1
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Deswal P, Samanta K, Ghosh D. The impact of spatially heterogeneous chemical doping on the electronic properties of CdSe quantum dots: insights from ab initio computation. NANOSCALE 2023; 15:17055-17067. [PMID: 37846794 DOI: 10.1039/d3nr04342h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The introduction of copper (Cu) impurity in semiconductor CdSe quantum dots (QDs) gives rise to unique photoluminescence (PL) bands exhibiting distinctive characteristics, like broad line width, significant Stokes shift, and complex temporal decay. The atomistic origins of these spectral features are yet to be understood comprehensively. We employed multiple computational techniques to systematically study the impact of the spatial heterogeneity of Cu atoms on the stability and photophysical properties, including the emission linewidth of doped QDs under ambient conditions. The Cu substitution introduces a spin-polarized intragap state, the energetic position of which is strongly dependent on the dopant location and causes spectral broadening in QD ensembles. Furthermore, the dopant dynamics under ambient conditions are significantly influenced by the specific arrangement of Cu within the QDs. The dynamic electronic structures of surface-doped CdSe illustrate more pronounced perturbations and vary the mid-gap state position more drastically than those of the core-doped QDs. Vibronic coupling broadens the photoluminescence peaks associated with the conduction band-to-defect level transition for individual QDs. These insights into the dynamic structure-photophysical property relationship suggest viable approaches, such as tuning the operational temperature and selective co-doping, to enhance the functional performances of doped CdSe QDs strategically.
Collapse
Affiliation(s)
- Priyanka Deswal
- Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Kushal Samanta
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Dibyajyoti Ghosh
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Medda A, Ghosh S, Patra A. Transition Metal Ions Influence the Performance of Photodetector of Two-Dimensional CdS Nanoplatelets. Chemistry 2023; 29:e202301364. [PMID: 37530488 DOI: 10.1002/chem.202301364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
Transition metal-doped two-dimensional (2D) semiconductor nanoplatelets (NPLs) with atomically precise thickness have attracted much research interest due to their inherent photo-physical properties. In this work, we have synthesized 2D Cu-doped CdS NPLs, investigated the charge transfer dynamics using ultrafast transient absorption spectroscopy, and fabricated an efficient photodetector device. A large Stoke's shifted emission at ~685 nm with an average lifetime of about ~1.45 μs is observed in Cu-doped CdS NPLs. Slower bleach recovery kinetics leads to large charge carrier separation in Cu-doped NPLs which is beneficial for photodetector applications. Cu-doped NPLs-based photodetectors exhibit high photocurrent, fast response (~120 ms), ~600 times higher photoresponsivity, and ~300 times higher detectivity (~4.1×1013 Jones) than undoped CdS NPLs. These excellent properties of Cu-doped CdS NPLs make this material an efficient alternative for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Anusri Medda
- School of Materials Sciences, Indian Association for the Cultivation of Science
| | - Soubhik Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, India
| |
Collapse
|
4
|
Dehnel J, Harchol A, Barak Y, Meir I, Horani F, Shapiro A, Strassberg R, de Mello Donegá C, Demir HV, Gamelin DR, Sharma K, Lifshitz E. Optically detected magnetic resonance spectroscopic analyses on the role of magnetic ions in colloidal nanocrystals. J Chem Phys 2023; 159:071001. [PMID: 37581419 DOI: 10.1063/5.0160787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Incorporating magnetic ions into semiconductor nanocrystals has emerged as a prominent research field for manipulating spin-related properties. The magnetic ions within the host semiconductor experience spin-exchange interactions with photogenerated carriers and are often involved in the recombination routes, stimulating special magneto-optical effects. The current account presents a comparative study, emphasizing the impact of engineering nanostructures and selecting magnetic ions in shaping carrier-magnetic ion interactions. Various host materials, including the II-VI group, halide perovskites, and I-III-VI2 in diverse structural configurations such as core/shell quantum dots, seeded nanorods, and nanoplatelets, incorporated with magnetic ions such as Mn2+, Ni2+, and Cu1+/2+ are highlighted. These materials have recently been investigated by us using state-of-the-art steady-state and transient optically detected magnetic resonance (ODMR) spectroscopy to explore individual spin-dynamics between the photogenerated carriers and magnetic ions and their dependence on morphology, location, crystal composition, and type of the magnetic ion. The information extracted from the analyses of the ODMR spectra in those studies exposes fundamental physical parameters, such as g-factors, exchange coupling constants, and hyperfine interactions, together providing insights into the nature of the carrier (electron, hole, dopant), its local surroundings (isotropic/anisotropic), and spin dynamics. The findings illuminate the importance of ODMR spectroscopy in advancing our understanding of the role of magnetic ions in semiconductor nanocrystals and offer valuable knowledge for designing magnetic materials intended for various spin-related technologies.
Collapse
Affiliation(s)
- Joanna Dehnel
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Adi Harchol
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yahel Barak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Itay Meir
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Faris Horani
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Arthur Shapiro
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Rotem Strassberg
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Celso de Mello Donegá
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Hilmi Volkan Demir
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University-NTU Singapore, 639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Kusha Sharma
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Alo A, Barros LWT, Nagamine G, Lemus JC, Planelles J, Movilla JL, Climente JI, Lee HJ, Bae WK, Padilha LA. Beyond Universal Volume Scaling: Tailoring Two-Photon Absorption in Nanomaterials by Heterostructure Design. NANO LETTERS 2023; 23:7180-7187. [PMID: 37506366 DOI: 10.1021/acs.nanolett.3c02131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Colloidal semiconductor nanomaterials present broadband, with large cross-section, two-photon absorption (2PA) spectra, which turn them into an important platform for applications that benefit from a high nonlinear optical response. Despite that, to date, the only means to control the magnitude of the 2PA cross-section is by changing the nanoparticle volume, as it follows a universal volume scale, independent of the material composition. As the emission spectrum is connected utterly to the nanomaterial dimensions, for a given material, the magnitude of the nonlinear optical response is also coupled to the emission spectra. Here, we demonstrate a means to decouple both effects by exploring the 2PA response of different types of heterostructures, tailoring the volume dependence of the 2PA cross-section due to the different dependence of the density of final states on the nanoparticle volume. By heterostructure engineering, one can obtain 1 order of magnitude enhancement of the 2PA cross-section with minimum emission spectra shift.
Collapse
Affiliation(s)
- Arthur Alo
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, P.O. Box 6165, 13083-859 Campinas, Sao Paulo, Brazil
| | - Leonardo W T Barros
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, P.O. Box 6165, 13083-859 Campinas, Sao Paulo, Brazil
| | - Gabriel Nagamine
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, P.O. Box 6165, 13083-859 Campinas, Sao Paulo, Brazil
| | - Jonathan C Lemus
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, P.O. Box 6165, 13083-859 Campinas, Sao Paulo, Brazil
| | - Josep Planelles
- Departament de Química Física i Analítica, Universitat Jaume I, 12080, Castelló, Spain
| | - José L Movilla
- Departament d'Educació i Didàctiques Específiques, Universitat Jaume I, 12080, Castelló, Spain
| | - Juan I Climente
- Departament de Química Física i Analítica, Universitat Jaume I, 12080, Castelló, Spain
| | - Hak June Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Wan Ki Bae
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Lazaro A Padilha
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, P.O. Box 6165, 13083-859 Campinas, Sao Paulo, Brazil
| |
Collapse
|
6
|
Huang B, Huang Y, Zhang H, Lu X, Gao X, Zhuang S. Electrochemical Control over the Optical Properties of II-VI Colloidal Nanoplatelets by Tailoring the Station of Extra Charge Carriers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21354-21363. [PMID: 37071128 DOI: 10.1021/acsami.2c21071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An electrochemical (EC) method has been successfully applied to regulate the optical properties of nanocrystals, such as reducing their gain threshold by EC doping and enhancing their photoluminescence intensity by EC filling of trap states. However, the processes of EC doping and filling are rarely reported simultaneously in a single study, hindering the understanding of their underlying interactions. Here, we report the spectroelectrochemical (SEC) studies of quasi-two-dimensional nanoplatelets (NPLs), intending to clarify the above issues. EC doping is successfully achieved in CdSe/CdZnS core/shell NPLs, with red-shifted photoluminescence and a reversal of the emission intensity trend. The injection of extra electrons (holes) into the conduction (valence) band edges needs high bias voltages, while the passivation/activation process of trap states with the shift of Fermi level starts at lower EC potentials. Then, we explore the role of excitation light conditions in these processes, different from existing SEC research studies. Interestingly, increasing the laser power density can hinder EC electron injection, whereas decreasing the excitation energy evades the passivation process of trap states. Moreover, we demonstrate that EC control strategies can be used to realize color display and anti-counterfeiting applications via simultaneously tailoring the photoluminescence intensity of red- and green-emitting NPLs.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yihuai Huang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P.R. China
| | - Huichao Zhang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P.R. China
| | - Xinmiao Lu
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P.R. China
| | - Xiumin Gao
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songlin Zhuang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Yu J, Hu S, Gao H, Delikanli S, Liu B, Jasieniak JJ, Sharma M, Demir HV. Observation of Phonon Cascades in Cu-Doped Colloidal Quantum Wells. NANO LETTERS 2022; 22:10224-10231. [PMID: 36326236 DOI: 10.1021/acs.nanolett.2c03427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electronic doping has endowed colloidal quantum wells (CQWs) with unique optical and electronic properties, holding great potential for future optoelectronic device concepts. Unfortunately, how photogenerated hot carriers interact with phonons in these doped CQWs still remains an open question. Here, through investigating the emission properties, we have observed an efficient phonon cascade process (i.e., up to 27 longitudinal optical phonon replicas are revealed in the broad Cu emission band at room temperature) and identified a giant Huang-Rhys factor (S ≈ 12.4, more than 1 order of magnitude larger than reported values of other inorganic semiconductor nanomaterials) in Cu-doped CQWs. We argue that such an ultrastrong electron-phonon coupling in Cu-doped CQWs is due to the dopant-induced lattice distortion and the dopant-enhanced density of states. These findings break the widely accepted consensus that electron-phonon coupling is typically weak in quantum-confined systems, which are crucial for optoelectronic applications of doped electronic nanomaterials.
