1
|
Sahl SJ, Matthias J, Inamdar K, Weber M, Khan TA, Brüser C, Jakobs S, Becker S, Griesinger C, Broichhagen J, Hell SW. Direct optical measurement of intramolecular distances with angstrom precision. Science 2024; 386:180-187. [PMID: 39388556 DOI: 10.1126/science.adj7368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Optical investigations of nanometer distances between proteins, their subunits, or other biomolecules have been the exclusive prerogative of Förster resonance energy transfer (FRET) microscopy for decades. In this work, we show that MINFLUX fluorescence nanoscopy measures intramolecular distances down to 1 nanometer-and in planar projections down to 1 angstrom-directly, linearly, and with angstrom precision. Our method was validated by quantifying well-characterized 1- to 10-nanometer distances in polypeptides and proteins. Moreover, we visualized the orientations of immunoglobulin subunits, applied the method in human cells, and revealed specific configurations of a histidine kinase PAS domain dimer. Our results open the door for examining proximities and interactions by direct position measurements at the intramacromolecular scale.
Collapse
Affiliation(s)
- Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Kaushik Inamdar
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Taukeer A Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Christian Brüser
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen 37075, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen 37075, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Christian Griesinger
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Jouchet P, Roy AR, Moerner W. Combining deep learning approaches and point spread function engineering for simultaneous 3D position and 3D orientation measurements of fluorescent single molecules. OPTICS COMMUNICATIONS 2023; 542:129589. [PMID: 37396964 PMCID: PMC10310311 DOI: 10.1016/j.optcom.2023.129589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Point Spread Function (PSF) engineering is an effective method to increase the sensitivity of single-molecule fluorescence images to specific parameters. Classical phase mask optimization approaches have enabled the creation of new PSFs that can achieve, for example, localization precision of a few nanometers axially over a capture range of several microns with bright emitters. However, for complex high-dimensional optimization problems, classical approaches are difficult to implement and can be very time-consuming for computation. The advent of deep learning methods and their application to single-molecule imaging has provided a way to solve these problems. Here, we propose to combine PSF engineering and deep learning approaches to obtain both an optimized phase mask and a neural network structure to obtain the 3D position and 3D orientation of fixed fluorescent molecules. Our approach allows us to obtain an axial localization precision around 30 nanometers, as well as an orientation precision around 5 degrees for orientations and positions over a one micron depth range for a signal-to-noise ratio consistent with what is typical in single-molecule cellular imaging experiments.
Collapse
Affiliation(s)
- Pierre Jouchet
- Department of Chemistry, Stanford University, 94305 Stanford CA, USA
| | - Anish R. Roy
- Department of Chemistry, Stanford University, 94305 Stanford CA, USA
| | - W.E. Moerner
- Department of Chemistry, Stanford University, 94305 Stanford CA, USA
| |
Collapse
|
3
|
Son S, Fletcher DA. Measurement of Molecular Height Using Cell Surface Optical Profilometry (CSOP). Methods Mol Biol 2023; 2654:113-122. [PMID: 37106178 DOI: 10.1007/978-1-0716-3135-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The plasma membrane of cells is covered by proteins, glycoproteins, and glycolipids with molecular heights ranging from just a few nanometers to hundreds of nanometers. Formation of cell-cell contacts and signal transduction by individual receptors can be dependent on both the average height of a cell's glycocalyx and the specific height of individual receptors, sometimes with nanometer-scale sensitivity. While super-resolution imaging techniques allow molecular distances to be measured with the sub-diffraction limited resolution, typically 10 nm in the lateral direction and 100 nm in the axial direction, measurements of molecular heights at the single nanometer scale on native cell membranes have been difficult to obtain. Cell surface optical profilometry (CSOP) is a simple and rapid method that achieves nanometer height resolution by localizing fluorophores at the tip and base of cell surface molecules and determining their separation with high precision by radially averaging across many molecules. Here we describe how to make CSOP measurements of multi-domain proteins on model membrane surfaces as well as native cell surfaces.
Collapse
Affiliation(s)
- Sungmin Son
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, USA
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, USA.
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Thorsen RØ, Hulleman CN, Rieger B, Stallinga S. Photon efficient orientation estimation using polarization modulation in single-molecule localization microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:2835-2858. [PMID: 35774337 PMCID: PMC9203119 DOI: 10.1364/boe.452159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/01/2023]
Abstract
Combining orientation estimation with localization microscopy opens up the possibility to analyze the underlying orientation of biomolecules on the nanometer scale. Inspired by the recent improvement of the localization precision by shifting excitation patterns (MINFLUX, SIMFLUX), we have adapted the idea towards the modulation of excitation polarization to enhance the orientation precision. For this modality two modes are analyzed: i) normally incident excitation with three polarization steps to retrieve the in-plane angle of emitters and ii) obliquely incident excitation with p-polarization with five different azimuthal angles of incidence to retrieve the full orientation. Firstly, we present a theoretical study of the lower precision limit with a Cramér-Rao bound for these modes. For the oblique incidence mode we find a favorable isotropic orientation precision for all molecular orientations if the polar angle of incidence is equal to arccos 2 / 3 ≈ 35 degrees. Secondly, a simulation study is performed to assess the performance for low signal-to-background ratios and how inaccurate illumination polarization angles affect the outcome. We show that a precision, at the Cramér-Rao bound (CRB) limit, of just 2.4 and 1.6 degrees in the azimuthal and polar angles can be achieved with only 1000 detected signal photons and 10 background photons per pixel (about twice better than reported earlier). Lastly, the alignment and calibration of an optical microscope with polarization control is described in detail. With this microscope a proof-of-principle experiment is carried out, demonstrating an experimental in-plane precision close to the CRB limit for signal photon counts ranging from 400 to 10,000.
Collapse
Affiliation(s)
- Rasmus Ø Thorsen
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- These authors contributed equally
| | - Christiaan N Hulleman
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- These authors contributed equally
| | - Bernd Rieger
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- These authors contributed equally
| | - Sjoerd Stallinga
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- These authors contributed equally
| |
Collapse
|
5
|
Jouchet P, Poüs C, Fort E, Lévêque-Fort S. Time-modulated excitation for enhanced single-molecule localization microscopy. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A: MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES 2022; 380:20200299. [PMID: 0 DOI: 10.1098/rsta.2020.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 05/19/2023]
Abstract
Structured illumination in single-molecule localization microscopy provides new information on the position of molecules and thus improves the localization precision compared to standard localization methods. Here, we used a time-shifted sinusoidal excitation pattern to modulate the fluorescence signal of the molecules whose position information is carried by the phase and recovered by synchronous demodulation. We designed two flexible fast demodulation systems located upstream of the camera, allowing us to overcome the limiting camera acquisition frequency and thus to maximize the collection of photons in the demodulation process. The temporally modulated fluorescence signal was then sampled synchronously on the same image, repeatedly during acquisition. This microscopy, called ModLoc, allows us to experimentally improve the localization precision by a factor of 2.4 in one direction, compared to classical Gaussian fitting methods. A temporal study and an experimental demonstration both show that the short lifetimes of the molecules in blinking regimes impose a modulation frequency in the kilohertz range, which is beyond the reach of current cameras. A demodulation system operating at these frequencies would thus be necessary to take full advantage of this new localization approach.
