1
|
Pan Y, Sun H, Ji L, He X, Dong W, Chen H. Modulation anisotropy of nanomaterials toward monolithic integrated polarization-sensitive photodetectors. NANOSCALE 2025. [PMID: 40012331 DOI: 10.1039/d4nr05034g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
By virtue of the unique ability of providing additional information beyond light intensity and spectra, polarization-sensitive photodetectors could precisely identify targets in several concealed, camouflaged, and non-cooperative backgrounds, making them highly suitable for potential applications in remote sensing, astronomical detection, medical diagnosis, etc. Therefore, to provide a comprehensive design guideline for a wide range of interdisciplinary researchers, this review provides a general overview of state-of-the-art linear, circular, and full-Stokes polarization-sensitive photodetectors. In particular, from the perspectives of technological progress and the development of nanoscience, the detailed discussion focuses on strategies to simplify high-performance polarization-sensitive photodetectors, reducing their size and achieving a smaller volume. In addition, to lay a solid foundation for modulating the properties of future nanostructure-based polarization-sensitive photodetectors, insights into light-matter interactions in low-symmetry materials and asymmetric structures are provided here. Meanwhile, the corresponding opportunities and challenges in this research field are identified.
Collapse
Affiliation(s)
- Yuan Pan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Huiru Sun
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Lingxuan Ji
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Xuanxuan He
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Wenzhe Dong
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Hongyu Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| |
Collapse
|
2
|
Deng WH, Zhang MY, Li CS, Yao MS, Xu G. Energy-Level Alignment at TiO 2@NH 2-MIL-125 Interface for High-Performance Gas Sensing. Angew Chem Int Ed Engl 2025; 64:e202419195. [PMID: 39635927 DOI: 10.1002/anie.202419195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Metal oxide (MO)-based chemiresistive sensors have great potential in environmental monitoring, security protection, and disease diagnosis. However, the thermally activated sensing mechanism in pristine MOs leads to high working temperature and poor selectivity, which are the main challenges impeding practical applications. Precise modulation of the band structure at the heterojunction interfaces of MOs offers the opportunity to unlock unique electrical and optical properties, enabling us to overcome these challenges. Metal-organic frameworks (MOFs) with tunable structures are promising materials for aligning the energy levels at the heterojunctions of MOs. Herein, we report the energy-level structural engineering of MO@MOF heterojunctions to optimize chemiresistive sensing performance. The interface was flexibly modulated from a straddling gap to a staggered gap by -NH2 functionalization of TiO2@(NH2)x-MIL-125, varying x from 0 to 1 and 2, respectively. TiO2@(NH2)x-MIL-125 combines the advantages of MOs and MOFs to synergistically improve gas-sensing properties. As a result, TiO2@NH2-MIL-125 is the first light-activated material to detect NO2 at 1 ppb with a response time of < 0.3 min at room temperature. It also exhibited excellent selectivity and long-term stability. Our study underscores the potential of energy band engineering in creating high-performance sensors, offering a strategy to overcome current material limits.
Collapse
Affiliation(s)
- Wei-Hua Deng
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Min-Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chun-Sen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, China
| | - Ming-Shui Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Xu Z, Lv Q, Li X, Meng Y, Ho JC, Guo P. Composition-Tunable Bandgap Engineering of Horizontally Guided CdS xSe 1-x Nanowalls for High-Performance Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1962-1970. [PMID: 39689255 DOI: 10.1021/acsami.4c17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Composition-adjustable semiconductor nanomaterials have garnered significant attention due to their controllable bandgaps and electronic structures, providing alternative opportunities to regulate photoelectric properties and develop the corresponding multifunction optoelectronic devices. Nevertheless, the large-scale integration of semiconductor nanomaterials into practical devices remains challenging. Here, we report a synthesis strategy for the well-aligned horizontal CdSxSe1-x (x = 0-1) nanowall arrays, which are guided grown on an annealed M-plane sapphire using chemical vapor deposition (CVD) approaches. Microstructural characterizations demonstrate these structures as horizontally guided nanowalls with high-quality crystallinity. Microphotoluminescence (μ-PL) reveals the CdSxSe1-x nanowalls exhibiting continuously tunable spontaneous emissions from 509 nm (pure CdS) to 713 nm (pure CdSe), further confirming that CdSxSe1-x alloys have a continuously tunable bandgap. Notably, a photodetector based on CdSxSe1-x nanowalls displays excellent photoelectric performance, such as high responsivity (3 × 102 ∼ 1 × 103 A/W), high external quantum efficiency (1.01 × 103 ∼ 2.93 × 103), and fast response speed in the millisecond magnitude. Furthermore, the CdS nanowall-based photodetectors exhibit a remarkable image-sensing capability, indicating potential applications in high-performance image sensing in the future. Bandgap continuously tunable nanowall arrays with high-quality crystallinity inject great vitality into the manufacturing of high-performance integrated optoelectronic devices.
