1
|
Yang M, Batey JE, Dong B. Automated Five-Dimensional Single Particle Tracking by Bifocal Parallax Dark-Field Microscopy with Electronic Tunable Lens. Anal Chem 2024; 96:1-5. [PMID: 38153091 DOI: 10.1021/acs.analchem.3c04543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We present a novel method for the precise tracking of plasmonic gold nanorods (AuNRs) in live cells, enabling a comprehensive understanding of the nanocargo's cellular dynamics. Traditional single particle tracking (SPT) struggles with accurately determining all five spatial parameters (x, y, z, ϕ, and θ) in live cells due to various challenges. Our innovation combines electronic tunable lens (ETL) technology with bifocal parallax dark-field (DF) microscopy, allowing continuous adjustment of the imaging focal plane for automatic tracking of both translational and rotational movements of AuNRs. This 5D single-particle orientation and rotational tracking (5D SPORT) method achieves remarkable precision, with 3D localization precisions of 9 (x), 10 (y), and 15 nm (z) and angular resolutions below 2°. To showcase its applicability, we investigated intracellular transport of nanocargos using transferrin-modified AuNRs as the imaging probe. Differentiated transport stages, such as active transport and pause period, were clearly unveiled from the observed dynamics in 5D. This advancement in single particle tracking holds promise for a wide range of applications in biomedical research, particularly when combined with other imaging modalities, such as light sheet fluorescence microscopy.
Collapse
Affiliation(s)
- Meek Yang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - James Ethan Batey
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Bin Dong
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Filbrun SL, Zhao F, Chen K, Huang TX, Yang M, Cheng X, Dong B, Fang N. Imaging Dynamic Processes in Multiple Dimensions and Length Scales. Annu Rev Phys Chem 2022; 73:377-402. [PMID: 35119943 DOI: 10.1146/annurev-physchem-090519-034100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical microscopy has become an invaluable tool for investigating complex samples. Over the years, many advances to optical microscopes have been made that have allowed us to uncover new insights into the samples studied. Dynamic changes in biological and chemical systems are of utmost importance to study. To probe these samples, multidimensional approaches have been developed to acquire a fuller understanding of the system of interest. These dimensions include the spatial information, such as the three-dimensional coordinates and orientation of the optical probes, and additional chemical and physical properties through combining microscopy with various spectroscopic techniques. In this review, we survey the field of multidimensional microscopy and provide an outlook on the field and challenges that may arise. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Fei Zhao
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA.,Imaging Core Facility, Georgia State University, Atlanta, Georgia, USA
| | - Teng-Xiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Meek Yang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Xiaodong Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen Key Laboratory of Analytical Molecular Nanotechnology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China; ,
| | - Bin Dong
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Ning Fang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen Key Laboratory of Analytical Molecular Nanotechnology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China; ,
| |
Collapse
|
3
|
Kim GW, Han IS, Ha JW. Mesoporous silica shell-coated single gold nanorods as multifunctional orientation probes in dynamic biological environments. RSC Adv 2021; 11:38632-38637. [PMID: 35493222 PMCID: PMC9044331 DOI: 10.1039/d1ra06572f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Mesoporous silica shell-coated gold nanorods (AuNRs@mSiO2) can be employed as promising multifunctional orientation probes in biological studies owing to their anisotropic optical properties, enhanced stability, excellent biocompatibility, etc. In this study, the optical properties of single AuNRs@mSiO2 are characterized under dark-field and differential interference contrast (DIC) microscopy. Furthermore, we presented polarization-dependent, periodic DIC images and intensities of single AuNRs@mSiO2 at their localized surface plasmon resonance wavelength and investigated their use as multifunctional orientation probes in dynamic biological environments. Moreover, the real-time rotational motions of the AuNRs@mSiO2 on the HeLa cell membranes were tracked with millisecond temporal resolution. Overall, AuNRs@mSiO2 demonstrated their capacity to act as multifunctional optical probes owing to the combined effect of the Au core, which can serve as an orientation probe and a local heat generator for phototherapy, and the mesoporous silica shell, which can be used as a reservoir of chemotherapeutics owing to its excellent loading capacity. We presented polarization-dependent, periodic DIC images and intensities of single AuNRs@mSiO2 at their LSPR wavelength and investigated their use as multifunctional orientation probes in biological environments.![]()
