1
|
Singh AK, Chakrabarti S, Vilan A, Smogunov A, Tal O. Electrically Controlled Bimetallic Junctions for Atomic-Scale Electronics. NANO LETTERS 2023; 23:7775-7781. [PMID: 37603598 PMCID: PMC10510575 DOI: 10.1021/acs.nanolett.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Forming atomic-scale contacts with attractive geometries and material compositions is a long-term goal of nanotechnology. Here, we show that a rich family of bimetallic atomic-contacts can be fabricated in break-junction setups. The structure and material composition of these contacts can be controlled by atomically precise electromigration, where the metal types of the electron-injecting and sink electrodes determine the type of atoms added to, or subtracted from, the contact structure. The formed bimetallic structures include, for example, platinum and aluminum electrodes bridged by an atomic chain composed of platinum and aluminum atoms as well as iron-nickel single-atom contacts that act as a spin-valve break junction without the need for sophisticated spin-valve geometries. The versatile nature of atomic contacts in bimetallic junctions and the ability to control their structure by electromigration can be used to expand the structural variety of atomic and molecular junctions and their span of properties.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sudipto Chakrabarti
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Ayelet Vilan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Smogunov
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif sur Yvette 91191, France
| | - Oren Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Magnetic control over the fundamental structure of atomic wires. Nat Commun 2022; 13:4113. [PMID: 35840588 PMCID: PMC9287401 DOI: 10.1038/s41467-022-31456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
When reducing the size of materials towards the nanoscale, magnetic properties can emerge due to structural variations. Here, we show the reverse effect, where the structure of nanomaterials is controlled by magnetic manipulations. Using the break-junction technique, we find that the interatomic distance in platinum atomic wires is shorter or longer by up to ∼20%, when a magnetic field is applied parallel or perpendicular to the wires during their formation, respectively. The magnetic field direction also affects the wire length, where longer (shorter) wires are formed under a parallel (perpendicular) field. Our experimental analysis, supported by calculations, indicates that the direction of the applied magnetic field promotes the formation of suspended atomic wires with a specific magnetization orientation associated with typical orbital characteristics, interatomic distance, and stability. A similar effect is found for various metal and metal-oxide atomic wires, demonstrating that magnetic fields can control the atomistic structure of different nanomaterials when applied during their formation stage. Magnetic effects can emerge due to structural variations when the size of materials is reduced towards the nanoscale. Here, Chakrabarti et al demonstrates the opposite effect, showing that the interatomic distance in atomic wires changes by up to 20% depending on the orientation of an applied magnetic field.
Collapse
|
3
|
Shein-Lumbroso O, Liu J, Shastry A, Segal D, Tal O. Quantum Flicker Noise in Atomic and Molecular Junctions. PHYSICAL REVIEW LETTERS 2022; 128:237701. [PMID: 35749205 DOI: 10.1103/physrevlett.128.237701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
We report on a quantum form of electronic flicker noise in nanoscale conductors that contains valuable information on quantum transport. This noise is experimentally identified in atomic and molecular junctions and theoretically analyzed by considering quantum interference due to fluctuating scatterers. Using conductance, shot-noise, and flicker-noise measurements, we show that the revealed quantum flicker noise uniquely depends on the distribution of transmission channels, a key characteristic of quantum conductors. This dependence opens the door for the application of flicker noise as a diagnostic probe for fundamental properties of quantum conductors and many-body quantum effects, a role that up to now has been performed by the experimentally less-accessible shot noise.
Collapse
Affiliation(s)
- Ofir Shein-Lumbroso
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abhay Shastry
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, 60 Saint George Street, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Oren Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Zhang J, Ishizuka K, Tomitori M, Arai T, Hongo K, Maezono R, Tosatti E, Oshima Y. Peculiar Atomic Bond Nature in Platinum Monatomic Chains. NANO LETTERS 2021; 21:3922-3928. [PMID: 33914553 DOI: 10.1021/acs.nanolett.1c00564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal atomic chains have been reported to change their electronic or magnetic properties by slight mechanical stimulus. However, the mechanical response has been veiled because of lack of information on the bond nature. Here, we clarify the bond nature in platinum (Pt) monatomic chains by our in situ transmission electron microscope method. The stiffness is measured with sub-N/m precision by quartz length-extension resonator. The bond stiffnesses at the middle of the chain and at the connection to the base are estimated to be 25 and 23 N/m, respectively, which are higher than the bulk counterpart. Interestingly, the bond length of 0.25 nm is found to be elastically stretched to 0.31 nm, corresponding to a 24% strain. Such peculiar bond nature could be explained by a novel concept of "string tension". This study is a milestone that will significantly change the way we think about atomic bonds in one-dimension.
