight toward the development of nanoparticles for sensing, medical imaging, and catalysis.
Collapse
Affiliation(s)
- Yi-Chi Wang
- School
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Thomas J. A. Slater
- School
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Electron
Physical Sciences Imaging Centre, Diamond Light Source Ltd., Oxfordshire OX11 0DE, United Kingdom
- E-mail:
| | - Gerard M. Leteba
- Catalysis
Institute, Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, South Africa
| | - Alan M. Roseman
- Division
of Molecular and Cellular Function, School of Biological Sciences,
Faculty of Biology, Medicine and Health, Manchester Academic Health
Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christopher P. Race
- School
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Neil P. Young
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Angus I. Kirkland
- Electron
Physical Sciences Imaging Centre, Diamond Light Source Ltd., Oxfordshire OX11 0DE, United Kingdom
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Candace I. Lang
- School of
Engineering, Macquarie University, Macquarie Park, NSW 2109 Australia
| | - Sarah J. Haigh
- School
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- E-mail:
| |
Collapse
|
25
|
Abstract
Meteorites contain a record of their thermal and magnetic history, written in the intergrowths of iron-rich and nickel-rich phases that formed during slow cooling. Of intense interest from a magnetic perspective is the "cloudy zone," a nanoscale intergrowth containing tetrataenite-a naturally occurring hard ferromagnetic mineral that has potential applications as a sustainable alternative to rare-earth permanent magnets. Here we use a combination of high-resolution electron diffraction, electron tomography, atom probe tomography (APT), and micromagnetic simulations to reveal the 3D architecture of the cloudy zone with subnanometer spatial resolution and model the mechanism of remanence acquisition during slow cooling on the meteorite parent body. Isolated islands of tetrataenite are embedded in a matrix of an ordered superstructure. The islands are arranged in clusters of three crystallographic variants, which control how magnetic information is encoded into the nanostructure. The cloudy zone acquires paleomagnetic remanence via a sequence of magnetic domain state transformations (vortex to two domain to single domain), driven by Fe-Ni ordering at 320 °C. Rather than remanence being recorded at different times at different positions throughout the cloudy zone, each subregion of the cloudy zone records a coherent snapshot of the magnetic field that was present at 320 °C. Only the coarse and intermediate regions of the cloudy zone are found to be suitable for paleomagnetic applications. The fine regions, on the other hand, have properties similar to those of rare-earth permanent magnets, providing potential routes to synthetic tetrataenite-based magnetic materials.
Collapse
|
26
|
Lee S, Kumari N, Jeon KW, Kumar A, Kumar S, Koo JH, Lee J, Cho YK, Lee IS. Monofacet-Selective Cavitation within Solid-State Silica-Nanoconfinement toward Janus Iron Oxide Nanocube. J Am Chem Soc 2018; 140:15176-15180. [PMID: 30365303 DOI: 10.1021/jacs.8b09869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, a highly selective solid-state nanocrystal conversion strategy is developed toward concave iron oxide (Fe3O4) nanocube with an open-mouthed cavity engraved exclusively on a single face. The strategy is based on a novel heat-induced nanospace-confined domino-type migration of Fe2+ ions from the SiO2-Fe3O4 interface toward the surrounding silica shell and concomitant self-limiting nanoscale phase-transition to the Fe-silicate form. Equipped with the chemically unique cavity, the produced Janus-type concave iron oxide nanocube was further functionalized with controllable density of catalytic Pt-nanocrystals exclusively on concave sites and utilized as a highly diffusive catalytic Janus nanoswimmer for the efficient degradation of pollutant-dyes in water.