Collapse
Affiliation(s)
- Geun Wan Kim
- Department of Chemistry, University of Ulsan 93 Daehak-ro, Nam-gu Ulsan 44610 Republic of Korea +82 52 712 8002 +82 52 259 1694 +82 52 712 8012 +82 52 259 2352
| | - In-Seob Han
- School of Biological Sciences, University of Ulsan 93 Daehak-ro, Nam-gu Ulsan 44610 Republic of Korea
| | - Ji Won Ha
- Department of Chemistry, University of Ulsan 93 Daehak-ro, Nam-gu Ulsan 44610 Republic of Korea +82 52 712 8002 +82 52 259 1694 +82 52 712 8012 +82 52 259 2352.,Energy Harvest-Storage Research Center (EHSRC), University of Ulsan 93 Daehak-ro, Nam-gu Ulsan 44610 Republic of Korea
| |
Collapse
|
4
|
Chakkarapani SK, Shin TH, Lee S, Park KS, Lee G, Kang SH. Quantifying intracellular trafficking of silica-coated magnetic nanoparticles in live single cells by site-specific direct stochastic optical reconstruction microscopy. J Nanobiotechnology 2021; 19:398. [PMID: 34844629 PMCID: PMC8628397 DOI: 10.1186/s12951-021-01147-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Nanoparticles have been used for biomedical applications, including drug delivery, diagnosis, and imaging based on their unique properties derived from small size and large surface-to-volume ratio. However, concerns regarding unexpected toxicity due to the localization of nanoparticles in the cells are growing. Herein, we quantified the number of cell-internalized nanoparticles and monitored their cellular localization, which are critical factors for biomedical applications of nanoparticles. Methods This study investigates the intracellular trafficking of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] in various live single cells, such as HEK293, NIH3T3, and RAW 264.7 cells, using site-specific direct stochastic optical reconstruction microscopy (dSTORM). The time-dependent subdiffraction-limit spatial resolution of the dSTORM method allowed intracellular site-specific quantification and tracking of MNPs@SiO2(RITC). Results The MNPs@SiO2(RITC) were observed to be highly internalized in RAW 264.7 cells, compared to the HEK293 and NIH3T3 cells undergoing single-particle analysis. In addition, MNPs@SiO2(RITC) were internalized within the nuclei of RAW 264.7 and HEK293 cells but were not detected in the nuclei of NIH3T3 cells. Moreover, because of the treatment of the MNPs@SiO2(RITC), more micronuclei were detected in RAW 264.7 cells than in other cells. Conclusion The sensitive and quantitative evaluations of MNPs@SiO2(RITC) at specific sites in three different cells using a combination of dSTORM, transcriptomics, and molecular biology were performed. These findings highlight the quantitative differences in the uptake efficiency of MNPs@SiO2(RITC) and ultra-sensitivity, varying according to the cell types as ascertained by subdiffraction-limit super-resolution microscopy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01147-1.
Collapse
Affiliation(s)
- Suresh Kumar Chakkarapani
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Kyung-Soo Park
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Seong Ho Kang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea. .,Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
5
|
Kim GW, Ha JW. Single gold nanostars with multiple branches as multispectral orientation probes in single-particle rotational tracking. Chem Commun (Camb) 2021; 57:3263-3266. [PMID: 33650610 DOI: 10.1039/d1cc00731a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we performed a single-particle correlation study to characterize the optical properties of gold nanostars (AuNSs) with multiple sharp branches under dark-field (DF) and differential interference contrast (DIC) microscopy, and to examine their use as multispectral orientation probes. We presented the polarization-dependent, periodic DIC images and intensities of single AuNSs at their localized surface plasmon resonance (LSPR) wavelengths with high sensitivity. Furthermore, we demonstrated that single AuNSs protrude multiple branches that can be used as individual sensors with DIC polarization anisotropy. Thus, unlike conventional Au nanorod (AuNR) probes, single AuNSs were presented as multispectral optical sensors that can provide detailed information such as rotational motions and rotational speeds at different branches of their star-like structure in dynamic environments.
