1
|
Moazen Dehkordi S, Mohammadi H. Improvement of directivity in plasmonic nanoantennas based on structured cubic gold nanoparticles. Sci Rep 2024; 14:17153. [PMID: 39060408 PMCID: PMC11282185 DOI: 10.1038/s41598-024-68320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
An array of metallic nanoparticles can diffract or concentrate the incident electromagnetic wave and behave as an antenna. In this paper, the effects of the inner sub-wavelength structure of nanoparticles are studied on the directivity of the plasmonic nanoantenna, which is coated on the output of a waveguide. Three 5*5 element configurations are analyzed: nanocubes, nanoshells, and nanoframes array. Numerical results are obtained using the 3D FDTD technique. The results show that structured nanoantennas can improve the antenna's directivity due to the plasmonic properties and hybridization mechanism. Between the three configurations investigated in the 250-800 nm wavelength range, the nanoshell array exhibits maximum and minimum amounts of its directivity at 321.5 nm and 591 nm, respectively. At 558 nm, nanoframes and nanoshells' arrays show the same amount of directivity, and from the wavelength greater than 558 nm, the nanoframe array has the best performance. The results may help design and fabricate directive optical fiber endcaps.
Collapse
Affiliation(s)
| | - Hamidreza Mohammadi
- Faculty of Physics, University of Isfahan, Isfahan, P.O. Box 81746-7344, Iran.
- Quantum Optics Group, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
2
|
Dziatko RA, Chintapalli SM, Song Y, Daskopoulou E, Kachman DE, Zander Z, Kuhn DL, Thon SM, Bragg AE. Tuning Optical Properties of Plasmonic Aerosols through Ligand-Solvent Interactions. J Phys Chem Lett 2024; 15:4117-4124. [PMID: 38591741 DOI: 10.1021/acs.jpclett.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Plasmonic nanoparticles are highly tunable light-harvesting materials with a wide array of applications in photonics and catalysis. More recently, there has been interest in using aerosolized plasmonic nanoparticles for cloud formation, airborne photocatalysts, and molecular sensors, all of which take advantage of the large scattering cross sections and the ability of these particles to support intense local field enhancement ("hot spots"). While extensive research has investigated properties of plasmonic particles in the solution phase, surfaces, and films, aerosolized plasmonics are relatively unexplored. Here, we demonstrate how the capping ligand, suspension solvent, and atomization conditions used for aerosol generation control the steady-state optical properties of aerosolized Silica@Au plasmonic nanoshells. Our experimental results, supported with spectral simulations, illustrate that ligand coverage and atomization conditions control the degree of solvent retention and thus the spectral characteristics and potential access to surfaces for catalysis in the aerosol phase, opening a new regime for tunable applications of plasmonic metamaterials.
Collapse
Affiliation(s)
- Rachel A Dziatko
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sreyas M Chintapalli
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yuqi Song
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eleni Daskopoulou
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dana E Kachman
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zachary Zander
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Danielle L Kuhn
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Susanna M Thon
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
John-Herpin A, Tittl A, Kühner L, Richter F, Huang SH, Shvets G, Oh SH, Altug H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2110163. [PMID: 35638248 DOI: 10.1002/adma.202110163] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced infrared spectroscopy, a broad palette of resonator geometries, materials, and arrangements for realizing highly sensitive metadevices is showcased, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, advanced sensor functionalities of metasurface-based infrared spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis are highlighted.
Collapse
Affiliation(s)
- Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Felix Richter
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
Sherif SM, Swillam MA. Silicon-based mid infrared on-chip gas sensor using Fano resonance of coupled plasmonic microcavities. Sci Rep 2023; 13:12311. [PMID: 37516742 PMCID: PMC10387087 DOI: 10.1038/s41598-023-38926-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Sensing in the mid infrared spectral range is highly desirable for the detection and monitoring of different gases. We hereby propose a CMOS compatible silicon-based sensor that operates at (3.5-10 μm) within the mid infrared range. The silicon material is doped to the level that shifts its plasmonic resonance to 3 μm wavelength. The sensor device comprises an in-line rectangular microcavity and a stub microcavity resonator. The resonance frequencies/wavelengths of the two resonators were studied with different design dimensions. When the two resonators are designed to resonate at close frequencies, the interesting Fano resonance with its distinct and sharp line shape is excited due to the interference between the two resonance profiles. Fano resonance is useful for highly sensitive measurements due to its abrupt intensity changing profile. The sensor is studied and analyzed using Finite Difference Element and 2D Finite Difference Time Domain methods. The sensor's performance is characterized by its high sensitivity of 6000 nm/RIU, FOM of 353, and limited insertion loss of 0.45 dB around 6.5 μm operation wavelength. Furthermore, we develop the sensor for simultaneously detecting formaldehyde CH2O and nitrous oxide N2O gases from their strong absorption bands at 3.6 μm and 4.46 μm wavelengths, respectively.
Collapse
Affiliation(s)
- Sherif M Sherif
- Department of Physics, School of Science and Engineering, The American University in Cairo, Cairo, 11835, Egypt
| | - Mohamed A Swillam
- Department of Physics, School of Science and Engineering, The American University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
5
|
Nurrahman MR, Kim D, Jeong KY, Kim KH, Lee CH, Seo MK. Broadband generation of quasi bound-state-in-continuum modes using subwavelength truncated cone resonators. OPTICS LETTERS 2023; 48:2837-2840. [PMID: 37262223 DOI: 10.1364/ol.489424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
To allow a high quality factor (Q-factor) to a sub-wavelength dielectric resonator, quasi-bound states in the continuum (Q-BICs) have gained much interest. However, the Q-BIC resonance condition is too sensitive to the geometry of the resonator, and its practical broadband generation on a single-wafer platform has been limited. Here we present that, employing the base angle as a structural degree of freedom, the truncated nano-cone resonator supports the Q-BIC resonance with a high Q-factor of >150 over a wide wavelength range of >100 nm. We expect our approach will boost the utilization of the Q-BIC resonance for various applications requiring broadband spectral tuning.
Collapse
|
6
|
Peretokin AV, Yurasov DV, Stepikhova MV, Shaleev MV, Yablonskiy AN, Shengurov DV, Dyakov SA, Rodyakina EE, Smagina ZV, Novikov AV. Tuning the Luminescence Response of an Air-Hole Photonic Crystal Slab Using Etching Depth Variation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101678. [PMID: 37242094 DOI: 10.3390/nano13101678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Detailed studies of the luminescent properties of the Si-based 2D photonic crystal (PhC) slabs with air holes of various depths are reported. Ge self-assembled quantum dots served as an internal light source. It was obtained that changing the air hole depth is a powerful tool which allows tuning of the optical properties of the PhC. It was shown that increasing the depth of the holes in the PhC has complex influences on its overall photoluminescence (PL) response due to the simultaneous influences of counteracting factors. As a result, the maximal increase in the PL signal of more than two orders of magnitude was obtained for some intermediate, but not full, depth of the PhC's air holes. It was demonstrated that it is possible to engineer the PhC band structure in such a way as to construct specific states, namely bound states in continuum (BIC), with specially designed dispersion curves being relatively flat. In this case, such states manifest themselves as sharp peaks in the PL spectra, and have high Q-factors which are larger than those of radiative modes and other BIC modes without such a flat dispersion characteristic.
