1
|
Elibol K, Burghard M, Heil T, van Aken PA. Unlocking Unexpected Charge Transfer Pathways in Interconnected Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57501-57511. [PMID: 39402723 PMCID: PMC11503614 DOI: 10.1021/acsami.4c12205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Accurate control of charge transfer pathways is critical to unlocking the full potential of charge transfer plasmons (CTPs) and exploring their diverse applications. We show that the intentional manipulation of junctions in Al nanocrosses on graphene induces asymmetry, unlocking unexpected charge transfer pathways and facilitating the generation of coupled resonators. The junction asymmetry, which is induced by nanotrench formation facilitated by focused electron beam irradiation, provides a versatile means to achieve precise and controlled interconnect manipulation. We find that tuning the nanotrench dimensions in nanocrosses allows for the tailored modulation of the charge transfer speed and the energies of CTPs. Furthermore, CTPs excited in our experimental nanocrosses, featuring nanotrenches, exhibit weak coupling. This crucial insight underscores the importance of controlled trench formation in unlocking various functionalities of CTPs for use in sensing, catalysis, and energy conversion applications. The controlled manipulation of interconnects in Al nanocrosses thus emerges as a promising avenue for advancing the device performance in these fields.
Collapse
Affiliation(s)
- Kenan Elibol
- Max Planck Institute for
Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Marko Burghard
- Max Planck Institute for
Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Tobias Heil
- Max Planck Institute for
Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Peter A. van Aken
- Max Planck Institute for
Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Tran MN, Moreau M, Addad A, Teurtrie A, Roland T, de Waele V, Dewitte M, Thomas L, Levêque G, Dong C, Simon P, Ben Tayeb K, Mele D, Ordomsky V, Grandidier B. Boosting Gas-Phase TiO 2 Photocatalysis with Weak Electric Field Strengths of Volt/Centimeter. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38501567 DOI: 10.1021/acsami.3c19031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Among semiconductor nanomaterials, titanium dioxide is at the forefront of heterogeneous photocatalysis, but its catalytic activity greatly suffers from the loss of photoexcited charge carriers through deleterious recombination processes. Here, we investigate the impact of an external electric field (EEF) applied to conventional P25 TiO2 nanopowder with or without Au nanoparticles (NPs) to circumvent this issue. The study of two redox reactions in the gas phase, water splitting and toluene degradation, reveals an enhancement of the photocatalytic activity with rather modest electric fields of a few volt/centimeters only. Such an improvement arises from the electric-field-induced quenching of the green emission in anatase, allowing the photoexcited charge carriers to be transferred to the adsorbed reactants instead of pointless radiative recombinations. Applying an EEF across a trap-rich metal oxide material, such as TiO2, which, when impregnated with Au NPs, leads, respectively, to 12- and 6-fold enhancements in the production of hydrogen and the oxidation of toluene for an electric field of 8 V/cm, without any electrolysis, is a simple and elegant strategy to meet higher photocatalytic efficiencies.
Collapse
Affiliation(s)
- My Nghe Tran
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Myriam Moreau
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Ahmed Addad
- CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Université de Lille, Lille F-59000, France
| | - Adrien Teurtrie
- CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Université de Lille, Lille F-59000, France
| | - Thomas Roland
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Vincent de Waele
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Marc Dewitte
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Louis Thomas
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Gaëtan Levêque
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Chunyang Dong
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Pardis Simon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Karima Ben Tayeb
- Université de Lille, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - David Mele
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| | - Vitaly Ordomsky
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS─Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Bruno Grandidier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
3
|
Lingstädt R, Davoodi F, Elibol K, Taleb M, Kwon H, Fischer P, Talebi N, van Aken PA. Electron Beam Induced Circularly Polarized Light Emission of Chiral Gold Nanohelices. ACS NANO 2023; 17:25496-25506. [PMID: 37992234 PMCID: PMC10753880 DOI: 10.1021/acsnano.3c09336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Chiral plasmonic nanostructures possess a chiroptical response orders of magnitude stronger than that of natural biomolecular systems, making them highly promising for a wide range of biochemical, medical, and physical applications. Despite extensive efforts to artificially create and tune the chiroptical properties of chiral nanostructures through compositional and geometrical modifications, a fundamental understanding of their underlying mechanisms remains limited. In this study, we present a comprehensive investigation of individual gold nanohelices by using advanced analytical electron microscopy techniques. Our results, as determined by angle-resolved cathodoluminescence polarimetry measurements, reveal a strong correlation between the circular polarization state of the emitted far-field radiation and the handedness of the chiral nanostructure in terms of both its dominant circularity and directional intensity distribution. Further analyses, including electron energy-loss measurements and numerical simulations, demonstrate that this correlation is driven by longitudinal plasmonic modes that oscillate along the helical windings, much like straight nanorods of equal strength and length. However, due to the three-dimensional shape of the structures, these longitudinal modes induce dipolar transverse modes with charge oscillations along the short axis of the helices for certain resonance energies. Their radiative decay leads to observed emission in the visible range. Our findings provide insight into the radiative properties and underlying mechanisms of chiral plasmonic nanostructures and enable their future development and application in a wide range of fields, such as nano-optics, metamaterials, molecular physics, biochemistry, and, most promising, chiral sensing via plasmonically enhanced chiral optical spectroscopy techniques.