Collapse
Affiliation(s)
- Sunyi Lee
- National Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Nitee Kumari
- National Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Ki-Wan Jeon
- National Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Amit Kumar
- National Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering , School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , South Korea
| | - Jung Hun Koo
- National Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Jihwan Lee
- National Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering , School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , South Korea
| | - In Su Lee
- National Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| |
Collapse
|
27
|
Yu H, Yi X, Hofmann F. 3D reconstruction of the spatial distribution of dislocation loops using an automated stereo-imaging approach. Ultramicroscopy 2018; 195:58-68. [PMID: 30193227 DOI: 10.1016/j.ultramic.2018.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
We propose an automated stereoscopic imaging approach for reconstructing the 3D spatial distribution of small dislocation loops (DLs) from 2D TEM micrographs. This method is demonstrated for small DLs in tungsten, formed by low-dose ion-implantation, that appear as circular spots in diffraction contrast TEM images. To extract the 3D position of specific DLs, their 2D position in multiple weak-beam dark-field TEM micrographs, recorded at different tilt angles, is fitted. From this fit the geometric centre and size of each DL in each micrograph can be extracted. To identify each specific DL in all the 2D projections, an automated forward prediction approach is used. A system of linear equations can then be setup, linking the 3D position of each DL to its 2D position in each projection, and solved using least-squares fitting. This approach is initially tested on synthetic data. For low projected loop densities (<20 × 1015 m-2) only 3 projections are required for perfect recovery of the defect microstructure. More projections are required when the projected number density increases or realistic errors are included. 3D reconstruction of experimental data from the low-dose self-ion implanted tungsten sample reveals a damage microstructure in good agreement with the depth-dependent damage profile predicted by SRIM. A comparison with weighed back-projection shows that the stereo-imaging-approach requires fewer projections, is less sensitive to the angular range spanned, and is more resilient to spurious variations in local contrast. It also allows a more straightforward retrieval of quantitative information such as size and position of each loop.
Collapse
Affiliation(s)
- Hongbing Yu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Xiaoou Yi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| |
Collapse
|
28
|
Taillon JA. Compressive Sensing Reconstruction for EDS Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:486-487. [PMID: 33033441 PMCID: PMC7540738 DOI: 10.1017/s1431927618002921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Joshua A Taillon
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
29
|
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. NANOSCALE 2018; 10:12871-12934. [PMID: 29926865 DOI: 10.1039/c8nr02278j] [Citation(s) in RCA: 589] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
30
|
Abstract
The liquid and glass states of metal-organic frameworks (MOFs) have recently become of interest due to the potential for liquid-phase separations and ion transport, alongside the fundamental nature of the latter as a new, fourth category of melt-quenched glass. Here we show that the MOF liquid state can be blended with another MOF component, resulting in a domain structured MOF glass with a single, tailorable glass transition. Intra-domain connectivity and short range order is confirmed by nuclear magnetic resonance spectroscopy and pair distribution function measurements. The interfacial binding between MOF domains in the glass state is evidenced by electron tomography, and the relationship between domain size and Tg investigated. Nanoindentation experiments are also performed to place this new class of MOF materials into context with organic blends and inorganic alloys.
Collapse
|
31
|
Jiang Y, Padgett E, Hovden R, Muller DA. Sampling limits for electron tomography with sparsity-exploiting reconstructions. Ultramicroscopy 2017; 186:94-103. [PMID: 29277084 DOI: 10.1016/j.ultramic.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Electron tomography (ET) has become a standard technique for 3D characterization of materials at the nano-scale. Traditional reconstruction algorithms such as weighted back projection suffer from disruptive artifacts with insufficient projections. Popularized by compressed sensing, sparsity-exploiting algorithms have been applied to experimental ET data and show promise for improving reconstruction quality or reducing the total beam dose applied to a specimen. Nevertheless, theoretical bounds for these methods have been less explored in the context of ET applications. Here, we perform numerical simulations to investigate performance of ℓ1-norm and total-variation (TV) minimization under various imaging conditions. From 36,100 different simulated structures, our results show specimens with more complex structures generally require more projections for exact reconstruction. However, once sufficient data is acquired, dividing the beam dose over more projections provides no improvements-analogous to the traditional dose-fraction theorem. Moreover, a limited tilt range of ±75° or less can result in distorting artifacts in sparsity-exploiting reconstructions. The influence of optimization parameters on reconstructions is also discussed.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Physics, Cornell University, Ithaca, NY 14853, United States.