Collapse
Affiliation(s)
- Artem V Peretokin
- Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Dmitry V Yurasov
- Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Margarita V Stepikhova
- Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Mikhail V Shaleev
- Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Artem N Yablonskiy
- Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Dmitry V Shengurov
- Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Sergey A Dyakov
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Ekaterina E Rodyakina
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Physical Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Zhanna V Smagina
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey V Novikov
- Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
- Radiophysical Department, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Chong H, Mu Y, Ye H, Cai Y. Exploring the resonance absorption of subwavelength-patterned epitaxial-grown group-IV semiconductor composite structures. OPTICS EXPRESS 2023; 31:16081-16092. [PMID: 37157694 DOI: 10.1364/oe.489622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We experimentally and theoretically demonstrate a mid-infrared perfect absorber with all group-IV epitaxial layered composite structures. The multispectral narrowband strong absorption (>98%) is attributed to the combined effects of the asymmetric Fabry-Perot (FP) interference and the plasmonic resonance in the subwavelength-patterned metal-dielectric-metal (MDM) stack. The spectral position and intensity of the absorption resonance were analyzed by reflection and transmission. While a localized plasmon resonance in the dual-metal region was found to be modulated by both the horizontal (ribbon width) and vertical (spacer layer thickness) profile, the asymmetric FP modes were modulated merely by the vertical geometric parameters. Semi-empirical calculations show strong coupling between modes with a large Rabi-splitting energy reaching 46% of the mean energy of the plasmonic mode under proper horizontal profile. A wavelength-adjustable all-group-IV-semiconductor plasmonic perfect absorber has potential for photonic-electronic integration.
Collapse
|
8
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
10
|
Wang M, Yu Y, Prucnal S, Berencén Y, Shaikh MS, Rebohle L, Khan MB, Zviagin V, Hübner R, Pashkin A, Erbe A, Georgiev YM, Grundmann M, Helm M, Kirchner R, Zhou S. Mid- and far-infrared localized surface plasmon resonances in chalcogen-hyperdoped silicon. NANOSCALE 2022; 14:2826-2836. [PMID: 35133384 DOI: 10.1039/d1nr07274a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic sensing in the infrared region employs the direct interaction of the vibrational fingerprints of molecules with the plasmonic resonances, creating surface-enhanced sensing platforms that are superior to traditional spectroscopy. However, the standard noble metals used for plasmonic resonances suffer from high radiative losses as well as fabrication challenges, such as tuning the spectral resonance positions into mid- to far-infrared regions, and the compatibility issue with the existing complementary metal-oxide-semiconductor (CMOS) manufacturing platform. Here, we demonstrate the occurrence of mid-infrared localized surface plasmon resonances (LSPR) in thin Si films hyperdoped with the known deep-level impurity tellurium. We show that the mid-infrared LSPR can be further enhanced and spectrally extended to the far-infrared range by fabricating two-dimensional arrays of micrometer-sized antennas in a Te-hyperdoped Si chip. Since Te-hyperdoped Si can also work as an infrared photodetector, we believe that our results will unlock the route toward the direct integration of plasmonic sensors with the on-chip CMOS platform, greatly advancing the possibility of mass manufacturing of high-performance plasmonic sensing systems.
Collapse
Affiliation(s)
- Mao Wang
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Ye Yu
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Slawomir Prucnal
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Yonder Berencén
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Mohd Saif Shaikh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Lars Rebohle
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Muhammad Bilal Khan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Vitaly Zviagin
- Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Alexej Pashkin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Artur Erbe
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
- Centre for Advancing Electronics Dresden (CfAED), Technische Universität Dresden, 01062 Dresden, Germany
| | - Yordan M Georgiev
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
- Institute of Electronics at the Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Marius Grundmann
- Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Manfred Helm
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
- Institut für Angewandte Physik (IAP), Technische Universität Dresden, 01062 Dresden, Germany
| | - Robert Kirchner
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany.
- Centre for Advancing Electronics Dresden (CfAED), Technische Universität Dresden, 01062 Dresden, Germany
| | - Shengqiang Zhou
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
11
|
Sugimoto H, Tabata H. Nonlabeled detection of specific intermolecular bondings by terahertz surface plasmon resonance of topological insulator. OPTICS LETTERS 2021; 46:3897-3900. [PMID: 34388769 DOI: 10.1364/ol.432403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The terahertz (THz) band, which corresponds to intermolecular binding energy, is the key to achieving a nonlabeled biosensor. To realize high-sensitivity binding detection, we focused on surface plasmon resonance (SPR) in the THz range. Using THz-SPR enhanced a in topological insulator, we expect to observe the synergistic effects of two resonance phenomena, namely intermolecular vibrational resonance and SPR. In this Letter, we report the nonlabeled detection of biomolecular binding by the topological insulator THz-SPR. Bi2Se3 was processed in a microribbon array to enhance the SPR in the THz range. The avidin-biotin specific binding, which is similar to the antigen-antibody reaction mechanism and has powerful interactions, was observed owing to enhancement by Bi2Se3 THz-SPR. This work paves the way for a system to directly measure specific molecular bonds using topological insulators.
Collapse
|
12
|
Hui X, Yang C, Li D, He X, Huang H, Zhou H, Chen M, Lee C, Mu X. Infrared Plasmonic Biosensor with Tetrahedral DNA Nanostructure as Carriers for Label-Free and Ultrasensitive Detection of miR-155. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100583. [PMID: 34155822 PMCID: PMC8373097 DOI: 10.1002/advs.202100583] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Indexed: 05/27/2023]
Abstract
MicroRNAs play an important role in early development, cell proliferation, apoptosis, and cell death, and are aberrantly expressed in many types of cancers. To understand their function and diagnose cancer at an early stage, it is crucial to quantitatively detect microRNA without invasive labels. Here, a plasmonic biosensor based on surface-enhanced infrared absorption (SEIRA) for rapid, label-free, and ultrasensitive detection of miR-155 is reported. This technology leverages metamaterial perfect absorbers stimulating the SEIRA effect to provide up to 1000-fold near-field intensity enhancement over the microRNA fingerprint spectral bands. Additionally, it is discovered that the limit of detection (LOD) of the biosensor can be greatly improved by using tetrahedral DNA nanostructure (TDN) as carriers. By using near-field enhancement of SEIRA and specific binding of TDN, the biosensor achieves label-free detection of miR-155 with a high sensitivity of 1.162% pm-1 and an excellent LOD of 100 × 10-15 m. The LOD is about 5000 times lower than that using DNA single strand as probes and about 100 times lower than that of the fluorescence detection method. This work can not only provide a powerful diagnosis tool for the microRNAs detection but also gain new insights into the field of label-free and ultrasensitive SEIRA-based biosensing.
Collapse
Affiliation(s)
- Xindan Hui
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Cheng Yang
- Department of Clinical LaboratorySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Xianming He
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - He Huang
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Hong Zhou
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
- Department of Electrical and Computer EngineeringCenter for Intelligent Sensors and MEMS (CISM)NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117576Singapore
| | - Ming Chen
- Department of Clinical LaboratorySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringCenter for Intelligent Sensors and MEMS (CISM)NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117576Singapore
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| |
Collapse
|
13
|
Abstract
Nanophotonics allows the manipulation of light on the subwavelength scale. Optical nanoantennas are nanoscale elements that enable increased resolution in bioimaging, novel photon sources, solar cells with higher absorption, and the detection of fluorescence from a single molecule. While plasmonic nanoantennas have been extensively explored in the literature, dielectric nanoantennas have several advantages over their plasmonic counterparts, including low dissipative losses and near-field enhancement of both electric and magnetic fields. Nanoantennas increase the optical density of states, which increase the rate of spontaneous emission due to the Purcell effect. The increase is quantified by the Purcell factor, which depends on the mode volume and the quality factor. It is one of the main performance parameters for nanoantennas. One particularly interesting feature of dielectric nanoantennas is the possibility of integrating them into optical resonators with a high quality-factor, further improving the performance of the nanoantennas and giving very high Purcell factors. This review introduces the properties and parameters of dielectric optical nanoantennas, and gives a classification of the nanoantennas based on the number and shape of the nanoantenna elements. An overview of recent progress in the field is provided, and a simulation is included as an example. The simulated nanoantenna, a dimer consisting of two silicon nanospheres separated by a gap, is shown to have a very small mode volume, but a low quality-factor. Some recent works on photonic crystal resonators are reviewed, including one that includes a nanoantenna in the bowtie unit-cell. This results in an enormous increase in the calculated Purcell factor, from 200 for the example dimer, to 8 × 106 for the photonic crystal resonator. Some applications of dielectric nanoantennas are described. With current progress in the field, it is expected that the number of applications will grow and that nanoantennas will be incorporated into new commercial products. A list of relevant materials with high refractive indexes and low losses is presented and discussed. Finally, prospects and major challenges for dielectric nanoantennas are addressed.