Collapse
Affiliation(s)
- Junhong Yu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, People's Republic of China
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| | - Sujuan Hu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou510275, People's Republic of China
| | - Huayu Gao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou510275, People's Republic of China
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering and Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, Ankara06800, Turkey
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou510275, People's Republic of China
| | - Jacek J Jasieniak
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton Campus, Melbourne, Victoria3800, Australia
| | - Manoj Sharma
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
- ARC Centre of Excellence in Exciton Science, Department of Materials Science and Engineering, Monash University, Clayton Campus, Melbourne, Victoria3800, Australia
| | - Hilmi Volkan Demir
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
- Department of Electrical and Electronics Engineering and Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, Ankara06800, Turkey
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, Singapore639798, Singapore
| |
Collapse
|
8
|
Huang Y, Huang B, Zhang H, Lu X, Zhang Y, Gao X, Zhuang S. Electrochemical control of emission enhancement in solid-state nitrogen-doped carbon quantum dots. NANOSCALE 2022; 14:16170-16179. [PMID: 36278417 DOI: 10.1039/d2nr03691f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Because of their excellent optical and electrical properties, doped carbon quantum dots (CQDs) are expected to be used in novel film optoelectronic devices such as light-emitting diodes and solar cells. However, these device advancements are currently hindered by the elusive photophysical process of doped CQDs in solid-state films. Here, the optical properties of nitrogen-doped CQD (N-CQD) films are studied using spectro-electrochemical (SEC) methods. A distinctive photoluminescence (PL) enhancement phenomenon is observed, in which the PL intensity of the N-CQD film can be increased in both positive and negative electrochemical potential sweeps. The effect of positive potential on PL enhancement is greater (∼340% at +1.4 V), while that of negative potential is slightly weaker (∼10% at -1.4 V). To the best of our knowledge, no similar brightening process has been reported in all previous SEC studies on a variety of QDs, wherein the emission intensity can only exhibit enhancement under positive or negative potential at most. We propose that the above PL brightening is related to the weakened π-π stacking effect after electrochemical charge injection and nitrogen doping plays a crucial role in it. Finally, a low hysteresis reversible electrochemistry regulation of the PL spectrum can be achieved by increasing electrolyte fluidity with argon gas bubbling to reduce local charge aggregation.
Collapse
Affiliation(s)
- Yihuai Huang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Bo Huang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Huichao Zhang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Xinmiao Lu
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Yu Zhang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.
| | - Xiumin Gao
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Songlin Zhuang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
9
|
Abstract
Anisotropic heterostructures of colloidal nanocrystals embed size-, shape-, and composition-dependent electronic structure within variable three-dimensional morphology, enabling intricate design of solution-processable materials with high performance and programmable functionality. The key to designing and synthesizing such complex materials lies in understanding the fundamental thermodynamic and kinetic factors that govern nanocrystal growth. In this review, nanorod heterostructures, the simplest of anisotropic nanocrystal heterostructures, are discussed with respect to their growth mechanisms. The effects of crystal structure, surface faceting/energies, lattice strain, ligand sterics, precursor reactivity, and reaction temperature on the growth of nanorod heterostructures through heteroepitaxy and cation exchange reactions are explored with currently known examples. Understanding the role of various thermodynamic and kinetic parameters enables the controlled synthesis of complex nanorod heterostructures that can exhibit unique tailored properties. Selected application prospects arising from such capabilities are then discussed.
Collapse
Affiliation(s)
- Gryphon A Drake
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| | - Logan P Keating
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 United States
| |
Collapse
|
10
|
Wei T, Lian K, Tao J, Zhang H, Xu D, Han J, Fan C, Zhang Z, Bi W, Sun C. Mn-Doped Multiple Quantum Well Perovskites for Efficient Large-Area Luminescent Solar Concentrators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44572-44580. [PMID: 36125906 DOI: 10.1021/acsami.2c12834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luminescent solar concentrators (LSCs) can be used as large-area sunlight collectors, which show great potential in the application of building-integrated photovoltaic areas. Achieving highly efficient LSCs requires the suppression of reabsorption losses while maintaining a high photoluminescence quantum yield (PLQY) and broad absorption. Perovskites as the superstar fluorophores have recently emerged as candidates for large-area LSCs. However, highly emissive perovskites with a large Stokes shift and broad absorption have not been obtained up to now. Here, we devised a facile synthetic route to obtain Mn-doped multiple quantum well (MQW) Br-based perovskites. The Br-based perovskite host ensures broad absorption. Efficient energy transfer from the exciton to the Mn dopant produces a large Stokes shift and high PLQY simultaneously. By further coating the perovskites with Al2O3, the stability and PLQY are greatly elevated. A large area of liquid LSC (40 cm × 40 cm × 0.5 cm) is fabricated, which possesses an internal quantum efficiency (ηint) of 47% and an optical conversion efficiency (ηopt) reaching 11 ± 1%, which shows the highest value for large-area LSCs.
Collapse
Affiliation(s)
- Tong Wei
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Kai Lian
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Jiaqi Tao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Hu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Da Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Jiachen Han
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Chao Fan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Zihui Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Wengang Bi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Chun Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| |
Collapse
|
11
|
Guo H, Yang P, Hu J, Jiang A, Chen H, Niu X, Zhou Y. Band Structure Engineering and Defect Passivation of Cu x Ag 1-x InS 2/ZnS Quantum Dots to Enhance Photoelectrochemical Hydrogen Evolution. ACS OMEGA 2022; 7:9642-9651. [PMID: 35350365 PMCID: PMC8945144 DOI: 10.1021/acsomega.1c07045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The AgInS2 colloidal quantum dot (CQD) is a promising photoanode material with a relatively wide band gap for photoelectrochemical (PEC) solar-driven hydrogen (H2) evolution. However, the unsuitable energy band structure still forms undesired energy barriers and leads to serious charge carrier recombination with low solar to hydrogen conversion efficiency. Here, we propose to use the ZnS shell for defect passivation and Cu ion doping for band structure engineering to design and synthesize a series of Cu x Ag1-x InS2/ZnS CQDs. ZnS shell-assisted defect passivation suppresses charge carrier recombination because of the formation of the core/shell heterojunction interface, enhancing the performance of PEC devices with better charge separation and stability. More importantly, the tunable Cu doping concentration in AgInS2 CQDs leads to the shift of the quantum dot band alignment, which greatly promotes the interfacial charge separation and transfer. As a result, Cu x Ag1-x InS2/ZnS CQD photoanodes for PEC cells exhibit an enhanced photocurrent of 5.8 mA cm-2 at 0.8 V versus the RHE, showing excellent photoelectrocatalytic activity for H2 production with greater chemical-/photostability.
Collapse
Affiliation(s)
- Heng Guo
- School
of New Energy and Materials, Institute of Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China
| | - Peng Yang
- School
of New Energy and Materials, Institute of Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China
| | - Jie Hu
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 610054, China
| | - Anqiang Jiang
- School
of New Energy and Materials, Institute of Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China
| | - Haiyuan Chen
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 610054, China
| | - Xiaobin Niu
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 610054, China
| | - Ying Zhou
- School
of New Energy and Materials, Institute of Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
12
|
Mondal P, Viswanatha R. Insights into the Oxidation State of Cu Dopants in II-VI Semiconductor Nanocrystals. J Phys Chem Lett 2022; 13:1952-1961. [PMID: 35188398 DOI: 10.1021/acs.jpclett.1c04076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Luminescent Cu-doped semiconductor nanocrystals have played a pivotal role in the emergence of lighting and display applications for a long time. However, consensus regarding the Cu oxidation state and hence their emission mechanism has not been attained. Distinction between seemingly simple optically and magnetically active Cu2+ and inactive Cu1+ has surprisingly been the subject matter of debate in the literature for more than a decade. In this Perspective, we first discuss the fundamental quantum mechanical phenomenon explaining the optical properties of the monovalent and divalent Cu dopants. We then focus down on various techniques used to differentiate between these two fundamental mechanisms, their benefits, and their pitfalls arising in large part because of the lack of spatial separation. Hence, to obtain a cohesive story consistent with all the observations, we discuss recent results from single-molecule spectroscopy to understand the optical properties and hence the oxidation state of internally doped Cu in doped nanocrystals.