| | - Elliot Padgett
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, United States
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - David A Muller
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, United States; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
32
|
Padgett E, Hovden R, DaSilva JC, Levin BDA, Grazul JL, Hanrath T, Muller DA. A Simple Preparation Method for Full-Range Electron Tomography of Nanoparticles and Fine Powders. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:1150-1158. [PMID: 29224582 DOI: 10.1017/s1431927617012764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electron tomography has become a valuable and widely used tool for studying the three-dimensional nanostructure of materials and biological specimens. However, the incomplete tilt range provided by conventional sample holders limits the fidelity and quantitative interpretability of tomographic images by leaving a "missing wedge" of unknown information in Fourier space. Imaging over a complete range of angles eliminates missing wedge artifacts and dramatically improves tomogram quality. Full-range tomography is usually accomplished using needle-shaped samples milled from bulk material with focused ion beams, but versatile specimen preparation methods for nanoparticles and other fine powders are lacking. In this work, we present a new preparation technique in which powder specimens are supported on carbon nanofibers that extend beyond the end of a tungsten needle. Using this approach, we produced tomograms of platinum fuel cell catalysts and gold-decorated strontium titanate photocatalyst specimens. Without the missing wedge, these tomograms are free from elongation artifacts, supporting straightforward automatic segmentation and quantitative analysis of key materials properties such as void size and connectivity, and surface area and curvature. This approach may be generalized to other samples that can be dispersed in liquids, such as biological structures, creating new opportunities for high-quality electron tomography across disciplines.
Collapse
Affiliation(s)
- Elliot Padgett
- 1School of Applied and Engineering Physics,Cornell University,Ithaca,NY 14853,USA
| | - Robert Hovden
- 1School of Applied and Engineering Physics,Cornell University,Ithaca,NY 14853,USA
| | - Jessica C DaSilva
- 3School of Chemical and Biomolecular Engineering,Cornell University,Ithaca,NY 14853,USA
| | - Barnaby D A Levin
- 1School of Applied and Engineering Physics,Cornell University,Ithaca,NY 14853,USA
| | - John L Grazul
- 4Cornell Center for Materials Research,Cornell University,Ithaca,NY 14853,USA
| | - Tobias Hanrath
- 3School of Chemical and Biomolecular Engineering,Cornell University,Ithaca,NY 14853,USA
| | - David A Muller
- 1School of Applied and Engineering Physics,Cornell University,Ithaca,NY 14853,USA
| |
Collapse
|
33
|
Wu J, Lerotic M, Collins S, Leary R, Saghi Z, Midgley P, Berejnov S, Susac D, Stumper J, Singh G, Hitchcock AP. Optimization of Three-Dimensional (3D) Chemical Imaging by Soft X-Ray Spectro-Tomography Using a Compressed Sensing Algorithm. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:951-966. [PMID: 28893337 DOI: 10.1017/s1431927617012466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soft X-ray spectro-tomography provides three-dimensional (3D) chemical mapping based on natural X-ray absorption properties. Since radiation damage is intrinsic to X-ray absorption, it is important to find ways to maximize signal within a given dose. For tomography, using the smallest number of tilt series images that gives a faithful reconstruction is one such method. Compressed sensing (CS) methods have relatively recently been applied to tomographic reconstruction algorithms, providing faithful 3D reconstructions with a much smaller number of projection images than when conventional reconstruction methods are used. Here, CS is applied in the context of scanning transmission X-ray microscopy tomography. Reconstructions by weighted back-projection, the simultaneous iterative reconstruction technique, and CS are compared. The effects of varying tilt angle increment and angular range for the tomographic reconstructions are examined. Optimization of the regularization parameter in the CS reconstruction is explored and discussed. The comparisons show that CS can provide improved reconstruction fidelity relative to weighted back-projection and simultaneous iterative reconstruction techniques, with increasingly pronounced advantages as the angular sampling is reduced. In particular, missing wedge artifacts are significantly reduced and there is enhanced recovery of sharp edges. Examples of using CS for low-dose scanning transmission X-ray microscopy spectroscopic tomography are presented.