Collapse
Affiliation(s)
- Md Rabiul Hasan
- Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Olav Gaute Hellesø
- Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Occhicone A, Pea M, Polito R, Giliberti V, Sinibaldi A, Mattioli F, Cibella S, Notargiacomo A, Nucara A, Biagioni P, Michelotti F, Ortolani M, Baldassarre L. Spectral Characterization of Mid-Infrared Bloch Surface Waves Excited on a Truncated 1D Photonic Crystal. ACS PHOTONICS 2021; 8:350-359. [PMID: 33585665 PMCID: PMC7871362 DOI: 10.1021/acsphotonics.0c01657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 06/01/2023]
Abstract
The many fundamental roto-vibrational resonances of chemical compounds result in strong absorption lines in the mid-infrared region (λ ∼ 2-20 μm). For this reason, mid-infrared spectroscopy plays a key role in label-free sensing, in particular, for chemical recognition, but often lacks the required sensitivity to probe small numbers of molecules. In this work, we propose a vibrational sensing scheme based on Bloch surface waves (BSWs) on 1D photonic crystals to increase the sensitivity of mid-infrared sensors. We report on the design and deposition of CaF2/ZnS 1D photonic crystals. Moreover, we theoretically and experimentally demonstrate the possibility to sustain narrow σ-polarized BSW modes together with broader π-polarized modes in the range of 3-8 μm by means of a customized Fourier transform infrared spectroscopy setup. The multilayer stacks are deposited directly on CaF2 prisms, reducing the number of unnecessary interfaces when exciting in the Kretschmann-Raether configuration. Finally, we compare the performance of mid-IR sensors based on surface plasmon polaritons with the BSW-based sensor. The figures of merit found for BSWs in terms of confinement of the electromagnetic field and propagation length puts them as forefrontrunners for label-free and polarization-dependent sensing devices.
Collapse
Affiliation(s)
- Agostino Occhicone
- SAPIENZA
University of Rome, Department of Basic
and Applied Sciences for Engineering, Via A. Scarpa, 16, 00161 Roma, Italy
| | - Marialilia Pea
- CNR
Consiglio Nazionale delle Ricerche, Institute for Photonics and Nanotechnologies, Via Cineto Romano, 42, 00156 Roma, Italy
| | - Raffaella Polito
- SAPIENZA
University of Rome, Department of Physics, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Valeria Giliberti
- Istituto
Italiano di Tecnologia, Center for Life
Nanosciences, Viale Regina
Elena, 291, 00161 Roma, Italy
| | - Alberto Sinibaldi
- SAPIENZA
University of Rome, Department of Basic
and Applied Sciences for Engineering, Via A. Scarpa, 16, 00161 Roma, Italy
| | - Francesco Mattioli
- CNR
Consiglio Nazionale delle Ricerche, Institute for Photonics and Nanotechnologies, Via Cineto Romano, 42, 00156 Roma, Italy
| | - Sara Cibella
- CNR
Consiglio Nazionale delle Ricerche, Institute for Photonics and Nanotechnologies, Via Cineto Romano, 42, 00156 Roma, Italy
| | - Andrea Notargiacomo
- CNR
Consiglio Nazionale delle Ricerche, Institute for Photonics and Nanotechnologies, Via Cineto Romano, 42, 00156 Roma, Italy
| | - Alessandro Nucara
- SAPIENZA
University of Rome, Department of Physics, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Paolo Biagioni
- Politecnico
di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Francesco Michelotti
- SAPIENZA
University of Rome, Department of Basic
and Applied Sciences for Engineering, Via A. Scarpa, 16, 00161 Roma, Italy
| | - Michele Ortolani
- SAPIENZA
University of Rome, Department of Physics, Piazzale Aldo Moro, 5, 00185 Roma, Italy
- Istituto
Italiano di Tecnologia, Center for Life
Nanosciences, Viale Regina
Elena, 291, 00161 Roma, Italy
| | - Leonetta Baldassarre
- SAPIENZA
University of Rome, Department of Physics, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| |
Collapse
|
15
|
Nurrohman DT, Chiu NF. A Review of Graphene-Based Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Biosensors: Current Status and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:216. [PMID: 33467669 PMCID: PMC7830205 DOI: 10.3390/nano11010216] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
The surface plasmon resonance (SPR) biosensor has become a powerful analytical tool for investigating biomolecular interactions. There are several methods to excite surface plasmon, such as coupling with prisms, fiber optics, grating, nanoparticles, etc. The challenge in developing this type of biosensor is to increase its sensitivity. In relation to this, graphene is one of the materials that is widely studied because of its unique properties. In several studies, this material has been proven theoretically and experimentally to increase the sensitivity of SPR. This paper discusses the current development of a graphene-based SPR biosensor for various excitation methods. The discussion begins with a discussion regarding the properties of graphene in general and its use in biosensors. Simulation and experimental results of several excitation methods are presented. Furthermore, the discussion regarding the SPR biosensor is expanded by providing a review regarding graphene-based Surface-Enhanced Raman Scattering (SERS) biosensor to provide an overview of the development of materials in the biosensor in the future.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Electronics Engineering, State Polytechnic of Cilacap, Cilacap 53211, Indonesia
| | - Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
16
|
Mancini A, Gubbin CR, Berté R, Martini F, Politi A, Cortés E, Li Y, De Liberato S, Maier SA. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas. ACS NANO 2020; 14:8508-8517. [PMID: 32530605 DOI: 10.1021/acsnano.0c02784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface phonon polaritons (SPhPs) are hybrid light-matter states in which light strongly couples to lattice vibrations inside the Reststrahlen band of polar dielectrics at mid-infrared frequencies. Antennas supporting localized surface phonon polaritons (LSPhPs) easily outperform their plasmonic counterparts operating in the visible or near-infrared in terms of field enhancement and confinement thanks to the inherently slower phonon-phonon scattering processes governing SPhP decay. In particular, LSPhP antennas have attracted considerable interest for thermal management at the nanoscale, where the emission strongly diverts from the usual far-field blackbody radiation due to the presence of evanescent waves at the surface. However, far-field measurements cannot shed light on the behavior of antennas in the near-field region. To overcome this limitation, we employ scattering-scanning near-field optical microscopy (sSNOM) to unveil the spectral near-field response of 3C-SiC antenna arrays. We present a detailed description of the behavior of the antenna resonances by comparing far-field and near-field spectra and demonstrate the existence of a mode with no net dipole moment, absent in the far-field spectra, but of importance for applications that exploit the heightened electromagnetic near fields. Furthermore, we investigate the perturbation in the antenna response induced by the presence of the AFM tip, which can be further extended toward situations where for example strong IR emitters couple to LSPhP modes.