Collapse
Affiliation(s)
- Zitong Xu
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qihang Lv
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuyang Li
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Johnny C Ho
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816 8580, Japan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Pengfei Guo
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
4
|
Ahad A, Yomogida Y, Rahman MA, Ihara A, Miyata Y, Hirose Y, Shinokita K, Matsuda K, Liu Z, Yanagi K. Synthesis of Arrayed Tungsten Disulfide Nanotubes. NANO LETTERS 2024; 24:14286-14292. [PMID: 39404498 DOI: 10.1021/acs.nanolett.4c03895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Tungsten disulfide nanotubes (WS2-NTs), with their cylindrical structure composed of rolled WS2 sheets, have attracted much interest because of their unique physical properties reflecting quasi-one-dimensional chiral structures. They exhibit a semiconducting electronic structure regardless of their chirality, and various semiconducting and optoelectronic device applications have been demonstrated. The development of techniques to fabricate arrayed WS2-NTs is crucial to realizing the highest device performance. Since the discovery of WS2-NTs, various synthesis techniques have been reported; however, horizontally arrayed WS2-NTs have never been successfully synthesized. Here, we demonstrate a simple technique to synthesize arrayed WS2-NTs. Through precise temperature and gas control, W18O49 nanowires are grown along the [1̅101] direction on an r-plane sapphire substrate, and the nanowires are converted into nanotubes via sulfurization under optimized conditions. The demonstrated synthesis technique for arrayed WS2-NTs will play a central role in the fabrication of devices using transition-metal dichalcogenide nanotubes.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Department of Physics, Comilla University, Cumilla 3506, Bangladesh
| | - Yohei Yomogida
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Md Ashiqur Rahman
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Department of Physics, Comilla University, Cumilla 3506, Bangladesh
| | - Akane Ihara
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yasushi Hirose
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Zheng Liu
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyamaku, Nagoya, Aichi 463-8560, Japan
| | - Kazuhiro Yanagi
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
5
|
Liu M, Yang Z, Sha S, Tang K, Wan P, Kan C, Shi DN, Jiang M. Highly Monochromatic Ultraviolet LED Based on the SnO 2 Microwire Heterojunction Beyond Dipole-Forbidden Band-Gap Transition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54655-54666. [PMID: 37963316 DOI: 10.1021/acsami.3c12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
SnO2 has been extensively applied in the fields of optoelectronic devices because of its large band gap, high exciton binding energy, and outstanding optical/electrical properties. However, its applications in ultraviolet light-emitting diodes (LEDs) are still hindered by the dipole-forbidden rule. Herein, the dipole-forbidden rule can be conquered by synthesizing Sb-incorporated SnO2 microwires (SnO2:Sb MWs), which are examined by ultraviolet photoluminescence emitting at 363.2 nm and a line width of 11.3 nm. Subsequently, a highly monochromatic ultraviolet light-emitting diode (LED) based on a SnO2:Sb MW heterojunction was constructed with a p-GaN film serving as the hole supplier. In the LED, the presence of a MgO intermediate layer can modulate carrier transport and recombination path, thus achieving band-edge optical transition in the SnO2:Sb MW. As the LED is modified using Ag nanowires, electrical properties, especially for the hole injection efficiency, were dramatically boosted, contributing significantly to the device high brightness. The LED emits at 365.9 nm and a line width of 12.4 nm. Therefore, we have realized a high-brightness and narrow-band ultraviolet LED with the shortest peak wavelength never seen in previously reported SnO2 LEDs. This work will promote the potential applications of low-dimensional SnO2 optoelectronic devices and provide an effective exemplification to overcome the dipole-forbidden rule in metal-oxide materials with "forbidden" energy gaps.
Collapse
Affiliation(s)
- Maosheng Liu
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China
| | - Zhenyu Yang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China
| | - Shulin Sha
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China
| | - Kai Tang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China
| | - Peng Wan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China
| | - Caixia Kan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China
| | - Da Ning Shi
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China
| | - Mingming Jiang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China
| |
Collapse
|
6
|
Kiruthiga G, Rajni K, Geethanjali N, Raguram T, Nandhakumar E, Senthilkumar N. SnO2: Investigation of optical, structural, and electrical properties of transparent conductive oxide thin films prepared by nebulized spray pyrolysis for photovoltaic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Hu R, Yu L. Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor applications. NANOTECHNOLOGY 2022; 33:222002. [PMID: 35148520 DOI: 10.1088/1361-6528/ac547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Recent years have witnessed increasing efforts devoted to the growth, assembly and integration of quasi-one dimensional (1D) nanowires (NWs), as fundamental building blocks in advanced three-dimensional (3D) architecture, to explore a series of novel nanoelectronic and sensor applications. An important motivation behind is to boost the integration density of the electronic devices by stacking more functional units in theout-of-plane z-direction, where the NWs are supposed to be patterned or grown as vertically standing or laterally stacked channels to minimize their footprint area. The other driving force is derived from the unique possibility of engineering the 1D NWs into more complex, as well as more functional, 3D nanostructures, such as helical springs and kinked probes, which are ideal nanostructures for developping advanced nanoelectromechanical system (NEMS), bio-sensing and manipulation applications. This Review will first examine the recent progresses made in the construction of 3D nano electronic devices, as well as the new fabrication and growth technologies established to enable an efficient 3D integration of the vertically standing or laterally stacked NW channels. Then, the different approaches to produce and tailor more sophisticated 3D helical springs or purposely-designed nanoprobes will be revisited, together with their applications in NEMS resonators, bio sensors and stimulators in neural system.
Collapse
Affiliation(s)
- Ruijin Hu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Linwei Yu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, People's Republic of China
| |
Collapse
|
8
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
9
|
Zn-doping mediated formation of oxygen vacancies in SnO2 with unique electronic structure for efficient and stable photocatalytic toluene degradation. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63737-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Wu S, Yi X, Tian S, Zhang S, Liu Z, Wang L, Wang J, Li J. Understanding homoepitaxial growth of horizontal kinked GaN nanowires. NANOTECHNOLOGY 2021; 32:095606. [PMID: 33212433 DOI: 10.1088/1361-6528/abcc24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epitaxial horizontal nanowires (NWs) have attracted much attention due to their easily large-scale integration. From the reported literature, epitaxial growth is usually driven by minimization of strain between NW and substrate, which governs the growth along with specific crystallographic orientation. Here, we report the first homoepitaxial growth of horizontal GaN NWs from a surface-directed vapor-liquid-solid growth method. The NWs grow along with six symmetry-equivalent 〈1-100〉 (m-axis) directions, exhibiting a random 60°/120° kinked configuration. Owing to homoepitaxial growth, strain could be eliminated. From the obtained results, we suggest that the formation the horizontal NWs, and their growth direction /orientation is not directly related to the strain minimization. A general rule based on the epitaxial relationship and potential low-index growth orientation is proposed for understanding the arrangement of epitaxial horizontal NWs. It is deduced that kinking of the horizontal NWs was attributed to unintentional guided growth determined by the roughness of the substrates' surface. This study provides an insight for a better understanding of the evolution of epitaxial horizontal NWs, especially for the growth direction/orientation.