Collapse
Affiliation(s)
- Geun Wan Kim
- Advanced Nano-Bio-Imaging and Spectroscopy Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea.
| | | |
Collapse
|
6
|
Rashidi A, Domínguez-Medina S, Yan J, Efremenko DS, Vasilyeva AA, Doicu A, Wriedt T, Wirth CL. Developing Scattering Morphology Resolved Total Internal Reflection Microscopy (SMR-TIRM) for Orientation Detection of Colloidal Ellipsoids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13041-13050. [PMID: 33103438 DOI: 10.1021/acs.langmuir.0c02482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micrometer scale colloidal particles experiencing ∼kT scale interactions and suspended in a fluid are relevant to a broad spectrum of applications. Often, colloidal particles are anisotropic, either by design or by nature. Yet, there are few techniques by which ∼kT scale interactions of anisotropic particles can be measured. Herein, we present the initial development of scattering morphology resolved total internal reflection microscopy (SMR-TIRM). The hypothesis of this work is that the morphology of light scattered by an anisotropic particle from an evanescent wave is a sensitive function of particle orientation. This hypothesis was tested with experiments and simulations mapping the scattered light from colloidal ellipsoids at systemically varied orientations. Scattering morphologies were first fitted with a two-dimensional (2D) Gaussian surface. The fitted morphology was parameterized by the morphology's orientation angle Mϕ and aspect ratio MAR. Data from both experiments and simulations show Mϕ to be a function of the particle azimuthal angle, while MAR was a sensitive function of the polar angle. This analysis shows that both azimuthal and polar angles of a colloidal ellipsoid could be resolved from scattering morphology as well or better than using bright-field microscopy. The integrated scattering intensity, which will be used for determining the separation distance, was also found to be a sensitive function of particle orientation. A procedure for interpreting these confounding effects was developed that in principle would uniquely determine the separation distance, the azimuthal angle, and the polar angle. Tracking these three quantities is necessary for calculating the potential energy landscape sampled by a colloidal ellipsoid.
Collapse
Affiliation(s)
- Aidin Rashidi
- Chemical and Biomolecular Engineering Department, Case Western Reserve University, 2102 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Sergio Domínguez-Medina
- Chemical and Biomolecular Engineering Department, Case Western Reserve University, 2102 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Jiarui Yan
- Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Dmitry S Efremenko
- Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
| | - Alina A Vasilyeva
- Faculty of Electrical Engineering and Information Technology, University of Applied Sciences, Hochschulstraße 1, 83024 Rosenheim, Germany
| | - Adrian Doicu
- Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
| | - Thomas Wriedt
- Leibniz-Institut für Werkstofforientierte Technologien-IWT, University of Bremen, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Christopher L Wirth
- Chemical and Biomolecular Engineering Department, Case Western Reserve University, 2102 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Lee J, Kim GW, Ha JW. Single-particle spectroscopy and defocused imaging of anisotropic gold nanorods by total internal reflection scattering microscopy. Analyst 2020; 145:6038-6044. [PMID: 32749393 DOI: 10.1039/d0an01071e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Total internal reflection scattering (TIRS) microscopy is based on evanescent field illumination at the interface. Compared to conventional dark-field (DF) microscopy, TIRS microscopy has been rarely applied to the spectroscopic studies of plasmonic nanoparticles. Furthermore, there has been no detailed correlation study on the characteristic optical properties of single gold nanorods (AuNRs) obtained by DF and TIRS microscopy. Herein, through a single-particle correlation study, we compare the spectroscopic and defocusing properties of single AuNRs obtained by DF and TIRS microscopy, which have different illumination geometries. Compared to DF microscopy, TIRS microscopy yielded almost identical single-particle scattering spectra and localized surface plasmon resonance (LSPR) linewidth for the same in-focus AuNRs. However, TIRS microscopy, which is based on evanescent field illumination at the interface, provided a higher signal-to-noise ratio in the defocused image of the same AuNRs compared to DF microscopy. Furthermore, the heavily reduced background noise clarified the defocused scattering patterns of TIRS microscopy, which provided more detailed and accurate angular information than that obtained by conventional DF microscopy.