Collapse
Affiliation(s)
- Robin Lingstädt
- Max
Planck Institute for Solid State Research, Stuttgart, 70569, Germany
| | - Fatemeh Davoodi
- Institute
of Experimental and Applied Physics, Christian
Albrechts University, Kiel, 24118, Germany
| | - Kenan Elibol
- Max
Planck Institute for Solid State Research, Stuttgart, 70569, Germany
| | - Masoud Taleb
- Institute
of Experimental and Applied Physics, Christian
Albrechts University, Kiel, 24118, Germany
| | - Hyunah Kwon
- Max
Planck Institute for Medical Research, Heidelberg, 69120, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, 69120, Germany
| | - Peer Fischer
- Max
Planck Institute for Medical Research, Heidelberg, 69120, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, 69120, Germany
| | - Nahid Talebi
- Institute
of Experimental and Applied Physics, Christian
Albrechts University, Kiel, 24118, Germany
- Kiel
Nano, Surface and Interface Science KiNSIS, Christian Albrechts University, Kiel, 24118, Germany
| | - Peter A. van Aken
- Max
Planck Institute for Solid State Research, Stuttgart, 70569, Germany
| |
Collapse
|
4
|
Du JS, Cherqui C, Ueltschi TW, Wahl CB, Bourgeois M, Van Duyne RP, Schatz GC, Dravid VP, Mirkin CA. Discovering polyelemental nanostructures with redistributed plasmonic modes through combinatorial synthesis. SCIENCE ADVANCES 2023; 9:eadj6129. [PMID: 38134271 PMCID: PMC10745681 DOI: 10.1126/sciadv.adj6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Coupling plasmonic and functional materials provides a promising way to generate multifunctional structures. However, finding plasmonic nanomaterials and elucidating the roles of various geometric and dielectric configurations are tedious. This work describes a combinatorial approach to rapidly exploring and identifying plasmonic heteronanomaterials. Symmetry-broken noble/non-noble metal particle heterojunctions (~100 nanometers) were synthesized on multiwindow silicon chips with silicon nitride membranes. The metal types and the interface locations were controlled to establish a nanoparticle library, where the particle morphology and scattering color can be rapidly screened. By correlating structural data with near- and far-field single-particle spectroscopy data, we found that certain low-energy plasmonic modes could be supported across the heterointerface, while others are localized. Furthermore, we found a series of triangular heteronanoplates stabilized by epitaxial Moiré superlattices, which show strong plasmonic responses despite largely comprising a lossy metal (~70 atomic %). These architectures can become the basis for multifunctional and cost-effective plasmonic devices.
Collapse
Affiliation(s)
- Jingshan S. Du
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Charles Cherqui
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Tyler W. Ueltschi
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Carolin B. Wahl
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Marc Bourgeois
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Richard P. Van Duyne
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - George C. Schatz
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Chad A. Mirkin
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Seçkin S, Singh P, Jaiswal A, König TAF. Super-Radiant SERS Enhancement by Plasmonic Particle Gratings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43124-43134. [PMID: 37665350 DOI: 10.1021/acsami.3c07532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Despite recent developments, surface-enhanced Raman spectroscopy (SERS) applications face challenges in achieving both high sensitivity and uniform Raman signals over a large area. Using the directional self-assembly of plasmonic nanoparticles in lattice structures, we show how one can increase the SERS signal 43-fold over randomly aligned gold nanoparticles without relying on the photoluminescence of Rhodamine 6G. For this study, we have chosen the lattice constant for an off-resonant case that matches the lattice resonance and super-radiant plasmon mode along the particle chain. Supported by electromagnetic simulations, we systematically analyze the radiative components of the plasmon modes by varying the particle size while keeping the lattice periodicity constant. We perform polarization-dependent SERS measurements and compare them with other standard SERS excitation wavelengths. Using the self-assembled plasmonic particle lattice, we have developed an effective SERS substrate that provides a significantly higher signal with 73% less surface coverage. This colloidal approach enables the cost-effective and scalable fabrication of highly sensitive, uniform, and polarization-dependent SERS substrates.
Collapse
Affiliation(s)
- Sezer Seçkin
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, Dresden 01069 ,Germany
| | - Prem Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, Dresden 01069 ,Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, Dresden01069 ,Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden01069 ,Germany
| |
Collapse
|
6
|
Chikkaraddy R, Huang J, Kos D, Elliott E, Kamp M, Guo C, Baumberg JJ, de Nijs B. Boosting Optical Nanocavity Coupling by Retardation Matching to Dark Modes. ACS PHOTONICS 2023; 10:493-499. [PMID: 36820326 PMCID: PMC9936626 DOI: 10.1021/acsphotonics.2c01603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 06/18/2023]
Abstract
Plasmonic nanoantennas can focus light at nanometer length scales providing intense field enhancements. For the tightest optical confinements (0.5-5 nm) achieved in plasmonic gaps, the gap spacing, refractive index, and facet width play a dominant role in determining the optical properties making tuning through antenna shape challenging. We show here that controlling the surrounding refractive index instead allows both efficient frequency tuning and enhanced in-/output coupling through retardation matching as this allows dark modes to become optically active, improving widespread functionalities.
Collapse
Affiliation(s)
- Rohit Chikkaraddy
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | - Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | - Dean Kos
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | - Eoin Elliott
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | - Marlous Kamp
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | - Chenyang Guo
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | - Bart de Nijs
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| |
Collapse
|
7
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Elibol K, Downing C, Hobbs RG. Nanoscale mapping of shifts in dark plasmon modes in sub 10 nm aluminum nanoantennas. NANOTECHNOLOGY 2022; 33:475203. [PMID: 35944508 DOI: 10.1088/1361-6528/ac8812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the fabrication and spectroscopic characterization of subwavelength aluminum nanocavities-consisting of hexamer or tetramer clusters of sub 10 nm width Al nanorods-with tunable localized surface plasmon resonance (LSPR) energies on suspended SiNxmembranes. Here the volume plasmon (VP) and LSPR modes of lithographically-fabricated Al nanocavities are revealed by low-loss electron energy-loss spectroscopy (EELS) in an aberration corrected scanning transmission electron microscope (STEM). We show that the existence of grain boundaries (GBs) in these nanocavities results in shifts in the VP energy and a reduction in the VP lifetime. We map the VP energy and lifetime across GBs and we observe a decrease in VP energy and lifetime at GBs that is consistent with a reduction in free carrier density and increased plasmon scattering at these locations. Dipolar LSPR modes resonant in the UV and blue regions of the electromagnetic spectrum as well as higher-energy optically dark quadrupolar and hexapolar LSPR modes are also observed and mapped by STEM and EELS. All LSPR modes are confirmed via electromagnetic simulations based on the boundary element method. Both tetramer and hexamer structures support the excitation of dipolar bright and dipolar dark modes. Finally, we find that asymmetries in fabricated nanorod hexamer and tetramer nanocavities result in a mode mixing leading to a shift in dipolar dark LSPR modes.