Collapse
Affiliation(s)
- Jiaqi Zhang
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Keisuke Ishizuka
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Masahiko Tomitori
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Toyoko Arai
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenta Hongo
- Research Center for Advanced Computing Infrastructure, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Ryo Maezono
- School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Erio Tosatti
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
- CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Yoshifumi Oshima
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
5
|
Yuan S, Gao T, Cao W, Pan Z, Liu J, Shi J, Hong W. The Characterization of Electronic Noise in the Charge Transport through Single-Molecule Junctions. SMALL METHODS 2021; 5:e2001064. [PMID: 34927823 DOI: 10.1002/smtd.202001064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Indexed: 06/14/2023]
Abstract
With the goal of creating single-molecule devices and integrating them into circuits, the emergence of single-molecule electronics provides various techniques for the fabrication of single-molecule junctions and the investigation of charge transport through such junctions. Among the techniques for characterization of charge transport through molecular junctions, electronic noise characterization is an effective strategy with which issues from molecule-electrode interfaces, mechanisms of charge transport, and changes in junction configurations are studied. Electronic noise analysis in single-molecule junctions can be used to identify molecular conformations and even monitor reaction kinetics. This review summarizes the various types of electronic noise that have been characterized during single-molecule electrical detection, including the functions of random telegraph signal (RTS) noise, flicker noise, shot noise, and their corresponding applications, which provide some guidelines for the future application of these techniques to problems of charge transport through single-molecule junctions.
Collapse
Affiliation(s)
- Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Wenqiang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Zhichao Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Singh G, Kumar K, Moudgil RK. Alloying-induced spin Seebeck effect and spin figure of merit in Pt-based bimetallic atomic wires of noble metals. Phys Chem Chem Phys 2019; 21:20965-20980. [DOI: 10.1039/c9cp01671f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chemical potential of electrodes can be tuned to generate pure thermal spin voltages in certain bimetallic wires of noble metals.
Collapse
Affiliation(s)
- Gurvinder Singh
- Department of Physics
- S. D. College
- Ambala Cantt-133 001
- India
- Department of Physics
| | - Krishan Kumar
- Department of Physics
- S. D. College
- Ambala Cantt-133 001
- India
| | - R. K. Moudgil
- Department of Physics
- Kurukshetra University
- Kurukshetra – 136 119
- India
| |
Collapse
|
7
|
Pal AN, Klein T, Vilan A, Tal O. Electronic conduction during the formation stages of a single-molecule junction. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1471-1477. [PMID: 29977680 PMCID: PMC6009221 DOI: 10.3762/bjnano.9.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/04/2018] [Indexed: 05/08/2023]
Abstract
Single-molecule junctions are versatile test beds for electronic transport at the atomic scale. However, not much is known about the early formation steps of such junctions. Here, we study the electronic transport properties of premature junction configurations before the realization of a single-molecule bridge based on vanadocene molecules and silver electrodes. With the aid of conductance measurements, inelastic electron spectroscopy and shot noise analysis, we identify the formation of a single-molecule junction in parallel to a single-atom junction and examine the interplay between these two conductance pathways. Furthermore, the role of this structure in the formation of single-molecule junctions is studied. Our findings reveal the conductance and structural properties of premature molecular junction configurations and uncover the different scenarios in which a single-molecule junction is formed. Future control over such processes may pave the way for directed formation of preferred junction structures.
Collapse
Affiliation(s)
- Atindra Nath Pal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Tal Klein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Vilan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions. Sci Rep 2017; 7:7949. [PMID: 28801557 PMCID: PMC5554135 DOI: 10.1038/s41598-017-08553-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/13/2017] [Indexed: 11/08/2022] Open
Abstract
The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.