Collapse
Affiliation(s)
- Jaeran Lee
- Advanced Nano-Bio-Imaging and Spectroscopy Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | | | | |
Collapse
|
8
|
Lee J, Ha JW. Wavelength‐dependent
Scattering Properties of Single Gold Nanorods Under
Three‐Color
Laser Total Internal Reflection Scattering Microscopy. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaeran Lee
- Department of ChemistryUniversity of Ulsan Ulsan 44610 Republic of Korea
| | - Ji Won Ha
- Department of ChemistryUniversity of Ulsan Ulsan 44610 Republic of Korea
| |
Collapse
|
9
|
Deng L, Huang X, Ren J. In Situ Study of the Drug–Target Protein Interaction in Single Living Cells by Combining Fluorescence Correlation Spectroscopy with Affinity Probes. Anal Chem 2020; 92:7020-7027. [DOI: 10.1021/acs.analchem.0c00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liyun Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
10
|
Kim GW, Yoon S, Lee JH, Ha JW. High-throughput in-focus differential interference contrast imaging of three-dimensional orientations of single gold nanorods coated with a mesoporous silica shell. RSC Adv 2020; 10:29868-29872. [PMID: 35518257 PMCID: PMC9056269 DOI: 10.1039/d0ra04704j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/02/2020] [Indexed: 11/30/2022] Open
Abstract
Plasmonic gold nanorods (AuNRs) have been widely applied as optical orientation probes in many biophysical studies. However, characterizing the various three-dimensional (3D) orientations of AuNRs in the same focal plane of the objective lens is a challenging task. To overcome this challenge, we fabricated single AuNRs (10 nm × 30 nm) coated with either an elliptical or spherical mesoporous silica shell (AuNRs@mSiO2). Unlike bare AuNRs and elliptical AuNRs@mSiO2, spherical AuNRs@mSiO2 contained randomly oriented AuNR cores in 3D space, which could be observed on the same focal plane within a single frame by differential interference contrast (DIC) microscopy. The spherical AuNRs@mSiO2 thus achieved high-throughput detection. The proposed approach can overcome the limitations of the current gel-matrix method, which requires vertical scanning of the embedded AuNRs to capture different focal planes. Spherical AuNRs@mSiO2 have randomly oriented AuNR cores in 3D space, which could be resolved on the same focal plane by interference-based DIC microscopy.![]()
Collapse
Affiliation(s)
- Geun Wan Kim
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
- Energy Harvest-Storage Research Center (EHSRC)
| | - Seokyoung Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT)
- Research Center for Advanced Materials Technology
- Sungkyunkwan University (SKKU)
- Suwon
- Republic of Korea
| | - Jung Heon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT)
- Research Center for Advanced Materials Technology
- Sungkyunkwan University (SKKU)
- Suwon
- Republic of Korea
| | - Ji Won Ha
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
- Energy Harvest-Storage Research Center (EHSRC)
| |
Collapse
|
11
|
Recent advances in optical microscopic methods for single-particle tracking in biological samples. Anal Bioanal Chem 2019; 411:4445-4463. [PMID: 30790020 DOI: 10.1007/s00216-019-01638-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
With the rapid development of optical microscopic techniques, explorations on the chemical and biological properties of target objects in biological samples at single-molecule/particle level have received great attention recently. In the past decades, various powerful techniques have been developed for single-particle tracking (SPT) in biological samples. In this review, we summarize the commonly used optical microscopic methods for SPT, such as total internal reflection fluorescence microscopy (TIRFM), super-resolution fluorescence microscopy (SRM), dark-field optical microscopy (DFM), total internal reflection scattering microscopy (TIRSM), and differential interference contrast microscopy (DICM). We then discuss the image processing and data analysis methods, including particle localization, trajectory reconstruction, and diffusion behavior analysis. The application of SPT on the cell membrane, within the cell, and the cellular invading process of viruses are introduced. Finally, the challenges and prospects of optical microscopic technologies for SPT are delineated.