Collapse
Affiliation(s)
- Shaoteng Wu
- State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing, 100049, People's Republic of China
| | - Xiaoyan Yi
- State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing, 100049, People's Republic of China
| | - Shuang Tian
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Shuo Zhang
- State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing, 100049, People's Republic of China
| | - Zhiqiang Liu
- State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing, 100049, People's Republic of China
| | - Liancheng Wang
- State key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha Hunan, 410083, People's Republic of China
| | - Junxi Wang
- State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing, 100049, People's Republic of China
| | - Jinmin Li
- State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing, 100049, People's Republic of China
| |
Collapse
|
11
|
Wang Y, Duan L, Deng Z, Liao J. Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6781. [PMID: 33260973 PMCID: PMC7729516 DOI: 10.3390/s20236781] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Luminescence & Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China;
| | - Li Duan
- Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China;
| | - Zhen Deng
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianhui Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China;
| |
Collapse
|
12
|
Bera S, Lee SA, Lee WJ, Ilka M, Kim JH, Kim CM, Khan H, Jang HW, Kwon SH. Atomic Layer Deposition Seeded Growth of Rutile SnO 2 Nanowires on Versatile Conducting Substrates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48486-48494. [PMID: 33078614 DOI: 10.1021/acsami.0c11107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extended and oriented rutile nanowires (NWs) hold great promise for numerous applications because of their various tunable physicochemical properties in air and/or solution media, but their direct synthesis on a wide range of conducting substrates remains a significant challenge. Their device performance is governed by relevant NW geometries that cannot be fully controlled to date by varying bulk synthetic conditions. Herein, orientation engineering of rutile SnO2 NWs on a variety of conducting substrates by atomic layer deposition (ALD) seeding has been investigated. The seeded growth controls the nucleation event of the NW, and thicknesses and crystallographic properties of seed layers are the key parameters toward tuning the NW characteristics. The seed layers on carbon cloth produce NWs with highly enhanced electrochemically active surface area, which would show efficient electrochemical CO2 reduction. In addition, the hierarchical architecture resulted from the seeded growth of NWs on SnO2 nanosheets allows thin layers of BiVO4, forming a heterojunction photoanode, which shows a record charge separation efficiency of 96.6% and a charge-transfer efficiency of 90.2% at 1.23 V versus the reversible hydrogen electrode among, to date, the reported BiVO4-based photoanodes for water oxidation. Our study illustrates that such a versatile interfacial engineering effort by the ALD technique would be promising for further wide range of practical applications.
Collapse
Affiliation(s)
- Susanta Bera
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
- Global Frontier R&D for Hybrid Interface Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Sol A Lee
- Department of Materials Science and Engineering, Research Institute for Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jae Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Mahdi Ilka
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hee Kim
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Min Kim
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hasmat Khan
- Specialty Glass Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute for Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Hun Kwon
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
- Global Frontier R&D for Hybrid Interface Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Korotcenkov G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1392. [PMID: 32708967 PMCID: PMC7407990 DOI: 10.3390/nano10071392] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
This article discusses the main uses of 1D and 2D nanomaterials in the development of conductometric gas sensors based on metal oxides. It is shown that, along with the advantages of these materials, which can improve the parameters of gas sensors, there are a number of disadvantages that significantly limit their use in the development of devices designed for the sensor market.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Theoretical Physics, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
14
|
Sun Y, Dong T, Yu L, Xu J, Chen K. Planar Growth, Integration, and Applications of Semiconducting Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903945. [PMID: 31746050 DOI: 10.1002/adma.201903945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Silicon and other inorganic semiconductor nanowires (NWs) have been extensively investigated in the last two decades for constructing high-performance nanoelectronics, sensors, and optoelectronics. For many of these applications, these tiny building blocks have to be integrated into the existing planar electronic platform, where precise location, orientation, and layout controls are indispensable. In the advent of More-than-Moore's era, there are also emerging demands for a programmable growth engineering of the geometry, composition, and line-shape of NWs on planar or out-of-plane 3D sidewall surfaces. Here, the critical technologies established for synthesis, transferring, and assembly of NWs upon planar surface are examined; then, the recent progress of in-plane growth of horizontal NWs directly upon crystalline or patterned substrates, constrained by using nanochannels, an epitaxial interface, or amorphous thin film precursors is discussed. Finally, the unique capabilities of planar growth of NWs in achieving precise guided growth control, programmable geometry, composition, and line-shape engineering are reviewed, followed by their latest device applications in building high-performance field-effect transistors, photodetectors, stretchable electronics, and 3D stacked-channel integration.
Collapse
Affiliation(s)
- Ying Sun
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Taige Dong
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
15
|
Bürger JC, Gutsch S, Zacharias M. Transition from freestanding SnO 2 nanowires to laterally aligned nanowires with a simulation-based experimental design. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:843-853. [PMID: 32551209 PMCID: PMC7277887 DOI: 10.3762/bjnano.11.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
In this study, we used simulations as a guide for experiments in order to switch freestanding nanowire growth to a laterally aligned growth mode. By means of finite element simulations, we determined that a higher volumetric flow and a reduced process pressure will result in a preferred laterally aligned nanowire growth. Furthermore, increasing the volumetric flow leads to a higher species dilution. Based on our numerical results, we were able to successfully grow laterally aligned SnO2 nanowires out of gold film edges and gold nanoparticles on a-plane sapphire substrates. In our experiments a horizontal 2-zone tube furnace was used. The generation of Sn gas was achieved by a carbothermal reduction of SnO2 powder. However, we observed no elongation of the nanowire length with an increase of the process time. Nevertheless, an alternating gas exchange between an inert gas (Ar) and an oxygen-containing process atmosphere yielded an elongation of the laterally aligned nanowires, indicating that the nanowire growth takes place in a transient period of the gas exchange.