Collapse
Affiliation(s)
- Juan Wu
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | | | - Sean Collins
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 1TQ, UK
| | - Rowan Leary
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 1TQ, UK
| | - Zineb Saghi
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 1TQ, UK
| | - Paul Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 1TQ, UK
| | - Slava Berejnov
- Automotive Fuel Cell Cooperation (AFCC) Corporation, Burnaby, BC V5J 5J8, Canada
| | - Darija Susac
- Automotive Fuel Cell Cooperation (AFCC) Corporation, Burnaby, BC V5J 5J8, Canada
| | - Juergen Stumper
- Automotive Fuel Cell Cooperation (AFCC) Corporation, Burnaby, BC V5J 5J8, Canada
| | - Gurvinder Singh
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Adam P Hitchcock
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
34
|
A Survey of the Use of Iterative Reconstruction Algorithms in Electron Microscopy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6482567. [PMID: 29312997 PMCID: PMC5623807 DOI: 10.1155/2017/6482567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/09/2017] [Indexed: 11/18/2022]
Abstract
One of the key steps in Electron Microscopy is the tomographic reconstruction of a three-dimensional (3D) map of the specimen being studied from a set of two-dimensional (2D) projections acquired at the microscope. This tomographic reconstruction may be performed with different reconstruction algorithms that can be grouped into several large families: direct Fourier inversion methods, back-projection methods, Radon methods, or iterative algorithms. In this review, we focus on the latter family of algorithms, explaining the mathematical rationale behind the different algorithms in this family as they have been introduced in the field of Electron Microscopy. We cover their use in Single Particle Analysis (SPA) as well as in Electron Tomography (ET).
Collapse
|
35
|
Collins SM, Midgley PA. Progress and opportunities in EELS and EDS tomography. Ultramicroscopy 2017; 180:133-141. [DOI: 10.1016/j.ultramic.2017.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
36
|
Sub-nanometer surface chemistry and orbital hybridization in lanthanum-doped ceria nano-catalysts revealed by 3D electron microscopy. Sci Rep 2017; 7:5406. [PMID: 28710378 PMCID: PMC5511253 DOI: 10.1038/s41598-017-05671-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.
Collapse
|
37
|
Chen Y, Wang Z, Zhang J, Li L, Wan X, Sun F, Zhang F. Accelerating electron tomography reconstruction algorithm ICON with GPU. BIOPHYSICS REPORTS 2017; 3:36-42. [PMID: 28781999 PMCID: PMC5516007 DOI: 10.1007/s41048-017-0041-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/07/2017] [Indexed: 10/30/2022] Open
Abstract
Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the "missing wedge" problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON's dependence on computing resource.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihao Wang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingrong Zhang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lun Li
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaohua Wan
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fei Sun
- University of Chinese Academy of Sciences, Beijing, 100049 China.,National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fa Zhang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
38
|
Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nat Commun 2017; 8:37. [PMID: 28652567 PMCID: PMC5484695 DOI: 10.1038/s41467-017-00051-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/28/2017] [Indexed: 11/08/2022] Open
Abstract
The photonic local density of states (LDOS) governs the enhancement of light-matter interaction at the nanoscale, but despite its importance for nanophotonics and plasmonics experimental local density of states imaging remains extremely challenging. Here we introduce a tomography scheme based on electron microscopy that allows retrieval of the three-dimensional local density of states of plasmonic nanoparticles with nanometre spatial and sub-eV energy resolution. From conventional electron tomography experiments we obtain the three-dimensional morphology of the nanostructure, and use this information to compute an expansion basis for the photonic environment. The expansion coefficients are obtained through solution of an inverse problem using as input electron-energy loss spectroscopy images. We demonstrate the applicability of our scheme for silver nanocuboids and coupled nanodisks, and resolve local density of states enhancements with extreme sub-wavelength dimensions in hot spots located at roughness features or in gaps of coupled nanoparticles.Imaging the photonic local density of states of plasmonic nanoparticles remains extremely challenging. Here, the authors introduce a tomography scheme based on electron microscopy that allows retrieval of the three-dimensional local density of states with nanometre spatial and sub-eV energy resolution.