This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.
Collapse
Affiliation(s)
- Pierre Jouchet
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR 1193, Châtenay-Malabry, France
| | - Emmanuel Fort
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Sandrine Lévêque-Fort
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
6
|
Zhang O, Zhou W, Lu J, Wu T, Lew MD. Resolving the Three-Dimensional Rotational and Translational Dynamics of Single Molecules Using Radially and Azimuthally Polarized Fluorescence. NANO LETTERS 2022; 22:1024-1031. [PMID: 35073487 PMCID: PMC8893020 DOI: 10.1021/acs.nanolett.1c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a radially and azimuthally polarized (raPol) microscope for high detection and estimation performance in single-molecule orientation-localization microscopy (SMOLM). With 5000 photons detected from Nile red (NR) transiently bound within supported lipid bilayers (SLBs), raPol SMOLM achieves 2.9 nm localization precision, 1.5° orientation precision, and 0.17 sr precision in estimating rotational wobble. Within DPPC SLBs, SMOLM imaging reveals the existence of randomly oriented binding pockets that prevent NR from freely exploring all orientations. Treating the SLBs with cholesterol-loaded methyl-β-cyclodextrin (MβCD-chol) causes NR's orientational diffusion to be dramatically reduced, but curiously NR's median lateral displacements drastically increase from 20.8 to 75.5 nm (200 ms time lag). These jump diffusion events overwhelmingly originate from cholesterol-rich nanodomains within the SLB. These detailed measurements of single-molecule rotational and translational dynamics are made possible by raPol's high measurement precision and are not detectable in standard SMLM.
Collapse
|
7
|
Rimoli CV, Valades-Cruz CA, Curcio V, Mavrakis M, Brasselet S. 4polar-STORM polarized super-resolution imaging of actin filament organization in cells. Nat Commun 2022; 13:301. [PMID: 35027553 PMCID: PMC8758668 DOI: 10.1038/s41467-022-27966-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Single-molecule localization microscopy provides insights into the nanometer-scale spatial organization of proteins in cells, however it does not provide information on their conformation and orientation, which are key functional signatures. Detecting single molecules' orientation in addition to their localization in cells is still a challenging task, in particular in dense cell samples. Here, we present a polarization-splitting scheme which combines Stochastic Optical Reconstruction Microscopy (STORM) with single molecule 2D orientation and wobbling measurements, without requiring a strong deformation of the imaged point spread function. This method called 4polar-STORM allows, thanks to a control of its detection numerical aperture, to determine both single molecules' localization and orientation in 2D and to infer their 3D orientation. 4polar-STORM is compatible with relatively high densities of diffraction-limited spots in an image, and is thus ideally placed for the investigation of dense protein assemblies in cells. We demonstrate the potential of this method in dense actin filament organizations driving cell adhesion and motility.
Collapse
Affiliation(s)
- Caio Vaz Rimoli
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France
| | - Cesar Augusto Valades-Cruz
- Institut Curie, PSL Research University, UMR144 CNRS, Space-Time imaging of organelles and Endomembranes Dynamics Team, F-75005, Paris, France
- Inria Centre Rennes-Bretagne Atlantique, SERPICO Project Team, F-35042, Rennes, France
| | - Valentina Curcio
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France
| | - Manos Mavrakis
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France.
| | - Sophie Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France.
| |
Collapse
|
8
|
Ding T, Lew MD. Single-Molecule Localization Microscopy of 3D Orientation and Anisotropic Wobble Using a Polarized Vortex Point Spread Function. J Phys Chem B 2021; 125:12718-12729. [PMID: 34766758 PMCID: PMC8662813 DOI: 10.1021/acs.jpcb.1c08073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule's wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°-8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics of Nile red (NR) within supported lipid bilayers, and the distinct orientation signatures of NR in contact with amyloid-beta fibrils, oligomers, and tangles. The unparalleled sensitivity of the vortex PSF transforms single-molecule microscopes into nanoscale orientation imaging spectrometers, where the orientations and wobbles of individual probes reveal structures and organization of soft matter that are nearly impossible to perceive by using molecular positions alone.
Collapse
Affiliation(s)
- Tianben Ding
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
9
|
Hulleman CN, Thorsen RØ, Kim E, Dekker C, Stallinga S, Rieger B. Simultaneous orientation and 3D localization microscopy with a Vortex point spread function. Nat Commun 2021; 12:5934. [PMID: 34635658 PMCID: PMC8505439 DOI: 10.1038/s41467-021-26228-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 09/21/2021] [Indexed: 11/08/2022] Open
Abstract
Estimating the orientation and 3D position of rotationally constrained emitters with localization microscopy typically requires polarization splitting or a large engineered Point Spread Function (PSF). Here we utilize a compact modified PSF for single molecule emitter imaging to estimate simultaneously the 3D position, dipole orientation, and degree of rotational constraint from a single 2D image. We use an affordable and commonly available phase plate, normally used for STED microscopy in the excitation light path, to alter the PSF in the emission light path. This resulting Vortex PSF does not require polarization splitting and has a compact PSF size, making it easy to implement and combine with localization microscopy techniques. In addition to a vectorial PSF fitting routine we calibrate for field-dependent aberrations which enables orientation and position estimation within 30% of the Cramér-Rao bound limit over a 66 μm field of view. We demonstrate this technique on reorienting single molecules adhered to the cover slip, λ-DNA with DNA intercalators using binding-activated localization microscopy, and we reveal periodicity on intertwined structures on supercoiled DNA.
Collapse
Affiliation(s)
- Christiaan N Hulleman
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Rasmus Ø Thorsen
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Eugene Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Max Planck Institute of Biophysics, 60438, Frankfurt, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sjoerd Stallinga
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| | - Bernd Rieger
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
10
|
Mahato J, Bhattacharya S, Sharma DK, Chowdhury A. Polarization-resolved single-molecule tracking reveals strange dynamics of fluorescent tracers through a deep rubbery polymer network. Phys Chem Chem Phys 2021; 23:10835-10844. [PMID: 33908423 DOI: 10.1039/d0cp05864e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tracking the movement of fluorescent single-molecule (SM) tracers has provided several new insights into the local structure and dynamics in complex environments such as soft materials and biological systems. However, SM tracking (SMT) remains unreliable at molecular length scales, as the localization error (LE) of SM trajectories (∼30-50 nm) is considerably larger than the size of molecular tracers (∼1-2 nm). Thus, instances of tracer (im)mobility in heterogeneous media, which provide indicators for underlying anomalous-transport mechanisms, remain obscured within the realms of SMT. Since the translation of passive tracers in an isotropic media is associated with fast dipolar rotation, we propose that authentic pauses within the LE can be revealed by probing the hindrance of SM reorientational dynamics. Here, we demonstrate how polarization-resolved SMT (PR-SMT) can provide emission anisotropy at each super-localized position, thereby revealing the tumbling propensity of SMs during random walks. For rhodamine 6G tracers undergoing heterogeneous transport in a hydrated polyvinylpyrrolidone (PVP) network, analysis of PR-SMT trajectories enabled us to discern instances of genuine immobility and localized motion within the LE. Our investigations on 100 SMs in (plasticized) PVP films reveal a wide distribution of dwell times and pause frequencies, demonstrating that most probes intermittently experience complete translational and rotational immobilization. This indicates that tracers serendipitously encounter compact, rigid polymer cavities during transport, implying the existence of nanoscale glass-like domains sparsely distributed in a predominantly deep-rubbery polymer network far above the glass transition.