Collapse
Affiliation(s)
- Kenan Elibol
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
| | - Clive Downing
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
| | - Richard G Hobbs
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Elibol K, van Aken PA. Hybrid Graphene-Supported Aluminum Plasmonics. ACS NANO 2022; 16:11931-11943. [PMID: 35904978 PMCID: PMC9413403 DOI: 10.1021/acsnano.2c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Controlled fabrication of devices for plasmonics on suspended graphene enables obtaining tunable localized surface plasmon resonances (LSPRs), reducing the red-shift of LSPRs, and creating hybrid 3D-2D systems promising for adjustable dipole-dipole coupling and plasmon-mediated catalysis. Here, we apply a low-cost fabrication methodology to produce patterned aluminum nanostructures (bowties and tetramers) on graphene monolayers via electron-beam lithography and trap platinum (Pt) nanoclusters (NCs) within their hotspots by thermal annealing. We reveal the LSPRs of aluminum plasmonics on graphene using electron energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) in a monochromated scanning transmission electron microscope (STEM). The LSPRs of these nanostructures are measured to be between visible and ultraviolet regions of the spectrum and are confirmed by electromagnetic simulations. The antibonding dipole and bonding dipole modes of both structures are tuned by controlling their gap size. The tetramers enable the simultaneous excitation of both antibonding and bonding dipole modes at the poles of nanoprisms, while bowties allow us to excite these modes separately either at the poles or within the hotspot. We further show that the hybrid nanocavity-NC systems are in the intermediate coupling regime providing an enhanced plasmon absorption in the Pt NCs via the energy transfer from the antibonding dipole mode to the Pt NCs. The dipole LSPR of Pt NCs also couples to the bonding-type breathing mode in bowties. Our findings suggest that these hybrid nanocavity-graphene systems are of high application potential for plasmon-mediated catalysis, surface-enhanced fluorescence, and quantum technologies.
Collapse
|
10
|
Johnson CW, Turner AE, García de Abajo FJ, McMorran BJ. Inelastic Mach-Zehnder Interferometry with Free Electrons. PHYSICAL REVIEW LETTERS 2022; 128:147401. [PMID: 35476465 DOI: 10.1103/physrevlett.128.147401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/09/2022] [Indexed: 05/27/2023]
Abstract
We use a novel scanning electron Mach-Zehnder interferometer constructed in a conventional transmission electron microscope to perform inelastic interferometric imaging with free electrons. An electron wave function is prepared in two paths that pass on opposite sides of a gold nanoparticle, where plasmons are excited before the paths are recombined to produce electron interference. We show that the measured spectra are consistent with theoretical predictions, specifically that the interference signal formed by inelastically scattered electrons is π out of phase with respect to that formed by elastically scattered electrons. This technique is sensitive to the phase of localized optical modes, because the interference signal amounts to a substantial fraction of the transmitted electrons. Thus, we argue that inelastic interferometric imaging with our scanning electron Mach-Zehnder interferometer provides a new platform for controlling the transverse momentum of free electrons and studying coherent electron-matter interactions at the nanoscale.
Collapse
Affiliation(s)
- Cameron W Johnson
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Amy E Turner
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | | |
Collapse
|
11
|
Bellido EP, Bicket IC, Botton GA. The effects of bending on plasmonic modes in nanowires and planar structures. NANOPHOTONICS 2022; 11:305-314. [PMID: 36533260 PMCID: PMC9728462 DOI: 10.1515/nanoph-2021-0449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/08/2021] [Indexed: 06/16/2023]
Abstract
In this work, we investigate the effects of bends on the surface plasmon resonances in nanowires (NWs) and isolated edges of planar structures using electron energy loss spectroscopy experiments and theoretical calculations. Previous work showed that the sharp bends in NWs do not affect their resonant modes. Here, we study previously overlooked effects and analyze systematically the evolution of resonant modes for several bending angles from 30° to 180°, showing that bending can have a significant effect on the plasmonic response of a nanostructure. In NWs, the modes can experience significant energy shifts that depend on the aspect ratio of the NW and can cause mode intersection and antinode bunching. We establish the relation between NW modes and edge modes and show that bending can even induce antinode splitting in edge modes. This work demonstrates that bends in plasmonic planar nanostructures can have a profound effect on their optical response and this must be accounted for in the design of optical devices.
Collapse
Affiliation(s)
- Edson P. Bellido
- Department of Materials Science and Engineering, McMaster University, Hamilton, Canada
| | - Isobel C. Bicket
- Department of Materials Science and Engineering, McMaster University, Hamilton, Canada
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Canada
| | - Gianluigi A. Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, Canada
- Canadian Light Source, Saskatoon, Canada
| |
Collapse
|
12
|
Alexander DTL, Flauraud V, Demming-Janssen F. Near-Field Mapping of Photonic Eigenmodes in Patterned Silicon Nanocavities by Electron Energy-Loss Spectroscopy. ACS NANO 2021; 15:16501-16514. [PMID: 34585583 DOI: 10.1021/acsnano.1c06065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, there has been significant interest in using dielectric nanocavities for the controlled scattering of light, owing to the diverse electromagnetic modes that they support. For plasmonic systems, electron energy-loss spectroscopy (EELS) is now an established method enabling structure-optical property analysis at the scale of the nanostructure. Here, we instead test its potential for the near-field mapping of photonic eigenmodes supported in planar dielectric nanocavities, which are lithographically patterned from amorphous silicon according to standard photonic principles. By correlating results with finite element simulations, we demonstrate how many of the EELS excitations can be directly corresponded to various optical eigenmodes of interest for photonic engineering. The EELS maps present a high spatial definition, displaying intensity features that correlate precisely to the impact parameters giving the highest probability of modal excitation. Further, eigenmode characteristics translate into their EELS signatures, such as the spatially and energetically extended signal of the low Q-factor electric dipole and nodal intensity patterns emerging from excitation of toroidal and second-order magnetic modes within the nanocavity volumes. Overall, the spatial-spectral nature of the data, combined with our experimental-simulation toolbox, enables interpretation of subtle changes in the EELS response across a range of nanocavity dimensions and forms, with certain simulated resonances matching the excitation energies within ±0.01 eV. By connecting results to far-field simulations, perspectives are offered for tailoring the nanophotonic resonances via manipulating nanocavity size and shape.
