1
|
Kim H, Morr DK, Wiesendanger R. Proximity-Induced Superconductivity in a 2D Kondo Lattice of an f-Electron-Based Surface Alloy. NANO LETTERS 2024; 24:14139-14145. [PMID: 39453610 DOI: 10.1021/acs.nanolett.4c04796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Realizing hybrids of low-dimensional Kondo lattices and superconducting substrates leads to fascinating platforms for studying the exciting physics of strongly correlated electron systems with induced superconducting pairing. Here, we report a scanning tunneling microscopy and spectroscopy study of a new type of two-dimensional (2D) La-Ce alloy grown epitaxially on a superconducting Re(0001) substrate. We observe the characteristic spectroscopic signature of a hybridization gap evidencing the coherent spin screening in the 2D Kondo lattice realized by the ultrathin La-Ce alloy film on normal conducting Re(0001). Upon lowering the temperature below the critical temperature of rhenium, a superconducting gap is induced exhibiting an energy asymmetry of the coherence peaks that arises from the interaction of residual unscreened magnetic moments with the superconducting substrate. A positive correlation between the Kondo hybridization gap and the asymmetry of the coherence peaks is found.
Collapse
Affiliation(s)
- Howon Kim
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | - Dirk K Morr
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | |
Collapse
|
2
|
Pan WC, Arumugam K, Yen YH, Tani F, Goto K, Okamoto H, Tang SJ, Hoffmann G. Roto-Cyclization of 4-Bromopicene in On-Surface Synthesis. Chem Asian J 2024:e202400620. [PMID: 39105250 DOI: 10.1002/asia.202400620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Progress toward single-molecule electronics relies on a thorough understanding of local physico-chemical processes and development of synthetic routines for controlled hetero-coupling. We demonstrate a structurally unexpected ring closure process for a homo-coupled 4,4'-bipicenyl, realized in on-surface synthesis. An initial covalent C-C coupling of 4-bromopicene locks at lower temperatures the position and geometrically shields part of 4,4'-bipicenyl. Employing this effect of shielding might offer a path toward controlled stepwise hetero-coupling. At higher temperatures, a thermally activated three-dimensional rotation upon hydrogen dissociation, a dehydrogenative roto-cyclization, lifts the surface-dimensionality restriction, and leads to the formation of a perylene. Thereby, the shielded molecular part becomes accessible again.
Collapse
Affiliation(s)
- Wun-Chang Pan
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| | | | - Yu-Hsiung Yen
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, Japan
| | - Kenta Goto
- Institute for Materials Chemistry and Engineering, Kyushu University, Japan
| | | | - Shu-Jung Tang
- Department of Physics, National Tsing Hua University, Taiwan
| | - Germar Hoffmann
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| |
Collapse
|
3
|
Meng X, Möller J, Menchón RE, Weismann A, Sánchez-Portal D, Garcia-Lekue A, Herges R, Berndt R. Kondo Effect of Co-Porphyrin: Remarkable Sensitivity to Adsorption Sites and Orientations. NANO LETTERS 2024; 24:180-186. [PMID: 38150551 DOI: 10.1021/acs.nanolett.3c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We investigated the Kondo effect of cobalt(II)-5-15-bis(4'-bromophenyl)-10,20-bis(4'-iodophenyl)porphyrin (CoTPPBr2I2) molecules on Au(111) with low-temperature scanning tunneling microscopy under ultrahigh vacuum conditions. The molecules exhibit four adsorption configurations at the top and bridge sites of the surface with different molecular orientations. The Kondo resonance shows extraordinary sensitivity to the adsorption configuration. By switching the molecule between different configurations, the Kondo temperature is varied over a wide range from ≈8 up to ≈250 K. Density functional theory calculations reveal that changes of the adsorption configuration lead to distinct variations of the hybridization between the molecule and the surface. Furthermore, we show that surface reconstruction plays a significant role for the molecular Kondo effect.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Jenny Möller
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Rodrigo E Menchón
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Facultad de Ciencias Exactas, Ingeniría y Agrimensura (FCEIA), Instituto de Física Rosario (IFIR), 2000 Rosario, Argentina
- Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Daniel Sánchez-Portal
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Aran Garcia-Lekue
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
4
|
Hieulle J, Garcia Fernandez C, Friedrich N, Vegliante A, Sanz S, Sánchez-Portal D, Haley MM, Casado J, Frederiksen T, Pascual JI. From Solution to Surface: Persistence of the Diradical Character of a Diindenoanthracene Derivative on a Metallic Substrate. J Phys Chem Lett 2023; 14:11506-11512. [PMID: 38088859 DOI: 10.1021/acs.jpclett.3c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Organic diradicals are envisioned as elementary building blocks for designing a new generation of spintronic devices and have been used in constructing prototypical field effect transistors and nonlinear optical devices. Open-shell systems, however, are also reactive, thus requiring design strategies to "protect" their radical character from the environment, especially when they are embedded in solid-state devices. Here, we report the persistence on a metallic surface of the diradical character of a diindeno[b,i]anthracene (DIAn) core protected by bulky end-groups. Our scanning tunneling spectroscopy measurements on single-molecules detected singlet-triplet excitations that were absent for DIAn species packed in assembled structures. Density functional theory simulations unravel that the molecular geometry on the metal substrate can crucially modify the value of the singlet-triplet gap via the delocalization of the radical sites. The persistence of the diradical character over metallic substrates is a promising finding for integrating radical-based materials into functional devices.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Sanz
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales MPC (CSIC/UPV-EHU), 20018 Donostia-San Sebastián, Spain
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 229071 Malaga, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - José Ignacio Pascual
- CIC nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
5
|
Erpenbeck A, Gull E, Cohen G. Shaping Electronic Flows with Strongly Correlated Physics. NANO LETTERS 2023; 23:10480-10489. [PMID: 37955307 DOI: 10.1021/acs.nanolett.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonequilibrium quantum transport is of central importance in nanotechnology. Its description requires the understanding of strong electronic correlations that couple atomic-scale phenomena to the nanoscale. So far, research in correlated transport has focused predominantly on few-channel transport, precluding the investigation of cross-scale effects. Recent theoretical advances enable the solution of models that capture the interplay between quantum correlations and confinement beyond a few channels. This problem is the focus of this study. We consider an atomic impurity embedded in a metallic nanosheet spanning two leads, showing that transport is significantly altered by tuning only the phase of a single local hopping parameter. Furthermore─depending on this phase─correlations reshape the electronic flow throughout the sheet, either funneling it through the impurity or scattering it away from a much larger region. This demonstrates the potential for quantum correlations to bridge length scales in the design of nanoelectronic devices and sensors.
Collapse
Affiliation(s)
- Andre Erpenbeck
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Vélez-Fort E, Ohresser P, Silly MG, Bonvoisin J, Silly F. Structural and Magnetic Properties of a Drop-Cast C 54H 34Br 4CuO 4 β-Diketonato Complex Film on a Graphite Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14000-14005. [PMID: 37656672 DOI: 10.1021/acs.langmuir.3c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The structural and magnetic properties of a drop-cast film of flat C54H34Br4CuO4, a β-diketonato complex functionalized with bromine atoms, on a graphite surface are investigated using scanning tunneling microscopy, synchrotron X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. Experimental measurements reveal that the Cu-complexes preferentially lay flat on the graphite surface. The magnetic hysteresis loops show that the organic thin film remains paramagnetic at 2 K with an easy axis of magnetization perpendicular to the graphite surface and is therefore perpendicular to the plane of the Cu-complex skeleton.