Collapse
Affiliation(s)
- Jasmin-Clara Bürger
- Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Sebastian Gutsch
- Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Margit Zacharias
- Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
16
|
Ben-Zvi R, Burrows H, Schvartzman M, Bitton O, Pinkas I, Kaplan-Ashiri I, Brontvein O, Joselevich E. In-Plane Nanowires with Arbitrary Shapes on Amorphous Substrates by Artificial Epitaxy. ACS NANO 2019; 13:5572-5582. [PMID: 30995393 PMCID: PMC6994061 DOI: 10.1021/acsnano.9b00538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The challenge of nanowire assembly is still one of the major obstacles toward their efficient integration into functional systems. One strategy to overcome this obstacle is the guided growth approach, in which the growth of in-plane nanowires is guided by epitaxial and graphoepitaxial relations with the substrate to yield dense arrays of aligned nanowires. This method relies on crystalline substrates which are generally expensive and incompatible with silicon-based technologies. In this work, we expand the guided growth approach into noncrystalline substrates and demonstrate the guided growth of horizontal nanowires along straight and arbitrarily shaped amorphous nanolithographic open guides on silicon wafers. Nanoimprint lithography is used as a high-throughput method for the fabrication of the high-resolution guiding features. We first grow five different semiconductor materials (GaN, ZnSe, CdS, ZnTe, and ZnO) along straight ridges and trenches, demonstrating the generality of this method. Through crystallographic analysis we find that despite the absence of any epitaxial relations with the substrate, the nanowires grow as single crystals in preferred crystallographic orientations. To further expand the guided growth approach beyond straight nanowires, GaN and ZnSe were grown also along curved and kinked configurations to form different shapes, including sinusoidal and zigzag-shaped nanowires. Photoluminescence and cathodoluminescence were used as noninvasive tools to characterize the sine wave-shaped nanowires. We discuss the similarities and differences between in-plane nanowires grown by epitaxy/graphoepitaxy and artificial epitaxy in terms of generality, morphology, crystallinity, and optical properties.
Collapse
Affiliation(s)
- Regev Ben-Zvi
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadassah Burrows
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mark Schvartzman
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ora Bitton
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Pinkas
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ifat Kaplan-Ashiri
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Olga Brontvein
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ernesto Joselevich
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
17
|
Zervos M, Lathiotakis N, Kelaidis N, Othonos A, Tanasa E, Vasile E. Epitaxial highly ordered Sb:SnO 2 nanowires grown by the vapor liquid solid mechanism on m-, r- and a-Al 2O 3. NANOSCALE ADVANCES 2019; 1:1980-1990. [PMID: 36134248 PMCID: PMC9419487 DOI: 10.1039/c9na00074g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/09/2019] [Indexed: 06/11/2023]
Abstract
Epitaxial, highly ordered Sb:SnO2 nanowires were grown by the vapor-liquid-solid mechanism on m-, r- and a-Al2O3 between 700 °C and 1000 °C using metallic Sn and Sb with a mass ratio of Sn/Sb = 0.15 ± 0.05 under a flow of Ar and O2 at 1 ± 0.5 mbar. We find that effective doping and ordering can only be achieved inside this narrow window of growth conditions. The Sb:SnO2 nanowires have the tetragonal rutile crystal structure and are inclined along two mutually perpendicular directions forming a rectangular mesh on m-Al2O3 while those on r-Al2O3 are oriented in one direction. The growth directions do not change by varying the growth temperature between 700 °C and 1000 °C but the carrier density decreased from 8 × 1019 cm-3 to 4 × 1017 cm-3 due to the re-evaporation and limited incorporation of Sb donor impurities in SnO2. The Sb:SnO2 nanowires on r-Al2O3 had an optical transmission of 80% above 800 nm and displayed very long photoluminescence lifetimes of 0.2 ms at 300 K. We show that selective area location growth of highly ordered Sb:SnO2 nanowires is possible by patterning the catalyst which is important for the realization of novel nanoscale devices such as nanowire solar cells.
Collapse
Affiliation(s)
- M Zervos
- Nanostructured Materials and Devices Laboratory, School of Engineering, University of Cyprus PO Box 20537 Nicosia 1678 Cyprus
| | - N Lathiotakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation Vass. Constantinou 48 GR-11635 Athens Greece
| | - N Kelaidis
- Faculty of Engineering, Environment and Computing, Coventry University Priory Street Coventry CV1 5FB UK
| | - A Othonos
- Laboratory of Ultrafast Science, Department of Physics, University of Cyprus P.O. Box 20537 Nicosia 1678 Cyprus
| | - E Tanasa
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest 313 Splaiul Independentei Bucharest 060042 Romania
| | - E Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest 313 Splaiul Independentei Bucharest 060042 Romania
| |
Collapse
|
18
|
Harkins RP, Cramer CJ, Gladfelter WL. Computational Thermochemistry of Mono- and Dinuclear Tin Alkyls Used in Vapor Deposition Processes. J Phys Chem A 2019; 123:1451-1460. [DOI: 10.1021/acs.jpca.8b12072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robin P. Harkins
- Department of Chemistry, University of Minnesota—Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry, University of Minnesota—Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Wayne L. Gladfelter
- Department of Chemistry, University of Minnesota—Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Xu B, Cao B. Unveiling hidden epitaxial interfaces in novel SnO 2/Zn 2SnO 4 core–shell nanowires with a multi-domain shield via cross-sectional transmission electron microscopy. CrystEngComm 2019. [DOI: 10.1039/c8ce02092b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hidden epitaxial interfaces were revealed via cross-sectional TEM study of novel quasi-hexagonal SnO2/Zn2SnO4 core–shell nanowires.