Collapse
|
13
|
Zhao F, Hu S, Xu C, Xiao H, Zhou X, Zu X, Peng S. Effect of Copper Doping on Electronic Structure and Optical Absorption of Cd 33Se 33 Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2531. [PMID: 34684972 PMCID: PMC8538518 DOI: 10.3390/nano11102531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023]
Abstract
The photophysical properties of Cu-doped CdSe quantum dots (QDs) can be affected by the oxidation state of Cu impurity, but disagreement still exists on the Cu oxidation state (+1 or +2) in these QDs, which is debated and poorly understood for many years. In this work, by using density functional theory (DFT)-based calculations with the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional, we clearly demonstrate that the incorporation of Cu dopants into the surface of the magic sized Cd33Se33 QD leads to non-magnetic Cu 3d orbitals distribution and Cu+1 oxidation state, while doping Cu atoms in the core region of QDs can lead to both Cu+1 and Cu+2 oxidation states, depending on the local environment of Cu atoms in the QDs. In addition, it is found that the optical absorption of the Cu-doped Cd33Se33 QD in the visible region is mainly affected by Cu concentration, while the absorption in the infrared regime is closely related to the oxidation state of Cu. The present results enable us to use the doping of Cu impurity in CdSe QDs to achieve special photophysical properties for their applications in high-efficiency photovoltaic devices. The methods used here to resolve the electronic and optical properties of Cu-doped CdSe QDs can be extended to other II-VI semiconductor QDs incorporating transition-metal ions with variable valence.
Collapse
Affiliation(s)
- Fengai Zhao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; (F.Z.); (C.X.); (X.Z.)
| | - Shuanglin Hu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; (F.Z.); (C.X.); (X.Z.)
| | - Canhui Xu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; (F.Z.); (C.X.); (X.Z.)
| | - Haiyan Xiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.X.); (X.Z.)
| | - Xiaosong Zhou
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; (F.Z.); (C.X.); (X.Z.)
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.X.); (X.Z.)
| | - Shuming Peng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; (F.Z.); (C.X.); (X.Z.)
| |
Collapse
|
14
|
Carulli F, Pinchetti V, Zaffalon ML, Camellini A, Rotta Loria S, Moro F, Fanciulli M, Zavelani-Rossi M, Meinardi F, Crooker SA, Brovelli S. Optical and Magneto-Optical Properties of Donor-Bound Excitons in Vacancy-Engineered Colloidal Nanocrystals. NANO LETTERS 2021; 21:6211-6219. [PMID: 34260252 PMCID: PMC8397387 DOI: 10.1021/acs.nanolett.1c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Controlled insertion of electronic states within the band gap of semiconductor nanocrystals (NCs) is a powerful tool for tuning their physical properties. One compelling example is II-VI NCs incorporating heterovalent coinage metals in which hole capture produces acceptor-bound excitons. To date, the opposite donor-bound exciton scheme has not been realized because of the unavailability of suitable donor dopants. Here, we produce a model system for donor-bound excitons in CdSeS NCs engineered with sulfur vacancies (VS) that introduce a donor state below the conduction band (CB), resulting in long-lived intragap luminescence. VS-localized electrons are almost unaffected by trapping, and suppression of thermal quenching boosts the emission efficiency to 85%. Magneto-optical measurements indicate that the VS are not magnetically coupled to the NC bands and that the polarization properties are determined by the spin of the valence-band photohole, whose spin flip is massively slowed down due to suppressed exchange interaction with the donor-localized electron.
Collapse
Affiliation(s)
- Francesco Carulli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Valerio Pinchetti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Matteo L. Zaffalon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Andrea Camellini
- Dipartimento
di Energia, Politecnico di Milano, IT-20133 Milano, Italy
| | | | - Fabrizio Moro
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Marco Fanciulli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | | | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Scott A. Crooker
- National
High Magnetic Field Laboratory, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| |
Collapse
|
15
|
Bhattacharyya B, Mukherjee A, Mahadevu R, Pandey A. Tuning radiative lifetimes in semiconductor quantum dots. J Chem Phys 2021; 154:074707. [PMID: 33607898 DOI: 10.1063/5.0036676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Photonic devices stand to benefit from the development of chromophores with tunable, precisely controlled spontaneous emission lifetimes. Here, we demonstrate a method to continuously tune the radiative emission lifetimes of a class of chromophores by varying the density of electronic states involved in the emission process. In particular, we examined the peculiar composition-dependent electronic structure of copper doped CdZnSe quantum dots. It is shown that the nature and density of electronic states involved with the emission process is a function of copper inclusion level, providing a very direct handle for controlling the spontaneous lifetimes. The spontaneous emission lifetimes are estimated by examining the ratios of emission lifetimes to absolute quantum yields and also measured directly by ultrafast luminescence upconversion experiments. We find excellent agreement between these classes of experiments. This scheme enables us to tune spontaneous emission lifetimes by three orders of magnitude from ∼15 ns to over ∼7 µs, which is unprecedented in existing lumophores.
Collapse
Affiliation(s)
- Biswajit Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Arpita Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rekha Mahadevu
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anshu Pandey
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Bai X, Purcell-Milton F, Gun'ko YK. Controlled synthesis of luminescent CIZS/ZnS/ZnS core/shell/shell nanoheterostructures. CrystEngComm 2021. [DOI: 10.1039/d1ce00631b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a systematic investigation of the influence of reaction temperatures and times on the morphologies and optical properties of resulting CIZS/ZnS/ZnS quantum nanoheterostructures with “giant” ZnS shell (size >10 nm).
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN institute, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Finn Purcell-Milton
- School of Chemistry and CRANN institute, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Yurii K. Gun'ko
- School of Chemistry and CRANN institute, Trinity College Dublin, Dublin 2, Dublin, Ireland
| |
Collapse
|
17
|
Long Z, Zhang W, Tian J, Chen G, Liu Y, Liu R. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01228a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We discuss the synthesis and luminescence mechanisms of CuInS2 QDs, the strategies to improve their luminous performance and their potential application in light-emitting devices, solar energy conversion, and the biomedical field.
Collapse
Affiliation(s)
- Zhiwei Long
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Wenda Zhang
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Junhang Tian
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Guantong Chen
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Yuanhong Liu
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Ronghui Liu
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| |
Collapse
|
18
|
Ronchi A, Capitani C, Pinchetti V, Gariano G, Zaffalon ML, Meinardi F, Brovelli S, Monguzzi A. High Photon Upconversion Efficiency with Hybrid Triplet Sensitizers by Ultrafast Hole-Routing in Electronic-Doped Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002953. [PMID: 32761660 DOI: 10.1002/adma.202002953] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Low-power photon upconversion (UC) based on sensitized triplet-triplet annihilation (sTTA) is considered as the most promising upward wavelength-shifting technique to enhance the light-harvesting capability of solar devices. Colloidal nanocrystals (NCs) with conjugated organic ligands have been recently proposed to extend the limited light-harvesting capability of molecular absorbers. Key to their functioning is efficient energy transfer (ET) from the NC to the triplet state of the ligands that sensitize free annihilator moieties responsible for the upconverted luminescence. The ET efficiency is typically limited by parasitic processes, above all nonradiative hole-transfer to the ligand highest occupied molecular orbital (HOMO). Here, a new exciton-manipulation approach is demonstrated that enables loss-free ET by electronically doping CdSe NCs with gold impurities that introduce a hole-accepting intragap state above the HOMO energy of 9-anthracene acid ligands. Upon photoexcitation, the NC photoholes are rapidly routed to the Au-level, producing a long-lived bound exciton in perfect resonance with the ligand triplet. This hinders hole-transfer leading to ≈100% efficient ET that translates into an upconversion quantum yield as high as ≈12% (≈24% in the normalized definition), which is the highest performance for NC-based upconverters based on sTTA to date and approaches the record efficiency of optimized organic systems.
Collapse
Affiliation(s)
- Alessandra Ronchi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
| | - Chiara Capitani
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
- Glass to Power SpA, Via Fortunato Zeni 8, Rovereto, I-38068, Italy
| | - Valerio Pinchetti
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
| | | | - Matteo L Zaffalon
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
- Glass to Power SpA, Via Fortunato Zeni 8, Rovereto, I-38068, Italy
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
- Glass to Power SpA, Via Fortunato Zeni 8, Rovereto, I-38068, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi Milano Bicocca, via R. Cozzi 55, Milan, 20125, Italy
| |
Collapse
|
19
|
Bai X, Purcell-Milton F, Gun'ko YK. Near-infrared-emitting CIZSe/CIZS/ZnS colloidal heteronanonail structures. NANOSCALE 2020; 12:15295-15303. [PMID: 32648560 DOI: 10.1039/d0nr02777d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multicomponent quantum nanostructures have attracted significant attention due to their potential applications in photovoltaics, optoelectronics and bioimaging. However, the preparation of anisotropic quaternary nanoheterostructures such as Cu-In-Zn-S(Se) (CIZS and CIZSe) is still very poorly explored and understood. Here, we report the synthesis and studies of NIR emissive CIZSe/CIZS/ZnS core/shell/shell nanoheterostructures with a unique hetero-nanonail (HNN) morphology. In our approach, wurtzite (WZ) CIZSe/CIZS core/shell QDs have been prepared by depositing a CIZS shell onto a previously synthesized chalcopyrite CIZSe QD core using a seeded growth technique. Following careful control of the ZnS shell growth resulted in the formation of the distinct nail-like CIZSe/CIZS/ZnS nanoheterostructure, where the CIZSe/CIZS core/shell QD is located near the "head" of the nail. The emission in the NIR region of the CIZSe/CIZS/ZnS nanocrystals is assigned to the CIZSe/CIZS core/shell quantum nanostructure. The CIZSe/CIZS/ZnS HNNs are particularly interesting due to a range of potential applications including bioimaging, biosensing, energy harvesting and NIR photodetectors. Finally, we also report the successful controlled growth of gold nanoparticles on the surface of the CIZSe/CIZS/ZnS nanonail-like heterostructure and the investigation of the resulting multimodal nanocomposites.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland.