Collapse
|
12
|
Zhuo X, Yip HK, Cui X, Wang J, Lin HQ. Colour routing with single silver nanorods. LIGHT, SCIENCE & APPLICATIONS 2019; 8:39. [PMID: 31016015 PMCID: PMC6467987 DOI: 10.1038/s41377-019-0150-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/11/2023]
Abstract
Elongated plasmonic nanoparticles have been extensively explored over the past two decades. However, in comparison with the dipolar plasmon mode that has attracted the most interest, much less attention has been paid to multipolar plasmon modes because they are usually thought to be "dark modes", which are unable to interact with far-field light efficiently. Herein, we report on an intriguing far-field scattering phenomenon, colour routing, based on longitudinal multipolar plasmon modes supported by high-aspect-ratio single Ag nanorods. Taking advantage of the distinct far-field behaviours of the odd and even multipolar plasmon modes, we demonstrate two types of colour routing, where the incident white light can be scattered into several beams with different colours as well as different propagation directions. Because of the narrow linewidths of the longitudinal multipolar plasmon modes, there is little spectral overlap between the adjacent peaks, giving rise to outstanding colour selectivity. Our experimental results and theoretical model provide a simple yet effective picture for understanding the far-field behaviour of the longitudinal multipolar plasmon modes and the resultant colour routing phenomenon. Moreover, the outstanding colour routing capability of the high-aspect-ratio Ag nanorods enables nanoscale optical components with simple geometries for controlling the propagation of light below the diffraction limit of light.
Collapse
Affiliation(s)
- Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hang Kuen Yip
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ximin Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hai-Qing Lin
- Beijing Computational Science Research Center, Beijing, 100193 China
| |
Collapse
|
13
|
Wang M, Chen M, Zhanghao K, Zhang X, Jing Z, Gao J, Zhang MQ, Jin D, Dai Z, Xi P, Dai Q. Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information. NANOSCALE 2018; 10:19757-19765. [PMID: 30211422 DOI: 10.1039/c8nr04808h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Raman scattering provides key information of the biological environment through light-molecule interaction; yet, it is generally very weak to detect. Surface-enhanced Raman scattering (SERS) can boost the Raman signal by several orders-of-magnitude, and thus is highly attractive for biochemical sensing. However, conventional super-resolution imaging of SERS is challenging as the Raman signal is generated from the virtual state which cannot be easily modulated as fluorescence. Here, we demonstrate super-resolution microscopy with a surface-enhanced Raman scattering (SERS) signal, with a resolution of approximately 50 nm. By modulating the polarization angle of the excitation laser, the SERS nanorods display a dramatic anisotropy effect, allowing nanoscale orientation determination of multiple dipoles with dense concentration. Furthermore, a well-established defocused analysis was performed to reconfirm the orientation accuracy of super-resolved SERS nanorods. Sub-diffraction resolution was achieved in the imaging of SERS nanorod labeled vesicles in fixed macrophages. Finally, we demonstrate dynamic SERS nanorod tracking in living macrophages, which provides not only the particle trajectory with high spatial resolution but also the rotational changes at the nanometer scale. This pioneering study paves a new way for subcellular super-resolution imaging with the SERS effect, shedding light on wider biological applications.
Collapse
Affiliation(s)
- Miaoyan Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Molaei M, Atefi E, Crocker JC. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes. PHYSICAL REVIEW LETTERS 2018; 120:118002. [PMID: 29601731 DOI: 10.1103/physrevlett.120.118002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/04/2018] [Indexed: 05/04/2023]
Abstract
The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.