Collapse
Affiliation(s)
- Andrea Mancini
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| | - Christopher R Gubbin
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Rodrigo Berté
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| | - Francesco Martini
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- Istituto di Fotonica e Nanotecnologie-CNR, Via Cineto Romano 42, 00156 Roma, Italy
| | - Alberto Politi
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen 518055, China
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Yin H, Li N, Si Y, Zhang H, Yang B, Wang J. Gold nanonails for surface-enhanced infrared absorption. NANOSCALE HORIZONS 2020; 5:1200-1212. [PMID: 32578657 DOI: 10.1039/d0nh00244e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) can dramatically enhance the vibrational signals of analyte molecules owing to the interaction between plasmons and molecular vibrations. It has huge potential for applications in various detection and diagnostic fields. High-aspect-ratio rod-like metal nanostructures have been the most widely studied nanomaterials for SEIRA. However, nearly all of the rod-like nanostructures reported previously are fabricated using physical methods. They suffer from damping and low areal number densities. In this work, high-aspect-ratio Au nanorods are synthesized, and Au nanonails are prepared through Au overgrowth on the as-prepared Au nanorods. The aspect ratios of the Au nanorods and nanonails can be varied in the range of ∼10 to ∼60, and their longitudinal dipolar plasmon resonance wavelengths can be correspondingly tailored from ∼1.6 to ∼8.3 μm. The Au nanonails exhibit superior SEIRA performance with 4-aminothiophenol used as the probe molecules. They are further used to detect the common biomolecule l-cysteine. Numerical simulations are further performed to understand the experimental results. They match well with the experimental observations, revealing the mechanism of the SEIRA enhancement. Our study demonstrates that colloidal high-aspect-ratio Au nanonails and nanorods can function as SEIRA nanoantennas for highly sensitive molecular detection in various situations.
Collapse
Affiliation(s)
- Hang Yin
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | | | | | | | | | | |
Collapse
|
18
|
Deng J, Zheng Y, Zhou J, Li Z, Guo S, Dai X, Yu Y, Ji Z, Chu Z, Chen X, Lu W. Absorption enhancement in all-semiconductor plasmonic cavity integrated THz quantum well infrared photodetectors. OPTICS EXPRESS 2020; 28:16427-16438. [PMID: 32549466 DOI: 10.1364/oe.392230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The light coupling properties of all-semiconductor plasmonic cavity integrated THz quantum well infrared photodetectors were studied for absorption enhancement of the quantum wells. The all-semiconductor plasmonic cavity is constructed by heavily doped GaAs with a plasmonic behavior in the THz regime. The plasmonic behavior of GaAs was thoroughly studied by taking into account the carrier density dependent effective mass of electrons. An optimal doping level for GaAs to be the most metallic is selected since the plasma frequency of the doped GaAs varies nonmonotonically with the carrier density. By tuning the absorption competition between the quantum wells and the doped GaAs meanwhile keeping the system at a critical coupling status, the absorptance of the quantum wells is prominently enhanced by 13.2 times compared to that in a standard device. The all-semiconductor plasmonic cavity integrated quantum well photodetectors can be polarization sensitive (polarization extinction ratio > 900) when the plasmonic cavity is shaped into an anisotropic form. The good tolerance of the incident angle is favored for wide-field infrared detection. The GaAs plasmonic cavities are demonstrated to be effective when integrated at a pixel level, indicating a good compatibility with focal plane arrays.
Collapse
|
19
|
Enhancing Spectral Reflection through Controlled Phase Distribution Using Doped Polar-Dielectric Metasurfaces. MATERIALS 2020; 13:ma13092007. [PMID: 32344800 PMCID: PMC7254382 DOI: 10.3390/ma13092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
Abstract
Controlling the phase distribution of wavefronts using optical metasurfaces has led to interesting optical properties and applications. Here, we explore the control of phase distribution through polar-dielectric metasurfaces composed of doped SiC nanosphere arrays. We investigate the impact of doping concentration on the optical properties of SiC nano-spheres. Our results indicate that increasing the doping of SiC nanoparticles influenced electric dipolar resonances, whereas it did not change the dipolar resonances. Using this concept, we numerically studied the extension of this idea to form metasurface arrays of single, dimer and linear trimers of the doped SiC nano-spheres. Using different doping schemes, we studied the improvement of the reflectivity at frequencies greater than the longitudinal optical phonon frequency.
Collapse
|
20
|
Bomers M, Charlot B, Barho F, Chanuel A, Mezy A, Cerutti L, Gonzalez-Posada F, Taliercio T. Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00350a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
III–V semiconductor plasmonics enables to perform microfluidic surface-enhanced mid-IR spectroscopy and to access the so-called molecular fingerprint region from 6.7 μm to 20 μm (1500–500 cm−1).
Collapse
Affiliation(s)
- Mario Bomers
- IES
- Université de Montpellier
- CNRS
- Montpellier
- France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhu J, Goddard LL. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. NANOSCALE ADVANCES 2019; 1:4615-4643. [PMID: 36133120 PMCID: PMC9419186 DOI: 10.1039/c9na00430k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/09/2019] [Indexed: 05/22/2023]
Abstract
The photonic nanojet (PNJ) is a narrow high-energy beam that was originally found on the back side of all-dielectric spherical structures. It is a unique type of energy concentration mode. The field of PNJs has experienced rapid growth in the past decade: nonspherical and even pixelized PNJ generators based on new physics and principles along with extended photonic applications from linear optics to nonlinear optics have driven the re-evaluation of the role of PNJs in optics and photonics. In this article, we give a comprehensive review for the emerging sub-topics in the past decade with a focus on two specific areas: (1) PNJ generators based on natural materials, artificial materials and nanostructures, and even programmable systems instead of conventional dielectric geometries such as microspheres, cubes, and trihedral prisms, and (2) the emerging novel applications in both linear and nonlinear optics that are built upon the specific features of PNJs. The extraordinary features of PNJs including subwavelength concentration of electromagnetic energy, high intensity focusing spot, and lower Joule heating as compared to plasmonic resonance systems, have made PNJs attractive to diverse fields spanning from optical imaging, nanofabrication, and integrated photonics to biosensing, optical tweezers, and disease diagnosis.
Collapse
Affiliation(s)
- Jinlong Zhu
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 208 N. Wright St., MNTL 2231 Urbana IL 61801 USA
| | - Lynford L Goddard
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 208 N. Wright St., MNTL 2231 Urbana IL 61801 USA
| |
Collapse
|
22
|
Autore M, Mester L, Goikoetxea M, Hillenbrand R. Substrate Matters: Surface-Polariton Enhanced Infrared Nanospectroscopy of Molecular Vibrations. NANO LETTERS 2019; 19:8066-8073. [PMID: 31574225 DOI: 10.1021/acs.nanolett.9b03257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Infrared nanospectroscopy based on Fourier transform infrared near-field spectroscopy (nano-FTIR) is an emerging nanoanalytical tool with large application potential for label-free mapping and identification of organic and inorganic materials with nanoscale spatial resolution. However, the detection of thin molecular layers and nanostructures on standard substrates is still challenged by weak signals. Here, we demonstrate a significant enhancement of nano-FTIR signals of a thin organic layer by exploiting polariton-resonant tip-substrate coupling and surface polariton illumination of the probing tip. When the molecular vibration matches the tip-substrate resonance, we achieve up to nearly one order of magnitude signal enhancement on a phonon-polaritonic quartz (c-SiO2) substrate, as compared to nano-FTIR spectra obtained on metal (Au) substrates, and up to two orders of magnitude when compared to the standard infrared spectroscopy substrate CaF2. Our results will be of critical importance for boosting nano-FTIR spectroscopy toward the routine detection of monolayers and single molecules.