| | - Finn Purcell-Milton
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland. and BEACON, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland
| | - Yurii K Gun'ko
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland. and BEACON, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland and ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
20
|
Mondal P, Chakraborty S, Grandhi GK, Viswanatha R. Copper Doping in II-VI Semiconductor Nanocrystals: Single-Particle Fluorescence Study. J Phys Chem Lett 2020; 11:5367-5372. [PMID: 32522003 DOI: 10.1021/acs.jpclett.0c01570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Copper doping in II-VI semiconductor nanocrystals (NCs) has sparked enormous debate regarding the oxidation state of Cu ions and their hugely differing consequences in optoelectronic applications. The identity of a magnetically active Cu2+ ion or a magnetically inactive d10 Cu+ ion has generally been probed using optical techniques, and confusion arises from the spatial clutter that is part of the technique. One major probe that could declutter the data obtained from ensemble emission is single-particle fluorescence spectroscopy. In this work, using this very technique along with X-ray absorption spectroscopy probing the local environment of dopant ions, we study Cu-doped II-VI semiconductor NCs to find conclusive evidence on the oxidation state of Cu dopants and hence the mechanism of their emission. Detailed analysis of blinking properties has been used to study the single-particle nature of the NCs.
Collapse
|
21
|
Luo D, Wang L, Qiu Y, Huang R, Liu B. Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1226. [PMID: 32599722 PMCID: PMC7353084 DOI: 10.3390/nano10061226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
In recent years, impurity-doped nanocrystal light-emitting diodes (LEDs) have aroused both academic and industrial interest since they are highly promising to satisfy the increasing demand of display, lighting, and signaling technologies. Compared with undoped counterparts, impurity-doped nanocrystal LEDs have been demonstrated to possess many extraordinary characteristics including enhanced efficiency, increased luminance, reduced voltage, and prolonged stability. In this review, recent state-of-the-art concepts to achieve high-performance impurity-doped nanocrystal LEDs are summarized. Firstly, the fundamental concepts of impurity-doped nanocrystal LEDs are presented. Then, the strategies to enhance the performance of impurity-doped nanocrystal LEDs via both material design and device engineering are introduced. In particular, the emergence of three types of impurity-doped nanocrystal LEDs is comprehensively highlighted, namely impurity-doped colloidal quantum dot LEDs, impurity-doped perovskite LEDs, and impurity-doped colloidal quantum well LEDs. At last, the challenges and the opportunities to further improve the performance of impurity-doped nanocrystal LEDs are described.
Collapse
Affiliation(s)
- Dongxiang Luo
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China;
| | - Lin Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;
| | - Ying Qiu
- Guangdong R&D Center for Technological Economy, Guangzhou 510000, China
| | - Runda Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
| | - Baiquan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Lee CS, Shim SJ, Kim TH. Scalable Preparation of Low-Defect Graphene by Urea-Assisted Liquid-Phase Shear Exfoliation of Graphite and Its Application in Doxorubicin Analysis. NANOMATERIALS 2020; 10:nano10020267. [PMID: 32033327 PMCID: PMC7075141 DOI: 10.3390/nano10020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
The mass production of graphene is of great interest for commercialization and industrial applications. Here, we demonstrate that high-quality graphene nanosheets can be produced in large quantities by liquid-phase shear exfoliation under ambient conditions in organic solvents, such as 1-methyl-2-pyrrolidinone (NMP), with the assistance of urea as a stabilizer. We can achieve low-defect graphene (LDG) using this approach, which is relatively simple and easily available, thereby rendering it to be an efficient route for the mass production of graphene. We also demonstrate the electrochemical sensing of an LDG-modified electrode for the determination of doxorubicin (DOX). The sensor shows an enhanced electrocatalytic property towards DOX, leading to a high sensitivity (7.23 × 10-1 μM/μA) with a detection limit of 39.3 nM (S/N = 3).
Collapse
|
23
|
Yadav AN, Singh AK, Chauhan D, Solanki PR, Kumar P, Singh K. Evaluation of dopant energy and Stokes shift in Cu-doped CdS quantum dots via spectro-electrochemical probing. NEW J CHEM 2020. [DOI: 10.1039/d0nj03004j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Copper (Cu) doped II–VI semiconductor quantum dots (QDs) manifest high luminescent dopant emission with excellent tunability.
Collapse
Affiliation(s)
- Amar Nath Yadav
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | | | - Deepika Chauhan
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Pratima R. Solanki
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | | | - Kedar Singh
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
24
|
Li C, Wu P. Cu-doped quantum dots: a new class of near-infrared emitting fluorophores for bioanalysis and bioimaging. LUMINESCENCE 2019; 34:782-789. [PMID: 31297953 DOI: 10.1002/bio.3679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/25/2023]
Abstract
Transition metal ion-doped quantum dots (QDs) exhibit unique optical and photophysical properties that offer significant advantages over undoped QDs, such as larger Stokes shift to avoid self-absorption/energy transfer, longer excited-state lifetimes, wider spectral window, and improved chemical and thermal stability. Among the doped QDs emitters, Cu is widely introduced into the doped QDs as novel, efficient, stable, and tunable optical materials that span a wide spectrum from blue to near-infrared (NIR) light. Their unique physical and chemical characteristics enable the use of Cu-doped QDs as NIR labels for bioanalysis and bioimaging. In this review, we discuss doping mechanisms and optical properties of Cu-doped QDs that are capable of NIR emission. Applications of Cu-doped QDs in in vitro biosensing and in in vivo bioimaging are highlighted. Moreover, a prospect of the future of Cu-doped QDs for bioanalysis and bioimaging are also summarized.
Collapse
Affiliation(s)
- Chenghui Li
- Analytical & Testing Centre, Sichuan University, Chengdu, China
| | - Peng Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Di Q, Zhu X, Liu J, Zhang X, Shang H, Chen W, Liu J, Rong H, Xu M, Zhang J. High-Performance Quantum Dots with Synergistic Doping and Oxide Shell Protection Synthesized by Cation Exchange Conversion of Ternary-Composition Nanoparticles. J Phys Chem Lett 2019; 10:2606-2615. [PMID: 31034234 DOI: 10.1021/acs.jpclett.9b00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The insertion of cation impurities into quantum dots (QDs) as a dopant has been proved to be an efficient way to tailor their optical, electronic, and magnetic properties; however, the low quantum yield (QY) and poor photostability strongly limit their further applications. We report a strategy to coat a thin oxide shell around the heterovalent doped QDs to enhance their QYs and photostabilities simultaneously. In the case of Ag+-doped CdS QDs, the controlled cation exchange reaction between Cd2+ and ternary Ag3SbS3 nanoparticles not only realizes the Ag+ doping in CdS QDs but also generates a thin Sb2O3 shell around the surface of the QDs. Enabled by such, as-prepared CdS:Ag@Sb2O3 QDs exhibited enhanced photostability and high QY of 66.5%. We envision that the findings presented here will inspire more novel protocols for advancing the practical applications of doped QDs.
Collapse
Affiliation(s)
- Qiumei Di
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xiyue Zhu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xiaobin Zhang
- Center for Nano Materials and Technology , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Huishan Shang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jiajia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Meng Xu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
26
|
Garoz‐Ruiz J, Perales‐Rondon JV, Heras A, Colina A. Spectroelectrochemistry of Quantum Dots. Isr J Chem 2019. [DOI: 10.1002/ijch.201900028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesus Garoz‐Ruiz
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Juan V. Perales‐Rondon
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Aranzazu Heras
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Alvaro Colina
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| |
Collapse
|
27
|
Bi C, Wang S, Li Q, Kershaw SV, Tian J, Rogach AL. Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots with Strong Blue Emission. J Phys Chem Lett 2019; 10:943-952. [PMID: 30763095 DOI: 10.1021/acs.jpclett.9b00290] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
All-inorganic perovskite quantum dots (QDs) have emerged as potentially promising materials for lighting and displays, but their poor thermal stability restricts their practical application. In addition, optical characteristics of the blue-emitting CsPbX3 QDs lag behind their red- and green-emitting counterparts. Herein, we addressed these two issues by doping divalent Cu2+ ions into the perovskite lattice to form CsPb1- xCu xX3 QDs. Extended X-ray absorption fine structure (EXAFS) measurements reveal that doping smaller Cu2+ guest ions induces a lattice contraction and eliminates halide vacancies, which leads to an increased lattice formation energy and improved short-range order of the doped perovskite QDs. This results in the improvement of both the thermal stability and the optical performance of CsPb1- xCu x(Br/Cl)3 QDs, which exhibit bright blue photoluminescence at 450-460 nm, with a high quantum yield of over 80%. The CsPb1- xCu xX3 QD films maintain stable luminescence performance even when annealed at temperatures of over 250 °C.