Collapse
Affiliation(s)
- Mehdi Molaei
- Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| | - Ehsan Atefi
- Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| | - John C Crocker
- Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Zhuo X, Yip HK, Ruan Q, Zhang T, Zhu X, Wang J, Lin HQ, Xu JB, Yang Z. Broadside Nanoantennas Made of Single Silver Nanorods. ACS NANO 2018; 12:1720-1731. [PMID: 29406752 DOI: 10.1021/acsnano.7b08423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Directional optical nanoantennas are often realized by nanostructured systems with ingenious or complex designs. Herein we report on the realization of directional scattering of visible light from a simple configuration made of single Ag nanorods supported on Si substrates, where the incident light can be routed toward the two flanks of each nanorod. Such an intriguing far-field scattering behavior, which has not been investigated so far, is proved to result from the near-field coupling between high-aspect-ratio Ag nanorods and high-refractive-index Si substrates. A simple and intuitive model is proposed, where the complicated plasmon resonance is found to be equivalent to several vertically aligned electric dipoles oscillating in phase, to understand the far-field properties of the system. The interference among the electric dipoles results in wavefront reshaping and sidewise light routing in a similar manner to the broadside antenna described in the traditional antenna theory, allowing for the naming of these Si-supported Ag nanorods as "broadside nanoantennas". We have carried out comprehensive experiments to understand the physical origins behind and the affecting factors on the directional scattering behavior of such broadside nanoantennas.
Collapse
Affiliation(s)
- Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Hang Kuen Yip
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Qifeng Ruan
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Tiankai Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Xingzhong Zhu
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Hai-Qing Lin
- Beijing Computational Science Research Center , Beijing 100193, China
| | - Jian-Bin Xu
- Department of Electronic Engineering, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Zhi Yang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
16
|
Abstract
Chemical activity of single nanoparticles can be imaged and determined by monitoring the optical signal of each individual during chemical reactions with advanced optical microscopes. It allows for clarifying the functional heterogeneity among individuals, and for uncovering the microscopic reaction mechanisms and kinetics that could otherwise be averaged out in ensemble measurements.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
17
|
Lee SY, Han Y, Hong JW, Ha JW. Single gold bipyramids with sharp tips as sensitive single particle orientation sensors in biological studies. NANOSCALE 2017; 9:12060-12067. [PMID: 28795734 DOI: 10.1039/c7nr03969g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plasmonic gold bipyramids (AuBPs) with sharp tips are promising orientation probes in biological studies because of their anisotropic shape, strong electric field enhancement at the tips, and convenient manipulation into other shapes. Herein, we elucidate the optical properties of single AuBPs at their localized surface plasmon resonance (LSPR) wavelengths using dark-field (DF) microscopy and differential interference contrast (DIC) microscopy and test their use as orientation probes in a dynamic biological environment. Characteristic scattering field distributions together with a simulation study allowed us to achieve the high-throughput determination of the 3D orientation of single AuBPs within a single frame using defocused DF microscopy. We further present the polarization-dependent, periodic DIC images and intensities of single AuBPs at their LSPR wavelengths with high sensitivity. Finally, we successfully tracked the real-time rotational motions of transferrin-modified AuBPs on live cell membranes using DIC microscopy. Therefore, these results support the use of single AuBPs as sensitive orientation probes in dynamic biological studies using DIC microscopy.
Collapse
Affiliation(s)
- So Young Lee
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea.
| | | | | | | |
Collapse
|
18
|
Kim GW, Lee SY, Ha JW. Three-dimensional defocused orientation sensing of single bimetallic core-shell gold nanorods as multifunctional optical probes. Analyst 2017; 142:899-903. [PMID: 28252116 DOI: 10.1039/c6an02280d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic core-shell gold nanorods (AuNRs) are promising multifunctional orientation probes that can be employed in biological and physical studies. This paper presents the optical properties of single AuNRs coated with palladium (Pd) and platinum (Pt) under scattering-based dark-field (DF) microscopy. Strong longitudinal plasmon damping was observed for the bimetallic AuNRs due to Pd and Pt metals on the AuNR surface. Despite the strong plasmon damping, the bimetallic AuNRs yielded characteristic doughnut-shaped scattering patterns under defocused DF microscopy. Interestingly, a solid bright spot appeared at the center of the defocused scattering patterns due to strong damping in the longitudinal plasmon and the increased contribution from the transverse dipoles to the image patterns, which was verified further by a simulation study. Furthermore, the defocused scattering field distributions enabled a determination of the three-dimensional (3D) orientations of single bimetallic AuNRs through a pattern-match analysis technique without angular degeneracy. Therefore, deeper insight into the optical properties and defocused scattering patterns of single bimetallic AuNRs is provided, which can be used to develop multifunctional optical probes that are capable of sensing of the 3D orientation of a probe, biomolecules based on LSPR shift, gas and humidity, etc.