Collapse
Affiliation(s)
- Duncan T L Alexander
- Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Valentin Flauraud
- Microsystems Laboratory (LMIS1), Microengineering Institute (IMT), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | |
Collapse
|
13
|
García
de Abajo FJ, Di Giulio V. Optical Excitations with Electron Beams: Challenges and Opportunities. ACS PHOTONICS 2021; 8:945-974. [PMID: 35356759 PMCID: PMC8939335 DOI: 10.1021/acsphotonics.0c01950] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Free electron beams such as those employed in electron microscopes have evolved into powerful tools to investigate photonic nanostructures with an unrivaled combination of spatial and spectral precision through the analysis of electron energy losses and cathodoluminescence light emission. In combination with ultrafast optics, the emerging field of ultrafast electron microscopy utilizes synchronized femtosecond electron and light pulses that are aimed at the sampled structures, holding the promise to bring simultaneous sub-Å-sub-fs-sub-meV space-time-energy resolution to the study of material and optical-field dynamics. In addition, these advances enable the manipulation of the wave function of individual free electrons in unprecedented ways, opening sound prospects to probe and control quantum excitations at the nanoscale. Here, we provide an overview of photonics research based on free electrons, supplemented by original theoretical insights and discussion of several stimulating challenges and opportunities. In particular, we show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile, whereas the probability for two or more modulated electrons depends on their relative spatial arrangement, thus reflecting the quantum nature of their interactions. We derive first-principles analytical expressions that embody these results and have general validity for arbitrarily shaped electrons and any type of electron-sample interaction. We conclude with some perspectives on various exciting directions that include disruptive approaches to noninvasive spectroscopy and microscopy, the possibility of sampling the nonlinear optical response at the nanoscale, the manipulation of the density matrices associated with free electrons and optical sample modes, and appealing applications in optical modulation of electron beams, all of which could potentially revolutionize the use of free electrons in photonics.
Collapse
Affiliation(s)
- F. Javier García
de Abajo
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- E-mail:
| | - Valerio Di Giulio
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
14
|
Lingstädt R, Talebi N, Guo S, Sigle W, Campos A, Kociak M, Esmann M, Becker SF, Okunishi E, Mukai M, Lienau C, van Aken PA. Probing plasmonic excitation mechanisms and far-field radiation of single-crystalline gold tapers with electrons. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190599. [PMID: 33100159 PMCID: PMC7661279 DOI: 10.1098/rsta.2019.0599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Conical metallic tapers represent an intriguing subclass of metallic nanostructures, as their plasmonic properties show interesting characteristics in strong correlation to their geometrical properties. This is important for possible applications such as in the field of scanning optical microscopy, as favourable plasmonic resonance behaviour can be tailored by optimizing structural parameters like surface roughness or opening angle. Here, we review our recent studies, where single-crystalline gold tapers were investigated experimentally by means of electron energy-loss and cathodoluminescence spectroscopy techniques inside electron microscopes, supported by theoretical finite-difference time-domain calculations. Through the study of tapers with various opening angles, the underlying resonance mechanisms are discussed. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Robin Lingstädt
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Nahid Talebi
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Institute of Experimental and Applied Physics, Christian Albrechts University, Kiel, Germany
| | - Surong Guo
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Wilfried Sigle
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Alfredo Campos
- Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Panama City, Panama
| | - Mathieu Kociak
- Laboratoire de Physique des Solides, Université Paris Sud, Orsay, France
| | - Martin Esmann
- Carl von Ossietzky University, Oldenburg, Germany
- CNRS Centre for Nanoscience and Nanotechnology (C2N), Université Paris-Saclay, Palaiseau, France
| | | | | | | | | | | |
Collapse
|
15
|
Downing CA, Weick G. Plasmonic modes in cylindrical nanoparticles and dimers. Proc Math Phys Eng Sci 2020; 476:20200530. [PMID: 33408559 PMCID: PMC7776974 DOI: 10.1098/rspa.2020.0530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/16/2020] [Indexed: 11/12/2022] Open
Abstract
We present analytical expressions for the resonance frequencies of the plasmonic modes hosted in a cylindrical nanoparticle within the quasi-static approximation. Our theoretical model gives us access to both the longitudinally and transversally polarized dipolar modes for a metallic cylinder with an arbitrary aspect ratio, which allows us to capture the physics of both plasmonic nanodisks and nanowires. We also calculate quantum mechanical corrections to these resonance frequencies due to the spill-out effect, which is of relevance for cylinders with nanometric dimensions. We go on to consider the coupling of localized surface plasmons in a dimer of cylindrical nanoparticles, which leads to collective plasmonic excitations. We extend our theoretical formalism to construct an analytical model of the dimer, describing the evolution with the inter-nanoparticle separation of the resultant bright and dark collective modes. We comment on the renormalization of the coupled mode frequencies due to the spill-out effect, and discuss some methods of experimental detection.
Collapse
Affiliation(s)
- Charles A. Downing
- Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Guillaume Weick
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 67000 Strasbourg, France
| |
Collapse
|
16
|
Darienzo RE, Chen O, Sullivan M, Mironava T, Tannenbaum R. Au nanoparticles for SERS: Temperature-controlled nanoparticle morphologies and their Raman enhancing properties. MATERIALS CHEMISTRY AND PHYSICS 2020; 240:122143. [PMID: 33191968 PMCID: PMC7665167 DOI: 10.1016/j.matchemphys.2019.122143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Quasi-fractal gold nanoparticles can be synthesized via a modified and temperature controlled procedure initially used for the synthesis of star-like gold nanoparticles. The surface features of nanoparticles lead to improved enhancement of Raman scattering intensity of analyte molecules due to the increased number of sharp surface features possessing numerous localized surface plasmon resonances (LSPR). The LSPR is affected by the size and shape of surface features as well as inter-nanoparticle interactions, as these affect the oscillation modes of electrons on the nanoparticle surfaces. The effect of the particle morphologies on the localized surface plasmon resonance (LSPR) and on the surface-enhancing capabilities of these nanoparticles is explored by comparing different nanoparticle morphologies and concentrations. We show that in a fixed nanoparticle concentration regime, quasi-fractal gold nanoparticles (gold nanocaltrop) provide the highest level of surface enhancement, whereas spherical nanoparticles provide the largest enhancement in a fixed gold concentration regime. The presence of highly branched features enables these nanoparticles to couple with a laser wavelength, despite having no strong absorption band and hence no single surface plasmon resonance. This cumulative LSPR may allow these nanoparticles to be used in a variety of applications in which laser wavelength flexibility is beneficial, such as in medical imaging applications where fluorescence at short laser wavelengths may be coupled with non-fluorescing long laser wavelengths for molecular sensing.