Collapse
Affiliation(s)
- Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sukanya Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Dharmendar K Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
11
|
Dahlberg PD, Moerner WE. Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. Annu Rev Phys Chem 2021; 72:253-278. [PMID: 33441030 PMCID: PMC8877847 DOI: 10.1146/annurev-physchem-090319-051546] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We review the emerging method of super-resolved cryogenic correlative light and electron microscopy (srCryoCLEM). Super-resolution (SR) fluorescence microscopy and cryogenic electron tomography (CET) are both powerful techniques for observing subcellular organization, but each approach has unique limitations. The combination of the two brings the single-molecule sensitivity and specificity of SR to the detailed cellular context and molecular scale resolution of CET. The resulting correlative data is more informative than the sum of its parts. The correlative images can be used to pinpoint the positions of fluorescently labeled proteins in the high-resolution context of CET with nanometer-scale precision and/or to identify proteins in electron-dense structures. The execution of srCryoCLEM is challenging and the approach is best described as a method that is still in its infancy with numerous technical challenges. In this review, we describe state-of-the-art srCryoCLEM experiments, discuss the most pressing challenges, and give a brief outlook on future applications.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
12
|
Zelger P, Bodner L, Offterdinger M, Velas L, Schütz GJ, Jesacher A. Three-dimensional single molecule localization close to the coverslip: a comparison of methods exploiting supercritical angle fluorescence. BIOMEDICAL OPTICS EXPRESS 2021; 12:802-822. [PMID: 33680543 PMCID: PMC7901312 DOI: 10.1364/boe.413018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The precise spatial localization of single molecules in three dimensions is an important basis for single molecule localization microscopy (SMLM) and tracking. At distances up to a few hundred nanometers from the coverslip, evanescent wave coupling into the glass, also known as supercritical angle fluorescence (SAF), can strongly improve the axial precision, thus facilitating almost isotropic localization performance. Specific detection systems, introduced as Supercritical angle localization microscopy (SALM) or Direct optical nanoscopy with axially localized detection (DONALD), have been developed to exploit SAF in modified two-channel imaging schemes. Recently, our group has shown that off-focus microscopy, i.e., imaging at an intentional slight defocus, can perform equally well, but uses only a single detection arm. Here we compare SALM, off-focus imaging and the most commonly used 3D SMLM techniques, namely cylindrical lens and biplane imaging, regarding 3D localization in close proximity to the coverslip. We show that all methods gain from SAF, which leaves a high detection NA as the only major key requirement to unlock the SAF benefit. We find parameter settings for cylindrical lens and biplane imaging for highest z-precision. Further, we compare the methods in view of robustness to aberrations, fixed dipole emission and double-emitter events. We show that biplane imaging provides the best overall performance and support our findings by DNA-PAINT experiments on DNA-nanoruler samples. Our study sheds light on the effects of SAF for SMLM and is helpful for researchers who plan to employ localization-based 3D nanoscopy close to the coverslip.
Collapse
Affiliation(s)
- Philipp Zelger
- Division for Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Lisa Bodner
- Division for Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry, Biooptics, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Lukas Velas
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Gerhard J. Schütz
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Alexander Jesacher
- Division for Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Lu J, Mazidi H, Ding T, Zhang O, Lew MD. Single-Molecule 3D Orientation Imaging Reveals Nanoscale Compositional Heterogeneity in Lipid Membranes. Angew Chem Int Ed Engl 2020; 59:17572-17579. [PMID: 32648275 PMCID: PMC7794097 DOI: 10.1002/anie.202006207] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Indexed: 12/21/2022]
Abstract
In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm-2 ) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single-molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus "wobble") of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve nanodomains and enzyme-induced compositional heterogeneity within membranes, where NR within liquid-ordered vs. liquid-disordered domains shows a ≈4° difference in polar angle and a ≈0.3π sr difference in wobble angle. As a new type of imaging spectroscopy, SMOLM exposes the organizational and functional dynamics of lipid-lipid, lipid-protein, and lipid-dye interactions with single-molecule, nanoscale resolution.
Collapse
Affiliation(s)
- Jin Lu
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hesam Mazidi
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
14
|
Lu J, Mazidi H, Ding T, Zhang O, Lew MD. Single‐Molecule 3D Orientation Imaging Reveals Nanoscale Compositional Heterogeneity in Lipid Membranes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jin Lu
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| | - Hesam Mazidi
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| |
Collapse
|
15
|
Chandler T, Shroff H, Oldenbourg R, La Rivière P. Spatio-angular fluorescence microscopy III. Constrained angular diffusion, polarized excitation, and high-NA imaging. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:1465-1479. [PMID: 32902437 PMCID: PMC7931634 DOI: 10.1364/josaa.389217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We investigate rotational diffusion of fluorescent molecules in angular potential wells, the excitation and subsequent emissions from these diffusing molecules, and the imaging of these emissions with high-NA aplanatic optical microscopes. Although dipole emissions only transmit six low-frequency angular components, we show that angular structured illumination can alias higher-frequency angular components into the passband of the imaging system. We show that the number of measurable angular components is limited by the relationships between three time scales: the rotational diffusion time, the fluorescence decay time, and the acquisition time. We demonstrate our model by simulating a numerical phantom in the limits of fast angular diffusion, slow angular diffusion, and weak potentials.
Collapse
Affiliation(s)
- Talon Chandler
- University of Chicago, Department of Radiology, Chicago, Illinois 60637, USA
- Corresponding author:
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| | - Rudolf Oldenbourg
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| | - Patrick La Rivière
- University of Chicago, Department of Radiology, Chicago, Illinois 60637, USA
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
16
|
Son S, Takatori SC, Belardi B, Podolski M, Bakalar MH, Fletcher DA. Molecular height measurement by cell surface optical profilometry (CSOP). Proc Natl Acad Sci U S A 2020; 117:14209-14219. [PMID: 32513731 PMCID: PMC7322024 DOI: 10.1073/pnas.1922626117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The physical dimensions of proteins and glycans on cell surfaces can critically affect cell function, for example, by preventing close contact between cells and limiting receptor accessibility. However, high-resolution measurements of molecular heights on native cell membranes have been difficult to obtain. Here we present a simple and rapid method that achieves nanometer height resolution by localizing fluorophores at the tip and base of cell surface molecules and determining their separation by radially averaging across many molecules. We use this method, which we call cell surface optical profilometry (CSOP), to quantify the height of key multidomain proteins on a model cell, as well as to capture average protein and glycan heights on native cell membranes. We show that average height of a protein is significantly smaller than its contour length, due to thermally driven bending and rotation on the membrane, and that height strongly depends on local surface and solution conditions. We find that average height increases with cell surface molecular crowding but decreases with solution crowding by solutes, both of which we confirm with molecular dynamics simulations. We also use experiments and simulations to determine the height of an epitope, based on the location of an antibody, which allows CSOP to profile various proteins and glycans on a native cell surface using antibodies and lectins. This versatile method for profiling cell surfaces has the potential to advance understanding of the molecular landscape of cells and the role of the molecular landscape in cell function.