Collapse
|
39
|
Galaz-Montoya JG, Ludtke SJ. The advent of structural biology in situ by single particle cryo-electron tomography. BIOPHYSICS REPORTS 2017; 3:17-35. [PMID: 28781998 PMCID: PMC5516000 DOI: 10.1007/s41048-017-0040-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Abstract
Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ. Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Steven J. Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
40
|
Donati L, Nilchian M, Trépout S, Messaoudi C, Marco S, Unser M. Compressed sensing for STEM tomography. Ultramicroscopy 2017; 179:47-56. [PMID: 28411510 DOI: 10.1016/j.ultramic.2017.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 11/17/2022]
Abstract
A central challenge in scanning transmission electron microscopy (STEM) is to reduce the electron radiation dosage required for accurate imaging of 3D biological nano-structures. Methods that permit tomographic reconstruction from a reduced number of STEM acquisitions without introducing significant degradation in the final volume are thus of particular importance. In random-beam STEM (RB-STEM), the projection measurements are acquired by randomly scanning a subset of pixels at every tilt view. In this work, we present a tailored RB-STEM acquisition-reconstruction framework that fully exploits the compressed sensing principles. We first demonstrate that RB-STEM acquisition fulfills the "incoherence" condition when the image is expressed in terms of wavelets. We then propose a regularized tomographic reconstruction framework to recover volumes from RB-STEM measurements. We demonstrate through simulations on synthetic and real projection measurements that the proposed framework reconstructs high-quality volumes from strongly downsampled RB-STEM data and outperforms existing techniques at doing so. This application of compressed sensing principles to STEM paves the way for a practical implementation of RB-STEM and opens new perspectives for high-quality reconstructions in STEM tomography.
Collapse
Affiliation(s)
- Laurène Donati
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Masih Nilchian
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Trépout
- INSERM, U1196, Orsay F-91405, France; Institut Curie, Centre de Recherche, Orsay F-91405, France; CNRS, UMR9187, Orsay F-91405, France; Université Paris-Sud, Orsay F-91405, France
| | - Cédric Messaoudi
- INSERM, U1196, Orsay F-91405, France; Institut Curie, Centre de Recherche, Orsay F-91405, France; CNRS, UMR9187, Orsay F-91405, France; Université Paris-Sud, Orsay F-91405, France
| | - Sergio Marco
- INSERM, U1196, Orsay F-91405, France; Institut Curie, Centre de Recherche, Orsay F-91405, France; CNRS, UMR9187, Orsay F-91405, France; Université Paris-Sud, Orsay F-91405, France
| | - Michael Unser
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
41
|
A methodology for finding the optimal iteration number of the SIRT algorithm for quantitative Electron Tomography. Ultramicroscopy 2016; 173:36-46. [PMID: 27907830 DOI: 10.1016/j.ultramic.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 11/22/2022]
Abstract
The SIRT (Simultaneous Iterative Reconstruction Technique) algorithm is commonly used in Electron Tomography to calculate the original volume of the sample from noisy images, but the results provided by this iterative procedure are strongly dependent on the specific implementation of the algorithm, as well as on the number of iterations employed for the reconstruction. In this work, a methodology for selecting the iteration number of the SIRT reconstruction that provides the most accurate segmentation is proposed. The methodology is based on the statistical analysis of the intensity profiles at the edge of the objects in the reconstructed volume. A phantom which resembles a a carbon black aggregate has been created to validate the methodology and the SIRT implementations of two free software packages (TOMOJ and TOMO3D) have been used.
Collapse
|
42
|
AlAfeef A, Bobynko J, Cockshott WP, Craven AJ, Zuazo I, Barges P, MacLaren I. Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing. Ultramicroscopy 2016; 170:96-106. [PMID: 27566049 DOI: 10.1016/j.ultramic.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 11/29/2022]
Abstract
We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionally, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS.