Collapse
Affiliation(s)
- Emilio Vélez-Fort
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38043 Grenoble, France
| | - Philippe Ohresser
- Synchrotron SOLEIL, L'Orme des Merisiers, F-91190 Saint-Aubin, France
| | - Mathieu G Silly
- Synchrotron SOLEIL, L'Orme des Merisiers, F-91190 Saint-Aubin, France
| | - Jacques Bonvoisin
- CEMES, CNRS UPR 8011, Université de Toulouse, 29 Rue Jeanne Marvig, B.P. 94347, 31055 Toulouse Cedex 4, France
| | - Fabien Silly
- Université Paris-Saclay, CEA, CNRS, SPEC, TITANS, F-91191 Gif sur Yvette, France
| |
Collapse
|
7
|
Gao Y, Vlaic S, Gorni T, De' Medici L, Clair S, Roditchev D, Pons S. Manipulation of the Magnetic State of a Porphyrin-Based Molecule on Gold: From Kondo to Quantum Nanomagnet via the Charge Fluctuation Regime. ACS NANO 2023; 17:9082-9089. [PMID: 37162317 DOI: 10.1021/acsnano.2c12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By moving individual Fe-porphyrin-based molecules with the tip of a scanning tunneling microscope in the vicinity of the elbow of the herringbone-reconstructed Au(111) containing a Br atom, we reversibly and continuously control their magnetic state. Several regimes are obtained experimentally and explored theoretically: from the integer spin limit, through intermediate magnetic states with renormalized magnetic anisotropy, until the Kondo-screened regime, corresponding to a progressive increase of charge fluctuations and mixed valency due to an increase in the interaction of the molecular Fe states with the substrate Fermi sea. Our study demonstrates the potential of utilizing charge fluctuations to generate and tune quantum magnetic states in molecule-surface hybrids.
Collapse
Affiliation(s)
- Yingzheng Gao
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Sergio Vlaic
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Tommaso Gorni
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Luca De' Medici
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Sylvain Clair
- Aix Marseille University, CNRS, IM2NP, 13397 Marseille, France
| | - Dimitri Roditchev
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS UMR7588, 75005 Paris, France
| | - Stéphane Pons
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
8
|
Lunghi A, Sanvito S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat Rev Chem 2022; 6:761-781. [PMID: 37118096 DOI: 10.1038/s41570-022-00424-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Having served as a playground for fundamental studies on the physics of d and f electrons for almost a century, magnetic molecules are now becoming increasingly important for technological applications, such as magnetic resonance, data storage, spintronics and quantum information. All of these applications require the preservation and control of spins in time, an ability hampered by the interaction with the environment, namely with other spins, conduction electrons, molecular vibrations and electromagnetic fields. Thus, the design of a novel magnetic molecule with tailored properties is a formidable task, which does not only concern its electronic structures but also calls for a deep understanding of the interaction among all the degrees of freedom at play. This Review describes how state-of-the-art ab initio computational methods, combined with data-driven approaches to materials modelling, can be integrated into a fully multiscale strategy capable of defining design rules for magnetic molecules.
Collapse
|
9
|
Wen ECH, Jacobse PH, Jiang J, Wang Z, McCurdy RD, Louie SG, Crommie MF, Fischer FR. Magnetic Interactions in Substitutional Core-Doped Graphene Nanoribbons. J Am Chem Soc 2022; 144:13696-13703. [PMID: 35867847 DOI: 10.1021/jacs.2c04432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design of a spin imbalance within the crystallographic unit cell of bottom-up engineered 1D graphene nanoribbons (GNRs) gives rise to nonzero magnetic moments within each cell. Here, we demonstrate the bottom-up assembly and spectroscopic characterization of a one-dimensional Kondo spin chain formed by a chevron-type GNR (cGNR) physisorbed on Au(111). Substitutional nitrogen core doping introduces a pair of low-lying occupied states per monomer within the semiconducting gap of cGNRs. Charging resulting from the interaction with the gold substrate quenches one electronic state for each monomer, leaving behind a 1D chain of radical cations commensurate with the unit cell of the ribbon. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal the signature of a Kondo resonance emerging from the interaction of S = 1/2 spin centers in each monomer core with itinerant electrons in the Au substrate. STM tip lift-off experiments locally reduce the effective screening of the unpaired radical cation being lifted, revealing a robust exchange coupling between neighboring spin centers. First-principles DFT-LSDA calculations support the presence of magnetic moments in the core of this GNR when it is placed on Au.
Collapse
Affiliation(s)
- Ethan Chi Ho Wen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peter H Jacobse
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Jingwei Jiang
- Department of Physics, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Ryan D McCurdy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Steven G Louie
- Department of Physics, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Felix R Fischer
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Steenbock T, Rybakowski LLM, Benner D, Herrmann C, Bester G. Exchange Spin Coupling in Optically Excited States. J Chem Theory Comput 2022; 18:4708-4718. [PMID: 35797603 DOI: 10.1021/acs.jctc.2c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In optically excited states in molecules and materials, coupling between local electron spins plays an important role for their photoemission properties and is interesting for potential applications in quantum information processing. Recently, it was experimentally demonstrated that the photogenerated local spins in donor-acceptor metal complexes can interact with the spin of an attached radical, resulting in a spin-coupling-dependent mixing of excited doublet states, which controls the local spin density distributions on donor, acceptor, and radical subunits in optically excited states. In this work, we propose an energy-difference scheme to evaluate spin coupling in optically excited states, using unrestricted and spin-flip simplified time-dependent density functional theory. We apply it to three platinum complexes which have been studied experimentally to validate our methodology. We find that all computed coupling constants are in excellent agreement with the experimental data. In addition, we show that the spin coupling between donor and acceptor in the optically excited state can be fine-tuned by replacing platinum with palladium and zinc in the structure. Besides the two previously discussed excited doublet states (one bright and one dark), our calculations reveal a third, bright excited doublet state which was not considered previously. This third state possesses the inverse spin polarization on donor and acceptor with respect to the previously studied bright doublet state and is by an order of magnitude brighter, which might be interesting for optically controlling local spin polarizations with potential applications in spin-only information transfer and manipulation of connected qubits.
Collapse
Affiliation(s)
- Torben Steenbock
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Lawrence L M Rybakowski
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Dominik Benner
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Carmen Herrmann
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Gabriel Bester
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany.,Department of Physics, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
11
|
Shahed SM, Ara F, Hossain MI, Katoh K, Yamashita M, Komeda T. Observation of Yu-Shiba-Rusinov States and Inelastic Tunneling Spectroscopy for Intramolecule Magnetic Exchange Interaction Energy of Terbium Phthalocyanine (TbPc) Species Adsorbed on Superconductor NbSe 2. ACS NANO 2022; 16:7651-7661. [PMID: 35467334 PMCID: PMC9134493 DOI: 10.1021/acsnano.1c11221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
We investigated the spin properties of the terbium phthalocyanine (TbPc) species adsorbed on the superconductor NbSe2 surface using scanning tunneling microscopy and spectroscopy. TbPc2 is a molecule in a class of single-molecule magnets (SMMs), and the use of superconductor electrodes attracts attention for the application to the devices using the spin degree of freedom. TbPc is a building block of TbPc2 and can reveal the spin component's behavior. In the experiment, TbPc species were placed on the surface of the superconductor NbSe2. We measured Yu-Shiba-Rusinov (YSR) states caused by the interaction between the superconducting state and magnetic impurity and inelastic tunneling spectroscopy (IETS) for the spin excitation, below 1 K. We also measured the Kondo state formed by the magnetic singlet formation. We detected the radical spin at the ligand position of the TbPc by the presence of the Kondo peak and demonstrated that the radical spin forms the YSR feature. In addition, the exchange interaction energy (Eex) between the spins of the radical ligand (Pc) and the center 4f metal atom (Tb3+) is determined by using the IETS technique. Eex is a critical parameter that determines the blocking temperature, below which the sample behaves as an SMM. IETS results show that the statistical distribution of Eex has peaked at 1.3, 1.6, and 1.9 meV. The energy range is comparable to the recent theoretical calculation result. In addition, we show that the energy variation is correlated with the bonding configuration of TbPc.
Collapse
Affiliation(s)
- Syed Mohammad
Fakruddin Shahed
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 9800877, Japan
| | - Ferdous Ara
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 9800877, Japan
| | - Mohammad Ikram Hossain
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 9800877, Japan
| | - Keiichi Katoh
- Department
of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Masahiro Yamashita
- Department
of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
- School
of Materials Science and Engineering, Nankai
University, Tianjin 300350, China
| | - Tadahiro Komeda
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 9800877, Japan
| |
Collapse
|
12
|
Wang T, Sanz S, Castro-Esteban J, Lawrence J, Berdonces-Layunta A, Mohammed MSG, Vilas-Varela M, Corso M, Peña D, Frederiksen T, de Oteyza DG. Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons. NANO LETTERS 2022; 22:164-171. [PMID: 34936370 DOI: 10.1021/acs.nanolett.1c03578] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.