Collapse
Affiliation(s)
- Geun Wan Kim
- Advanced Nano Bio Imaging and Spectroscopy (ANBIS) Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, South Korea.
| | - So Young Lee
- Advanced Nano Bio Imaging and Spectroscopy (ANBIS) Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, South Korea.
| | - Ji Won Ha
- Advanced Nano Bio Imaging and Spectroscopy (ANBIS) Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, South Korea.
| |
Collapse
|
19
|
KIM GW, HA JW. Platinum-coated Core-Shell Gold Nanorods as Multifunctional Orientation Sensors in Differential Interference Contrast Microscopy. ANAL SCI 2017; 33:1021-1025. [DOI: 10.2116/analsci.33.1021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Geun Wan KIM
- Advanced Nano Bio Imaging and Spectroscopy (ANBIS) Laboratory, Department of Chemistry, University of Ulsan
| | - Ji Won HA
- Advanced Nano Bio Imaging and Spectroscopy (ANBIS) Laboratory, Department of Chemistry, University of Ulsan
| |
Collapse
|
20
|
Li GC, Zhang YL, Lei DY. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy. NANOSCALE 2016; 8:7119-7126. [PMID: 26962966 DOI: 10.1039/c5nr09260d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to "visualize" and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film-coupled nanosphere monomers and dimers. Together with full-wave numerical simulation results, it is found that while the monomer-film system supports two hybridized dipole-like plasmon modes having different oscillating orientations and resonance strengths, the scattering spectrum of the dimer-film system features two additional peaks, one strong yet narrow resonant mode corresponding to a bonding dipolar moment and one hybridized higher order resonant mode, both polarized along the dimer axis. In particular, we demonstrate that the polarization dependent scattering radiation of the film-coupled nanosphere dimer can be used to optically distinguish from monomers and concurrently determine the spatial orientation of the dimer with significantly improved accuracy at the single-particle level, illustrating a simple yet highly sensitive plasmon resonance based nanometrology method.
Collapse
Affiliation(s)
- Guang-Can Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
| | | | | |
Collapse
|
21
|
Lee SY, Ha JW. Characterizing the optical properties of single palladium-coated core–shell gold nanorods as multifunctional orientation probes. Phys Chem Chem Phys 2016; 18:32682-32685. [DOI: 10.1039/c6cp07280a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic core–shell gold nanorods are promising multifunctional orientation probes due to the synergetic effect of two different metals, as examined under an optical microscope.
Collapse
Affiliation(s)
- So Young Lee
- Advanced Nano Bio Imaging and Spectroscopy (ANBIS) Laboratory
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- South Korea
| | - Ji Won Ha
- Advanced Nano Bio Imaging and Spectroscopy (ANBIS) Laboratory
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- South Korea
| |
Collapse
|
22
|
Ha JW. Characteristic image patterns of single anisotropic plasmonic nanoparticles embedded in a gel matrix. NANOSCALE 2015; 7:13159-13163. [PMID: 26186263 DOI: 10.1039/c5nr03847b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present characteristic doughnut-shaped image patterns of gold nanorods embedded in a thin layer of a gel matrix observed under a dark-field microscope. The characteristic scattering field distributions allow us to estimate the spatial orientation of single gold nanorods. The measured scattering patterns are further verified by a simulation study.