Collapse
Affiliation(s)
- Marta Autore
- CIC nanoGUNE , 20018 Donostia-San Sebastián , Spain
| | - Lars Mester
- CIC nanoGUNE , 20018 Donostia-San Sebastián , Spain
| | | | - R Hillenbrand
- CIC nanoGUNE , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
23
|
Chong H, Xu Z, Wang Z, Yu J, Biesner T, Dressel M, Wu L, Li Q, Ye H. CMOS-Compatible Antimony-Doped Germanium Epilayers for Mid-Infrared Low-Loss High-Plasma-Frequency Plasmonics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19647-19653. [PMID: 31055915 DOI: 10.1021/acsami.9b04391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antimony (Sb) heavily-doped germanium (Ge)-on-silicon (Si) epitaxial films are investigated as mid-infrared (MIR) plasmonic materials. Structural, electrical, and optical properties have been improved by proper choice of dopant species (i.e., Sb) and optimization of the growth parameters (i.e., Sb flux and substrate temperature). The increased electron conductivity can be attributed to the elevated carrier concentration (1.5 × 1020 cm-3) and carrier mobility (224 cm2 V-1 s-1) in the Sb-doped Ge epilayers. The measured MIR reflectivities of the Sb-doped Ge films show free-carrier-dependent properties, which leads to tunable real and imaginary parts of permittivities. Localized surface plasmon polaritons of the bowtie antennas fabricated from the Sb-doped Ge films are demonstrated. The fabricated antennas can provide signal enhancement for the molecular vibrational spectroscopy when these vibrational lines are spectrally in proximity to the localized plasmon resonance. These CMOS-compatible Sb-doped Ge epilayers offer a platform to study the interaction of MIR plasmon with nanostructures on chips.
Collapse
Affiliation(s)
- Haining Chong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zemin Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhewei Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jianbo Yu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Tobias Biesner
- Physikalisches Institut , Universität Stuttgart , Pfaffenwaldring 57 , 70550 Stuttgart , Germany
| | - Martin Dressel
- Physikalisches Institut , Universität Stuttgart , Pfaffenwaldring 57 , 70550 Stuttgart , Germany
| | - Lan Wu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Hui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
24
|
Toudert J, Serna R, Pardo MG, Ramos N, Peláez RJ, Maté B. Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity. OPTICS EXPRESS 2018; 26:34043-34059. [PMID: 30650834 DOI: 10.1364/oe.26.034043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Integrating an absorbing thin film into a resonant cavity is the most practical way to achieve perfect absorption of light at a selected wavelength in the mid-to-far infrared, as required to target blackbody radiation or molecular fingerprints. The cavity is designed to resonate and enable perfect absorption in the film at the chosen wavelength λ. However, in current state-of-the-art designs, a still large absorbing film thickness (∼λ/50) is needed and tuning the perfect absorption wavelength over a broad range requires changing the cavity materials. Here, we introduce a new resonant cavity concept to achieve perfect absorption of infrared light in much thinner and thus, really nanoscale films, with a broad wavelength tenability by using a single set of cavity materials. It requires a nanofilm with giant refractive index and small extinction coefficient (found in emerging semi-metals, semi-conductors and topological insulators) backed by a transparent spacer and a metal mirror. The nanofilm acts both as absorber and multiple reflector for the internal cavity waves, which after escaping follow a fractal phasor trajectory. This enables a totally destructive optical interference for a nanofilm thickness more than 2 orders of magnitude smaller than λ. With this remarkable effect, we demonstrate angle-insensitive perfect absorption in sub - λ/100 bismuth nanofilms, at a wavelength tunable from 3 to 20 μm.
Collapse
|
25
|
Fischer MP, Riede A, Gallacher K, Frigerio J, Pellegrini G, Ortolani M, Paul DJ, Isella G, Leitenstorfer A, Biagioni P, Brida D. Plasmonic mid-infrared third harmonic generation in germanium nanoantennas. LIGHT, SCIENCE & APPLICATIONS 2018; 7:106. [PMID: 30564312 PMCID: PMC6290006 DOI: 10.1038/s41377-018-0108-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
We demonstrate third harmonic generation in plasmonic antennas consisting of highly doped germanium grown on silicon substrates and designed to be resonant in the mid-infrared frequency range that is inaccessible with conventional nonlinear plasmonic materials. Owing to the near-field enhancement, the result is an ultrafast, subdiffraction, coherent light source with a wavelength tunable between 3 and 5 µm, and ideally overlapping with the fingerprint region of molecular vibrations. To observe the nonlinearity in this challenging spectral window, a high-power femtosecond laser system equipped with parametric frequency conversion in combination with an all-reflective confocal microscope setup is employed. We demonstrate spatially resolved maps of the linear scattering cross section and the nonlinear emission of single isolated antenna structures. A clear third-order power dependence as well as mid-infrared emission spectra prove the nonlinear nature of the light emission. Simulations support the observed resonance length of the double-rod antenna and demonstrate that the field enhancement inside the antenna material is responsible for the nonlinear frequency mixing.
Collapse
Affiliation(s)
- Marco P. Fischer
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
| | - Aaron Riede
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
| | - Kevin Gallacher
- School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, G12 8LT UK
| | - Jacopo Frigerio
- L-NESS, Dipartimento di Fisica del Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
| | - Giovanni Pellegrini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Michele Ortolani
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Douglas J. Paul
- School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, G12 8LT UK
| | - Giovanni Isella
- L-NESS, Dipartimento di Fisica del Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
| | - Alfred Leitenstorfer
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
| | - Paolo Biagioni
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Daniele Brida
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
26
|
Kim S, Kim JM, Park JE, Nam JM. Nonnoble-Metal-Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704528. [PMID: 29572964 DOI: 10.1002/adma.201704528] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Indexed: 06/08/2023]
Abstract
The application scope of plasmonic nanostructures is rapidly expanding to keep pace with the ongoing development of various scientific findings and emerging technologies. However, most plasmonic nanostructures heavily depend on rare, expensive, and extensively studied noble metals such as Au and Ag, with the limited choice of elements hindering their broad and practical applications in a wide spectral range. Therefore, abundant and inexpensive nonnoble metals have attracted attention as new plasmonic nanomaterial components, allowing these nonnoble-metal-based materials to be used in areas such as photocatalysis, sensing, nanoantennas, metamaterials, and magnetoplasmonics with new compositions, structures, and properties. Furthermore, the use of nonnoble metal hybrids results in newly emerging or synergistic properties not observed from single-metal component systems. Here, the synthetic strategies and recent advances in nonnoble-metal-based plasmonic nanostructures comprising Cu, Al, Mg, In, Ga, Pb, Ni, Co, Fe, and related hybrids are highlighted, and a discussion and perspectives in their synthesis, properties, applications, and challenges are presented.
Collapse
Affiliation(s)
- Sungi Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
27
|
Yang X, Sun Z, Low T, Hu H, Guo X, García de Abajo FJ, Avouris P, Dai Q. Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704896. [PMID: 29572965 DOI: 10.1002/adma.201704896] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/05/2017] [Indexed: 05/19/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) has attracted increasing attention due to the potential of infrared spectroscopy in applications such as molecular trace sensing of solids, polymers, and proteins, specifically fueled by recent substantial developments in infrared plasmonic materials and engineered nanostructures. Here, the significant progress achieved in the past decades is reviewed, along with the current state of the art of SEIRA. In particular, the plasmonic properties of a variety of nanomaterials are discussed (e.g., metals, semiconductors, and graphene) along with their use in the design of efficient SEIRA configurations. To conclude, perspectives on potential applications, including single-molecule detection and in vivo bioassays, are presented.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Keller Hall 200 Union St S.E., Minneapolis, MN, 55455, USA
| | - Hai Hu
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangdong Guo
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - F Javier García de Abajo
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
- ICREA-Institució Catalana de Recerca I Estudis Avancąts, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Phaedon Avouris
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Qing Dai
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Debu DT, Bauman SJ, French D, Churchill HOH, Herzog JB. Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface. Sci Rep 2018; 8:3224. [PMID: 29459663 PMCID: PMC5818661 DOI: 10.1038/s41598-018-21365-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/01/2018] [Indexed: 11/24/2022] Open
Abstract
We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.