Collapse
Affiliation(s)
- Bojia Xu
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- People's Republic of China
| | - Baobao Cao
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- People's Republic of China
| |
Collapse
|
20
|
Huang W, Hayward RC. Orthogonal Ambipolar Semiconductors with Inherently Multi-Dimensional Responses for the Discriminative Sensing of Chemical Vapors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33353-33359. [PMID: 30226738 DOI: 10.1021/acsami.8b10789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Numerous examples of field-effect transistor (FET) biosensors and chemical sensors with good sensitivity and selectivity have now been developed. However, effectively discriminating between analytes has required either the use of receptors that selectively bind specific analytes or the fabrication of an array of sensors with varying but nonspecific responses. Both approaches exhibit significant limitations. In the first case, it can be difficult to design sufficiently specific receptors for many compounds, whereas the number of receptors required scales with the number of analytes to be detected, making it impractical to recognize many different compounds. In the second case, existing approaches to FET sensor arrays are generally material-inefficient and provide modest sensitivity. Here, we demonstrate that orthogonal ambipolar semiconductors consisting of semiconducting p-type polymers and n-type small-molecule nanowires with perpendicular in-plane orientations provide a platform with high sensitivity and inherently multi-dimensional response. This allows for discrimination between even closely related derivatives such as aromatic isomers and n-alkyl alcohols varying in length by a single carbon atom resolution using only a single sensor element.
Collapse
Affiliation(s)
- Weiguo Huang
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Ryan C Hayward
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
21
|
Liu H, Du C, Li M, Zhang S, Bai H, Yang L, Zhang S. One-Pot Hydrothermal Synthesis of SnO 2/BiOBr Heterojunction Photocatalysts for the Efficient Degradation of Organic Pollutants Under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28686-28694. [PMID: 30070823 DOI: 10.1021/acsami.8b09617] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The establishment of p-n heterojunction between semiconductors is an effective means to improve the performance of semiconductor photocatalysts. For the first time, we synthesize SnO2/BiOBr heterojunction photocatalysts using a one-step hydrothermal method. Systematic material characterizations suggest that the photocatalysts consist of irregular BiOBr nanosheets with the length about 200 nm and width about 150 nm, and SnO2 nanoparticles are anchored uniformly onto the nanosheets. Most importantly, electrochemical characterizations including transient photocurrent profiles and electrochemical impedance spectra suggest that SnO2/BiOBr heterojunctions are created, which facilitates the charge separation and transfer efficiency of photogenerated charge carriers. As such, SnO2/BiOBr photocatalysts exhibit remarkable photocatalytic activities in terms of degrading a series of organic pollutants. Radical trapping experiments and electron spin resonance spectra suggest that superoxide radicals (•O2-) and hydroxyl radicals (•OH) are primary medium species running through the photocatalytic degradation process and enhanced photocatalytic performance.
Collapse
Affiliation(s)
- Haijin Liu
- School of Environment, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control , Henan Normal University , Xinxiang 453007 , P. R. China
- School of Environment and Science, Gold Coast Campus , Griffith University , Nathan , Queensland 4222 , Australia
| | - Cuiwei Du
- School of Environment, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control , Henan Normal University , Xinxiang 453007 , P. R. China
| | - Meng Li
- School of Environment and Science, Gold Coast Campus , Griffith University , Nathan , Queensland 4222 , Australia
| | - Shengsen Zhang
- School of Environment and Science, Gold Coast Campus , Griffith University , Nathan , Queensland 4222 , Australia
| | - Haokun Bai
- Faculty of Chemical, Environmental and Biological Science and Technology , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Lin Yang
- School of Environment, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control , Henan Normal University , Xinxiang 453007 , P. R. China
| | - Shanqing Zhang
- School of Environment and Science, Gold Coast Campus , Griffith University , Nathan , Queensland 4222 , Australia
| |
Collapse
|
22
|
Xu S, Zhao H, Xu Y, Xu R, Lei Y. Carrier Mobility-Dominated Gas Sensing: A Room-Temperature Gas-Sensing Mode for SnO 2 Nanorod Array Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13895-13902. [PMID: 29595250 DOI: 10.1021/acsami.8b03953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Adsorption-induced change of carrier density is presently dominating inorganic semiconductor gas sensing, which is usually operated at a high temperature. Besides carrier density, other carrier characteristics might also play a critical role in gas sensing. Here, we show that carrier mobility can be an efficient parameter to dominate gas sensing, by which room-temperature gas sensing of inorganic semiconductors is realized via a carrier mobility-dominated gas-sensing (CMDGS) mode. To demonstrate CMDGS, we design and prepare a gas sensor based on a regular array of SnO2 nanorods on a bottom film. It is found that the key for determining the gas-sensing mode is adjusting the length of the arrayed nanorods. With the change in the nanorod length from 340 to 40 nm, the gas-sensing behavior changes from the conventional carrier-density mode to a complete carrier-mobility mode. Moreover, compared to the carrier density-dominating gas sensing, the proposed CMDGS mode enhances the sensor sensitivity. CMDGS proves to be an emerging gas-sensing mode for designing inorganic semiconductor gas sensors with high performances at room temperature.