Collapse
Affiliation(s)
- Tao Wang
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Sofia Sanz
- Donostia International Physics Center, 20018 San Sebastián, Spain
| | - Jesús Castro-Esteban
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - James Lawrence
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martina Corso
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
13
|
Xu J, Zhu L, Gao H, Li C, Zhu M, Jia Z, Zhu X, Zhao Y, Li S, Wu F, Shen Z. Ligand Non‐innocence and Single Molecular Spintronic Properties of Ag
II
Dibenzocorrole Radical on Ag(111). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jialiang Xu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Li Zhu
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Chenhong Li
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Zhen‐Yu Jia
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Xin‐Yang Zhu
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Shao‐Chun Li
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
- Jiangsu Provincial Key Laboratory for Nanotechnology Nanjing University Nanjing 210093 China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| |
Collapse
|
14
|
Xu J, Zhu L, Gao H, Li C, Zhu MJ, Jia ZY, Zhu XY, Zhao Y, Li SC, Wu F, Shen Z. Ligand Non-innocence and Single Molecular Spintronic Properties of Ag II Dibenzocorrole Radical on Ag(111). Angew Chem Int Ed Engl 2021; 60:11702-11706. [PMID: 33694297 DOI: 10.1002/anie.202016674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Indexed: 11/08/2022]
Abstract
A facile method for the quantitative preparation of silver dibenzo-fused corrole Ag-1 is described. In contrast to the saddle conformation resolved by single-crystal X-ray analysis for Ag-1, it adopts an unprecedented domed geometry, with up and down orientations, when adsorbed on an Ag(111) surface. Sharp Kondo resonances near Fermi level, both at the corrole ligand and the silver center were observed by cryogenic STM, with relatively high Kondo temperature (172 K), providing evidence for a non-innocent AgII -corrole.2- species. Further investigation validates that benzene ring fusion and molecule-substrate interactions play pivotal roles in enhancing Ag(4d(x2 -y2 ))-corrole (π) orbital interactions, thereby stabilizing the open-shell singlet AgII -corrole.2- on Ag(111) surface. Moreover, this strategy used for constructing metal-free benzene-ring fused corrole ligand gives rise to inspiration of designing novel metal-corrole compound for multichannel molecular spintronics devices.
Collapse
Affiliation(s)
- Jialiang Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Li Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Chenhong Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Zhen-Yu Jia
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin-Yang Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Shao-Chun Li
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.,Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| |
Collapse
|
15
|
Lacaze M, Saffon-Merceron N, Silly F, Bonvoisin J. Synthesis and characterization of iodo derivatives of bis-salphen complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Liu D, Di B, Peng Z, Yin C, Zhu H, Wen X, Chen Q, Zhu J, Wu K. Surface-mediated ordering of pristine Salen molecules on coinage metals. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational isomers of Salen molecules and their self-assembled structures on coinage metal surfaces.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Bin Di
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Zhantao Peng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Cen Yin
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Hao Zhu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Xiaojie Wen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Qiwei Chen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- China
| | - Kai Wu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
17
|
Rabia A, Tumino F, Milani A, Russo V, Bassi AL, Bassi N, Lucotti A, Achilli S, Fratesi G, Manini N, Onida G, Sun Q, Xu W, Casari CS. Structural, Electronic, and Vibrational Properties of a Two-Dimensional Graphdiyne-like Carbon Nanonetwork Synthesized on Au(111): Implications for the Engineering of sp-sp 2 Carbon Nanostructures. ACS APPLIED NANO MATERIALS 2020; 3:12178-12187. [PMID: 33392466 PMCID: PMC7771048 DOI: 10.1021/acsanm.0c02665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 05/08/2023]
Abstract
Graphdiyne, atomically thin two-dimensional (2D) carbon nanostructure based on sp-sp2 hybridization is an appealing system potentially showing outstanding mechanical and optoelectronic properties. Surface-catalyzed coupling of halogenated sp-carbon-based molecular precursors represents a promising bottom-up strategy to fabricate extended 2D carbon systems with engineered structure on metallic substrates. Here, we investigate the atomic-scale structure and electronic and vibrational properties of an extended graphdiyne-like sp-sp2 carbon nanonetwork grown on Au(111) by means of the on-surface synthesis. The formation of such a 2D nanonetwork at its different stages as a function of the annealing temperature after the deposition is monitored by scanning tunneling microscopy (STM), Raman spectroscopy, and combined with density functional theory (DFT) calculations. High-resolution STM imaging and the high sensitivity of Raman spectroscopy to the bond nature provide a unique strategy to unravel the atomic-scale properties of sp-sp2 carbon nanostructures. We show that hybridization between the 2D carbon nanonetwork and the underlying substrate states strongly affects its electronic and vibrational properties, modifying substantially the density of states and the Raman spectrum compared to the free standing system. This opens the way to the modulation of the electronic properties with significant prospects in future applications as active nanomaterials for catalysis, photoconversion, and carbon-based nanoelectronics.
Collapse
Affiliation(s)
- Andi Rabia
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Francesco Tumino
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Alberto Milani
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Valeria Russo
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Andrea Li Bassi
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Nicolò Bassi
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Andrea Lucotti
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Simona Achilli
- ETSF
and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria, 16, Milano I-20133, Italy
| | - Guido Fratesi
- ETSF
and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria, 16, Milano I-20133, Italy
| | - Nicola Manini
- ETSF
and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria, 16, Milano I-20133, Italy
| | - Giovanni Onida
- ETSF
and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria, 16, Milano I-20133, Italy
| | - Qiang Sun
- Interdisciplinary
Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Wei Xu
- Interdisciplinary
Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Carlo S. Casari
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| |
Collapse
|
18
|
Manipulation of Molecular Spin State on Surfaces Studied by Scanning Tunneling Microscopy. NANOMATERIALS 2020; 10:nano10122393. [PMID: 33266045 PMCID: PMC7761235 DOI: 10.3390/nano10122393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
The adsorbed magnetic molecules with tunable spin states have drawn wide attention for their immense potential in the emerging fields of molecular spintronics and quantum computing. One of the key issues toward their application is the efficient controlling of their spin state. This review briefly summarizes the recent progress in the field of molecular spin state manipulation on surfaces. We focus on the molecular spins originated from the unpaired electrons of which the Kondo effect and spin excitation can be detected by scanning tunneling microscopy and spectroscopy (STM and STS). Studies of the molecular spin-carriers in three categories are overviewed, i.e., the ones solely composed of main group elements, the ones comprising 3d-metals, and the ones comprising 4f-metals. Several frequently used strategies for tuning molecular spin state are exemplified, including chemical reactions, reversible atomic/molecular chemisorption, and STM-tip manipulations. The summary of the successful case studies of molecular spin state manipulation may not only facilitate the fundamental understanding of molecular magnetism and spintronics but also inspire the design of the molecule-based spintronic devices and materials.
Collapse
|
19
|
Xing S, Zhang Z, Liang H, Sun B, Xu H, Fan J, Ma YQ, Shi Z. On-Surface Cascade Reaction Based on Successive Debromination via Metal-Organic Coordination Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6286-6291. [PMID: 32407120 DOI: 10.1021/acs.langmuir.0c00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise control over on-surface covalent reaction pathways is crucial for engineering organic nanostructures with the single-atom precision. Herein, we demonstrate a step-by-step control of an on-surface cascade covalent reaction based on a successive debromination templated by noncovalent metal-organic coordination motifs. The molecular precursor is predesigned with different reactive sites and functional ligands, allowing for both chemical and structural tuning during on-surface reactions. Through the Fe-terpyridine template effect, we are able to direct the reaction to proceed in a three-step cascade pathway and finally to achieve a porous polyarylene nanoribbon structure. The approach opens new opportunities for construction of on-surface organic nanostructures in a predictable manner.
Collapse
Affiliation(s)
- Shuaipeng Xing
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhe Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huifang Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Bangjin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yu-Qiang Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
20
|
Enhanced magnetic spin-spin interactions observed between porphyrazine derivatives on Au(111). Commun Chem 2020; 3:36. [PMID: 36703412 PMCID: PMC9814269 DOI: 10.1038/s42004-020-0282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/28/2020] [Indexed: 01/29/2023] Open
Abstract
Magnetic molecules are of interest for application in spintronic and quantum-information processing devices. Therein, control of the interaction between the spins of neighboring molecules is the critical issue. Substitution of outer moieties of the molecule can tune the molecule-molecule interaction. Here we show a novel spin behavior for a magnetic molecule of vanadyl tetrakis (thiadiazole) porphyrazine (abbreviated as VOTTDPz) adsorbed on Au(111), which is modified from vanadyl phthalocyanine (VOPc) by replacing the inert phthalocyanine ligand with a reactive thiadiazole moiety. The magnetic properties of the molecules are examined by observing the Kondo resonance caused by the screening of an isolated spin by conduction electrons using scanning tunneling spectroscopy. The Kondo features are detected at the molecule whose shape and intensity show site-dependent variation, revealing complex spin-spin interactions due to the enhanced interaction between molecules, originating from the functionalization of the ligand with a more reactive moiety.