Collapse
Affiliation(s)
- Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
23
|
Enoki S, Iino R, Niitani Y, Minagawa Y, Tomishige M, Noji H. High-speed angle-resolved imaging of a single gold nanorod with microsecond temporal resolution and one-degree angle precision. Anal Chem 2015; 87:2079-86. [PMID: 25647635 DOI: 10.1021/ac502408c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed two types of high-speed angle-resolved imaging methods for single gold nanorods (SAuNRs) using objective-type vertical illumination dark-field microscopy and a high-speed CMOS camera to achieve microsecond temporal and one-degree angle resolution. These methods are based on: (i) an intensity analysis of focused images of SAuNR split into two orthogonally polarized components and (ii) the analysis of defocused SAuNR images. We determined the angle precision (statistical error) and accuracy (systematic error) of the resultant SAuNR (80 nm × 40 nm) images projected onto a substrate surface (azimuthal angle) in both methods. Although both methods showed a similar precision of ∼1° for the azimuthal angle at a 10 μs temporal resolution, the defocused image analysis showed a superior angle accuracy of ∼5°. In addition, the polar angle was also determined from the defocused SAuNR images with a precision of ∼1°, by fitting with simulated images. By taking advantage of the defocused image method's full revolution measurement range in the azimuthal angle, the rotation of the rotary molecular motor, F1-ATPase, was measured with 3.3 μs temporal resolution. The time constants of the pauses waiting for the elementary steps of the ATP hydrolysis reaction and the torque generated in the mechanical steps have been successfully estimated. The high-speed angle-resolved SAuNR imaging methods will be applicable to the monitoring of the fast conformational changes of many biological molecular machines.
Collapse
Affiliation(s)
- Sawako Enoki
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo , Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Peng Y, Xiong B, Peng L, Li H, He Y, Yeung ES. Recent advances in optical imaging with anisotropic plasmonic nanoparticles. Anal Chem 2014; 87:200-15. [PMID: 25375954 DOI: 10.1021/ac504061p] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yinhe Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha, Hunan 410082, P. R. China
| | | | | | | | | | | |
Collapse
|
25
|
Liu M, Chao J, Deng S, Wang K, Li K, Fan C. Dark-field microscopy in imaging of plasmon resonant nanoparticles. Colloids Surf B Biointerfaces 2014; 124:111-7. [PMID: 25009105 DOI: 10.1016/j.colsurfb.2014.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 01/02/2023]
Abstract
Dark-field microscopy (DFM) and spectroscopy base on localized surface plasmon resonance (LSPR) have been widely applied in biological sensing and single-molecule imaging. Using plasmonic nanoparticles with controlled geometrical, optical, and surface chemical properties as the probes, the scattering light depending on the surrounding environment can be detected by DF microscope. Signal-to-noise radio and time resolution of the conventional DFM is not sufficient to identify single molecular dynamics. To break these limitations, significant improvements have been made in recent years. This critical review is focused on the developments of the DFM and the utilization of DFM as a powerful technology in the application of LSPR detection.
Collapse
Affiliation(s)
- Mengmeng Liu
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jie Chao
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Suhui Deng
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Kun Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Kun Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
26
|
Macias-Romero C, Didier MEP, Zubkovs V, Delannoy L, Dutto F, Radenovic A, Roke S. Probing rotational and translational diffusion of nanodoublers in living cells on microsecond time scales. NANO LETTERS 2014; 14:2552-2557. [PMID: 24735468 DOI: 10.1021/nl500356u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nonlinear microscopes have seen an increase in popularity in the life sciences due to their molecular and structural specificity, high resolution, large penetration depth, and volumetric imaging capability. Nonetheless, the inherently weak optical signals demand long exposure times for live cell imaging. Here, by modifying the optical layout and illumination parameters, we can follow the rotation and translation of noncentrosymetric crystalline particles, or nanodoublers, with 50 μs acquisition times in living cells. The rotational diffusion can be derived from variations in the second harmonic intensity that originates from the rotation of the nanodoubler crystal axis. We envisage that by capitalizing on the biocompatibility, functionalizability, stability, and nondestructive optical response of the nanodoublers, novel insights on cellular dynamics are within reach.
Collapse
Affiliation(s)
- Carlos Macias-Romero
- Laboratory for Fundamental BioPhotonics and ‡Laboratory of Nanoscale Biology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , 1015, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|