Collapse
Affiliation(s)
- Ala AlAfeef
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK; School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Joanna Bobynko
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - W Paul Cockshott
- School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alan J Craven
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ian Zuazo
- ArcelorMittal Maizières Research, Maizières-lès-Metz 57283, France
| | - Patrick Barges
- ArcelorMittal Maizières Research, Maizières-lès-Metz 57283, France
| | - Ian MacLaren
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
43
|
Miao J, Ercius P, Billinge SJL. Atomic electron tomography: 3D structures without crystals. Science 2016; 353:353/6306/aaf2157. [DOI: 10.1126/science.aaf2157] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Biological application of Compressed Sensing Tomography in the Scanning Electron Microscope. Sci Rep 2016; 6:33354. [PMID: 27646194 PMCID: PMC5028842 DOI: 10.1038/srep33354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
The three-dimensional tomographic reconstruction of a biological sample, namely collagen fibrils in human dermal tissue, was obtained from a set of projection-images acquired in the Scanning Electron Microscope. A tailored strategy for the transmission imaging mode was implemented in the microscope and proved effective in acquiring the projections needed for the tomographic reconstruction. Suitable projection alignment and Compressed Sensing formulation were used to overcome the limitations arising from the experimental acquisition strategy and to improve the reconstruction of the sample. The undetermined problem of structure reconstruction from a set of projections, limited in number and angular range, was indeed supported by exploiting the sparsity of the object projected in the electron microscopy images. In particular, the proposed system was able to preserve the reconstruction accuracy even in presence of a significant reduction of experimental projections.
Collapse
|
45
|
MOYON F, HERNANDEZ-MALDONADO D, ROBERTSON M, ETIENNE A, CASTRO C, LEFEBVRE W. Reverse Monte Carlo reconstruction algorithm for discrete electron tomography based on HAADF-STEM atom counting. J Microsc 2016; 265:73-80. [DOI: 10.1111/jmi.12464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/04/2016] [Accepted: 07/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
- F. MOYON
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS; Groupe de Physique des Matériaux; Rouen France
| | | | - M.D. ROBERTSON
- Department of Physics; Acadia University; Wolfville Nova Scotia Canada
| | - A. ETIENNE
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS; Groupe de Physique des Matériaux; Rouen France
| | - C. CASTRO
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS; Groupe de Physique des Matériaux; Rouen France
| | - W. LEFEBVRE
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS; Groupe de Physique des Matériaux; Rouen France
| |
Collapse
|
46
|
Torruella P, Arenal R, de la Peña F, Saghi Z, Yedra L, Eljarrat A, López-Conesa L, Estrader M, López-Ortega A, Salazar-Alvarez G, Nogués J, Ducati C, Midgley PA, Peiró F, Estradé S. 3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography. NANO LETTERS 2016; 16:5068-73. [PMID: 27383904 DOI: 10.1021/acs.nanolett.6b01922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.
Collapse
Affiliation(s)
- Pau Torruella
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Raúl Arenal
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza , 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
| | - Francisco de la Peña
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Zineb Saghi
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Lluís Yedra
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Alberto Eljarrat
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Lluís López-Conesa
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Marta Estrader
- Laboratoire de Physique et Chimie des Nano-objects , 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Alberto López-Ortega
- INSTM and Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze , Via della Lastruccia 3, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Germán Salazar-Alvarez
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden
| | - Josep Nogués
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats , Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Caterina Ducati
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Paul A Midgley
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Francesca Peiró
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Sonia Estradé
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| |
Collapse
|
47
|
Guay MD, Czaja W, Aronova MA, Leapman RD. Compressed Sensing Electron Tomography for Determining Biological Structure. Sci Rep 2016; 6:27614. [PMID: 27291259 PMCID: PMC4904377 DOI: 10.1038/srep27614] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets.