Collapse
|
21
|
Liang H, Xing S, Shi Z, Zhang H, Chi L. Directing On‐Surface Reaction Pathways via Metal‐Organic Cu−N Coordination. Chemphyschem 2020; 21:843-846. [DOI: 10.1002/cphc.201901210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/23/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Huifang Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 China
| | - Shuaipeng Xing
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and TechnologySoochow University Suzhou 215006 China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and TechnologySoochow University Suzhou 215006 China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University Suzhou 215123 China
| |
Collapse
|
22
|
Néel N, Shao B, Wehling TO, Kröger J. Manipulation of the two-site Kondo effect in linear CoCu n CoCu m clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:055303. [PMID: 31604345 DOI: 10.1088/1361-648x/ab4d17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificially assembled linear atomic clusters, CoCu n CoCu m , are used to explore variations of the Kondo effect at the two Co sites. For all investigated Cu n chain lengths ([Formula: see text]) the addition of a single Cu atom to one edge Co atom of the chain ([Formula: see text]) strongly reduces the amplitude of the Abrikosov-Suhl-Kondo resonance of that Co atom. Concomitantly, the resonance line width is more than halved. On the contrary, the Kondo effect of the opposite edge Co atom remains unaffected. Hybridization together with the linear geometry of the cluster are likely to drive the effect.
Collapse
Affiliation(s)
- N Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | | | | | | |
Collapse
|
23
|
|
24
|
Puhl S, Steenbock T, Herrmann C, Heck J. Controlling Through‐Space and Through‐Bond Exchange Pathways in Bis‐Cobaltocenes for Molecular Spintronics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sarah Puhl
- Department of ChemistryUniversity of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Torben Steenbock
- Department of ChemistryUniversity of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Carmen Herrmann
- Department of ChemistryUniversity of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Jürgen Heck
- Department of ChemistryUniversity of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| |
Collapse
|
25
|
Puhl S, Steenbock T, Herrmann C, Heck J. Controlling Through-Space and Through-Bond Exchange Pathways in Bis-Cobaltocenes for Molecular Spintronics. Angew Chem Int Ed Engl 2019; 59:2407-2413. [PMID: 31705778 PMCID: PMC7004085 DOI: 10.1002/anie.201911999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Indexed: 11/21/2022]
Abstract
Pinching molecules via chemical strain suggests intuitive consequences, such as compression at the pinched site and clothespin‐like opening of other parts of the structure. If this opening affects two spin centers, it should result in reduced communication between them. We show that for naphthalene‐bridged biscobaltocenes with competing through‐space and through‐bond pathways, the consequences of pinching are far less intuitive: despite the known dominance of through‐space interactions, the bridge plays a much larger role for exchange spin coupling than previously assumed. Based on a combination of chemical synthesis, structural, magnetic, and redox characterization, and a newly developed theoretical pathway analysis, we can suggest a comprehensive explanation for this non‐intuitive behavior. These results are of interest for molecular spintronics, as naphthalene‐linked cobaltocenes can form wires on surfaces for potential spin‐only information transfer.
Collapse
Affiliation(s)
- Sarah Puhl
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Torben Steenbock
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Carmen Herrmann
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Jürgen Heck
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| |
Collapse
|
26
|
Sierda E, Elsebach M, Wiesendanger R, Bazarnik M. Probing Weakly Hybridized Magnetic Molecules by Single-Atom Magnetometry. NANO LETTERS 2019; 19:9013-9018. [PMID: 31665608 DOI: 10.1021/acs.nanolett.9b04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in molecular spintronics rely on the in-depth characterization of the molecular building blocks in terms of their electronic and, more importantly, magnetic properties. For this purpose, inert substrates that interact only weakly with adsorbed molecules are required in order to preserve their electronic states. Here, we investigate the magnetic-field response of a single paramagnetic 5,5'-dibromosalophenatocobalt(II) (CoSal) molecule adsorbed on a weakly interacting magnetic substrate, namely, Fe-intercalated graphene (GR/Fe) grown on Ir(111), by using spin-polarized scanning tunneling microscopy and spectroscopy. We have obtained local magnetization curves, spin-dependent tunneling spectra, and spatial maps of magnetic asymmetry for a single CoSal molecule, revealing its magnetic properties and coupling to the local environment. The distinct magnetic behavior of the Co metal center is found to rely strictly on its position relative to the GR/Fe moiré structure, which determines the level of hybridization between the GR/Fe surface π-system and the molecular orbitals.
Collapse
Affiliation(s)
- Emil Sierda
- Department of Physics , University of Hamburg , Jungiusstrasse 11 , D-20355 Hamburg , Germany
- Institute of Physics , Poznan University of Technology , Piotrowo 3 , 60-965 Poznan , Poland
| | - Micha Elsebach
- Department of Physics , University of Hamburg , Jungiusstrasse 11 , D-20355 Hamburg , Germany
| | - Roland Wiesendanger
- Department of Physics , University of Hamburg , Jungiusstrasse 11 , D-20355 Hamburg , Germany
| | - Maciej Bazarnik
- Department of Physics , University of Hamburg , Jungiusstrasse 11 , D-20355 Hamburg , Germany
- Institute of Physics , Poznan University of Technology , Piotrowo 3 , 60-965 Poznan , Poland
| |
Collapse
|
27
|
Herrmann C. Electronic Communication as a Transferable Property of Molecular Bridges? J Phys Chem A 2019; 123:10205-10223. [PMID: 31380640 DOI: 10.1021/acs.jpca.9b05618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electronic communication through molecular bridges is important for different types of experiments, such as single-molecule conductance, electron transfer, superexchange spin coupling, and intramolecular singlet fission. In many instances, the chemical structure of the bridge determines how the two parts it is connecting communicate, and does so in ways that are transferable between these different manifestations (for example, high conductance often correlates with strong antiferromagnetic spin coupling, and low conductance due to destructive quantum interference correlates with ferromagnetic coupling). Defining electronic communication as a transferable property of the bridge can help transfer knowledge between these different areas of research. Examples and limits of such transferability are discussed here, along with some possible directions for future research, such as employing spin-coupled and mixed-valence systems as structurally well-controlled proxies for understanding molecular conductance and for validating first-principles theoretical methodologies, building conceptual understanding for the growing experimental work on intramolecular singlet fission, and developing measures for the transferability of electronic communication as a bridge property.
Collapse
Affiliation(s)
- Carmen Herrmann
- Department of Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , Hamburg 20146 , Germany
| |
Collapse
|
28
|
Zhang YC, Chilukuri B, Hanson TB, Heiden ZM, Lee DY. Connecting Solution-Phase to Single-Molecule Properties of Ni(Salophen). J Phys Chem Lett 2019; 10:3525-3530. [PMID: 31188610 DOI: 10.1021/acs.jpclett.9b01381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a strong correlation of the Ni(salophen) structure and properties measured in single-molecule vs bulk quantities and in ultra high vacuum vs solution phase. Under a scanning tunneling microscope (STM), Ni(salophen) forms a self-assembled monolayer (SAM) on Au(111) at 23 °C with molecular structure identical to that of the X-ray crystallographic measurement. The HOMO and LUMO levels are determined using elastic tunneling spectroscopy at the single-molecule level with confirmation by monolayer-quantity ultraviolet photoelectron spectroscopy (UPS) and by cyclic voltammetry (CV) measurements. The STM-determined HOMO-LUMO gap of 3.28 eV and (HOMO-1)-HOMO gap of 0.36 eV form a new foundation for the selection of hybrid functionals with a simple basis set to be effective in accurately calculating single-molecule Ni(salophen) frontier MO levels. Our results suggest that microscopy-based experiments on a surface, along with free-molecule gas-phase calculations, can provide useful insights into the physical properties of metal(salen) complexes, especially when such direct measurements are not available in solution.