Collapse
Affiliation(s)
- Sungmin Son
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Sho C Takatori
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Marija Podolski
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Matthew H Bakalar
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720;
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
17
|
Blanchard AT, Brockman JM, Salaita K, Mattheyses AL. Variable incidence angle linear dichroism (VALiD): a technique for unique 3D orientation measurement of fluorescent ensembles. OPTICS EXPRESS 2020; 28:10039-10061. [PMID: 32225599 PMCID: PMC7340377 DOI: 10.1364/oe.381676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 06/02/2023]
Abstract
A fundamental challenge with fluorophore orientation measurement is degeneracy, which is the inability to distinguish between multiple unique fluorophore orientations. Techniques exist for the non-degenerate measurement of the orientations of single, static fluorophores. However, such techniques are unsuitable for densely labeled and/or dynamic samples common to biological research. Accordingly, a rapid, widefield microscopy technique that can measure orientation parameters for ensembles of fluorophores in a non-degenerate manner is desirable. We propose that exciting samples with polarized light and multiple incidence angles could enable such a technique. We use Monte Carlo simulations to validate this approach for specific axially symmetric ensembles of fluorophores and obtain optimal experimental parameters for its future implementation.
Collapse
Affiliation(s)
- Aaron T. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Joshua M. Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
18
|
Ferdman B, Nehme E, Weiss LE, Orange R, Alalouf O, Shechtman Y. VIPR: vectorial implementation of phase retrieval for fast and accurate microscopic pixel-wise pupil estimation. OPTICS EXPRESS 2020; 28:10179-10198. [PMID: 32225609 DOI: 10.1364/oe.388248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In microscopy, proper modeling of the image formation has a substantial effect on the precision and accuracy in localization experiments and facilitates the correction of aberrations in adaptive optics experiments. The observed images are subject to polarization effects, refractive index variations, and system specific constraints. Previously reported techniques have addressed these challenges by using complicated calibration samples, computationally heavy numerical algorithms, and various mathematical simplifications. In this work, we present a phase retrieval approach based on an analytical derivation of the vectorial diffraction model. Our method produces an accurate estimate of the system's phase information, without any prior knowledge about the aberrations, in under a minute.
Collapse
|
19
|
Lasker K, von Diezmann L, Zhou X, Ahrens DG, Mann TH, Moerner WE, Shapiro L. Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus. Nat Microbiol 2020; 5:418-429. [PMID: 31959967 PMCID: PMC7549192 DOI: 10.1038/s41564-019-0647-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Selective recruitment and concentration of signalling proteins within membraneless compartments is a ubiquitous mechanism for subcellular organization1-3. The dynamic flow of molecules into and out of these compartments occurs on faster timescales than for membrane-enclosed organelles, presenting a possible mechanism to control spatial patterning within cells. Here, we combine single-molecule tracking and super-resolution microscopy, light-induced subcellular localization, reaction-diffusion modelling and a spatially resolved promoter activation assay to study signal exchange in and out of the 200 nm cytoplasmic pole-organizing protein popZ (PopZ) microdomain at the cell pole of the asymmetrically dividing bacterium Caulobacter crescentus4-8. Two phospho-signalling proteins, the transmembrane histidine kinase CckA and the cytoplasmic phosphotransferase ChpT, provide the only phosphate source for the cell fate-determining transcription factor CtrA9-18. We find that all three proteins exhibit restricted rates of entry into and escape from the microdomain as well as enhanced phospho-signalling within, leading to a submicron gradient of activated CtrA-P19 that is stable and sublinear. Entry into the microdomain is selective for cytosolic proteins and requires a binding pathway to PopZ. Our work demonstrates how nanoscale protein assemblies can modulate signal propagation with fine spatial resolution, and that in Caulobacter, this modulation serves to reinforce asymmetry and differential cell fate of the two daughter cells.
Collapse
Affiliation(s)
- Keren Lasker
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lexy von Diezmann
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Xiaofeng Zhou
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel G Ahrens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas H Mann
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
20
|
Gu L, Li Y, Zhang S, Xue Y, Li W, Li D, Xu T, Ji W. Molecular resolution imaging by repetitive optical selective exposure. Nat Methods 2019; 16:1114-1118. [DOI: 10.1038/s41592-019-0544-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022]
|
21
|
CHANDLER TALON, SHROFF HARI, OLDENBOURG RUDOLF, LA RIVIÈRE PATRICK. Spatio-angular fluorescence microscopy I. Basic theory. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:1334-1345. [PMID: 31503559 PMCID: PMC7045726 DOI: 10.1364/josaa.36.001334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/07/2019] [Indexed: 05/22/2023]
Abstract
We introduce the basic elements of a spatio-angular theory of fluorescence microscopy, providing a unified framework for analyzing systems that image single fluorescent dipoles and ensembles of overlapping dipoles that label biological molecules. We model an aplanatic microscope imaging an ensemble of fluorescent dipoles as a linear Hilbert-space operator, and we show that the operator takes a particularly convenient form when expressed in a basis of complex exponentials and spherical harmonics-a form we call the dipole spatio-angular transfer function. We discuss the implications of our analysis for all quantitative fluorescence microscopy studies and lay out a path toward a complete theory.
Collapse
Affiliation(s)
- TALON CHANDLER
- University of Chicago, Department of Radiology, Chicago, Illinois 60637, USA
| | - HARI SHROFF
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| | - RUDOLF OLDENBOURG
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| | - PATRICK LA RIVIÈRE
- University of Chicago, Department of Radiology, Chicago, Illinois 60637, USA
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
22
|
CHANDLER TALON, SHROFF HARI, OLDENBOURG RUDOLF, LA RIVIÈRE PATRICK. Spatio-angular fluorescence microscopy II. Paraxial 4f imaging. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:1346-1360. [PMID: 31503560 PMCID: PMC7045803 DOI: 10.1364/josaa.36.001346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We investigate the properties of a single-view fluorescence microscope in a 4f geometry when imaging fluorescent dipoles without using the monopole or scalar approximations. We show that this imaging system has a spatio-angular band limit, and we exploit the band limit to perform efficient simulations. Notably, we show that information about the out-of-plane orientation of ensembles of in-focus fluorophores is recorded by paraxial fluorescence microscopes. Additionally, we show that the monopole approximation may cause biased estimates of fluorophore concentrations, but these biases are small when the sample contains either many randomly oriented fluorophores in each resolvable volume or unconstrained rotating fluorophores.