Collapse
Affiliation(s)
- Desalegn T Debu
- University of Arkansas, Department of Physics, Fayetteville, Arkansas, 72701, USA.
| | - Stephen J Bauman
- University of Arkansas, Microelectronics-Photonics Graduate Program, Fayetteville, Arkansas, 72701, USA
| | - David French
- University of Arkansas, Department of Physics, Fayetteville, Arkansas, 72701, USA
| | - Hugh O H Churchill
- University of Arkansas, Department of Physics, Fayetteville, Arkansas, 72701, USA
| | - Joseph B Herzog
- University of Arkansas, Department of Physics, Fayetteville, Arkansas, 72701, USA.,University of Arkansas, Microelectronics-Photonics Graduate Program, Fayetteville, Arkansas, 72701, USA
| |
Collapse
|
29
|
Wang P, Yu X, Zhu Y, Yu Y, Yuan W. Batch Fabrication of Broadband Metallic Planar Microlenses and Their Arrays Combining Nanosphere Self-Assembly with Conventional Photolithography. NANOSCALE RESEARCH LETTERS 2017; 12:388. [PMID: 28582969 PMCID: PMC5457382 DOI: 10.1186/s11671-017-2158-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/23/2017] [Indexed: 05/30/2023]
Abstract
A novel low-cost, batch-fabrication method combining the spin-coating nanosphere lithography (NSL) with the conventional photolithographic technique is demonstrated to efficiently produce the metallic planar microlenses and their arrays. The developed microlenses are composed of subwavelength nanoholes and can focus light effectively in the entire visible spectrum, with the foci sizes close to the Rayleigh diffraction limit. By changing the spacing and diameter of nanoholes, the focusing efficiency can be tuned. Although the random defects commonly exist during the self-assembly of nanospheres, the main focusing performance, e.g., focal length, depth of focus (DOF), and full-width at half-maximum (FWHM), keeps almost invariable. This research provides a cheap way to realize the integrated nanophotonic devices on the wafer level.
Collapse
Affiliation(s)
- Ping Wang
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi’an, 710072 China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Xiaochang Yu
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi’an, 710072 China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yechuan Zhu
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi’an, 710072 China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yiting Yu
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi’an, 710072 China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Weizheng Yuan
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi’an, 710072 China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi’an, 710072 China
| |
Collapse
|
30
|
Abedi S, Pakizeh T. Packed Yagi-Uda nano-antennas using a unidirectional feed at visible wavelengths. OPTICS LETTERS 2017; 42:4788-4791. [PMID: 29216114 DOI: 10.1364/ol.42.004788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Optical nano-antennas' capability for controlling the intensity and direction of freely propagating waves is a precursor to demanding on-chip optical communications. Here we present a novel and efficiently packed Yagi-Uda (P-YU) nano-antenna which is dramatically directive and shortened. This is due to the excitation of a pair of strong interacting Au nanorods as a feed in the form of conventional Yagi-Uda (YU). Using a sophisticated feed with a unidirectional radiation pattern in a wavelength close to the antiphase hybridized plasmon causes significant directionality in the designed nano-antennas' emission. This allows us to reduce the number of directors or overall size while directivity and gain of the P-YU antenna considerably improve at about 610 nm.
Collapse
|
31
|
Milla MJ, Barho F, González-Posada F, Cerutti L, Charlot B, Bomers M, Neubrech F, Tournie E, Taliercio T. Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas. OPTICS EXPRESS 2017; 25:26651-26661. [PMID: 29092159 DOI: 10.1364/oe.25.026651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate surface enhanced infrared absorption spectroscopy using 1-dimensional highly doped semiconductors based on Si-doped InAsSb plasmonic nano-antennas. Engineering the plasmonic array to support the localized surface plasmon resonance aligned with the molecular vibrational absorption mode of interest involves finely setting the doping level and nano-antenna width. Heavily doped nano-antennas require a wider size compared to lightly doped resonators. Increasing the doping level, and consequently the width of the nano-antenna, enhances the vibrational absorption of a ~15 nm thick organic layer up to 2 orders of magnitude compared to the unstructured sample and therefore improves sensing. These results pave the way towards molecule fingerprint sensor manufacturing by tailoring the plasmonic resonators to get a maximum surface enhanced infrared absorption at the target vibrational mode.
Collapse
|
32
|
Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared. Sci Rep 2017; 7:7356. [PMID: 28779085 PMCID: PMC5544773 DOI: 10.1038/s41598-017-07842-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
Mid-infrared (MIR) spectroscopy is a powerful tool for characterising the vibrations of molecular bonds and is therefore ideal for label-free detection of chemical species. Recent research into thin-film deposition and etching techniques for mid-infrared materials shows potential for realising miniaturised bedside biosensors for clinical diagnostics exploiting MIR spectroscopy, to replace laboratory based-techniques. However, lack of refractive index information for commonly encountered biological media and analytes hampers optimisation of biosensor performance for maximum sensitivity, especially for devices exploiting evanescent spectroscopy. Here we present refractive index data for human whole blood and several aqueous solutions of general interest to the clinical community: anticoagulants, analgesics and buffers. The refractive indices are generally dominated by the water content of each sample and the whole blood spectra exhibit additional strong features due to protein content. Furthermore, we present a generalised method for extracting complex refractive indices of aqueous solutions in the mid-infrared region using conventional attenuated total reflection Fourier transform spectroscopy (ATR-FTIR) without the need for collimated or polarised incident light, as is required for existing methods.
Collapse
|
33
|
Wei W, Nong J, Jiang X, Chen N, Luo S, Tang L. All-Semiconductor Plasmonic Resonator for Surface-Enhanced Infrared Absorption Spectroscopy. MICROMACHINES 2017. [PMCID: PMC6189820 DOI: 10.3390/mi8010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Infrared absorption spectroscopy remains a challenge due to the weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. A highly doped semiconductor supports intrinsic plasmon modes at infrared frequencies, and is compatible with the current epitaxial growth processing, which makes it promising for various applications. Here, we propose an all-semiconductor plasmonic resonator to enhance the infrared absorption of the adsorbed molecules. An optical model is employed to investigate the effect of structural parameters on the spectral features of the resonator and the enhanced infrared absorption characteristics are further discussed. When a molecular layer is deposited upon the resonator, the weak molecular absorption signal can be significantly enhanced. A high enhancement factor of 470 can be achieved once the resonance wavelength of the resonator is overlapped with the desired vibrational mode of the molecules. Our study offers a promising approach to engineering semiconductor optics devices for mid-infrared sensing applications.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (J.N.); (X.J.); (N.C.)
- Chongqing Research Center for Advanced Materials, Chongqing Academy of Science and Technology, Chongqing 401123, China;
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China;
- Correspondence: ; Tel.: +86-23-6510-2511
| | - Jinpeng Nong
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (J.N.); (X.J.); (N.C.)
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China;
| | - Xiao Jiang
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (J.N.); (X.J.); (N.C.)
| | - Na Chen
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (J.N.); (X.J.); (N.C.)
| | - Suqin Luo
- Chongqing Research Center for Advanced Materials, Chongqing Academy of Science and Technology, Chongqing 401123, China;
| | - Linlong Tang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China;
| |
Collapse
|
34
|
Garoli D, Calandrini E, Bozzola A, Ortolani M, Cattarin S, Barison S, Toma A, De Angelis F. Boosting infrared energy transfer in 3D nanoporous gold antennas. NANOSCALE 2017; 9:915-922. [PMID: 28000833 DOI: 10.1039/c6nr08231a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm-1 through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.