Collapse
Affiliation(s)
- Yi C Zhang
- Department of Chemistry and Materials Science & Engineering Program , Washington State University , Pullman , Washington 99164 , United States
| | - Bhaskar Chilukuri
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , United States
| | - Tanner B Hanson
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , United States
| | - Zachariah M Heiden
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , United States
| | - David Y Lee
- Department of Chemistry and Materials Science & Engineering Program , Washington State University , Pullman , Washington 99164 , United States
| |
Collapse
|
29
|
Moro-Lagares M, Korytár R, Piantek M, Robles R, Lorente N, Pascual JI, Ibarra MR, Serrate D. Real space manifestations of coherent screening in atomic scale Kondo lattices. Nat Commun 2019; 10:2211. [PMID: 31101815 PMCID: PMC6525169 DOI: 10.1038/s41467-019-10103-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/18/2019] [Indexed: 11/10/2022] Open
Abstract
The interaction among magnetic moments screened by conduction electrons drives quantum phase transitions between magnetically ordered and heavy-fermion ground states. Here, starting from isolated magnetic impurities in the Kondo regime, we investigate the formation of the finite size analogue of a heavy Fermi liquid. We build regularly-spaced chains of Co adatoms on a metallic surface by atomic manipulation. Scanning tunneling spectroscopy is used to obtain maps of the Kondo resonance intensity with sub-atomic resolution. For sufficiently small interatomic separation, the spatial distribution of Kondo screening does not coincide with the position of the adatoms. It also develops enhancements at both edges of the chains. Since we can rule out any other interaction between Kondo impurities, this is explained in terms of the indirect hybridization of the Kondo orbitals mediated by a coherent electron gas, the mechanism that causes the emergence of heavy quasiparticles in the thermodynamic limit.
Collapse
Affiliation(s)
- María Moro-Lagares
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain.,Institute of Physics, Academy of Sciences, Prague, 16200, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Olomouc, 78371, Czech Republic
| | - Richard Korytár
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic
| | - Marten Piantek
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain.,Dpto.Física Materia Condensada, University of Zaragoza, E-50009, Zaragoza, Spain
| | - Roberto Robles
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018, Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastian, Spain
| | - Jose I Pascual
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain.,CIC NanoGUNE, E-20018, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain
| | - M Ricardo Ibarra
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain.,Dpto.Física Materia Condensada, University of Zaragoza, E-50009, Zaragoza, Spain
| | - David Serrate
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain. .,Dpto.Física Materia Condensada, University of Zaragoza, E-50009, Zaragoza, Spain. .,Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza, 50009, Zaragoza, Spain.
| |
Collapse
|
30
|
Raczkowski M, Assaad FF. Emergent Coherent Lattice Behavior in Kondo Nanosystems. PHYSICAL REVIEW LETTERS 2019; 122:097203. [PMID: 30932556 DOI: 10.1103/physrevlett.122.097203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Indexed: 06/09/2023]
Abstract
How many magnetic moments periodically arranged on a metallic surface are needed to generate a coherent Kondo lattice behavior? We investigate this fundamental issue within the particle-hole symmetric Kondo lattice model using quantum Monte Carlo simulations. Extra magnetic atoms forming closed shells around the initial impurity induce a fast splitting of the Kondo resonance at the inner shells, which signals the formation of composite heavy-fermion bands. The onset of the hybridization gap matches well the enhancement of antiferromagnetic spin correlations in the plane perpendicular to the applied magnetic field, a genuine feature of the coherent Kondo lattice. In contrast, the outermost shell remains dominated by a local Kondo physics with spectral features resembling the single-impurity behavior.
Collapse
Affiliation(s)
- Marcin Raczkowski
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Fakher F Assaad
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
31
|
Selective on-surface covalent coupling based on metal-organic coordination template. Nat Commun 2019; 10:70. [PMID: 30622253 PMCID: PMC6325127 DOI: 10.1038/s41467-018-07933-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/05/2018] [Indexed: 11/28/2022] Open
Abstract
Control over on-surface reaction pathways is crucial but challenging for the precise construction of conjugated nanostructures at the atomic level. Herein we demonstrate a selective on-surface covalent coupling reaction that is templated by metal-organic coordinative bonding, and achieve a porous nitrogen-doped carbon nanoribbon structure. In contrast to the inhomogeneous polymorphic structures resulting from the debrominated aryl-aryl coupling reaction on Au(111), the incorporation of an Fe-terpyridine (tpy) coordination motif into the on-surface reaction controls the molecular conformation, guides the reaction pathway, and finally yields pure organic sexipyridine-p-phenylene nanoribbons. Emergent molecular conformers and reaction products in the reaction pathways are revealed by scanning tunneling microscopy, density functional theory calculations and X-ray photoelectron spectroscopy, demonstrating the template effect of Fe-tpy coordination on the on-surface covalent coupling. Our approach opens an avenue for the rational design and synthesis of functional conjugated nanomaterials with atomic precision. Synthesizing precise conjugated nanostructures on a surface requires fine control over the covalent reaction pathways. Here, the authors show that reversible coordinative bonds can be used to template on-surface C-C coupling reactions, guiding the formation of porous organic nanoribbons.
Collapse
|
32
|
Gruber M, Weismann A, Berndt R. The Kondo resonance line shape in scanning tunnelling spectroscopy: instrumental aspects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:424001. [PMID: 30191885 DOI: 10.1088/1361-648x/aadfa3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the scanning tunnelling microscope, the many-body Kondo effect leads to a zero-bias feature of the differential conductance spectra of magnetic adsorbates on surfaces. The intrinsic line shape of this Kondo resonance and its temperature dependence in principle contain valuable information. We use measurements on a molecular Kondo system, all- trans retinoic acid on Au(1 1 1), and model calculations to discuss the role of instrumental broadening. The modulation voltage used for the lock-in detection, noise on the sample voltage, and the temperature of the microscope tip are considered. These sources of broadening affect the apparent line shapes and render difficult a determination of the intrinsic line width, in particular when variable temperatures are involved.
Collapse
Affiliation(s)
- Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | | | | |
Collapse
|
33
|
Abadía M, Ilyn M, Piquero-Zulaica I, Gargiani P, Rogero C, Ortega JE, Brede J. Polymerization of Well-Aligned Organic Nanowires on a Ferromagnetic Rare-Earth Surface Alloy. ACS NANO 2017; 11:12392-12401. [PMID: 29161499 DOI: 10.1021/acsnano.7b06374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The high reactivity of magnetic substrates toward molecular overlayers has so far inhibited the realization of more sophisticated on-surface reactions, thereby depriving these interfaces of a significant class of chemically tailored organics such as graphene nanoribbons, oligonuclear spin-chains, and metal-organic networks. Here, we present a multitechnique characterization of the polymerization of 4,4″-dibromo-p-terphenyl precursors into ordered poly(p-phenylene) arrays on top of the bimetallic GdAu2 surface alloy. The activation temperatures for bromine scission and subsequent homocoupling of molecular precursors were followed by temperature-dependent X-ray photoelectron spectroscopy. The structural characterizations of supramolecular and polymeric phases, performed by low-energy electron diffraction and scanning tunneling microscopy, establish an extraordinary degree of order extending into the mesoscale. Taking advantage of the high homogeneity, the electronic structure of the valence band was determined with angle-resolved photoemission spectroscopy. Importantly, the transition of localized molecular orbitals into a highly dispersive π-band, the fingerprint of successful polymerization, was observed while leaving all surface-related bands intact. Moreover, ferromagnetic ordering in the GdAu2 alloy was demonstrated for all phases by X-ray absorption spectroscopy. The transfer of well-established in situ methods for growing covalently bonded macromolecules with atomic precision onto magnetic rare-earth alloys is an important step toward toward studying and controlling intrinsic carbon- and rare-earth-based magnetism.