Collapse
Affiliation(s)
- Shipu Xu
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| | - Huaping Zhao
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| | - Yang Xu
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| | - Rui Xu
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| | - Yong Lei
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| |
Collapse
|
23
|
Shoaib M, Wang X, Zhang X, Zhang Q, Pan A. Controllable Vapor Growth of Large-Area Aligned CdS x Se 1-x Nanowires for Visible Range Integratable Photodetectors. NANO-MICRO LETTERS 2018; 10:58. [PMID: 30393706 PMCID: PMC6199103 DOI: 10.1007/s40820-018-0211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/03/2018] [Indexed: 05/10/2023]
Abstract
The controllable growth of large area band gap engineered-semiconductor nanowires (NWs) with precise orientation and position is of immense significance in the development of integrated optoelectronic devices. In this study, we have achieved large area in-plane-aligned CdS x Se1-x nanowires via chemical vapor deposition method. The orientation and position of the alloyed CdS x Se1-x NWs could be controlled well by the graphoepitaxial effect and the patterns of Au catalyst. Microstructure characterizations of these as-grown samples reveal that the aligned CdS x Se1-x NWs possess smooth surface and uniform diameter. The aligned CdS x Se1-x NWs have strong photoluminescence and high-quality optical waveguide emission covering almost the entire visible wavelength range. Furthermore, photodetectors were constructed based on individual alloyed CdS x Se1-x NWs. These devices exhibit high performance and fast response speed with photoresponsivity ~ 670 A W-1 and photoresponse time ~ 76 ms. Present work provides a straightforward way to realize in-plane aligned bandgap engineering in semiconductor NWs for the development of large area NW arrays, which exhibit promising applications in future optoelectronic integrated circuits.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Xiaoxia Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Xuehong Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Qinglin Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China.
| |
Collapse
|
24
|
Shoaib M, Zhang X, Wang X, Zhou H, Xu T, Wang X, Hu X, Liu H, Fan X, Zheng W, Yang T, Yang S, Zhang Q, Zhu X, Sun L, Pan A. Directional Growth of Ultralong CsPbBr 3 Perovskite Nanowires for High-Performance Photodetectors. J Am Chem Soc 2017; 139:15592-15595. [PMID: 29058888 DOI: 10.1021/jacs.7b08818] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Directional growth of ultralong nanowires (NWs) is significant for practical application of large-scale optoelectronic integration. Here, we demonstrate the controlled growth of in-plane directional perovskite CsPbBr3 NWs, induced by graphoepitaxial effect on annealed M-plane sapphire substrates. The wires have a diameter of several hundred nanometers, with lengths up to several millimeters. Microstructure characterization shows that CsPbBr3 NWs are high-quality single crystals, with smooth surfaces and well-defined cross section. The NWs have very strong band-edge photoluminescence (PL) with a long PL lifetime of ∼25 ns and can realize high-quality optical waveguides. Photodetectors constructed on these individual NWs exhibit excellent photoresponse with an ultrahigh responsivity of 4400 A/W and a very fast response speed of 252 μs. This work presents an important step toward scalable growth of high-quality perovskite NWs, which will provide promising opportunities in constructing integrated nanophotonic and optoelectronic systems.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Xuehong Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Xiaoxia Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Hong Zhou
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University , Nanjing 210096, China
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Xuelu Hu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Huawei Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Xiaopeng Fan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Weihao Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Tiefeng Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Shuzhen Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Qinglin Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Xiaoli Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University , Nanjing 210096, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and School of Physics and Electronic Science, Hunan University , Changsha 410082, China
| |
Collapse
|
25
|
Oksenberg E, Martí-Sánchez S, Popovitz-Biro R, Arbiol J, Joselevich E. Surface-Guided Core-Shell ZnSe@ZnTe Nanowires as Radial p-n Heterojunctions with Photovoltaic Behavior. ACS NANO 2017; 11:6155-6166. [PMID: 28505415 DOI: 10.1021/acsnano.7b02199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The organization of nanowires on surfaces remains a major obstacle toward their large-scale integration into functional devices. Surface-material interactions have been used, with different materials and substrates, to guide horizontal nanowires during their growth into well-organized assemblies, but the only guided nanowire heterostructures reported so far are axial and not radial. Here, we demonstrate the guided growth of horizontal core-shell nanowires, specifically of ZnSe@ZnTe, with control over their crystal phase and crystallographic orientations. We exploit the directional control of the guided growth for the parallel production of multiple radial p-n heterojunctions and probe their optoelectronic properties. The devices exhibit a rectifying behavior with photovoltaic characteristics upon illumination. Guided nanowire heterostructures enable the bottom-up assembly of complex semiconductor structures with controlled electronic and optoelectronic properties.
Collapse
Affiliation(s)
| | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST) , Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | | | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST) , Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA , Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | | |
Collapse
|
26
|
Wang Q, Li J, Lei Y, Wen Y, Wang Z, Zhan X, Wang F, Wang F, Huang Y, Xu K, He J. Oriented Growth of Pb1- x Snx Te Nanowire Arrays for Integration of Flexible Infrared Detectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3596-3601. [PMID: 26990637 DOI: 10.1002/adma.201506338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/23/2016] [Indexed: 06/05/2023]
Abstract
Assembling nanowires into highly ordered arrays is crucial for developing integration circuits. Oriented growth of mid-infrared Pb1- x Snx Te nanowire arrays on bendable mica, extending the function of existing nanowire arrays, is reported. The flexible photodetectors of these nanowire arrays show a high photoresponsivity of 276 A W(-1) (at 800 nm), which is higher than many previously reported infrared nanosensors.