Collapse
Affiliation(s)
- Chenghao Bi
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Shixun Wang
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Qiang Li
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon , Hong Kong SAR
| | - Jianjun Tian
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon , Hong Kong SAR
| |
Collapse
|
28
|
Capitani C, Pinchetti V, Gariano G, Santiago-González B, Santambrogio C, Campione M, Prato M, Brescia R, Camellini A, Bellato F, Carulli F, Anand A, Zavelani-Rossi M, Meinardi F, Crooker SA, Brovelli S. Quantized Electronic Doping towards Atomically Controlled "Charge-Engineered" Semiconductor Nanocrystals. NANO LETTERS 2019; 19:1307-1317. [PMID: 30663314 DOI: 10.1021/acs.nanolett.8b04904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
"Charge engineering" of semiconductor nanocrystals (NCs) through so-called electronic impurity doping is a long-standing challenge in colloidal chemistry and holds promise for ground-breaking advancements in many optoelectronic, photonic, and spin-based nanotechnologies. To date, our knowledge is limited to a few paradigmatic studies on a small number of model compounds and doping conditions, with important electronic dopants still unexplored in nanoscale systems. Equally importantly, fine-tuning of charge engineered NCs is hampered by the statistical limitations of traditional approaches. The resulting intrinsic doping inhomogeneity restricts fundamental studies to statistically averaged behaviors and complicates the realization of advanced device concepts based on their advantageous functionalities. Here we aim to address these issues by realizing the first example of II-VI NCs electronically doped with an exact number of heterovalent gold atoms, a known p-type acceptor impurity in bulk chalcogenides. Single-dopant accuracy across entire NC ensembles is obtained through a novel non-injection synthesis employing ligand-exchanged gold clusters as "quantized" dopant sources to seed the nucleation of CdSe NCs in organic media. Structural, spectroscopic, and magneto-optical investigations trace a comprehensive picture of the physical processes resulting from the exact doping level of the NCs. Gold atoms, doped here for the first time into II-VI NCs, are found to incorporate as nonmagnetic Au+ species activating intense size-tunable intragap photoluminescence and artificially offsetting the hole occupancy of valence band states. Fundamentally, the transient conversion of Au+ to paramagnetic Au2+ (5d9 configuration) under optical excitation results in strong photoinduced magnetism and diluted magnetic semiconductor behavior revealing the contribution of individual paramagnetic impurities to the macroscopic magnetism of the NCs. Altogether, our results demonstrate a new chemical approach toward NCs with physical functionalities tailored to the single impurity level and offer a versatile platform for future investigations and device exploitation of individual and collective impurity processes in quantum confined structures.
Collapse
Affiliation(s)
- Chiara Capitani
- Glass to Power SpA, Via Fortunato Zeni 8 , I-38068 Rovereto, , Italy
| | | | - Graziella Gariano
- Glass to Power SpA, Via Fortunato Zeni 8 , I-38068 Rovereto, , Italy
| | - Beatriz Santiago-González
- International Iberian Nanotechnology Laboratory, Nanophotonics Department , Ultrafast Bio- and Nanophotonics Group , Avenida Mestre José Veiga s/n , 4715-330 Braga , Portugal
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze , Università degli Studi di Milano-Bicocca , Piazza della Scienza 2 , I-20126 Milano , Italy
| | | | - Mirko Prato
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Andrea Camellini
- Dipartimento di Energia , Politecnico di Milano and IFN-CNR , Milano , Italy
| | | | | | | | | | | | - Scott A Crooker
- National High Magnetic Field Laboratory , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | |
Collapse
|
29
|
Balog Á, Samu GF, Kamat PV, Janáky C. Optoelectronic Properties of CuI Photoelectrodes. J Phys Chem Lett 2019; 10:259-264. [PMID: 30601661 PMCID: PMC6340132 DOI: 10.1021/acs.jpclett.8b03242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/17/2018] [Indexed: 06/01/2023]
Abstract
Detailed mechanistic understanding of the optoelectronic features is a key factor in designing efficient and stable photoelectrodes. In situ spectroelectrochemical methods were employed to scrutinize the effect of trap states on the optical and electronic properties of CuI photoelectrodes and to assess their stability against (photo)electrochemical corrosion. The excitonic band in the absorption spectrum and the Raman spectral features were directly influenced by the applied bias potential. These spectral changes exhibit a good correlation with the alterations observed in the charge-transfer resistance. Interestingly, the population and depopulation of the trap states, which are responsible for the changes in both the optical and electronic properties, occur in a different potential/energy regime. Although cathodic photocorrosion of CuI is thermodynamically favored, this process is kinetically hindered, thus providing good stability in photoelectrochemical operation.
Collapse
Affiliation(s)
- Ádám Balog
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - Gergely F. Samu
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
- ELI-ALPS
Research Institute, Dugonics
sq. 13, Szeged 6720, Hungary
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Prashant V. Kamat
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
- Radiation
Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Csaba Janáky
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
- ELI-ALPS
Research Institute, Dugonics
sq. 13, Szeged 6720, Hungary
| |
Collapse
|
30
|
Bai X, Purcell-Milton F, Gun'ko YK. Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures. NANOMATERIALS 2019; 9:nano9010085. [PMID: 30634642 PMCID: PMC6359286 DOI: 10.3390/nano9010085] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022]
Abstract
This review summaries the optical properties, recent progress in synthesis, and a range of applications of luminescent Cu-based ternary or quaternary quantum dots (QDs). We first present the unique optical properties of the Cu-based multicomponent QDs, regarding their emission mechanism, high photoluminescent quantum yields (PLQYs), size-dependent bandgap, composition-dependent bandgap, broad emission range, large Stokes’ shift, and long photoluminescent (PL) lifetimes. Huge progress has taken place in this area over the past years, via detailed experimenting and modelling, giving a much more complete understanding of these nanomaterials and enabling the means to control and therefore take full advantage of their important properties. We then fully explore the techniques to prepare the various types of Cu-based ternary or quaternary QDs (including anisotropic nanocrystals (NCs), polytypic NCs, and spherical, nanorod and tetrapod core/shell heterostructures) are introduced in subsequent sections. To date, various strategies have been employed to understand and control the QDs distinct and new morphologies, with the recent development of Cu-based nanorod and tetrapod structure synthesis highlighted. Next, we summarize a series of applications of these luminescent Cu-based anisotropic and core/shell heterostructures, covering luminescent solar concentrators (LSCs), bioimaging and light emitting diodes (LEDs). Finally, we provide perspectives on the overall current status, challenges, and future directions in this field. The confluence of advances in the synthesis, properties, and applications of these Cu-based QDs presents an important opportunity to a wide-range of fields and this piece gives the reader the knowledge to grasp these exciting developments.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - Finn Purcell-Milton
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - Yuri K Gun'ko
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| |
Collapse
|
31
|
van der Stam W, de Graaf M, Gudjonsdottir S, Geuchies JJ, Dijkema JJ, Kirkwood N, Evers WH, Longo A, Houtepen AJ. Tuning and Probing the Distribution of Cu + and Cu 2+ Trap States Responsible for Broad-Band Photoluminescence in CuInS 2 Nanocrystals. ACS NANO 2018; 12:11244-11253. [PMID: 30372029 PMCID: PMC6262458 DOI: 10.1021/acsnano.8b05843] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The processes that govern radiative recombination in ternary CuInS2 (CIS) nanocrystals (NCs) have been heavily debated, but recently, several research groups have come to the same conclusion that a photoexcited electron recombines with a localized hole on a Cu-related trap state. Furthermore, it has been observed that single CIS NCs display narrower photoluminescence (PL) line widths than the ensemble, which led to the conclusion that within the ensemble there is a distribution of Cu-related trap states responsible for PL. In this work, we probe this trap-state distribution with in situ photoluminescence spectroelectrochemistry. We find that Cu2+ states result in individual "dark" nanocrystals, whereas Cu+ states result in "bright" NCs. Furthermore, we show that we can tune the PL position, intensity, and line width in a cyclic fashion by injecting or removing electrons from the trap-state distribution, thereby converting a subset of "dark" Cu2+ containing NCs into "bright" Cu+ containing NCs and vice versa. The electrochemical injection of electrons results in brightening, broadening, and a red shift of the PL, in line with the activation of a broad distribution of "dark" NCs (Cu2+ states) into "bright" NCs (Cu+ states) and a rise of the Fermi level within the ensemble trap-state distribution. The opposite trend is observed for electrochemical oxidation of Cu+ states into Cu2+. Our work shows that there is a direct correlation between the line width of the ensemble Cu+/Cu2+ trap-state distribution and the characteristic broad-band PL feature of CIS NCs and between Cu2+ cations in the photoexcited state (bright) and in the electrochemically oxidized ground state (dark).