Collapse
Affiliation(s)
- Richard E. Darienzo
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Olivia Chen
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurinne Sullivan
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tatsiana Mironava
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
17
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
18
|
Li X, Lyu J, Goldmann C, Kociak M, Constantin D, Hamon C. Plasmonic Oligomers with Tunable Conductive Nanojunctions. J Phys Chem Lett 2019; 10:7093-7099. [PMID: 31679338 DOI: 10.1021/acs.jpclett.9b03185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Engineering plasmonic hot spots is essential for applications of plasmonic nanoparticles. A particularly appealing route is to weld plasmonic nanoparticles together to form more complex structures sustaining plasmons with symmetries targeted to given applications. However, control of the welding and subsequent hot spot characteristics is still challenging. Herein, we demonstrate an original method that connects gold particles to their neighbors by another metal of choice. We first assemble gold bipyramids in a tip-to-tip configuration, yielding short chains of variable length, and grow metallic junctions in a second step. We follow the chain formation and the deposition of the second metal (i.e., silver or palladium) via UV/vis spectroscopy, and we map the plasmonic properties using electron energy loss spectroscopy. The formation of silver bridges leads to a huge red shift of the longitudinal plasmon modes into the mid-infrared region, while the addition of palladium results in a red shift accompanied by significant plasmon damping.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Jieli Lyu
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Claire Goldmann
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Mathieu Kociak
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Doru Constantin
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Cyrille Hamon
- Laboratoire de Physique des Solides , CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| |
Collapse
|
19
|
Andrade LM, Martins EMN, Versiani AF, Reis DS, da Fonseca FG, Souza IPD, Paniago RM, Pereira-Maia E, Ladeira LO. The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110203. [PMID: 31761220 DOI: 10.1016/j.msec.2019.110203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/25/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising tools for future diagnosis and therapy. Thus, we have produced gold nanoparticles coated with cetuximab at a dose-range from 5 μg up to 200 μg, and prolonged stable nanocomplexes were obtained. The nanocomplexes were characterized by UV-Vis, zeta potential, TEM, fluorometry, infrared regions, XPS and atomic absorption spectrometry. For biological characterization the A431 cell line was used. Cellular uptake, target affinity and cell death were assessed using ICP-OES, immunocytochemistry and flow cytometry, respectively. The immobilization of cetuximab on the AuNPs surfaces was confirmed. The nanocomplex with 24 months of manufacturing promoted efficient EGFR binding and induced tumour cell death due to apoptosis. Significant (p < 0.05) cell death was achieved using relatively low cetuximab concentration for AuNPs coating compared to the antibody alone. Therefore, our results provided robust physicochemical and biological characterization data corroborating the cetuximab-bioconjugate AuNPs as a feasible nanocomplex for biomedical applications.
Collapse
Affiliation(s)
- Lidia M Andrade
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil.
| | - Estefânia M N Martins
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil; Centro de Desenvolvimento da Tecnologia Nuclear, Brazil
| | - Alice F Versiani
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil; Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Brazil
| | - Daniela S Reis
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil
| | | | - Ivina P de Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Brazil; Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Brazil
| | - Roberto M Paniago
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil
| | | | - Luiz O Ladeira
- Departamento de Física, Nanobiomedical Research Group. Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
20
|
Alexander DTL, Forrer D, Rossi E, Lidorikis E, Agnoli S, Bernasconi GD, Butet J, Martin OJF, Amendola V. Electronic Structure-Dependent Surface Plasmon Resonance in Single Au-Fe Nanoalloys. NANO LETTERS 2019; 19:5754-5761. [PMID: 31348861 DOI: 10.1021/acs.nanolett.9b02396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The relationship between composition and plasmonic properties in noble metal nanoalloys is still largely unexplored. Yet, nanoalloys of noble metals, such as gold, with transition elements, such as iron, have unique properties and a number of potential applications, ranging from nanomedicine to magneto-plasmonics and plasmon-enhanced catalysis. Here, we investigate the localized surface plasmon resonance at the level of the single Au-Fe nanoparticle by applying a strategy that combines experimental measurements using near field electron energy loss spectroscopy with theoretical studies via a full wave numerical analysis and density functional theory calculations of electronic structure. We show that, as the iron fraction increases, the plasmon resonance is blue-shifted and significantly damped, as a consequence of the changes in the electronic band structure of the alloy. This allows the identification of three relevant phenomena to be considered in the design and realization of any plasmonic nanoalloy, specifically: the appearance of new states around the Fermi level; the change in the free electron density of the metal; and the blue shift of interband transitions. Overall, this study provides new opportunities for the control of the optical response in Au-Fe and other plasmonic nanoalloys, which are useful for the realization of magneto-plasmonic devices for molecular sensing, thermo-plasmonics, bioimaging, photocatalysis, and the amplification of spectroscopic signals by local field enhancement.