Collapse
Affiliation(s)
- Qisheng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jie Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yin Lei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yao Wen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xueying Zhan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fengmei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yun Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kai Xu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jun He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
27
|
Li Y, Zu B, Guo Y, Li K, Zeng H, Dou X. Surface Superoxide Complex Defects-Boosted Ultrasensitive ppb-Level NO2 Gas Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1420-4. [PMID: 26788928 DOI: 10.1002/smll.201503111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/06/2015] [Indexed: 05/03/2023]
Abstract
Sn(4+) -O2 (-•) centers are intentionally created in SnO2 nanoflowers by a thermodynamically instable synthetic process. The resulting SnO2 nanoflower-based sensor is confirmed to be the most sensitive ppb-level chemiresistor NO2 sensor to date. The Sn(4+) -O2 (-•) centers with strong gas-adsorbing and high eletron-donating capability towards NO2 molecules decisively determine the sensor sensitivity.
Collapse
Affiliation(s)
- Yuxiang Li
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baiyi Zu
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yanan Guo
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Kun Li
- College of Applied Science, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Haibo Zeng
- Institute of Optoelectronics and Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xincun Dou
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
28
|
Wang WC, Lai CY, Lin YT, Yua TH, Chen ZY, Wu WW, Yeh PH. Surface defect engineering: gigantic enhancement in the optical and gas detection ability of metal oxide sensor. RSC Adv 2016. [DOI: 10.1039/c6ra09033h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By using surface defect engineering, the gigantic enhancement in UV and gas detection abilities of nanosensors can be achieved.
Collapse
Affiliation(s)
- Wen-Chieh Wang
- Department of Physics
- Tamkang University
- New Taipei City
- Taiwan
| | - Chun-Yen Lai
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu City 30010
- Taiwan
| | - Yu-Ting Lin
- Department of Physics
- Tamkang University
- New Taipei City
- Taiwan
| | - Tzu-Hsuan Yua
- Department of Physics
- Tamkang University
- New Taipei City
- Taiwan
| | - Zong-Yi Chen
- Department of Physics
- Tamkang University
- New Taipei City
- Taiwan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu City 30010
- Taiwan
| | - Ping-Hung Yeh
- Department of Physics
- Tamkang University
- New Taipei City
- Taiwan
| |
Collapse
|
29
|
Kim WJ, Lee SW, Sohn Y. Metallic Sn spheres and SnO2@C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles. Sci Rep 2015; 5:13448. [PMID: 26300041 PMCID: PMC4547105 DOI: 10.1038/srep13448] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/28/2015] [Indexed: 11/25/2022] Open
Abstract
SnO2 has been studied intensely for applications to sensors, Li-ion batteries and solar cells. Despite this, comparatively little attention has been paid to the changes in morphology and crystal phase that occur on the metal oxide surface during chemical reactions. This paper reports anaerobic and aerobic ethanol and CO oxidation reactions over SnO2 nanoparticles (NPs), as well as the subsequent changes in the nature of the NPs. Uniform SnO2@C core-shells (10 nm) were formed by an aerobic ethanol oxidation reaction over SnO2 NPs. On the other hand, metallic Sn spheres were produced by an anaerobic ethanol oxidation reaction at 450 °C, which is significantly lower than that (1200 °C) used in industrial Sn production. Anaerobic and aerobic CO oxidation reactions were also examined. The novelty of the methods for the production of metallic Sn and SnO2@C core-shells including other anaerobic and aerobic reactions will contribute significantly to Sn and SnO2-based applications.
Collapse
Affiliation(s)
- Won Joo Kim
- School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sung Woo Lee
- Center for Research Facilities &Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngku Sohn
- School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
30
|
Li L, Zhang C, Chen W. Fabrication of SnO2-SnO nanocomposites with p-n heterojunctions for the low-temperature sensing of NO2 gas. NANOSCALE 2015; 7:12133-42. [PMID: 26123121 DOI: 10.1039/c5nr02334c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this report, the fabrication of a novel SnO2-SnO nanostructure with p-n heterojunctions has been achieved through a facile one-pot and low-cost hydrothermal process. The structure and properties of the nanocomposite were analyzed with X-ray techniques and electron microscopy. HRTEM characterization showed that the p-n heterojunctions were formed with small n-type SnO2 nanocrystals dispersed on the surface of large p-type SnO crystals. Compared to the single SnO2-based material, a gas sensor fabricated from the SnO2-SnO composite exhibited an enhanced sensing performance for NO2 gas detection, with a limit of detection and sensitivity of 0.1 ppm and 0.26 ppm(-1), respectively, at a relatively low operating temperature (50 °C). Moreover, the p-n heterojunctions exhibited high sensing selectivity for NO2. Such a high sensing sensitivity and a low operating temperature make the SnO2-SnO p-n nanomaterial a promising gas sensor for practical NO2 gas detection. The improved sensing response characteristics of the hybrid material could be attributed to the p-n junctions formed through the in situ growth of SnO2 nanocrystals on SnO nanoplates. The present study is helpful for the design of novel gas sensing materials and the development of NO2 gas sensors.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, People's Republic of China.
| | | | | |
Collapse
|
31
|
Oksenberg E, Popovitz-Biro R, Rechav K, Joselevich E. Guided Growth of Horizontal ZnSe Nanowires and their Integration into High-Performance Blue-UV Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3999-4005. [PMID: 26011601 DOI: 10.1002/adma.201500736] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Indexed: 05/25/2023]
Abstract
Perfectly aligned horizontal ZnSe nano-wires are obtained by guided growth, and easily integrated into high-performance blue-UV photodetectors. Their crystal phase and crystallographic orientation are controlled by the epitaxial relations with six different sapphire planes. Guided growth paves the way for the large-scale integration of nanowires into optoelectronic devices.