Collapse
Affiliation(s)
- Ward van der Stam
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| | - Max de Graaf
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Solrun Gudjonsdottir
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jaco J. Geuchies
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jurgen J. Dijkema
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Nicholas Kirkwood
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wiel H. Evers
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alessandro Longo
- Netherlands
Organization for Scientific Research (NWO), Dutch-Belgian Beamline,
ESRF, The European Synchrotron, CS40220, 38043, 71 Avenue des Martyrs, 38000 Grenoble, France
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
32
|
van der Stam W, du Fossé I, Grimaldi G, Monchen JOV, Kirkwood N, Houtepen AJ. Spectroelectrochemical Signatures of Surface Trap Passivation on CdTe Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:8052-8061. [PMID: 30487664 PMCID: PMC6251563 DOI: 10.1021/acs.chemmater.8b03893] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/22/2018] [Indexed: 05/19/2023]
Abstract
The photoluminescence (PL) quantum yield of semiconductor nanocrystals (NCs) is hampered by in-gap trap states due to dangling orbitals on the surface of the nanocrystals. While crucial for the rational design of nanocrystals, the understanding of the exact origin of trap states remains limited. Here, we treat CdTe nanocrystal films with different metal chloride salts and we study the effect on their optical properties with in situ spectroelectrochemistry, recording both changes in absorption and photoluminescence. For untreated CdTe NC films we observe a strong increase in the PL intensity as the Fermi-level is raised electrochemically and trap states in the bandgap become occupied with electrons. Upon passivation of these in-gap states we observe an increase in the steady state PL and, for the best treatments, we observe that the PL no longer depends on the position of the Fermi level in the band gap, demonstrating the effective removal of trap states. The most effective treatment is obtained for Z-type passivation with CdCl2, for which the steady state PL increased by a factor 40 and the PL intensity became nearly unaffected by the applied potential. X-ray Photoelectron Spectroscopy measurements show that treatment with ZnCl2 mainly leads to X-type passivation with chloride ions, which increased the PL intensity by a factor four and made the PL less susceptible to modulation by applying a potential with respect to unpassivated nanocrystal films. We elucidate the spectroelectrochemical signatures of trap states within the bandgap and conclude that undercoordinated Te at the surface constitutes the largest contribution to in-gap trap states, but that other surface states that likely originate on Cd atoms should also be considered.
Collapse
|
33
|
Huang B, Yang H, Zhang L, Yuan Y, Cui Y, Zhang J. Effect of surface/interfacial defects on photo-stability of thick-shell CdZnSeS/ZnS quantum dots. NANOSCALE 2018; 10:18331-18340. [PMID: 30255910 DOI: 10.1039/c8nr04224a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High color-purity CdZnSeS alloy cores and CdZnSeS/ZnS core/shell quantum dots (QDs) with 3, 11 and 17 monolayer (ML) ZnS shells are synthesized, and the narrow emission (full-width at half-maximum: ∼21 nm) is ascribed to the high size uniformity of QDs and the narrow linewidth of single QD spectra. Ultraviolet (UV) irradiation experiments show that the photo-stabilities of the samples improve remarkably with increasing shell thickness, but the photo-stability clearly decreases when the shell thickness is further increased to 17 MLs. Spectroelectrochemical (SEC) measurements indicate that the exciton recombination of QDs is mainly affected by surface electronic traps, and the interaction between exciton recombination centers and surface traps is significantly weakened with the increase in shell thickness due to the decreased wave function overlap of the exciton and surface traps. In the case of the 17 ML shell, the reduced photo-stability is due to increased interfacial defects caused by stress release during UV illumination, which can be proved by high-resolution transmission electron microscopy images and X-ray diffraction patterns. Furthermore, based on QDs' theoretical mass calculations, a photo-stable white light-emitting diode is fabricated by encapsulating with a thick-shell QD, and an exceptional color gamut of 130% relative to the National Television Systems Committee color space can be achieved. Also, its colorimetry and photometry are discussed in detail.
Collapse
Affiliation(s)
- Bo Huang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | | | | | | | | | | |
Collapse
|
34
|
Pinchetti V, Di Q, Lorenzon M, Camellini A, Fasoli M, Zavelani-Rossi M, Meinardi F, Zhang J, Crooker SA, Brovelli S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. NATURE NANOTECHNOLOGY 2018; 13:145-151. [PMID: 29255289 DOI: 10.1038/s41565-017-0024-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag+ is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag+ is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag+. This optical activation process and the associated modification of the electronic configuration of Ag+ remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag+ to paramagnetic Ag2+. The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.
Collapse
Affiliation(s)
- Valerio Pinchetti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Qiumei Di
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Monica Lorenzon
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy
| | | | - Mauro Fasoli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy
| | | | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.
| | - Scott A Crooker
- National High Magnetic Field Laboratory, Los Alamos, NM, USA
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy.
| |
Collapse
|
35
|
Hughes KE, Hartstein KH, Gamelin DR. Photodoping and Transient Spectroscopies of Copper-Doped CdSe/CdS Nanocrystals. ACS NANO 2018; 12:718-728. [PMID: 29286633 DOI: 10.1021/acsnano.7b07879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Colloidal Cu+-doped CdSe/CdS core/shell semiconductor nanocrystals (NCs) are investigated in their as-prepared and degenerately n-doped forms using time-resolved photoluminescence and transient-absorption spectroscopies. Photoluminescence from Cu+:CdSe/CdS NCs is dominated by recombination of delocalized conduction-band (CB) electrons with copper-localized holes. In addition to prominent bleaching of the first excitonic absorption feature, transient-absorption measurements show bleaching of the sub-bandgap copper-to-CB charge-transfer (MLCBCT) absorption band and also reveal a photoinduced midgap valence-band (VB)-to-copper charge-transfer (LVBMCT) absorption band that extends into the near-infrared, as predicted by recent computations. The photoluminescence of these NCs is substantially diminished upon introduction of excess CB electrons via photodoping. Time-resolved photoluminescence measurements reveal that the MLCBCT excited state is still formed upon photoexcitation of the n-doped Cu+:CdSe/CdS NCs, but its luminescence is quenched by a fast (picosecond) three-carrier trap-assisted Auger recombination process involving two CB electrons and one copper-bound hole.
Collapse
Affiliation(s)
- Kira E Hughes
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Kimberly H Hartstein
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| |
Collapse
|
36
|
Choi D, Pyo JY, Jang DJ. Impurity Location-Dependent Relaxation Dynamics of Cu:CdS Quantum Dots. NANOSCALE RESEARCH LETTERS 2017; 12:49. [PMID: 28101854 PMCID: PMC5241571 DOI: 10.1186/s11671-017-1832-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Various types of 2% Cu-incorporated CdS (Cu:CdS) quantum dots (QDs) with very similar sizes have been prepared via a water soluble colloidal method. The locations of Cu impurities in CdS host nanocrystals have been controlled by adopting three different synthetic ways of doping, exchange, and adsorption to understand the impurity location-dependent relaxation dynamics of charge carriers. The oxidation state of incorporated Cu impurities has been found to be +1 and the band-gap energy of Cu:CdS QDs decreases as Cu2S forms at the surfaces of CdS QDs. Broad and red-shifted emission with a large Stokes shift has been observed for Cu:CdS QDs as newly produced Cu-related defects become luminescent centers. The energetically favored hole trapping of thiol molecules, as well as the local environment, inhibits the radiative recombination processes of Cu:CdS QDs, thus resulting in low photoluminescence. Upon excitation, an electron is promoted to the conduction band, leaving a hole on the valence band. The hole is transferred to the Cu+ d-state, changing Cu+ into Cu2+, which then participates in radiative recombination with an electron. Electrons in the conduction band are ensnared into shallow-trap sites within 52 ns. The electrons can be further captured on the time scale of 260 ns into deep-trap sites, where electrons recombine with holes in 820 ns. Our in-depth analysis of carrier relaxation has shown that the possibilities of both nonradiative recombination and energy transfer to Cu impurities become high when Cu ions are located at the surface of CdS QDs.
Collapse
Affiliation(s)
- Dayeon Choi
- Department of Chemistry, Seoul National University, NS60, Seoul, 08826 Republic of Korea
| | - Ji-Young Pyo
- Department of Chemistry, Seoul National University, NS60, Seoul, 08826 Republic of Korea
| | - Du-Jeon Jang
- Department of Chemistry, Seoul National University, NS60, Seoul, 08826 Republic of Korea
| |
Collapse
|
37
|
Zhang J, Di Q, Liu J, Bai B, Liu J, Xu M, Liu J. Heterovalent Doping in Colloidal Semiconductor Nanocrystals: Cation-Exchange-Enabled New Accesses to Tuning Dopant Luminescence and Electronic Impurities. J Phys Chem Lett 2017; 8:4943-4953. [PMID: 28925707 DOI: 10.1021/acs.jpclett.7b00351] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heterovalent doping in colloidal semiconductor nanocrystals (CSNCs), with provisions of extra electrons (n-type doping) or extra holes (p-type doping), could enhance their performance of optical and electronical properties. In view of the challenges imposed by the intrinsic self-purification, self-quenching, and self-compensation effects of CSNCs, we outline the progress on heterovalent doping in CSNCs, with particular focus on the cation-exchange-enabled tuning of dopant luminescence and electronic impurities. Thus, the well-defined substitutional or interstitial heterovalent doping in a deep position of an isolated nanocrystal has been fulfilled. We also envision that new coordination ligand-initiated cation exchange would bring about more choices of heterovalent dopants. With the aid of high-resolution characterization methods, the accurate atom-specific dopant location and distribution could be confirmed clearly. Finally, new applications, some of the remaining unanswered questions, and future directions of this field are presented.