Collapse
Affiliation(s)
- TALON CHANDLER
- University of Chicago, Department of Radiology, Chicago, Illinois 60637, USA
| | - HARI SHROFF
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| | - RUDOLF OLDENBOURG
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| | - PATRICK LA RIVIÈRE
- University of Chicago, Department of Radiology, Chicago, Illinois 60637, USA
- Marine Biological Laboratory, Bell Center, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
23
|
Zhang O, Lew MD. Fundamental Limits on Measuring the Rotational Constraint of Single Molecules Using Fluorescence Microscopy. PHYSICAL REVIEW LETTERS 2019; 122:198301. [PMID: 31144939 PMCID: PMC6649682 DOI: 10.1103/physrevlett.122.198301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/24/2019] [Indexed: 05/22/2023]
Abstract
Optical fluorescence imaging is capable of measuring both the translational and rotational dynamics of single molecules. However, unavoidable measurement noise will result in inaccurate estimates of rotational dynamics, causing a molecule to appear to be more rotationally constrained than it actually is. We report a mathematical framework to compute the fundamental limit of accuracy in measuring the rotational mobility of dipolelike emitters. By applying our framework to both in-plane and three-dimensional methods, we provide a means to choose the optimal orientation-measurement technique based on experimental conditions.
Collapse
Affiliation(s)
- Oumeng Zhang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
| |
Collapse
|
24
|
Backer AS, Biebricher AS, King GA, Wuite GJL, Heller I, Peterman EJG. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA. SCIENCE ADVANCES 2019; 5:eaav1083. [PMID: 30915395 PMCID: PMC6430628 DOI: 10.1126/sciadv.aav1083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/04/2019] [Indexed: 05/22/2023]
Abstract
DNA structural transitions facilitate genomic processes, mediate drug-DNA interactions, and inform the development of emerging DNA-based biotechnology such as programmable materials and DNA origami. While some features of DNA conformational changes are well characterized, fundamental information such as the orientations of the DNA base pairs is unknown. Here, we use concurrent fluorescence polarization imaging and DNA manipulation experiments to probe the structure of S-DNA, an elusive, elongated conformation that can be accessed by mechanical overstretching. To this end, we directly quantify the orientations and rotational dynamics of fluorescent DNA-intercalated dyes. At extensions beyond the DNA overstretching transition, intercalators adopt a tilted (θ ~ 54°) orientation relative to the DNA axis, distinct from the nearly perpendicular orientation (θ ~ 90°) normally assumed at lower extensions. These results provide the first experimental evidence that S-DNA has substantially inclined base pairs relative to those of the standard (Watson-Crick) B-DNA conformation.
Collapse
Affiliation(s)
- Adam S. Backer
- Sandia National Laboratories, New Mexico, P.O. Box 5800, Albuquerque, NM 87185-1413, USA
- Corresponding author. (A.S.Ba.); (E.J.G.P.)
| | - Andreas S. Biebricher
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Graeme A. King
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Gijs J. L. Wuite
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Iddo Heller
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Erwin J. G. Peterman
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
- Corresponding author. (A.S.Ba.); (E.J.G.P.)
| |
Collapse
|
25
|
Nanometer-accuracy distance measurements between fluorophores at the single-molecule level. Proc Natl Acad Sci U S A 2019; 116:4275-4284. [PMID: 30770448 PMCID: PMC6410877 DOI: 10.1073/pnas.1815826116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Measurements of macromolecular shapes provide insight into the mechanism of molecular machines. Distance measurements at the scale of biological macromolecules are often pursued by single-molecule fluorescence techniques. However, while single-molecule Förster resonance energy transfer can estimate distances of less than 8 nm, distances on the scale of 8 to 25 nm are difficult to determine. Here, we report two-color fluorescent distance measurement techniques capable of determining distances with ∼1-nm accuracy over a wide range of length scales. These methods can be implemented in high throughput on commonly available microscopes. As an example of their utility, we used our methods to uncover an unexpected conformational change in the antiparallel coiled-coil stalk of the dynein motor domain in different nucleotide states. Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurements become error-prone below 25 nm. Thus, new single-molecule methods are needed for measuring distances in the 8- to 25-nm range. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1-nm accuracy at distances >2 nm. These techniques can be implemented in high throughput using a standard total internal reflection fluorescence microscope and open-source software. We applied our two-color localization method to uncover an unexpected ∼4-nm nucleotide-dependent conformational change in the coiled-coil “stalk” of the motor protein dynein. We anticipate that these methods will be useful for high-accuracy distance measurements of single molecules over a wide range of length scales.
Collapse
|
26
|
mmSTORM: Multimodal localization based super-resolution microscopy. Sci Rep 2019; 9:798. [PMID: 30692575 PMCID: PMC6349879 DOI: 10.1038/s41598-018-37341-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Super-resolution localization microscopy provides a powerful tool to study biochemical mechanisms at single molecule level. Although the lateral position of the fluorescent dye molecules can be determined routinely with high precision, measurement of other modalities such as 3D and multicolor without the degradation of the original super-resolved image is still in the focus. In this paper a dual-objective multimodal single molecule localization microscopy (SMLM) technique has been developed, optimized and tested. The proposed optical arrangement can be implemented onto a conventional inverted microscope without serious system modification. The performance of the method was tested using fluorescence beads, F-actin filaments and sarcomere structures. It was shown that the proposed imaging method does not degrade the image quality of the original SMLM 2D image but could provide information on the axial position or emission spectra of the dye molecules.
Collapse
|
27
|
Baumgart F, Arnold AM, Rossboth BK, Brameshuber M, Schütz GJ. What we talk about when we talk about nanoclusters. Methods Appl Fluoresc 2018; 7:013001. [PMID: 30412469 DOI: 10.1088/2050-6120/aaed0f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superresolution microscopy results have sparked the idea that many membrane proteins are not randomly distributed across the plasma membrane but are instead arranged in nanoclusters. Frequently, these new results seemed to confirm older data based on biochemical and electron microscopy experiments. Recently, however, it was recognized that multiple countings of the very same fluorescently labeled protein molecule can be easily confused with true protein clusters. Various strategies have been developed, which are intended to solve the problem of discriminating true protein clusters from imaging artifacts. We believe that there is currently no perfect algorithm for this problem; instead, different approaches have different strengths and weaknesses. In this review, we discuss single molecule localization microscopy in view of its ability to detect nanoclusters of membrane proteins. To capture the different views on nanoclustering, we chose an unconventional style for this article: we placed its scientific content in the setting of a fictive conference, where five researchers from different fields discuss the problem of detecting and quantifying nanoclusters. Using this style, we feel that the different approaches common for different research areas can be well illustrated. Similarities to a short story by Raymond Carver are not unintentional.
Collapse
|
28
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
29
|
Zhang O, Lu J, Ding T, Lew MD. Imaging the three-dimensional orientation and rotational mobility of fluorescent emitters using the Tri-spot point spread function. APPLIED PHYSICS LETTERS 2018; 113:031103. [PMID: 30057423 PMCID: PMC6050162 DOI: 10.1063/1.5031759] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 04/14/2023]
Abstract
Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy of fluorescent beads, revealing that both 20-nm and 100-nm diameter beads emit light significantly differently from isotropic point sources. Exciting 100-nm beads with linearly polarized light, we observe significant depolarization of the emitted fluorescence using the Tri-spot PSF that is difficult to detect using other methods. Finally, we demonstrate that the Tri-spot PSF detects rotational dynamics of single molecules within a polymer thin film that are not observable by conventional SMLM.