Collapse
Affiliation(s)
- Matthew D. Guay
- University of Maryland, Department of Applied Mathematics and Scientific Computation, College Park, MD 20742, USA
| | - Wojciech Czaja
- University of Maryland, Department of Mathematics, College Park, MD 20742, USA
| | - Maria A. Aronova
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard D. Leapman
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Levin BD, Padgett E, Chen CC, Scott M, Xu R, Theis W, Jiang Y, Yang Y, Ophus C, Zhang H, Ha DH, Wang D, Yu Y, Abruña HD, Robinson RD, Ercius P, Kourkoutis LF, Miao J, Muller DA, Hovden R. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy. Sci Data 2016; 3:160041. [PMID: 27272459 PMCID: PMC4896123 DOI: 10.1038/sdata.2016.41] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/27/2016] [Indexed: 11/09/2022] Open
Abstract
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.
Collapse
MESH Headings
- Algorithms
- Cryoelectron Microscopy
- Electron Microscope Tomography
- Image Processing, Computer-Assisted
- Imaging, Three-Dimensional
- Microscopy, Electron
- Microscopy, Electron, Scanning
- Microscopy, Electron, Scanning Transmission
- Microscopy, Electron, Transmission
- Nanoparticles
- Nanostructures
- Tomography
- Tomography, X-Ray
- Tomography, X-Ray Computed
Collapse
Affiliation(s)
- Barnaby D.A. Levin
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Elliot Padgett
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Chien-Chun Chen
- Department of Physics & Astronomy, and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - M.C. Scott
- Department of Physics & Astronomy, and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rui Xu
- Department of Physics & Astronomy, and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Wolfgang Theis
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yi Jiang
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Yongsoo Yang
- Department of Physics & Astronomy, and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Haitao Zhang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Don-Hyung Ha
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Deli Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingchao Yu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Hector D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Richard D. Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Lena F. Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA
| | - Jianwei Miao
- Department of Physics & Astronomy, and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA
| | - Robert Hovden
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
49
|
Al-Afeef A, Cockshott WP, MacLaren I, McVitie S. Electron tomography image reconstruction using data-driven adaptive compressed sensing. SCANNING 2016; 38:251-276. [PMID: 26435074 DOI: 10.1002/sca.21271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Electron tomography (ET) is an increasingly important technique for the study of the three-dimensional morphologies of nanostructures. ET involves the acquisition of a set of two-dimensional projection images, followed by the reconstruction into a volumetric image by solving an inverse problem. However, due to limitations in the acquisition process, this inverse problem is ill-posed (i.e., a unique solution may not exist). Furthermore, reconstruction usually suffers from missing wedge artifacts (e.g., star, fan, blurring, and elongation artifacts). Recently, compressed sensing (CS) has been applied to ET and showed promising results for reducing missing wedge artifacts. This uses image sparsity as a priori knowledge to improve the accuracy of reconstruction, and can require fewer projections than other reconstruction techniques. The performance of CS relies heavily on the degree of sparsity in the selected transform domain and this depends essentially on the choice of sparsifying transform. We propose a new image reconstruction algorithm for ET that learns the sparsifying transform adaptively using a dictionary-based approach. We demonstrate quantitatively using simulations from complex phantoms that this new approach reconstructs the morphology with higher fidelity than either analytically based CS reconstruction algorithms or traditional weighted back projection from the same dataset. SCANNING 38:251-276, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ala' Al-Afeef
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - W Paul Cockshott
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - Ian MacLaren
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - Stephen McVitie
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
50
|
ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography. J Struct Biol 2016; 195:100-12. [PMID: 27079261 DOI: 10.1016/j.jsb.2016.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/09/2016] [Accepted: 04/10/2016] [Indexed: 11/20/2022]
Abstract
Electron tomography (ET) plays an important role in revealing biological structures, ranging from macromolecular to subcellular scale. Due to limited tilt angles, ET reconstruction always suffers from the 'missing wedge' artifacts, thus severely weakens the further biological interpretation. In this work, we developed an algorithm called Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction (ICON) based on the theory of compressed-sensing and the assumption of sparsity of biological specimens. ICON can significantly restore the missing information in comparison with other reconstruction algorithms. More importantly, we used the leave-one-out method to verify the validity of restored information for both simulated and experimental data. The significant improvement in sub-tomogram averaging by ICON indicates its great potential in the future application of high-resolution structural determination of macromolecules in situ.
Collapse
|