Collapse
Affiliation(s)
- Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Qiumei Di
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Jia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Bing Bai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Jian Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Meng Xu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Jiajia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| |
Collapse
|
38
|
Pinchetti V, Lorenzon M, McDaniel H, Lorenzi R, Meinardi F, Klimov VI, Brovelli S. Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I-III-VI 2 Nanocrystals. NANO LETTERS 2017; 17:4508-4517. [PMID: 28613906 DOI: 10.1021/acs.nanolett.7b02040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ternary CuInS2 nanocrystals (CIS NCs) are attracting attention as nontoxic alternatives to heavy metal-based chalcogenides for many technologically relevant applications. The photophysical processes underlying their emission mechanism are, however, still under debate. Here we address this problem by applying, for the first time, spectro-electrochemical methods to core-only CIS and core/shell CIS/ZnS NCs. The application of an electrochemical potential enables us to reversibly tune the NC Fermi energy and thereby control the occupancy of intragap defects involved in exciton decay. The results indicate that, in analogy to copper-doped II-VI NCs, emission occurs via radiative capture of a conduction-band electron by a hole localized on an intragap state likely associated with a Cu-related defect. We observe the increase in the emission efficiency under reductive electrochemical potential, which corresponds to raising the Fermi level, leading to progressive filling of intragap states with electrons. This indicates that the factor limiting the emission efficiency in these NCs is nonradiative electron trapping, while hole trapping is of lesser importance. This observation also suggests that the centers for radiative recombination are Cu2+ defects (preexisting and/or accumulated as a result of photoconversion of Cu1+ ions) as these species contain a pre-existing hole without the need for capturing a valence-band hole generated by photoexcitation. Temperature-controlled photoluminescence experiments indicate that the intrinsic limit on the emission efficiency is imposed by multiphonon nonradiative recombination of a band-edge electron and a localized hole. This process affects both shelled and unshelled CIS NCs to a similar degree, and it can be suppressed by cooling samples to below 100 K. Finally, using experimentally measured decay rates, we formulate a model that describes the electrochemical modulation of the PL efficiency in terms of the availability of intragap electron traps as well as direct injection of electrons into the NC conduction band, which activates nonradiative Auger recombination, or electrochemical conversion of the Cu2+ states into the Cu1+ species that are less emissive due to the need for their "activation" by the capture of photogenerated holes.
Collapse
Affiliation(s)
- Valerio Pinchetti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via R. Cozzi 55, I-20125 Milano, Italy
| | - Monica Lorenzon
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via R. Cozzi 55, I-20125 Milano, Italy
| | - Hunter McDaniel
- UbiQD, Los Alamos, New Mexico 87544, United States
- Chemistry Division and Center for Advanced Solar Photophysics, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Roberto Lorenzi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via R. Cozzi 55, I-20125 Milano, Italy
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via R. Cozzi 55, I-20125 Milano, Italy
| | - Victor I Klimov
- Chemistry Division and Center for Advanced Solar Photophysics, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via R. Cozzi 55, I-20125 Milano, Italy
| |
Collapse
|
39
|
Santiago-González B, Monguzzi A, Pinchetti V, Casu A, Prato M, Lorenzi R, Campione M, Chiodini N, Santambrogio C, Meinardi F, Manna L, Brovelli S. "Quantized" Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters. ACS NANO 2017; 11:6233-6242. [PMID: 28485979 DOI: 10.1021/acsnano.7b02369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The insertion of intentional impurities, commonly referred to as doping, into colloidal semiconductor quantum dots (QDs) is a powerful paradigm for tailoring their electronic, optical, and magnetic behaviors beyond what is obtained with size-control and heterostructuring motifs. Advancements in colloidal chemistry have led to nearly atomic precision of the doping level in both lightly and heavily doped QDs. The doping strategies currently available, however, operate at the ensemble level, resulting in a Poisson distribution of impurities across the QD population. To date, the synthesis of monodisperse ensembles of QDs individually doped with an identical number of impurity atoms is still an open challenge, and its achievement would enable the realization of advanced QD devices, such as optically/electrically controlled magnetic memories and intragap state transistors and solar cells, that rely on the precise tuning of the impurity states (i.e., number of unpaired spins, energy and width of impurity levels) within the QD host. The only approach reported to date relies on QD seeding with organometallic precursors that are intrinsically unstable and strongly affected by chemical or environmental degradation, which prevents the concept from reaching its full potential and makes the method unsuitable for aqueous synthesis routes. Here, we overcome these issues by demonstrating a doping strategy that bridges two traditionally orthogonal nanostructured material systems, namely, QDs and metal quantum clusters composed of a "magic number" of atoms held together by stable metal-to-metal bonds. Specifically, we use clusters composed of four copper atoms (Cu4) capped with d-penicillamine to seed the growth of CdS QDs in water at room temperature. The elemental analysis, performed by electrospray ionization mass spectrometry, X-ray fluorescence, and inductively coupled plasma mass spectrometry, side by side with optical spectroscopy and transmission electron microscopy measurements, indicates that each Cu:CdS QD in the ensemble incorporates four Cu atoms originating from one Cu4 cluster, which acts as a "quantized" source of dopant impurities.
Collapse
Affiliation(s)
- Beatriz Santiago-González
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Valerio Pinchetti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Alberto Casu
- Nanochemistry Department, Istituto Italiano di Tecnologia , Via Morego 30, IT-16163 Genova, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia , Via Morego 30, IT-16163 Genova, Italy
| | - Roberto Lorenzi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Marcello Campione
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca , Piazza della Scienza 4, IT-20126 Milano, Italy
| | - Norberto Chiodini
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca Piazza della Scienza 2, IT-20126 Milano, Italy
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia , Via Morego 30, IT-16163 Genova, Italy
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| |
Collapse
|
40
|
Lorenzon M, Sortino L, Akkerman Q, Accornero S, Pedrini J, Prato M, Pinchetti V, Meinardi F, Manna L, Brovelli S. Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr 3 Perovskite Nanocrystals. NANO LETTERS 2017; 17:3844-3853. [PMID: 28480698 PMCID: PMC6557541 DOI: 10.1021/acs.nanolett.7b01253] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/03/2017] [Indexed: 05/20/2023]
Abstract
Lead halide perovskite nanocrystals (NCs) are emerging as optically active materials for solution-processed optoelectronic devices. Despite the technological relevance of tracing rational guidelines for optimizing their performances and stability beyond their intrinsic resilience to structural imperfections, no in-depth study of the role of selective carrier trapping and environmental conditions on their exciton dynamics has been reported to date. Here we conduct spectro-electrochemical (SEC) experiments, side-by-side to oxygen sensing measurements on CsPbBr3 NCs for the first time. We show that the application of EC potentials controls the emission intensity by altering the occupancy of defect states without degrading the NCs. Reductive potentials lead to strong (60%) emission quenching by trapping of photogenerated holes, whereas the concomitant suppression of electron trapping is nearly inconsequential to the emission efficiency. Consistently, oxidizing conditions result in minor (5%) brightening due to suppressed hole trapping, confirming that electron traps play a minor role in nonradiative decay. This behavior is rationalized through a model that links the occupancy of trap sites with the position of the NC Fermi level controlled by the EC potential. Photoluminescence measurements in controlled atmosphere reveal strong quenching by collisional interactions with O2, which is in contrast to the photobrightening effect observed in films and single crystals. This indicates that O2 acts as a scavenger of photoexcited electrons without mediation by structural defects and, together with the asymmetrical SEC response, suggests that electron-rich defects are likely less abundant in nanostructured perovskites than in the bulk, leading to an emission response dominated by direct interaction with the environment.
Collapse
Affiliation(s)
- Monica Lorenzon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Luca Sortino
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Quinten Akkerman
- Nanochemistry Department and Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, IT-16163 Genova, Italy
| | - Sara Accornero
- Nanochemistry Department and Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, IT-16163 Genova, Italy
| | - Jacopo Pedrini
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Mirko Prato
- Nanochemistry Department and Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, IT-16163 Genova, Italy
| | - Valerio Pinchetti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Liberato Manna
- Nanochemistry Department and Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, IT-16163 Genova, Italy
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
41
|
Pradhan N, Das Adhikari S, Nag A, Sarma DD. Luminescence, Plasmonic, and Magnetic Properties of Doped Semiconductor Nanocrystals. Angew Chem Int Ed Engl 2017; 56:7038-7054. [DOI: 10.1002/anie.201611526] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/18/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Narayan Pradhan
- Department of Materials Science; Indian Association for the Cultivation of Science; Kolkata 700032 India
| | - Samrat Das Adhikari
- Department of Materials Science; Indian Association for the Cultivation of Science; Kolkata 700032 India
| | - Angshuman Nag
- Department of Chemistry and Centre for Energy Science; Indian Institute of Science Education and Research, IISER; Pune 411008 India
| | - D. D. Sarma
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bengaluru 560012 India
| |
Collapse
|
42
|
Pradhan N, Das Adhikari S, Nag A, Sarma DD. Dotierte Halbleiter-Nanokristalle: Lumineszenz, plasmonische und magnetische Eigenschaften. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Narayan Pradhan
- Department of Materials Science; Indian Association for the Cultivation of Science; Kolkata 700032 Indien
| | - Samrat Das Adhikari
- Department of Materials Science; Indian Association for the Cultivation of Science; Kolkata 700032 Indien
| | - Angshuman Nag
- Department of Chemistry and Centre for Energy Science; Indian Institute of Science Education and Research, IISER; Pune 411008 Indien
| | - D. D. Sarma
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bengaluru 560012 Indien
| |
Collapse
|
43
|
Pietryga JM, Park YS, Lim J, Fidler AF, Bae WK, Brovelli S, Klimov VI. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem Rev 2017; 116:10513-622. [PMID: 27677521 DOI: 10.1021/acs.chemrev.6b00169] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminescent solar concentrators; and control of intraband relaxation for enhanced carrier multiplication in advanced QD photovoltaics. We examine the considerable recent progress on these multiple fronts of nanocrystal research, which has resulted in the first commercialized QD technologies. These successes explain the continuing appeal of this field to a broad community of scientists and engineers, which in turn ensures even more exciting results to come from future exploration of this fascinating class of materials.