Collapse
Affiliation(s)
- Oumeng Zhang
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Jin Lu
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Tianben Ding
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Matthew D Lew
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
30
|
Choi J, Moon JS, Kim FS, Oh JW. Fast photorefractive response in polymeric composites enabled by the control of chromophore free volume. OPTICS LETTERS 2018; 43:3289-3292. [PMID: 30004488 DOI: 10.1364/ol.43.003289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
The molecular orientation of a chromophore importantly affects the electro-optic characteristics of polymeric photorefractive composites. We designed methyl, ethyl, and isopropyl derivatives of 4-piperidinobenzylidene-malononitrile (PDCST) with the aim of enhancing molecular orientation properties, and investigated the effects of alkyl substitution on the electro-optic properties and response times of polymeric photorefractive composites. The three alkyl-substituted PDCSTs showed enhanced electro-optic responses and photorefractive grating buildup rates.
Collapse
|
31
|
Backlund MP, Shechtman Y, Walsworth RL. Fundamental Precision Bounds for Three-Dimensional Optical Localization Microscopy with Poisson Statistics. PHYSICAL REVIEW LETTERS 2018; 121:023904. [PMID: 30085695 DOI: 10.1103/physrevlett.121.023904] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 05/23/2023]
Abstract
Point source localization is a problem of persistent interest in optical imaging. In particular, a number of widely used biological microscopy techniques rely on precise three-dimensional localization of single fluorophores. As emitter depth localization is more challenging than lateral localization, considerable effort has been spent on engineering the response of the microscope in a way that reveals increased depth information. Here, we prove the (sub)optimality of these approaches by deriving and comparing to the measurement-independent quantum Cramér-Rao bound (QCRB). We show that existing methods for depth localization with single-objective collection exceed the QCRB, and we gain insight into the bound by proposing an interferometer arrangement that approaches it. We also show that for light collection with two opposed objectives, an established interferometric technique globally reaches the QCRB in all three dimensions simultaneously, and so this represents an interesting case study from the point of view of quantum multiparameter estimation.
Collapse
Affiliation(s)
- Mikael P Backlund
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yoav Shechtman
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Ronald L Walsworth
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
32
|
Martens KJA, Bader AN, Baas S, Rieger B, Hohlbein J. Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): An algorithm for MHz localization rates using standard CPUs. J Chem Phys 2018; 148:123311. [DOI: 10.1063/1.5005899] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Koen J. A. Martens
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory of Bionanotechnology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Arjen N. Bader
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sander Baas
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bernd Rieger
- Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
33
|
Kabbani AM, Kelly CV. Nanoscale Membrane Budding Induced by CTxB and Detected via Polarized Localization Microscopy. Biophys J 2017; 113:1795-1806. [PMID: 29045873 DOI: 10.1016/j.bpj.2017.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 11/17/2022] Open
Abstract
For endocytosis and exocytosis, membranes transition among planar, budding, and vesicular topographies through nanoscale reorganization of lipids, proteins, and carbohydrates. However, prior attempts to understand the initial stages of nanoscale bending have been limited by experimental resolution. Through the implementation of polarized localization microscopy, this article reports the inherent membrane bending capability of cholera toxin subunit B (CTxB) in quasi-one-component-supported lipid bilayers. Membrane buds were first detected with <50 nm radius, grew to >200 nm radius, and extended into longer tubules with dependence on the membrane tension and CTxB concentration. Compared to the concentration of the planar-supported lipid bilayers, CTxB was (12 ± 4)× more concentrated on the positive curvature top and (26 ± 11)× more concentrated on the negative Gaussian curvature neck of the nanoscale membrane buds. CTxB is frequently used as a marker for liquid-ordered lipid phases; however, the coupling between CTxB and membrane bending provides an alternate understanding of CTxB-induced membrane reorganization. These findings allow for the reinterpretation of prior observations by correlating CTxB clustering and diffusion to CTxB-induced membrane bending. Single-particle tracking was performed on single lipids and CTxB to reveal the correlations among single-molecule diffusion, CTxB accumulation, and membrane topography. Slowed lipid and CTxB diffusion was observed at the nanoscale bud locations, suggesting a local increase in the effective membrane viscosity or molecular crowding upon membrane bending. These results suggest inherent CTxB-induced membrane bending as a mechanism for initiating CTxB internalization in cells that could be independent of clathrin, caveolin, actin, and lipid phase separation.
Collapse
Affiliation(s)
- Abir M Kabbani
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
34
|
von Diezmann A, Shechtman Y, Moerner WE. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. Chem Rev 2017; 117:7244-7275. [PMID: 28151646 PMCID: PMC5471132 DOI: 10.1021/acs.chemrev.6b00629] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.
Collapse
Affiliation(s)
| | - Yoav Shechtman
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
35
|
Pointwise error estimates in localization microscopy. Nat Commun 2017; 8:15115. [PMID: 28466844 PMCID: PMC5418599 DOI: 10.1038/ncomms15115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/01/2017] [Indexed: 01/21/2023] Open
Abstract
Pointwise localization of individual fluorophores is a critical step in super-resolution localization microscopy and single particle tracking. Although the methods are limited by the localization errors of individual fluorophores, the pointwise localization precision has so far been estimated using theoretical best case approximations that disregard, for example, motion blur, defocus effects and variations in fluorescence intensity. Here, we show that pointwise localization precision can be accurately estimated directly from imaging data using the Bayesian posterior density constrained by simple microscope properties. We further demonstrate that the estimated localization precision can be used to improve downstream quantitative analysis, such as estimation of diffusion constants and detection of changes in molecular motion patterns. Finally, the quality of actual point localizations in live cell super-resolution microscopy can be improved beyond the information theoretic lower bound for localization errors in individual images, by modelling the movement of fluorophores and accounting for their pointwise localization uncertainty.
Collapse
|
36
|
Zhao F, Chen K, Dong B, Yang K, Gu Y, Fang N. Localization accuracy of gold nanoparticles in single particle orientation and rotational tracking. OPTICS EXPRESS 2017; 25:9860-9871. [PMID: 28468365 PMCID: PMC5462070 DOI: 10.1364/oe.25.009860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
The Single Particle Orientation and Rotational Tracking (SPORT) technique, which utilizes anisotropic plasmonic gold nanorods and differential interference contrast (DIC) microscopy, has shown potential as an effective alternative to fluorescence-based techniques to decipher rotational motions on the cellular and molecular levels. However, localizing gold nanorods from their DIC images with high accuracy and precision is more challenging than the procedures applied in fluorescence or scattering microscopy techniques due to the asymmetric DIC point spread function with bright and dark parts superimposed over a grey background. In this paper, localization accuracy and inherited uncertainties from unique DIC image patterns are elucidated with the assistance of computer simulation. These discussions provide guidance for researchers to properly evaluate their data and avoid making claims beyond the technical limits. The understanding of the intrinsic localization errors and the principle of DIC microscopy leads us to propose a new localization strategy that utilizes the experimentally-measured shear distance of the DIC microscope to improve the localization accuracy.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303,
USA
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303,
USA
| | - Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303,
USA
| | - Kai Yang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, Soochow University, Suzhou, Jiangsu, China, 215006,
USA
| | - Yan Gu
- The Bristol-Myers Squibb Company, Devens, Massachusetts, USA 01434,
USA
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303,
USA
| |
Collapse
|
37
|
Novák T, Gajdos T, Sinkó J, Szabó G, Erdélyi M. TestSTORM: Versatile simulator software for multimodal super-resolution localization fluorescence microscopy. Sci Rep 2017; 7:951. [PMID: 28424492 PMCID: PMC5430448 DOI: 10.1038/s41598-017-01122-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/22/2017] [Indexed: 11/18/2022] Open
Abstract
Optimization of sample, imaging and data processing parameters is an essential task in localization based super-resolution microscopy, where the final image quality strongly depends on the imaging of single isolated fluorescent molecules. A computational solution that uses a simulator software for the generation of test data stacks was proposed, developed and tested. The implemented advanced physical models such as scalar and vector based point spread functions, polarization sensitive detection, drift, spectral crosstalk, structured background etc., made the simulation results more realistic and helped us interpret the final super-resolved images and distinguish between real structures and imaging artefacts.