Collapse
Affiliation(s)
- Mikel Abadía
- Centro de Física de Materiales CFM - MPC, Centro Mixto CSIC-UPV/EHU , Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Maxim Ilyn
- Centro de Física de Materiales CFM - MPC, Centro Mixto CSIC-UPV/EHU , Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center , Paseo Manuel Lardizabal 4, E-20018 San Sebastián, Spain
| | - Ignacio Piquero-Zulaica
- Centro de Física de Materiales CFM - MPC, Centro Mixto CSIC-UPV/EHU , Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Pierluigi Gargiani
- ALBA Synchrotron Light Source , Carretera BP 1413 km 3.3, E-08290 Cerdanyola del Vallés, Spain
| | - Celia Rogero
- Centro de Física de Materiales CFM - MPC, Centro Mixto CSIC-UPV/EHU , Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center , Paseo Manuel Lardizabal 4, E-20018 San Sebastián, Spain
| | - José Enrique Ortega
- Centro de Física de Materiales CFM - MPC, Centro Mixto CSIC-UPV/EHU , Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center , Paseo Manuel Lardizabal 4, E-20018 San Sebastián, Spain
- Departamento Física Aplicada I, Universidad del País Vasco , 20018 San Sebastián, Spain
| | - Jens Brede
- Centro de Física de Materiales CFM - MPC, Centro Mixto CSIC-UPV/EHU , Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
34
|
Knaak T, Gruber M, Lindström C, Bocquet ML, Heck J, Berndt R. Ligand-Induced Energy Shift and Localization of Kondo Resonances in Cobalt-Based Complexes on Cu(111). NANO LETTERS 2017; 17:7146-7151. [PMID: 29045149 DOI: 10.1021/acs.nanolett.7b04181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Magnetic sandwich complexes are of particular interest for molecular spintronics. Using scanning tunneling microscopy, we evidence the successful deposition of 1,3,5-tris(η6-borabenzene-η5-cyclopentadienylcobalt) benzene, a molecule composed of three connected magnetic sandwich units, on Cu(111). Scanning tunneling spectra reveal two distinct spatial-dependent narrow resonances close to the Fermi level for the trimer molecules as well as for molecular fragments composed of one and two magnetic units. With the help of density functional theory, these resonances are interpreted as two Kondo resonances originating from two distinct nondegenerate d-like orbitals. These Kondo resonances are found to have defined spatial extents dictated by the hybridization of the involved orbitals with that of the ligands. These results opens promising perspectives for investigating complex Kondo systems composed of several "Kondo" orbitals.
Collapse
Affiliation(s)
- Thomas Knaak
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel , Leibnizstrasse 19, 24098 Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel , Leibnizstrasse 19, 24098 Kiel, Germany
| | - Christoph Lindström
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg , Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Marie-Laure Bocquet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS , 75005 Paris, France
| | - Jürgen Heck
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg , Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel , Leibnizstrasse 19, 24098 Kiel, Germany
| |
Collapse
|
35
|
Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure. Nat Commun 2017; 8:946. [PMID: 29038513 PMCID: PMC5643342 DOI: 10.1038/s41467-017-00881-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/31/2017] [Indexed: 11/18/2022] Open
Abstract
Kondo resonances in heterostructures formed by magnetic molecules on a metal require free host electrons to interact with the molecular spin and create delicate many-body states. Unlike graphene, semiconducting graphene nanoribbons do not have free electrons due to their large bandgaps, and thus they should electronically decouple molecules from the metal substrate. Here, we observe unusually well-defined Kondo resonances in magnetic molecules separated from a gold surface by graphene nanoribbons in vertically stacked heterostructures. Surprisingly, the strengths of Kondo resonances for the molecules on graphene nanoribbons appear nearly identical to those directly adsorbed on the top, bridge and threefold hollow sites of Au(111). This unexpectedly strong spin-coupling effect is further confirmed by density functional calculations that reveal no spin–electron interactions at this molecule-gold substrate separation if the graphene nanoribbons are absent. Our findings suggest graphene nanoribbons mediate effective spin coupling, opening a way for potential applications in spintronics. Semiconducting graphene nanoribbon provides a platform for band-gap engineering desired for electronic and optoelectronic applications. Here, Li et al. show that graphene nanoribbon can effectively mediate the interaction of molecular magnetic moment and electronic spin in underlying metallic substrates.
Collapse
|
36
|
Choi DJ, Robles R, Yan S, Burgess JAJ, Rolf-Pissarczyk S, Gauyacq JP, Lorente N, Ternes M, Loth S. Building Complex Kondo Impurities by Manipulating Entangled Spin Chains. NANO LETTERS 2017; 17:6203-6209. [PMID: 28872317 DOI: 10.1021/acs.nanolett.7b02882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu2N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.
Collapse
Affiliation(s)
- Deung-Jang Choi
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- Max Planck Institute for Solid State Research , Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Roberto Robles
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Shichao Yan
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- Max Planck Institute for Solid State Research , Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Jacob A J Burgess
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- Max Planck Institute for Solid State Research , Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Steffen Rolf-Pissarczyk
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- Max Planck Institute for Solid State Research , Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Jean-Pierre Gauyacq
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay , Bât. 351, 91405 Orsay Cedex, France
| | - Nicolás Lorente
- Centro de Física de Materiales, CFM/MPC (CSIC-UPV/EHU) , Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Markus Ternes
- Max Planck Institute for Solid State Research , Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Sebastian Loth
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- Max Planck Institute for Solid State Research , Heisenbergstr. 1, 70569 Stuttgart, Germany
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart , Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
37
|
Sierda E, Abadia M, Brede J, Elsebach M, Bugenhagen B, Prosenc MH, Bazarnik M, Wiesendanger R. On-Surface Oligomerization of Self-Terminating Molecular Chains for the Design of Spintronic Devices. ACS NANO 2017; 11:9200-9206. [PMID: 28813591 DOI: 10.1021/acsnano.7b04194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular spintronics is currently attracting a lot of attention due to its great advantages over traditional electronics. A variety of self-assembled molecule-based devices are under development, but studies regarding the reliability of the growth process remain rare. Here, we present a method to control the length of molecular spintronic chains and to make their terminations chemically inert, thereby suppressing uncontrolled coupling to surface defects. The temperature evolution of chain formation was followed by X-ray photoelectron spectroscopy to determine optimal growth conditions. The final structures of the chains were then studied, using scanning tunneling microscopy, as a function of oligomerization conditions. We find that short chains are readily synthesized with high yields and that long chains, even exceeding 70mers, can be realized under optimized growth parameters, albeit with reduced yields.
Collapse
Affiliation(s)
- Emil Sierda
- Department of Physics, University of Hamburg , Jungiusstrasse 11, D-20355 Hamburg, Germany
- Institute of Physics, Poznan University of Technology , Piotrowo 3, 60-965 Poznań, Poland
| | - Mikel Abadia
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC) , Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC), Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain
| | - Jens Brede
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC) , Universidad del País Vasco (UPV)-Euskal Herriko Unibertsitatea (EHU)-Materials Physics Center (MPC), Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC) , Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain
| | - Micha Elsebach
- Department of Physics, University of Hamburg , Jungiusstrasse 11, D-20355 Hamburg, Germany
| | - Bernhard Bugenhagen
- Institute of Inorganic and Applied Chemistry, University of Hamburg , Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Marc Heinrich Prosenc
- Institute of Inorganic and Applied Chemistry, University of Hamburg , Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
- Department of Chemistry, Technical University Kaiserslautern , Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Maciej Bazarnik
- Department of Physics, University of Hamburg , Jungiusstrasse 11, D-20355 Hamburg, Germany
- Institute of Physics, Poznan University of Technology , Piotrowo 3, 60-965 Poznań, Poland
| | - Roland Wiesendanger
- Department of Physics, University of Hamburg , Jungiusstrasse 11, D-20355 Hamburg, Germany
| |
Collapse
|
38
|
Chen H, Pope T, Wu ZY, Wang D, Tao L, Bao DL, Xiao W, Zhang JL, Zhang YY, Du S, Gao S, Pantelides ST, Hofer WA, Gao HJ. Evidence for Ultralow-Energy Vibrations in Large Organic Molecules. NANO LETTERS 2017; 17:4929-4933. [PMID: 28727436 DOI: 10.1021/acs.nanolett.7b01963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The quantum efficiency or the rate of conversion of incident photon to free electron in photosynthesis is known to be extremely high. It has long been thought that the origin of this efficiency are molecular vibrations leading to a very fast separation of electrons and holes within the involved molecules. However, molecular vibrations are commonly in the range above 100 meV, which is too high for excitations in an ambient environment. Here, we analyze experimental spectra of single organic molecules on metal surfaces at ∼4 K, which often exhibit a pronounced dip. We show that measurements on iron(II) [tetra-(pentafluorophenyl)]porphyrin resolve this single dip at 4 K into a series of step-shaped inelastic excitations at 0.4 K. Via extensive spectral maps under applied magnetic fields and corresponding theoretical analysis we find that the dip is due to ultralow-energy vibrations of the molecular frame, typically in the range below 20 meV. The result indicates that ultralow energy vibrations in organic molecules are much more common than currently thought and may be all-pervasive for molecules above a certain size.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Thomas Pope
- School of Chemistry, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Zhuo-Yan Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Dongfei Wang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Lei Tao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - De-Liang Bao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Wende Xiao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yu-Yang Zhang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
- Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Sokrates T Pantelides
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
- Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Werner A Hofer
- School of Chemistry, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences , P.O. Box 603, Beijing 100190, China
| |
Collapse
|
39
|
Zeng J, Chen KQ. Huge magnetoresistance induced by half-metal-semiconductor phase transition in a one-dimensional spin chain: a first-principles study. Phys Chem Chem Phys 2017; 19:9417-9423. [PMID: 28327774 DOI: 10.1039/c7cp00641a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In experimental studies, magnetoresistance (MR) values of 103 are hard to reach for conventional single-molecule spin-valves. Motivated by a recent experiment [Nano Lett., 2016, 16, 577-582], where tailored Co-salophene-based all-spin molecular devices are successfully realized, we demonstrate the functionality of a Co-salophene-based spin chain without magnetic electrodes. By using nonequilibrium Green's functions in combination with density functional theory, we find that the maximum MR ratio of this spin chain can reach 106 by manipulating its spins in a controlled way, which is several orders of magnitude higher than previously reported experimental values. As the Co-salophene-based spin chain has been successfully synthesized, we are highly expectant of the experimental realization of huge MR ratios.