Collapse
Affiliation(s)
- Eitan Oksenberg
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ronit Popovitz-Biro
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Katya Rechav
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ernesto Joselevich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
32
|
Xu L, Dai Z, Duan G, Guo L, Wang Y, Zhou H, Liu Y, Cai W, Wang Y, Li T. Micro/Nano gas sensors: a new strategy towards in-situ wafer-level fabrication of high-performance gas sensing chips. Sci Rep 2015; 5:10507. [PMID: 26001035 PMCID: PMC5377049 DOI: 10.1038/srep10507] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/15/2015] [Indexed: 11/09/2022] Open
Abstract
Nano-structured gas sensing materials, in particular nanoparticles, nanotubes, and nanowires, enable high sensitivity at a ppb level for gas sensors. For practical applications, it is highly desirable to be able to manufacture such gas sensors in batch and at low cost. We present here a strategy of in-situ wafer-level fabrication of the high-performance micro/nano gas sensing chips by naturally integrating microhotplatform (MHP) with nanopore array (NPA). By introducing colloidal crystal template, a wafer-level ordered homogenous SnO2 NPA is synthesized in-situ on a 4-inch MHP wafer, able to produce thousands of gas sensing units in one batch. The integration of micromachining process and nanofabrication process endues micro/nano gas sensing chips at low cost, high throughput, and with high sensitivity (down to ~20 ppb), fast response time (down to ~1 s), and low power consumption (down to ~30 mW). The proposed strategy of integrating MHP with NPA represents a versatile approach for in-situ wafer-level fabrication of high-performance micro/nano gas sensors for real industrial applications.
Collapse
Affiliation(s)
- Lei Xu
- 1] Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China [2] California Institute of Technology, Pasadena, California 91125, USA
| | - Zhengfei Dai
- Key Lab of Materials Physics, Anhui Key lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Guotao Duan
- Key Lab of Materials Physics, Anhui Key lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Lianfeng Guo
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yi Wang
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hong Zhou
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yanxiang Liu
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yuelin Wang
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tie Li
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
33
|
Huang X, Yu YQ, Xia J, Fan H, Wang L, Willinger MG, Yang XP, Jiang Y, Zhang TR, Meng XM. Ultraviolet photodetectors with high photosensitivity based on type-II ZnS/SnO2 core/shell heterostructured ribbons. NANOSCALE 2015; 7:5311-5319. [PMID: 25721309 DOI: 10.1039/c5nr00150a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiconducting heterostructures with type-II band structure have attracted much attention due to their novel physical properties and wide applications in optoelectronics. Herein, we report, for the first time, a controlled synthesis of type-II ZnS/SnO2 heterostructured ribbon composed of SnO2 nanoparticles that uniformly cover the surface of ZnS ribbon via a simple and versatile thermal evaporation approach. Structural analysis indicated that the majority of SnO2 nanoparticles have an equivalent zone axis, i.e., <-313> of rutile SnO2, which is perpendicular to ±(2-1-10) facets (top/down surfaces) of ZnS ribbon. For those SnO2 nanoparticles decorated on ±(01-10) facets (side surfaces) of ZnS ribbon, an epitaxial relationship of (01-10)ZnO//(020)SnO2 and [2-1-10]ZnO//[001]SnO2 was identified. To explore their electronic and optoelectronic properties, we constructed field-effect transistors from as-prepared new heterostructures, which exhibited an n-type characteristic with an on/off ratio of ∼10(3) and a fast carrier mobility of ∼33.2 cm2 V(-1) s(-1). Owing to the spatial separation of photogenerated electron-hole pairs from type-II band alignment together with the good contacts between electrodes and ribbon, the resultant photodetector showed excellent photoresponse properties, including large photocurrent, high sensitivity (external quantum efficiency as high as ∼2.4×10(7)%), good stability and reproducibility, and relatively fast response speed. Our results suggest great potential of ZnS/SnO2 heterostructures for efficient UV light sensing, and, more importantly, signify the advantages of type-II semiconducting heterostructures for construction of high-performance nano-photodetectors.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aroonyadet N, Wang X, Song Y, Chen H, Cote RJ, Thompson ME, Datar RH, Zhou C. Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay. NANO LETTERS 2015; 15:1943-51. [PMID: 25636984 DOI: 10.1021/nl5047889] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanostructure field-effect transistor (FET) biosensors have shown great promise for ultra sensitive biomolecular detection. Top-down assembly of these sensors increases scalability and device uniformity but faces fabrication challenges in achieving the small dimensions needed for sensitivity. We report top-down fabricated indium oxide (In2O3) nanoribbon FET biosensors using highly scalable radio frequency (RF) sputtering to create uniform channel thicknesses ranging from 50 to 10 nm. We combine this scalable sensing platform with amplification from electronic enzyme-linked immunosorbent assay (ELISA) to achieve high sensitivity to target analytes such as streptavidin and human immunodeficiency virus type 1 (HIV-1) p24 proteins. Our approach circumvents Debye screening in ionic solutions and detects p24 protein at 20 fg/mL (about 250 viruses/mL or about 3 orders of magnitude lower than commercial ELISA) with a 35% conduction change in human serum. The In2O3 nanoribbon biosensors have 100% device yield and use a simple 2 mask photolithography process. The electrical properties of 50 In2O3 nanoribbon FETs showed good uniformity in on-state current, on/off current ratio, mobility, and threshold voltage. In addition, the sensors show excellent pH sensitivity over a broad range (pH 4 to 9) as well as over the physiological-related pH range (pH 6.8 to 8.2). With the demonstrated sensitivity, scalability, and uniformity, the In2O3 nanoribbon sensor platform makes great progress toward clinical testing, such as for early diagnosis of acquired immunodeficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Noppadol Aroonyadet
- Department of Electrical Engineering, ‡Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim WS, Kim D, Hong SH. Lateral epitaxial growth of faceted SnO2nanowires with self-alignment. CrystEngComm 2014. [DOI: 10.1039/c4ce01244e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|