Collapse
Affiliation(s)
- D Garoli
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| | - E Calandrini
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| | - A Bozzola
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| | - M Ortolani
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy
| | - S Cattarin
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (CNR-ICMATE), Corso Stati Uniti 4, I-35127 Padova, Italy
| | - S Barison
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (CNR-ICMATE), Corso Stati Uniti 4, I-35127 Padova, Italy
| | - A Toma
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| | - F De Angelis
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.
| |
Collapse
|
35
|
Panah MEA, Takayama O, Morozov SV, Kudryavtsev KE, Semenova ES, Lavrinenko AV. Highly doped InP as a low loss plasmonic material for mid-IR region. OPTICS EXPRESS 2016; 24:29077-29088. [PMID: 27958572 DOI: 10.1364/oe.24.029077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.
Collapse
|
36
|
All-Silicon Ultra-Broadband Infrared Light Absorbers. Sci Rep 2016; 6:38589. [PMID: 27924933 PMCID: PMC5141492 DOI: 10.1038/srep38589] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Absorbing infrared radiation efficiently is important for critical applications such as thermal imaging and infrared spectroscopy. Common infrared absorbing materials are not standard in Si VLSI technology. We demonstrate ultra-broadband mid-infrared absorbers based purely on silicon. Broadband absorption is achieved by the combined effects of free carrier absorption, and vibrational and plasmonic absorption resonances. The absorbers, consisting of periodically arranged silicon gratings, can be fabricated using standard optical lithography and deep reactive ion etching techniques, allowing for cost-effective and wafer-scale fabrication of micro-structures. Absorption wavebands in excess of 15 micrometers (5–20 μm) are demonstrated with more than 90% average absorptivity. The structures also exhibit broadband absorption performance even at large angles of incidence (θ = 50°), and independent of polarization.
Collapse
|
37
|
Xu X, Hu X, Chen X, Kang Y, Zhang Z, B Parizi K, Wong HSP. Engineering a Large Scale Indium Nanodot Array for Refractive Index Sensing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31871-31877. [PMID: 27804293 DOI: 10.1021/acsami.6b11413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we developed a simple method to fabricate 12 × 4 mm2 large scale nanostructure arrays and investigated the feasibility of indium nanodot (ND) array with different diameters and periods for refractive index sensing. Absorption resonances at multiple wavelengths from the visible to the near-infrared range were observed for various incident angles in a variety of media. Engineering the ND array with a centered square lattice, we successfully enhanced the sensitivity by 60% and improved the figure of merit (FOM) by 190%. The evolution of the resonance dips in the reflection spectra, of square lattice and centered square lattice, from air to water, matches well with the results of Lumerical FDTD simulation. The improvement of sensitivity is due to the enhancement of local electromagnetic field (E-field) near the NDs with centered square lattice, as revealed by E-field simulation at resonance wavelengths. The E-field is enhanced due to coupling between the two square ND arrays with [Formula: see text]x period at phase matching. This work illustrates an effective way to engineer and fabricate a refractive index sensor at a large scale. This is the first experimental demonstration of poor-metal (indium) nanostructure array for refractive index sensing. It also demonstrates a centered square lattice for higher sensitivity and as a better basic platform for more complex sensor designs.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
- Stanford Nanofabrication Facility, Stanford University , Stanford, California 94305, United States
| | - Xiaolin Hu
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
| | - Xiaoshu Chen
- Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yangsen Kang
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
| | - Zhiping Zhang
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
| | - Kokab B Parizi
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
| | - H-S Philip Wong
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
38
|
Milla MJ, Barho F, González-Posada F, Cerutti L, Bomers M, Rodriguez JB, Tournié E, Taliercio T. Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures. NANOTECHNOLOGY 2016; 27:425201. [PMID: 27608135 DOI: 10.1088/0957-4484/27/42/425201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a detailed analysis of the influence of the doping level and nanoribbon width on the localized surface plasmon resonance (LSPR) by means of reflectance measurements. The plasmonic system, based on one-dimensional periodic gratings of highly Si-doped InAsSb/GaSb semiconductor nanostructures, is fabricated by a simple, accurate and large-area technique fabrication. Increasing the doping level blueshifts the resonance peak while increasing the ribbon width results in a redshift, as confirmed by numerical simulations. This provides an efficient means of fine-tuning the LSPR properties to a target purpose of between 8-20 μm (1250-500 cm(-1)). Finally, we show surface plasmon resonance sensing to absorbing polymer layers. We address values of the quality factor, sensitivity and figure of merit of 16 700 nm RIU(-1) and 2.5, respectively. These results demonstrate Si-doped InAsSb/GaSb to be a low-loss/high sensitive material making it very promising for the development of biosensing devices in the mid-infrared.
Collapse
Affiliation(s)
- M J Milla
- Univ. Montpellier, IES, UMR 5214, F-34000, Montpellier, France. CNRS, IES, UMR 5214, F-34000, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces. Sci Rep 2016; 6:34071. [PMID: 27698393 PMCID: PMC5048434 DOI: 10.1038/srep34071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/02/2016] [Indexed: 11/09/2022] Open
Abstract
Spatial charge distribution for biased semiconductors fundamentally differs from metals since they can allow inhomogeneous charge distributions due to penetration of the electric field, as observed in the classical Schottky junctions. Similarly, the electrostatics of the dielectric/semiconductor interface can lead to a carrier depletion or accumulation in the semiconductor side when under applied bias. In this study, we demonstrate that the inhomogeneous carrier accumulation in a moderately p-doped GaAs-dielectric interface can be tailored for tunable plasmonics by an external voltage. Solving Maxwell's equations in the doped GaAs-dielectric stack, we investigate the tunability of the surface plasmon and phonon polaritons' interaction via an external bias. The plasmonic mode analysis of such an interface reveals interesting dispersion curves for surface plasmon and phonon polariton interactions that are not possible in metals. We show that the plasmon dispersion curve can be engineered through an external bias using the inherent properties of the p-doped GaAs- dielectric interface.
Collapse
|
40
|
Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat Commun 2016; 7:12334. [PMID: 27460765 PMCID: PMC4974468 DOI: 10.1038/ncomms12334] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/22/2016] [Indexed: 01/20/2023] Open
Abstract
Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm−1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light–matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon–phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire molecular fingerprint region, which was previously unattainable. In addition, undisturbed and highly confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopies. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications. Despite being a powerful tool for molecular vibrational mode detection, infrared spectrosocpy is limited by weak sensitivity. Here, the authors demonstrate a platform for enhanced molecular fingerprint sensing based on a graphene/CaF2 nanofilm plasmonic structure.
Collapse
|
41
|
Fischer MP, Schmidt C, Sakat E, Stock J, Samarelli A, Frigerio J, Ortolani M, Paul DJ, Isella G, Leitenstorfer A, Biagioni P, Brida D. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared. PHYSICAL REVIEW LETTERS 2016; 117:047401. [PMID: 27494498 DOI: 10.1103/physrevlett.117.047401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 06/06/2023]
Abstract
Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.
Collapse
Affiliation(s)
- Marco P Fischer
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Christian Schmidt
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Emilie Sakat
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Johannes Stock
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Antonio Samarelli
- School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Jacopo Frigerio
- L-NESS, Dipartimento di Fisica del Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
| | - Michele Ortolani
- Department of Physics, Sapienza University of Rome, Rome 00185, Italy
| | - Douglas J Paul
- School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Giovanni Isella
- L-NESS, Dipartimento di Fisica del Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
| | - Alfred Leitenstorfer
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Paolo Biagioni
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Daniele Brida
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
42
|
Barho FB, Gonzalez-Posada F, Milla-Rodrigo MJ, Bomers M, Cerutti L, Taliercio T. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range. OPTICS EXPRESS 2016; 24:16175-16190. [PMID: 27410884 DOI: 10.1364/oe.24.016175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose 1D periodic, highly doped InAsSb gratings on GaSb substrates as biosensing platforms applicable for surface plasmon resonance and surface enhanced infrared absorption spectroscopies. Based on finite-difference time-domain simulations, the electric field enhancement and the sensitivity on refractive index variations are investigated for different grating geometries. The proposed, optimized system achieves sensitivities of 900 nm RIU-1. A clear red shift of the plasmon resonance as well as the enhancement of an absorption line are presented for 2 nm thin adlayers in simulations. We experimentally confirm the high sensitivity of the InAsSb grating by measurements of the wavelength shift induced by a 200 nm thin polymethylmethacrylate layer and demonstrate an enhancement of vibrational signals. A comparison to a gold grating with equivalent optical properties in the mid-infrared is performed. Our simulations and experimental results underline the interest in the alternative plasmonic material InAsSb for highly sensitive biosensors for the mid-infrared spectral range.