Collapse
Affiliation(s)
- Jing Zeng
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, People's Republic of China. and Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang 421002, People's Republic of China
| | - Ke-Qiu Chen
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China.
| |
Collapse
|
40
|
Hellwig R, Paintner T, Chen Z, Ruben M, Seitsonen AP, Klappenberger F, Brune H, Barth JV. Epitaxy-Induced Assembly and Enantiomeric Switching of an On-Surface Formed Dinuclear Organocobalt Complex. ACS NANO 2017; 11:1347-1359. [PMID: 28099797 DOI: 10.1021/acsnano.6b06114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the surface-guided synthesis of a dinuclear organocobalt complex, its self-assembly into a complex nanoarchitecture, and a single-molecule level investigation of its switching behavior. Initially, an organic layer is prepared by depositing hexakis((trimethylsilyl)ethynyl)-benzene under ultrahigh-vacuum conditions onto Ag(111). After Co dosage at 200 K, low-temperature scanning tunneling microscopy (STM) reveals an epitaxy-mediated organization mechanism of molecules and on-surface formed organometallic complexes. The dinuclear complexes contain two bis(η2-alkynyl) π-tweezer motifs, each stabilizing a single Co atom and express two enantiomers due to a conformation twist. The chirality is transferred to the two-dimensional architecture, whereby its Co adatoms are located at the corners of a 3.4.6.4 rhombitrihexagonal tessellation due to the systematic arrangement and anchoring of the complexes. Extensive density functional theory simulations support our interpretation of an epitaxy-guided surface tessellation and its chiral character. Additionally, STM tip-assisted manipulation experiments on isolated dinuclear complexes reveal controlled and reversible switching between the enantiomeric states via inelastic electron processes. After activation by bias pulses, structurally modified complexes display a distinctive Kondo feature attributed to metastable Co configurations.
Collapse
Affiliation(s)
- Raphael Hellwig
- Physik Department E20, Technische Universität München , Garching D-85748, Germany
| | - Tobias Paintner
- Physik Department E20, Technische Universität München , Garching D-85748, Germany
| | - Zhi Chen
- Institute of Nanotechnology, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen D-76344, Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen D-76344, Germany
- Institute de Physique et Chimie de Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg , Strasbourg F-67034, France
| | - Ari Paavo Seitsonen
- Département de Chimie, Ecole Normale Supérieure (ENS) , Paris Cedex 05 F-75230, France
| | | | - Harald Brune
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 3, Lausanne CH-1015, Switzerland
- Institute for Advanced Study (TUM-IAS) , Lichtenbergstr. 2a, Garching D-85748, Germany
| | - Johannes V Barth
- Physik Department E20, Technische Universität München , Garching D-85748, Germany
| |
Collapse
|
41
|
Peyrot D, Silly F. On-Surface Synthesis of Two-Dimensional Covalent Organic Structures versus Halogen-Bonded Self-Assembly: Competing Formation of Organic Nanoarchitectures. ACS NANO 2016; 10:5490-5498. [PMID: 27158901 DOI: 10.1021/acsnano.6b01938] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The competition between the on-surface synthesis of covalent nanoarchitectures and the self-assembly of star-shaped 1,3,5-Tris(4-iodophenyl)benzene molecules on Au(111) in vacuum is investigated using scanning tunneling microscopy above room temperature. The molecules form covalent polygonal nanoachitectures at the gold surface step edges and at the elbows of the gold reconstruction at low coverage. With coverage increasing two-dimensional halogen-bonded structures appear and grow on the surface terraces. Two different halogen-bonded nanoarchitectures are coexisting on the surface and hybrid covalent-halogen bonded structures are locally observed. At high coverage covalent nanoarchitectures are squeezed at the domain boundary of the halogen-bonded structures. The competitive growth between the covalent and halogen-bonded nanoarchitectures leads to formation of a two-layer film above one monolayer deposition. For this coverage, the covalent nanoarchitectures are propelled on top of the halogen-bonded first layer. These observations open up new opportunities for decoupling covalent nanoarchitectures from catalytically active and metal surfaces in vacuum.
Collapse
Affiliation(s)
- David Peyrot
- TITANS, CEA, IRAMIS, SPEC, CNRS, Université Paris Saclay , CEA Saclay, F-91191 Gif sur Yvette, France
| | - Fabien Silly
- TITANS, CEA, IRAMIS, SPEC, CNRS, Université Paris Saclay , CEA Saclay, F-91191 Gif sur Yvette, France
| |
Collapse
|
42
|
Bugenhagen BEC, Prosenc MH. Direct C-C coupling of two Ni-salphen complexes to yield dinickel-disalphen complexes with symmetric and non-symmetric substitution-patterns. Dalton Trans 2016; 45:7460-8. [PMID: 27040080 DOI: 10.1039/c5dt04612b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The synthesis of symmetric and non-symmetric 5,5'-linked disalophen Ni(ii) complexes by the Suzuki-Miyaura-reaction is reported. Also, the synthesis and structural characterization of four Ni(ii)-precursor complexes are presented. The 5-Br-substituted mononuclear complexes and are coupled to the pinacolborane substituted complexes and yielding the four dinuclear dinickel complexes in good yields. The crystal structure of dinuclear complex was obtained revealing a coplanar arrangement between the two salophen fragments. Electronic spectra as well as DFT-calculations on the ground states and excitation energies are reported and they reveal a small coupling between the electronically saturated Ni-salophen complexes.
Collapse
Affiliation(s)
- B E C Bugenhagen
- Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - M H Prosenc
- Institute for Physical Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany.
| |
Collapse
|
43
|
Karan S, Berndt R. Generation of spin in single cholesterol molecules on gold. Phys Chem Chem Phys 2016; 18:9334-7. [PMID: 26948454 DOI: 10.1039/c5cp07410j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compact islands of cholesterol on Au(111) were investigated with scanning tunneling microscopy at ∼5 K. Single molecules have been switched among several states, three of which exhibit a sharp spectroscopic feature at the Fermi level. This feature signals the presence of a localized spin and suggests that the molecule may be controllably switched between paramagnetic and diamagnetic states.