Collapse
Affiliation(s)
- Duncan T L Alexander
- Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
- Interdisciplinary Centre for Electron Microscopy (CIME) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Daniel Forrer
- CNR-ICMATE , 35127 Padova , Italy
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| | - Enrico Rossi
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| | - Elefterios Lidorikis
- Department Materials Science and Engineering , University of Ioannina , 45110 Ioannina , Greece
| | - Stefano Agnoli
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| | - Gabriel D Bernasconi
- Nanophotonics and Metrology Laboratory (NAM) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Jérémy Butet
- Nanophotonics and Metrology Laboratory (NAM) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory (NAM) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Vincenzo Amendola
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| |
Collapse
|
21
|
Yu Y, Ng C, König TAF, Fery A. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8629-8645. [PMID: 30883131 DOI: 10.1021/acs.langmuir.8b04279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electromagnetic radiation of a certain frequency can excite the collective oscillation of the free electrons in metallic nanostructures using localized surface plasmon resonances (LSPRs), and this phenomenon can be used for a variety of optical and electronic functionalities. However, nanostructure design over a large area using controlled LSPR features is challenging and requires high accuracy. In this article, we offer an overview of the efforts made by our group to implement a wrinkle-assisted colloidal particle assembly method to approach this challenge from a different angle. First, we introduce the controlled wrinkling process and discuss the underlying theoretical framework. We then set out how the wrinkled surfaces are utilized to guide the self-assembly of colloidal nanoparticles of various surface chemistry, size, and shape. Subsequently, template-assisted colloidal self-assembly mechanisms and a general guide for particle assembly beyond plasmonics will be presented. In addition, we also discuss the collective plasmonic behavior in depth, including strong plasmonic coupling due to nanoscale gap size as well as magnetic mode excitation and demonstrate the potential applications of wrinkle-assisted colloidal particle assembly method in the field of mechanoresponsive metasurfaces and surface-enhanced spectroscopy. Lastly, a general perspective in the field of template-assisted colloidal assembly with regard to potential applications in plasmonic photocatalysis, solar cells, optoelectronics, and sensing devices is provided.
Collapse
Affiliation(s)
- Ye Yu
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
| | - Charlene Ng
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Technische Universität Dresden , Department of Physical Chemistry of Polymer Materials , 01062 Dresden , Germany
| |
Collapse
|
22
|
Mayer M, Potapov PL, Pohl D, Steiner AM, Schultz J, Rellinghaus B, Lubk A, König TAF, Fery A. Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains. NANO LETTERS 2019; 19:3854-3862. [PMID: 31117756 PMCID: PMC6571934 DOI: 10.1021/acs.nanolett.9b01031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm.
Collapse
Affiliation(s)
- Martin Mayer
- Institute of Physical Chemistry and Polymer Physics and Department of Physical Chemistry
of Polymeric Materials, Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
| | - Pavel L. Potapov
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
| | - Darius Pohl
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
| | - Anja Maria Steiner
- Institute of Physical Chemistry and Polymer Physics and Department of Physical Chemistry
of Polymeric Materials, Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
| | - Johannes Schultz
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
| | - Bernd Rellinghaus
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
| | - Axel Lubk
- Institute
for Solid State Research and Institute for Metallic Materials, Leibniz-Institut für Festkörper und
Werkstoffforschung, Helmholtzstrasse
20, 01069 Dresden, Germany
- E-mail:
| | - Tobias A. F. König
- Institute of Physical Chemistry and Polymer Physics and Department of Physical Chemistry
of Polymeric Materials, Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
- E-mail:
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics and Department of Physical Chemistry
of Polymeric Materials, Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
- Cluster
of Excellence Center for Advancing Electronics Dresden (cfaed) and Dresden Center
for Nanoanalysis, Technische Universität
Dresden, D-01062 Dresden, Germany
- E-mail:
| |
Collapse
|
23
|
Guo S, Talebi N, Campos A, Kociak M, van Aken PA. Radiation of Dynamic Toroidal Moments. ACS PHOTONICS 2019; 6:467-474. [PMID: 31523699 PMCID: PMC6735299 DOI: 10.1021/acsphotonics.8b01422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 05/27/2023]
Abstract
Dynamic toroidal dipoles, a distinguished class of fundamental electromagnetic sources, receive increasing interest and participate in fascinating electrodynamic phenomena and sensing applications. As described in the literature, the radiative nature of dynamic toroidal dipoles is sometimes confounded, intermixing with static toroidal dipoles and plasmonic dark modes. Here, we elucidate this issue and provide proof-of-principle experiments exclusively on the radiation behavior of dynamic toroidal moments. Optical toroidal modes in plasmonic heptamer nanocavities are analyzed by electron energy loss spectroscopy and energy-filtered transmission electron microscopy supported by finite-difference time-domain numerical calculations. Additionally, their corresponding radiation behaviors are experimentally investigated by means of cathodoluminescence. The observed contrasting behaviors of a single dynamic toroidal dipole mode and an antiparallel toroidal dipole pair mode are discussed and elucidated. Our findings further clarify the electromagnetic properties of dynamic toroidal dipoles and serve as important guidance for the use of toroidal dipole moments in future applications.
Collapse
Affiliation(s)
- Surong Guo
- Stuttgart
Center for Electron Microscopy, Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Nahid Talebi
- Stuttgart
Center for Electron Microscopy, Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Alfredo Campos
- Laboratoire
de Physique des Solides, Université
Paris Sud, Orsay 91400, France
| | - Mathieu Kociak
- Laboratoire
de Physique des Solides, Université
Paris Sud, Orsay 91400, France
| | - Peter A. van Aken
- Stuttgart
Center for Electron Microscopy, Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| |
Collapse
|
24
|
Gür FN, McPolin CPT, Raza S, Mayer M, Roth DJ, Steiner AM, Löffler M, Fery A, Brongersma ML, Zayats AV, König TAF, Schmidt TL. DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamond. NANO LETTERS 2018; 18:7323-7329. [PMID: 30339400 DOI: 10.1021/acs.nanolett.8b03524] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plasmonic waveguides consisting of metal nanoparticle chains can localize and guide light well below the diffraction limit, but high propagation losses due to lithography-limited large interparticle spacing have impeded practical applications. Here, we demonstrate that DNA-origami-based self-assembly of monocrystalline gold nanoparticles allows the interparticle spacing to be decreased to ∼2 nm, thus reducing propagation losses to 0.8 dB per 50 nm at a deep subwavelength confinement of 62 nm (∼λ/10). We characterize the individual waveguides with nanometer-scale resolution by electron energy-loss spectroscopy. Light propagation toward a fluorescent nanodiamond is directly visualized by cathodoluminescence imaging spectroscopy on a single-device level, thereby realizing nanoscale light manipulation and energy conversion. Simulations suggest that longitudinal plasmon modes arising from the narrow gaps are responsible for the efficient waveguiding. With this scalable DNA origami approach, micrometer-long propagation lengths could be achieved, enabling applications in information technology, sensing, and quantum optics.