Collapse
|
43
|
Conformal Graphene-Decorated Nanofluidic Sensors Based on Surface Plasmons at Infrared Frequencies. SENSORS 2016; 16:s16060899. [PMID: 27322269 PMCID: PMC4934325 DOI: 10.3390/s16060899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Abstract
An all-in-one prism-free infrared sensor based on graphene surface plasmons is proposed for nanofluidic analysis. A conformal graphene-decorated nanofluidic sensor is employed to mimic the functions of a prism, sensing plate, and fluidic channel in the tradition setup. Simulation results show that the redshift of the resonant wavelength results in the improvement of sensitivity up to 4525 nm/RIU. To reshape the broadened spectral lines induced by the redshift of the resonant wavelength to be narrower and deeper, a reflection-type configuration is further introduced. By tuning the distance between the graphene and reflective layers, the figure of merit (FOM) of the device can be significantly improved and reaches a maximum value of 37.69 RIU−1, which is 2.6 times that of the former transmission-type configuration. Furthermore, the optimized sensor exhibits superior angle-insensitive property. Such a conformal graphene-decorated nanofluidic sensor offers a novel approach for graphene-based on-chip fluidic biosensing.
Collapse
|
44
|
Miller OD, Polimeridis AG, Homer Reid MT, Hsu CW, DeLacy BG, Joannopoulos JD, Soljačić M, Johnson SG. Fundamental limits to optical response in absorptive systems. OPTICS EXPRESS 2016; 24:3329-3364. [PMID: 26906994 DOI: 10.1364/oe.24.003329] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive geometry-independent limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our absorption and scattering limits at any frequency; by contrast, we find that common "antenna" structures fall far short of our radiative LDOS bounds, suggesting the possibility for significant further improvement. Underlying the limits is a simple metric, |χ|2/Im χ for a material with susceptibility χ, that enables broad technological evaluation of lossy materials across optical frequencies.
Collapse
|
45
|
Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas. Sci Rep 2016; 6:19490. [PMID: 26783033 PMCID: PMC4725999 DOI: 10.1038/srep19490] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022] Open
Abstract
Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.
Collapse
|
46
|
Khaleque A, Mironov EG, Liu L, Hattori HT. Thick multilayered (silica/gold) dipole nano-antenna. APPLIED OPTICS 2015; 54:10063-10067. [PMID: 26836661 DOI: 10.1364/ao.54.010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nano-antennas are the optical equivalent of antennas that are used to transmit and receive information at radio frequencies. These antennas have been used in different applications in photonics such as optical imaging, particle manipulation, bio-sensing, and improvement of the performance of solar cells. In this article we study composite nano-antennas made of alternating layers of silica and gold. We show that a 50% filling factor leads to a 2.0 times increase in the electric-field enhancement factor when compared with a pure-gold antenna.
Collapse
|
47
|
Baldassarre L, Sakat E, Frigerio J, Samarelli A, Gallacher K, Calandrini E, Isella G, Paul DJ, Ortolani M, Biagioni P. Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates. NANO LETTERS 2015; 15:7225-7231. [PMID: 26457387 DOI: 10.1021/acs.nanolett.5b03247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Midinfrared plasmonic sensing allows the direct targeting of unique vibrational fingerprints of molecules. While gold has been used almost exclusively so far, recent research has focused on semiconductors with the potential to revolutionize plasmonic devices. We fabricate antennas out of heavily doped Ge films epitaxially grown on Si wafers and demonstrate up to 2 orders of magnitude signal enhancement for the molecules located in the antenna hot spots compared to those located on a bare silicon substrate. Our results set a new path toward integration of plasmonic sensors with the ubiquitous CMOS platform.
Collapse
Affiliation(s)
- Leonetta Baldassarre
- Dipartimento di Fisica, Università di Roma "La Sapienza" , Piazzale Aldo Moro 5, I-00185 Roma, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia , Viale Regina Elena 291, I-00161 Roma, Italy
| | - Emilie Sakat
- Dipartimento di Fisica, Politecnico di Milano , Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Jacopo Frigerio
- LNESS, Dipartimento di Fisica del Politecnico di Milano, polo di Como , via Anzani 42, I-22100 Como, Italy
| | - Antonio Samarelli
- School of Engineering, University of Glasgow , Rankine Building, Oakfield Avenue, Glasgow G12 8LT, U.K
| | - Kevin Gallacher
- School of Engineering, University of Glasgow , Rankine Building, Oakfield Avenue, Glasgow G12 8LT, U.K
| | - Eugenio Calandrini
- Dipartimento di Fisica, Università di Roma "La Sapienza" , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Giovanni Isella
- LNESS, Dipartimento di Fisica del Politecnico di Milano, polo di Como , via Anzani 42, I-22100 Como, Italy
| | - Douglas J Paul
- School of Engineering, University of Glasgow , Rankine Building, Oakfield Avenue, Glasgow G12 8LT, U.K
| | - Michele Ortolani
- Dipartimento di Fisica, Università di Roma "La Sapienza" , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Paolo Biagioni
- Dipartimento di Fisica, Politecnico di Milano , Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
48
|
Li B, Ye K, Zhang Y, Qin J, Zou R, Xu K, Huang X, Xiao Z, Zhang W, Lu X, Hu J. Photothermal theragnosis synergistic therapy based on bimetal sulphide nanocrystals rather than nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1339-45. [PMID: 25639509 DOI: 10.1002/adma.201404257] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/01/2014] [Indexed: 05/17/2023]
Abstract
A new generation of photothermal theranostic agents is developed based on Cu3BiS3 nanocrystals. A computed tomography imaging response and photothermal effect, as well as near-infrared fluorescence emission, can be simultaneously achieved through Cu3BiS3 nanocrystals rather than frequently used nanocomposites. These results provide some insight into the synergistic effect from bimetal sulphide semiconductor compounds for photothermal theragnosis therapy.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Guo Z, Chen G, Zeng G, Liu L, Zhang C. Metal oxides and metal salt nanostructures for hydrogen sulfide sensing: mechanism and sensing performance. RSC Adv 2015. [DOI: 10.1039/c5ra10394k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metal oxides and metal salt nanostructures for hydrogen sulfide sensing based on conductivity response.
Collapse
Affiliation(s)
- Zhi Guo
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Guiqiu Chen
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Guangming Zeng
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Lingzhi Liu
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Chang Zhang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| |
Collapse
|
50
|
Gentile MJ, Núñez-Sánchez S, Barnes WL. Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures. NANO LETTERS 2014; 14:2339-44. [PMID: 24702487 DOI: 10.1021/nl404712t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We show that dye-doped polymers open an interesting route to controlling light at the nanoscale. Just as for the much better known metal-based plasmonic systems, propagating and localized modes are possible. We show that the attractive features offered by plasmonics, specifically enhanced optical fields and subwavelength field confinement, are also available with these materials. They thus open a new opportunity in nanophotonics in which fabrication and functionality might be achieved by harnessing molecular and supramolecular chemistry.
Collapse
Affiliation(s)
- M J Gentile
- School of Physics and Astronomy, University of Exeter , Exeter EX4 4QL, United Kingdom
| | | | | |
Collapse
|