Collapse
Affiliation(s)
- Jeffrey M Pietryga
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Young-Shin Park
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States.,Center for High Technology Materials, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Jaehoon Lim
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andrew F Fidler
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Wan Ki Bae
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology , Seoul 02792, Korea
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , I-20125 Milano, Italy
| | - Victor I Klimov
- Nanotechnology and Advanced Spectroscopy Team, Chemistry Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
44
|
Zang H, Li H, Makarov NS, Velizhanin KA, Wu K, Park YS, Klimov VI. Thick-Shell CuInS 2/ZnS Quantum Dots with Suppressed "Blinking" and Narrow Single-Particle Emission Line Widths. NANO LETTERS 2017; 17:1787-1795. [PMID: 28169547 DOI: 10.1021/acs.nanolett.6b05118] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantum dots (QDs) of ternary I-III-VI2 compounds such as CuInS2 and CuInSe2 have been actively investigated as heavy-metal-free alternatives to cadmium- and lead-containing semiconductor nanomaterials. One serious limitation of these nanostructures, however, is a large photoluminescence (PL) line width (typically >300 meV), the origin of which is still not fully understood. It remains even unclear whether the observed broadening results from considerable sample heterogeneities (due, e.g., to size polydispersity) or is an unavoidable intrinsic property of individual QDs. Here, we answer this question by conducting single-particle measurements on a new type of CuInS2 (CIS) QDs with an especially thick ZnS shell. These QDs show a greatly enhanced photostability compared to core-only or thin-shell samples and, importantly, exhibit a strongly suppressed PL blinking at the single-dot level. Spectrally resolved measurements reveal that the single-dot, room-temperature PL line width is much narrower (down to ∼60 meV) than that of the ensemble samples. To explain this distinction, we invoke a model wherein PL from CIS QDs arises from radiative recombination of a delocalized band-edge electron and a localized hole residing on a Cu-related defect and also account for the effects of electron-hole Coulomb coupling. We show that random positioning of the emitting center in the QD can lead to more than 300 meV variation in the PL energy, which represents at least one of the reasons for large PL broadening of the ensemble samples. These results suggest that in addition to narrowing size dispersion, future efforts on tightening the emission spectra of these QDs might also attempt decreasing the "positional" heterogeneity of the emitting centers.
Collapse
Affiliation(s)
| | | | | | | | | | - Young-Shin Park
- Center for High Technology Materials, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | | |
Collapse
|
45
|
Lorenzon M, Pinchetti V, Bruni F, Bae WK, Meinardi F, Klimov VI, Brovelli S. Single-Particle Ratiometric Pressure Sensing Based on "Double-Sensor" Colloidal Nanocrystals. NANO LETTERS 2017; 17:1071-1081. [PMID: 28032501 DOI: 10.1021/acs.nanolett.6b04577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ratiometric pressure sensitive paints (r-PSPs) are all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist of a porous binder embedding mixtures of a reference and a sensor chromophore exhibiting oxygen-insensitive and oxygen-responsive luminescence, respectively. Here, we demonstrate the first example of an r-PSP based on a single two-color emitter that removes limitations of r-PSPs based on chromophore mixtures such as different temperature dependencies of the two chromophores, cross-readout between the reference and sensor signals and phase segregation. In our approach, we utilize a novel "double-sensor" r-PSP that features two spectrally separated emission bands with opposite responses to the O2 pressure, which boosts the sensitivity with respect to traditional reference-sensor pairs. Specifically, we use two-color-emitting dot-in-bulk CdSe/CdS core/shell nanocrystals, exhibiting red and green emission bands from their core and shell states, whose intensities are respectively enhanced and quenched in response to the increased oxygen partial pressure that effectively tunes the position of the nanocrystal's Fermi energy. This leads to a strong and reversible ratiometric response at the single particle level and an over 100% enhancement in the pressure sensitivity. Our proof-of-concept r-PSPs further exhibit suppressed cross-readout thanks to zero spectral overlap between the core and shell luminescence bands and a temperature-independent ratiometric response between 0 and 70 °C.
Collapse
Affiliation(s)
- Monica Lorenzon
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via Cozzi 55, I 20125 Milano, Italy
| | - Valerio Pinchetti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via Cozzi 55, I 20125 Milano, Italy
| | - Francesco Bruni
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via Cozzi 55, I 20125 Milano, Italy
| | - Wan Ki Bae
- Chemistry Division and Center for Advanced Solar Photophysics, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via Cozzi 55, I 20125 Milano, Italy
| | - Victor I Klimov
- Chemistry Division and Center for Advanced Solar Photophysics, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , via Cozzi 55, I 20125 Milano, Italy
| |
Collapse
|
46
|
Knowles KE, Hartstein KH, Kilburn TB, Marchioro A, Nelson HD, Whitham PJ, Gamelin DR. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. Chem Rev 2016; 116:10820-51. [DOI: 10.1021/acs.chemrev.6b00048] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathryn E. Knowles
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kimberly H. Hartstein
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Troy B. Kilburn
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Arianna Marchioro
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Heidi D. Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Patrick J. Whitham
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Daniel R. Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
47
|
Ganesan P, Lakshmipathi S. Influence of dopants Cu, Ga, In, Hg on the electronic structure of CdnSn (n = 6, 15) clusters – a DFT study. RSC Adv 2016. [DOI: 10.1039/c6ra15049g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The influence of dopants on the electronic structure and the optical properties of doped Cdn−yXySn (n = 6, 15; y = 1, 2, 4) clusters, studied using DFT and TDDFT methods.
Collapse
|
48
|
Mikulski J, Sikora B, Fronc K, Aleshkevych P, Kret S, Suffczyński J, Papierska J, Kłopotowski Ł, Kossut J. Synthesis and magnetooptic characterization of Cu-doped ZnO/MgO and ZnO/oleic acid core/shell nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra01453d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of Cu ion doping on the photoluminescence (PL) and magnetic behavior of ZnO/MgO and ZnO/oleic acid core/shell nanoparticles is investigated.
Collapse
Affiliation(s)
- J. Mikulski
- Institute of Physics Polish Academy of Science
- 02-668 Warsaw
- Poland
| | - B. Sikora
- Institute of Physics Polish Academy of Science
- 02-668 Warsaw
- Poland
| | - K. Fronc
- Institute of Physics Polish Academy of Science
- 02-668 Warsaw
- Poland
| | - P. Aleshkevych
- Institute of Physics Polish Academy of Science
- 02-668 Warsaw
- Poland
| | - S. Kret
- Institute of Physics Polish Academy of Science
- 02-668 Warsaw
- Poland
| | - J. Suffczyński
- Institute of Experimental Physics
- Faculty of Physics
- University of Warsaw
- 02-093 Warsaw
- Poland
| | - J. Papierska
- Institute of Experimental Physics
- Faculty of Physics
- University of Warsaw
- 02-093 Warsaw
- Poland
| | - Ł. Kłopotowski
- Institute of Physics Polish Academy of Science
- 02-668 Warsaw
- Poland
| | - J. Kossut
- Institute of Physics Polish Academy of Science
- 02-668 Warsaw
- Poland
| |
Collapse
|
49
|
Zhang QH, Tian Y, Wang CF, Chen S. Construction of Ag-doped Zn–In–S quantum dots toward white LEDs and 3D luminescent patterning. RSC Adv 2016. [DOI: 10.1039/c6ra05689j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of green photoluminescent Ag-doped Zn–In–S quantum dots and their applications in patterning and white LEDs are reported.
Collapse
Affiliation(s)
- Qiu-Hong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (the former: Nanjing University of Technology)
- Nanjing 210009
- P. R. China
| | - Yu Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (the former: Nanjing University of Technology)
- Nanjing 210009
- P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (the former: Nanjing University of Technology)
- Nanjing 210009
- P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering
- Nanjing Tech University (the former: Nanjing University of Technology)
- Nanjing 210009
- P. R. China
| |
Collapse
|
50
|
Li J, Liu Y, Hua J, Tian L, Zhao J. Photoluminescence properties of transition metal-doped Zn–In–S/ZnS core/shell quantum dots in solid films. RSC Adv 2016. [DOI: 10.1039/c6ra05485d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The photoluminescence (PL) properties of transition metal ion (Mn2+ or Cu+) doped Zn–In–S/ZnS core/shell quantum dots (QDs) in solution and solid films were investigated by using steady-state and time-resolved PL spectra.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Physics
- Yanbian University
- Yanji 133002
- China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| | - Jie Hua
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| | - Lianhua Tian
- Department of Physics
- Yanbian University
- Yanji 133002
- China
| | - Jialong Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| |
Collapse
|