Collapse
Affiliation(s)
- Fatih N Gür
- Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Cillian P T McPolin
- Department of Physics , King's College London , Strand, London , WC2R 2LS , U.K
| | - Søren Raza
- Geballe Laboratory for Advanced Materials , Stanford University , Stanford , California 94305-4045 , United States
| | - Martin Mayer
- Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany
| | - Diane J Roth
- Department of Physics , King's College London , Strand, London , WC2R 2LS , U.K
| | - Anja Maria Steiner
- Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany
| | - Markus Löffler
- Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Andreas Fery
- Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany
- Department of Physical Chemistry of Polymeric Materials , Technische Universität Dresden , Hohe Str. 6 , 01069 Dresden , Germany
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials , Stanford University , Stanford , California 94305-4045 , United States
| | - Anatoly V Zayats
- Department of Physics , King's College London , Strand, London , WC2R 2LS , U.K
| | - Tobias A F König
- Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6 , 01069 Dresden , Germany
| | - Thorsten L Schmidt
- Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- B CUBE-Center for Molecular Bioengineering , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
25
|
Zhang KJ, Lu DB, Da B, Ding ZJ. Coupling of Surface Plasmon Modes and Refractive Index Sensitivity of Hollow Silver Nanoprism. Sci Rep 2018; 8:15993. [PMID: 30375478 PMCID: PMC6207745 DOI: 10.1038/s41598-018-34477-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
Localized surface plasmon (LSP) modes depend strongly on the morphology of nanoparticle and the surrounding dielectric medium. The hollow nanostructure provides a new way to modulate the surface plasmon modes due to the additional cavity surface. In this work, we study systematically the multipolar surface plasmon modes of hollow silver nanoprism (HSN) by simulation of electron energy loss spectroscopy (EELS) spectra based on the boundary element method (BEM). Herein the effects of the cavity size and position are taken into account. The LSP modes of HSNs are compared with those of perfect silver nanoprism (SN). The red-shift behaviors of multipolar modes can be found as increasing the cavity size. Modes A and C have similar red-shift tendency and obey the plasmon ruler equation, which can be explained by dipole-dipole coupling mode. Meanwhile, the degenerate modes will be split by changing the cavity position, and opposite shift tendencies of split degenerate states are observed. These are caused by different coupling nature of degenerate modes. Moreover, high refractive index sensitivity (RIS) can be obtained for HSN by changing the cavity size and position.
Collapse
Affiliation(s)
- K J Zhang
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - D B Lu
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - B Da
- Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Z J Ding
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
26
|
El-Demellawi JK, Lopatin S, Yin J, Mohammed OF, Alshareef HN. Tunable Multipolar Surface Plasmons in 2D Ti 3C 2 T x MXene Flakes. ACS NANO 2018; 12:8485-8493. [PMID: 30020767 DOI: 10.1021/acsnano.8b04029] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
2D Ti3C2 T x MXenes were recently shown to exhibit intense surface plasmon (SP) excitations; however, their spatial variation over individual Ti3C2 T x flakes remains undiscovered. Here, we use scanning transmission electron microscopy (STEM) combined with ultra-high-resolution electron energy loss spectroscopy (EELS) to investigate the spatial and energy distribution of SPs (both optically active and forbidden modes) in mono- and multilayered Ti3C2 T x flakes. With STEM-EELS mapping, the inherent interband transition in addition to a variety of transversal and longitudinal SP modes (ranging from visible down to 0.1 eV in MIR) are directly visualized and correlated with the shape, size, and thickness of Ti3C2 T x flakes. The independent polarizability of Ti3C2 T x monolayers is unambiguously demonstrated and attributed to their unusual weak interlayer coupling. This characteristic allows for engineering a class of nanoscale systems, where each monolayer in the multilayered structure of Ti3C2 T x has its own set of SPs with distinctive multipolar characters. Moreover, the tunability of the SP energies is highlighted by conducting in situ heating STEM to monitor the change of the surface functionalization of Ti3C2 T x through annealing at temperatures up to 900 °C. At temperatures above 500 °C, the observed fluorine (F) desorption multiplies the metal-like free electron density of Ti3C2 T x flakes, resulting in a monotonic blue-shift in the SP energy of all modes. These results underline the great potential for the development of Ti3C2 T x-based applications, spanning the visible-MIR spectrum, relying on the excitation and detection of single SPs.
Collapse
Affiliation(s)
- Jehad K El-Demellawi
- Physical Sciences and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
- KAUST Solar Center (KSC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Sergei Lopatin
- Core Laboratories , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Jun Yin
- KAUST Solar Center (KSC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Omar F Mohammed
- KAUST Solar Center (KSC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Physical Sciences and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Tang Y, Huang Y, Qv L, Fang Y. Electromagnetic Energy Redistribution in Coupled Chiral Particle Chain-Film System. NANOSCALE RESEARCH LETTERS 2018; 13:194. [PMID: 29978337 PMCID: PMC6033841 DOI: 10.1186/s11671-018-2600-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Metal nanoparticle-film system has been proved that it has the ability of focusing light in the gap between particle and film, which is useful for surface-enhanced Raman scattering and plasmon catalysis. The rapid developed plasmonic chirality can also be realized in such system. Here, we investigated an electromagnetic energy focusing effect and chiral near-field enhancement in a coupled chiral particle chain on gold film. It shows large electric field enhancement in the gap between particle and film, as well as chiral near field. The enhancement properties at resonant peaks for the system excited by left circularly polarized light and right circularly polarized light are obviously different. This difference resulted from the interaction of circularly polarized light and the chiral particle-film system is analyzed with plasmon hybridization. The enhanced optical activity can provide promising applications for the enhancement of chiral molecule sensor for this chiral particle chain-film system.