Collapse
Affiliation(s)
- Sujoy Karan
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
| |
Collapse
|
44
|
Katoh K, Komeda T, Yamashita M. The Frontier of Molecular Spintronics Based on Multiple-Decker Phthalocyaninato TbIIISingle-Molecule Magnets. CHEM REC 2016; 16:987-1016. [DOI: 10.1002/tcr.201500290] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Keiichi Katoh
- Department of Chemistry Graduate School of Science; Tohoku University; 6-3, Aramaki-Aza-Aoba Aoba-Ku Sendai 980-8578 Japan
| | - Tadahiro Komeda
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen)Tohoku University; 22-1-1, Katahira Aoba-Ku Sendai 980-0877 (Japan)E-mail: Additional Supporting Information may be found in the online version of this article
| | - Masahiro Yamashita
- Department of Chemistry Graduate School of Science; Tohoku University; 6-3, Aramaki-Aza-Aoba Aoba-Ku Sendai 980-8578 Japan
| |
Collapse
|
45
|
Karan S, Li N, Zhang Y, He Y, Hong IP, Song H, Lü JT, Wang Y, Peng L, Wu K, Michelitsch GS, Maurer RJ, Diller K, Reuter K, Weismann A, Berndt R. Spin Manipulation by Creation of Single-Molecule Radical Cations. PHYSICAL REVIEW LETTERS 2016; 116:027201. [PMID: 26824562 DOI: 10.1103/physrevlett.116.027201] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 06/05/2023]
Abstract
All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.
Collapse
Affiliation(s)
- Sujoy Karan
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Na Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Yajie Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yang He
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - I-Po Hong
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Huanjun Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jing-Tao Lü
- School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Yongfeng Wang
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
- Beida Information Research (BIR), Tianjin 300457, People's Republic of China
| | - Lianmao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Kai Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Georg S Michelitsch
- Lehrstuhl für Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Reinhard J Maurer
- Lehrstuhl für Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Katharina Diller
- Lehrstuhl für Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Karsten Reuter
- Lehrstuhl für Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
46
|
Bazarnik M, Bugenhagen B, Elsebach M, Sierda E, Frank A, Prosenc MH, Wiesendanger R. Toward Tailored All-Spin Molecular Devices. NANO LETTERS 2016; 16:577-582. [PMID: 26704349 DOI: 10.1021/acs.nanolett.5b04266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular based spintronic devices offer great potential for future energy-efficient information technology as they combine ultimately small size, high-speed operation, and low-power consumption. Recent developments in combining atom-by-atom assembly with spin-sensitive imaging and characterization at the atomic level have led to a first prototype of an all-spin atomic-scale logic device, but the very low working temperature limits its application. Here, we show that a more stable spintronic device could be achieved using tailored Co-Salophene based molecular building blocks, combined with in situ electrospray deposition under ultrahigh vacuum conditions as well as control of the surface-confined molecular assembly at the nanometer scale. In particular, we describe the tools to build a molecular, strongly bonded device structure from paramagnetic molecular building blocks including spin-wires, gates, and tails. Such molecular device concepts offer the advantage of inherent parallel fabrication based on molecular self-assembly as well as an order of magnitude higher operation temperatures due to enhanced energy scales of covalent through-bond linkage of basic molecular units compared to substrate-mediated coupling schemes employing indirect exchange coupling between individual adsorbed magnetic atoms on surfaces.
Collapse
Affiliation(s)
- Maciej Bazarnik
- Department of Physics, University of Hamburg , Jungiusstrasse 11, D-20355 Hamburg, Germany
- Institute of Physics, Poznan University of Technology , Piotrowo 3, 60-965 Poznan, Poland
| | - Bernhard Bugenhagen
- Department of Chemistry, University of Hamburg , Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Micha Elsebach
- Department of Physics, University of Hamburg , Jungiusstrasse 11, D-20355 Hamburg, Germany
| | - Emil Sierda
- Institute of Physics, Poznan University of Technology , Piotrowo 3, 60-965 Poznan, Poland
| | - Annika Frank
- Department of Chemistry, University of Hamburg , Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Marc H Prosenc
- Department of Chemistry, Technical University of Kaiserslautern , Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Roland Wiesendanger
- Department of Physics, University of Hamburg , Jungiusstrasse 11, D-20355 Hamburg, Germany
| |
Collapse
|
47
|
Ara F, Qi ZK, Hou J, Komeda T, Katoh K, Yamashita M. A scanning tunneling microscopy study of the electronic and spin states of bis(phthalocyaninato)terbium(iii) (TbPc2) molecules on Ag(111). Dalton Trans 2016; 45:16644-16652. [DOI: 10.1039/c6dt01967f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we investigate a single molecule magnet bis(phthalocyaninato)terbium(iii) (TbPc2) molecule film by using low temperature STM.
Collapse
Affiliation(s)
- Ferdous Ara
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Zhi Kun Qi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Jie Hou
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Tadahiro Komeda
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM
- Tagen)
- Tohoku University
- Sendai 980-0877
- Japan
| | - Keiichi Katoh
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Masahiro Yamashita
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
48
|
Zhang Q, Kuang G, Pang R, Shi X, Lin N. Switching Molecular Kondo Effect via Supramolecular Interaction. ACS NANO 2015; 9:12521-12528. [PMID: 26568262 DOI: 10.1021/acsnano.5b06120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We apply supramolecular assembly to control the adsorption configuration of Co-porphyrin molecules on Au(111) and Cu(111) surfaces. By means of cryogenic scanning tunneling microscopy, we reveal that the Kondo effect associated with the Co center is absent or present in different supramolecular systems. We perform first-principles calculations to obtain spin-polarized electronic structures and compute the Kondo temperatures using the Anderson impurity model. The switching behavior is traced to varied molecular adsorption heights in different supramolecular structures. These findings unravel that a competition between intermolecular interactions and molecule-substrate interactions subtly regulates the molecular Kondo effect in supramolecular systems.
Collapse
Affiliation(s)
- Qiushi Zhang
- Department of Physics, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Guowen Kuang
- Department of Physics, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Rui Pang
- Department of Physics, South University of Science and Technology of China , Shenzhen 518055, China
| | - Xingqiang Shi
- Department of Physics, South University of Science and Technology of China , Shenzhen 518055, China
| | - Nian Lin
- Department of Physics, The Hong Kong University of Science and Technology , Hong Kong, China
| |
Collapse
|
49
|
Karan S, Jacob D, Karolak M, Hamann C, Wang Y, Weismann A, Lichtenstein AI, Berndt R. Shifting the Voltage Drop in Electron Transport Through a Single Molecule. PHYSICAL REVIEW LETTERS 2015; 115:016802. [PMID: 26182113 DOI: 10.1103/physrevlett.115.016802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
A Mn-porphyrin was contacted on Au(111) in a low-temperature scanning tunneling microscope (STM). Differential conductance spectra show a zero-bias resonance that is due to an underscreened Kondo effect according to many-body calculations. When the Mn center is contacted by the STM tip, the spectrum appears to invert along the voltage axis. A drastic change in the electrostatic potential of the molecule involving a small geometric relaxation is found to cause this observation.
Collapse
Affiliation(s)
- Sujoy Karan
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - David Jacob
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
| | - Michael Karolak
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christian Hamann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Yongfeng Wang
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | | | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
50
|
Wu F, Liu J, Mishra P, Komeda T, Mack J, Chang Y, Kobayashi N, Shen Z. Modulation of the molecular spintronic properties of adsorbed copper corroles. Nat Commun 2015; 6:7547. [PMID: 26112968 PMCID: PMC4491828 DOI: 10.1038/ncomms8547] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/19/2015] [Indexed: 11/09/2022] Open
Abstract
The ability to modulate the spin states of adsorbed molecules is in high demand for molecular spintronics applications. Here, we demonstrate that the spin state of a corrole complex can be tuned by expanding its fused ring as a result of the modification to the d-π interaction between the metal and ligand. A bicyclo[2.2.2]octadiene-fused copper corrole can readily be converted into a tetrabenzocorrole radical on an Au(111) substrate during the sublimation process. In the scanning tunnelling spectroscopy spectrum, a sharp Kondo resonance appears near the Fermi level on the corrole ligand of the tetrabenzocorrole molecule. In contrast, a non-fused-ring-expanded copper corrole molecule, copper 5,10,15-triphenylcorrole, shows no such Kondo feature. Mapping of the Kondo resonance demonstrates that the spin distribution of the tetrabenzocorrole molecule can be further modified by the rotation of the meso-aryl groups, in a manner that could lead to applications in molecular spintronics.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jie Liu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-0877, Japan
| | - Puneet Mishra
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-0877, Japan
| | - Tadahiro Komeda
- 1] Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-0877, Japan [2] JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Yi Chang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Nagao Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|