Collapse
|
9
|
Yuan JR, Yan XH, Xiao Y, Guo YD, Dai CJ. Noncollinear magnetic order induced by Dzyaloshinskii-Moriya interaction in oxygen-assisted Pt nanojunctions. NANOTECHNOLOGY 2016; 27:475202. [PMID: 27775921 DOI: 10.1088/0957-4484/27/47/475202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Motivated by recent measurement of the magnetism and conductance of the oxygen-assisted Pt nanojunctions, we performed first principle calculations of the magnetic order and electronic transport by explicitly including fully relativistic effects. Our results show that the spin alignment is a cycloidal spiral feature attributed to the Dzyaloshinskii-Moriya interaction, which indicates that the observed magnetism in experiments is of noncollinear nature. The oxygen concentration is the responsible for the switching of the rotational sense of the spiral magnetic order found in oxygen-assisted Pt nanojunctions. Furthermore, the magnetic moments and magnetoresistances vary with oxygen concentration in the chain, which can be used to tune the magnetism and magnetotransport. The oxygen-assisted Pt nanojunctions offer a possibility for spintronic applications in magnetic memory and quantum devices.
Collapse
Affiliation(s)
- J R Yuan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Karimi MA, Bahoosh SG, Herz M, Hayakawa R, Pauly F, Scheer E. Shot Noise of 1,4-Benzenedithiol Single-Molecule Junctions. NANO LETTERS 2016; 16:1803-1807. [PMID: 26859711 DOI: 10.1021/acs.nanolett.5b04848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report measurements of the shot noise on single-molecule Au-1,4-benzenedithiol-Au junctions, fabricated with the mechanically controllable break junction (MCBJ) technique at 4.2 K in a wide range of conductance values from 10(-2) to 0.24 conductance quanta. We introduce a simple measurement scheme using a current amplifier and a spectrum analyzer and that does not imply special requirements regarding the electrical leads. The experimental findings provide evidence that the current is carried by a single conduction channel throughout the whole conductance range. This observation suggests that the number of channels is limited by the Au-thiol bonds and that contributions due to direct tunneling from the Au to the π-system of the aromatic ring are negligible also for high conductance. The results are supported by quantum transport calculations using density functional theory.
Collapse
Affiliation(s)
- M A Karimi
- Department of Physics, University of Konstanz , 78457 Konstanz, Germany
| | - S G Bahoosh
- Department of Physics, University of Konstanz , 78457 Konstanz, Germany
| | - M Herz
- Department of Physics, University of Konstanz , 78457 Konstanz, Germany
| | - R Hayakawa
- Department of Physics, University of Konstanz , 78457 Konstanz, Germany
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science , 1-1 Namiki, Tsukuba 305-0044, Japan
| | - F Pauly
- Department of Physics, University of Konstanz , 78457 Konstanz, Germany
| | - E Scheer
- Department of Physics, University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
11
|
Balogh Z, Makk P, Halbritter A. Alternative types of molecule-decorated atomic chains in Au-CO-Au single-molecule junctions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1369-76. [PMID: 26199840 PMCID: PMC4505099 DOI: 10.3762/bjnano.6.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/22/2015] [Indexed: 05/10/2023]
Abstract
We investigate the formation and evolution of Au-CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.
Collapse
Affiliation(s)
- Zoltán Balogh
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Condensed Matter Research Group, Budafoki ut 8, 1111 Budapest, Hungary
| | - Péter Makk
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Condensed Matter Research Group, Budafoki ut 8, 1111 Budapest, Hungary
| | - András Halbritter
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Condensed Matter Research Group, Budafoki ut 8, 1111 Budapest, Hungary
| |
Collapse
|
12
|
Cespedes O, Wheeler M, Moorsom T, Viret M. Unexpected magnetic properties of gas-stabilized platinum nanostructures in the tunneling regime. NANO LETTERS 2015; 15:45-50. [PMID: 25531537 DOI: 10.1021/nl504254d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanostructured materials often have properties widely different from bulk, imposed by quantum limits to a physical property of the material. This includes, for example, superparamagnetism and quantized conductance, but original properties such as magnetoresistance in nonmagnetic molecular structures may also emerge. In this Letter, we report on the atomic manipulation of platinum nanocontacts in order to induce magnetoresistance. Platinum is a paramagnetic 5d metal, but atomic chains of this material have been predicted to be magnetically ordered with a large anisotropy. Remarkably, we find that a gas flow stabilizes Pt atomic structures in a break junction experiment, where we observe extraordinary resistance changes over 30,000% in a temperature range up to 77 K. Simulations indicate that this behavior may stem from a previously unknown magnetically ordered, low-energy state in platinum oxide atomic chains. This is supported by measurements in Pt/PtOx superlattices revealing the presence of a ferromagnetic moment. These properties open new paths of research for atomic scale "dirty" magnetic sensors and quantum devices.
Collapse
Affiliation(s)
- Oscar Cespedes
- School of Physics and Astronomy, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|