Collapse
Affiliation(s)
- Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - József Sinkó
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - Gábor Szabó
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary.,MTA-SZTE Research Group on Photoacoustic Spectroscopy, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary.
| |
Collapse
|
38
|
Sinkó J, Gajdos T, Czvik E, Szabó G, Erdélyi M. Polarization sensitive localization based super-resolution microscopy with a birefringent wedge. Methods Appl Fluoresc 2017; 5:017001. [PMID: 28328539 DOI: 10.1088/2050-6120/aa6260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.
Collapse
Affiliation(s)
- József Sinkó
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Dóm tér 9., 6720 Hungary
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Hans Blom
- Royal Institute of Technology (KTH), Dept Applied Physics, SciLifeLab, 17165 Solna, Sweden
| | - Jerker Widengren
- Royal Institute of Technology (KTH), Dept Applied Physics, Albanova Univ Center, 10691 Stockholm, Sweden
| |
Collapse
|
40
|
Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, Elf J, Hell SW. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 2016; 355:606-612. [DOI: 10.1126/science.aak9913] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022]
|
41
|
Shroder DY, Lippert LG, Goldman YE. Single molecule optical measurements of orientation and rotations of biological macromolecules. Methods Appl Fluoresc 2016; 4:042004. [PMID: 28192292 PMCID: PMC5308470 DOI: 10.1088/2050-6120/4/4/042004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.
Collapse
|
42
|
Würsch D, Hofmann FJ, Eder T, Aggarwal AV, Idelson A, Höger S, Lupton JM, Vogelsang J. Molecular Water Lilies: Orienting Single Molecules in a Polymer Film by Solvent Vapor Annealing. J Phys Chem Lett 2016; 7:4451-4457. [PMID: 27786495 DOI: 10.1021/acs.jpclett.6b02119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The microscopic orientation and position of photoactive molecules is crucial to the operation of optoelectronic devices such as OLEDs and solar cells. Here, we introduce a shape-persistent macrocyclic molecule as an excellent fluorescent probe to simply measure (i) its orientation by rotating the excitation polarization and recording the strength of modulation in photoluminescence (PL) and (ii) its position in a film by analyzing the overall PL brightness at the molecular level. The unique shape, the absorption and the fluorescence properties of this probe yield information on molecular orientation and position. We control orientation and positioning of the probe in a polymer film by solvent vapor annealing (SVA). During the SVA process the molecules accumulate at the polymer/air interface, where they adopt a flat orientation, much like water lilies on the surface of a pond. The results are potentially significant for OLED fabrication and single-molecule spectroscopy (SMS) in general.
Collapse
Affiliation(s)
- Dominik Würsch
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Felix J Hofmann
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Theresa Eder
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - A Vikas Aggarwal
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - Alissa Idelson
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| |
Collapse
|
43
|
Burrows ND, Lin W, Hinman JG, Dennison JM, Vartanian AM, Abadeer NS, Grzincic EM, Jacob LM, Li J, Murphy CJ. Surface Chemistry of Gold Nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9905-9921. [PMID: 27568788 DOI: 10.1021/acs.langmuir.6b02706] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gold nanorods have garnered a great deal of scientific interest because of their unique optical properties, and they have the potential to greatly impact many areas of science and technology. Understanding the structure and chemical makeup of their surfaces as well as how to tailor them is of paramount importance in the development of their successful applications. This Feature Article reviews the current understanding of the surface chemistry of as-synthesized gold nanorods, methods of tailoring the surface chemistry of gold nanorods with various inorganic and organic coatings/ligands, and the techniques employed to characterize ligands on the surface of gold nanorods as well as the associated measurement challenges. Specifically, we address the challenges of determining how thick the ligand shell is, how many ligands per nanorod are present on the surface, and where the ligands are located in regiospecific and mixed-ligand systems. We conclude with an outlook on the development of the surface chemistry of gold nanorods leading to the development of a synthetic nanoparticle surface chemistry toolbox analogous to that of synthetic organic chemistry and natural product synthesis.
Collapse
Affiliation(s)
- Nathan D Burrows
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Wayne Lin
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Joshua G Hinman
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jordan M Dennison
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Ariane M Vartanian
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Nardine S Abadeer
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Elissa M Grzincic
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Lisa M Jacob
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Ji Li
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
44
|
Backer AS, Lee MY, Moerner WE. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements. OPTICA 2016; 3:3-6. [PMID: 27722186 PMCID: PMC5050005 DOI: 10.1364/optica.3.000659] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single-molecule orientation measurements provide unparalleled insight into a multitude of biological and polymeric systems. We report a simple, high-throughput technique for measuring the azimuthal orientation and rotational dynamics of single fluorescent molecules, which is compatible with localization microscopy. Our method involves modulating the polarization of an excitation laser, and analyzing the corresponding intensities emitted by single dye molecules and their modulation amplitudes. To demonstrate our approach, we use intercalating and groove-binding dyes to obtain super-resolved images of stretched DNA strands through binding-induced turn-on of fluorescence. By combining our image data with thousands of dye molecule orientation measurements, we develop a means of probing the structure of individual DNA strands, while also characterizing dye-DNA interactions. This approach may hold promise as a method for monitoring DNA conformation changes resulting from DNA-binding proteins.
Collapse
Affiliation(s)
- Adam S. Backer
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford CA 94305
- Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford CA 94305
| | - Maurice Y. Lee
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford CA 94305
- Biophysics Program, Stanford University, Stanford CA 94305
| | - W. E. Moerner
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford CA 94305
| |
Collapse
|
45
|
Musser SM, Grünwald D. Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches. J Mol Biol 2016; 428:2091-119. [PMID: 26944195 DOI: 10.1016/j.jmb.2016.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/05/2016] [Accepted: 02/17/2016] [Indexed: 01/06/2023]
Abstract
Due to its central role in macromolecular trafficking and nucleocytoplasmic information transfer, the nuclear pore complex (NPC) has been studied in great detail using a wide spectrum of methods. Consequently, many aspects of its architecture, general function, and role in the life cycle of a cell are well understood. Over the last decade, fluorescence microscopy methods have enabled the real-time visualization of single molecules interacting with and transiting through the NPC, allowing novel questions to be examined with nanometer precision. While initial single-molecule studies focused primarily on import pathways using permeabilized cells, it has recently proven feasible to investigate the export of mRNAs in living cells. Single-molecule assays can address questions that are difficult or impossible to answer by other means, yet the complexity of nucleocytoplasmic transport requires that interpretation be based on a firm genetic, biochemical, and structural foundation. Moreover, conceptually simple single-molecule experiments remain technically challenging, particularly with regard to signal intensity, signal-to-noise ratio, and the analysis of noise, stochasticity, and precision. We discuss nuclear transport issues recently addressed by single-molecule microscopy, evaluate the limits of existing assays and data, and identify open questions for future studies. We expect that single-molecule fluorescence approaches will continue to be applied to outstanding nucleocytoplasmic transport questions, and that the approaches developed for NPC studies are extendable to additional complex systems and pathways within cells.
Collapse
Affiliation(s)
- Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, 1114 TAMU, College Station, TX 77843, USA.
| | - David Grünwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
46
|
Abstract
The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or 'nanoscopy' offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent 'on' and 'off' states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research.
Collapse
|
47
|
Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc Natl Acad Sci U S A 2016; 113:E820-8. [PMID: 26831082 DOI: 10.1073/pnas.1516811113] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Essential cellular functions as diverse as genome maintenance and tissue morphogenesis rely on the dynamic organization of filamentous assemblies. For example, the precise structural organization of DNA filaments has profound consequences on all DNA-mediated processes including gene expression, whereas control over the precise spatial arrangement of cytoskeletal protein filaments is key for mechanical force generation driving animal tissue morphogenesis. Polarized fluorescence is currently used to extract structural organization of fluorescently labeled biological filaments by determining the orientation of fluorescent labels, however with a strong drawback: polarized fluorescence imaging is indeed spatially limited by optical diffraction, and is thus unable to discriminate between the intrinsic orientational mobility of the fluorophore labels and the real structural disorder of the labeled biomolecules. Here, we demonstrate that quantitative single-molecule polarized detection in biological filament assemblies allows not only to correct for the rotational flexibility of the label but also to image orientational order of filaments at the nanoscale using superresolution capabilities. The method is based on polarized direct stochastic optical reconstruction microscopy, using dedicated optical scheme and image analysis to determine both molecular localization and orientation with high precision. We apply this method to double-stranded DNA in vitro and microtubules and actin stress fibers in whole cells.
Collapse
|
48
|
Backlund MP, Arbabi A, Petrov PN, Arbabi E, Saurabh S, Faraon A, Moerner WE. Removing Orientation-Induced Localization Biases in Single-Molecule Microscopy Using a Broadband Metasurface Mask. NATURE PHOTONICS 2016; 10:459-462. [PMID: 27574529 PMCID: PMC5001689 DOI: 10.1038/nphoton.2016.93] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/11/2016] [Indexed: 05/21/2023]
Abstract
Nanoscale localization of single molecules is a crucial function in several advanced microscopy techniques, including single-molecule tracking and wide-field super-resolution imaging 1. To date, a central consideration of such techniques is how to optimize the precision of molecular localization. However, as these methods continue to push toward the nanometre size scale, an increasingly important concern is the localization accuracy. In particular, single fluorescent molecules emit with an anisotropic radiation pattern of an oscillating electric dipole, which can cause significant localization biases using common estimators 2-5. Here we present the theory and experimental demonstration of a solution to this problem based on azimuthal filtering in the Fourier plane of the microscope. We do so using a high efficiency dielectric metasurface polarization/phase device composed of nanoposts with sub-wavelength spacing 6. The method is demonstrated both on fluorophores embedded in a polymer matrix, and in dL5 protein complexes that bind Malachite green 7, 8.
Collapse
Affiliation(s)
- Mikael P. Backlund
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, CA 94305
| | - Amir Arbabi
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125
| | - Petar N. Petrov
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, CA 94305
| | - Ehsan Arbabi
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125
| | - Saumya Saurabh
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, CA 94305
| | - Andrei Faraon
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125
- A.F. for questions regarding the metasurface mask. Contact:
| | - W. E. Moerner
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, CA 94305
- Correspondence should be directed to W.E.M. for questions regarding the experiment, Contact:
| |
Collapse
|
49
|
Siraj N, El-Zahab B, Hamdan S, Karam TE, Haber LH, Li M, Fakayode SO, Das S, Valle B, Strongin RM, Patonay G, Sintim HO, Baker GA, Powe A, Lowry M, Karolin JO, Geddes CD, Warner IM. Fluorescence, Phosphorescence, and Chemiluminescence. Anal Chem 2015; 88:170-202. [PMID: 26575092 DOI: 10.1021/acs.analchem.5b04109] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Noureen Siraj
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Bilal El-Zahab
- Department of Mechanical and Materials Engineering, Florida International University , Miami, Florida 33174, United States
| | - Suzana Hamdan
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Tony E Karam
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Louis H Haber
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Min Li
- Process Development Center, Albemarle Corporation , Baton Rouge, Louisiana 70805, United States
| | - Sayo O Fakayode
- Department of Chemistry, Winston-Salem State University , Winston-Salem, North Carolina 27110, United States
| | - Susmita Das
- Department of Civil Engineering, Adamas Institute of Technology , Barasat, Kolkata 700126, West Bengal India
| | - Bertha Valle
- Department of Chemistry, Texas Southern University , Houston, Texas 77004, United States
| | - Robert M Strongin
- Department of Chemistry, Portland State University , Portland, Oregon 97207, United States
| | - Gabor Patonay
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-4098, United States
| | - Herman O Sintim
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri Columbia , Columbia, Missouri 65211-7600, United States
| | - Aleeta Powe
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40208, United States
| | - Mark Lowry
- Department of Chemistry, Portland State University , Portland, Oregon 97207, United States
| | - Jan O Karolin
- Institute of Fluorescence, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| | - Chris D Geddes
- Institute of Fluorescence, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| | - Isiah M Warner
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
50
|
Shechtman Y, Weiss L, Backer AS, Sahl SJ, Moerner WE. Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions. NANO LETTERS 2015; 15:4194-9. [PMID: 25939423 PMCID: PMC4462996 DOI: 10.1021/acs.nanolett.5b01396] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We employ a novel framework for information-optimal microscopy to design a family of point spread functions (PSFs), the Tetrapod PSFs, which enable high-precision localization of nanoscale emitters in three dimensions over customizable axial (z) ranges of up to 20 μm with a high numerical aperture objective lens. To illustrate, we perform flow profiling in a microfluidic channel and show scan-free tracking of single quantum-dot-labeled phospholipid molecules on the surface of living, thick mammalian cells.
Collapse
Affiliation(s)
- Yoav Shechtman
- Department
of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
| | - Lucien
E. Weiss
- Department
of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
| | - Adam S. Backer
- Institute
for Computational and Mathematical Engineering, 475 Via Ortega, Stanford, California 94305, United States
| | - Steffen J. Sahl
- Department
of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
| | - W. E. Moerner
- Department
of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
- E-mail:
| |
Collapse
|