Collapse
Affiliation(s)
- Yuxia Tang
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044 China
- School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Yingzhou Huang
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044 China
| | - Linhong Qv
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024 China
| | - Yurui Fang
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044 China
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
28
|
Konečná A, Neuman T, Aizpurua J, Hillenbrand R. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy. ACS NANO 2018; 12:4775-4786. [PMID: 29641179 DOI: 10.1021/acsnano.8b01481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) is becoming an important technique in spatially resolved spectral characterization of optical and vibrational properties of matter at the nanoscale. EELS has played a significant role in understanding localized polaritonic excitations in nanoantennas and also allows for studying molecular excitations in nanoconfined samples. Here we theoretically describe the interaction of a localized electron beam with molecule-covered polaritonic nanoantennas, and propose the concept of surface-enhanced molecular EELS exploiting the electromagnetic coupling between the nanoantenna and the molecular sample. Particularly, we study plasmonic and infrared phononic antennas covered by molecular layers, exhibiting either an excitonic or vibrational response. We demonstrate that EEL spectra of these molecule-antenna coupled systems exhibit Fano-like or strong coupling features, similar to the ones observed in far-field optical and infrared spectroscopy. EELS offers the advantage to acquire spectral information with nanoscale spatial resolution, and importantly, to control the antenna-molecule coupling on demand. Considering ongoing instrumental developments, EELS in STEM shows the potential to become a powerful tool for fundamental studies of molecules that are naturally or intentionally located on nanostructures supporting localized plasmon or phonon polaritons. Surface-enhanced EELS might also enable STEM-EELS applications such as remote- and thus damage-free-sensing of the excitonic and vibrational response of molecules, quantum dots, or 2D materials.
Collapse
Affiliation(s)
- Andrea Konečná
- Materials Physics Center, CSIC-UPV/EHU , Donostia-San Sebastián , 20018 , Spain
| | - Tomáš Neuman
- Materials Physics Center, CSIC-UPV/EHU , Donostia-San Sebastián , 20018 , Spain
| | - Javier Aizpurua
- Materials Physics Center, CSIC-UPV/EHU , Donostia-San Sebastián , 20018 , Spain
- Donostia International Physics Center DIPC , Donostia-San Sebastián , 20018 , Spain
| | - Rainer Hillenbrand
- IKERBASQUE, Basque Foundation for Science , Bilbao , 48013 , Spain
- CIC NanoGUNE and UPV/EHU , Donostia-San Sebastián , 20018 , Spain
| |
Collapse
|
29
|
Haran G, Chuntonov L. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chem Rev 2018; 118:5539-5580. [DOI: 10.1021/acs.chemrev.7b00647] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gilad Haran
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 760001, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
30
|
Abstract
Abstract
The assembly of metal nanocrystals offers a flexible method for creating new materials with tunable, size-dependent optical properties. Here we study the lateral assembly of gold nanorods into arrays, which leads to strong colour changes due to surface plasmon coupling. We also demonstrate the first example of gap modes in colloid systems, an optical mode in which light waves propagate in the channels between the gold rods. Such modes resonate at wavelengths which strongly depend on the gap width and length.
Collapse
|
31
|
Downing CA, Mariani E, Weick G. Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:025301. [PMID: 29176053 DOI: 10.1088/1361-648x/aa9d59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We consider a chain of regularly-spaced spherical metallic nanoparticles, where each particle supports three degenerate localized surface plasmons. Due to the dipolar interaction between the nanoparticles, the localized plasmons couple to form extended collective modes. Using an open quantum system approach in which the collective plasmons are interacting with vacuum electromagnetic modes and which, importantly, readily incorporates retardation via the light-matter coupling, we analytically evaluate the resulting radiative frequency shifts of the plasmonic bandstructure. For subwavelength-sized nanoparticles, our analytical treatment provides an excellent quantitative agreement with the results stemming from laborious numerical calculations based on fully-retarded solutions to Maxwell's equations. Indeed, the explicit expressions for the plasmonic spectrum which we provide showcase how including retardation gives rise to a logarithmic singularity in the bandstructure of transverse-polarized plasmons. We further study the impact of retardation effects on the propagation of plasmonic excitations along the chain. While for the longitudinal modes, retardation has a negligible effect, we find that the retarded dipolar interaction can significantly modify the plasmon propagation in the case of transverse-polarized modes. Moreover, our results elucidate the analogy between radiative effects in nanoplasmonic systems and the cooperative Lamb shift in atomic physics.
Collapse
Affiliation(s)
- Charles A Downing
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | | | | |
Collapse
|
32
|
Wu Y, Li G, Camden JP. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy. Chem Rev 2017; 118:2994-3031. [DOI: 10.1021/acs.chemrev.7b00354] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yueying Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Guoliang Li
- Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
33
|
Bellido EP, Bernasconi GD, Rossouw D, Butet J, Martin OJF, Botton GA. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas. ACS NANO 2017; 11:11240-11249. [PMID: 29083865 DOI: 10.1021/acsnano.7b05554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.
Collapse
Affiliation(s)
- Edson P Bellido
- Department of Materials Science and Engineering, McMaster University , 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Gabriel D Bernasconi
- Nanophotonics and Metrology Laboratory, École Polytechnique Fédéralede Lausanne , 1015 Lausanne, Switzerland
| | - David Rossouw
- Department of Materials Science and Engineering, McMaster University , 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Jérémy Butet
- Nanophotonics and Metrology Laboratory, École Polytechnique Fédéralede Lausanne , 1015 Lausanne, Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory, École Polytechnique Fédéralede Lausanne , 1015 Lausanne, Switzerland
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University , 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
34
|
Steiner AM, Mayer M, Seuss M, Nikolov S, Harris KD, Alexeev A, Kuttner C, König TAF, Fery A. Macroscopic Strain-Induced Transition from Quasi-infinite Gold Nanoparticle Chains to Defined Plasmonic Oligomers. ACS NANO 2017; 11:8871-8880. [PMID: 28719741 DOI: 10.1021/acsnano.7b03087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We investigate the formation of chains of few plasmonic nanoparticles-so-called plasmonic oligomers-by strain-induced fragmentation of linear particle assemblies. Detailed investigations of the fragmentation process are conducted by in situ atomic force microscopy and UV-vis-NIR spectroscopy. Based on these experimental results and mechanical simulations computed by the lattice spring model, we propose a formation mechanism that explains the observed decrease of chain polydispersity upon increasing strain and provides experimental guidelines for tailoring chain length distribution. By evaluation of the strain-dependent optical properties, we find a reversible, nonlinear shift of the dominant plasmonic resonance. We could quantitatively explain this feature based on simulations using generalized multiparticle Mie theory (GMMT). Both optical and morphological characterization show that the unstrained sample is dominated by chains with a length above the so-called infinite chain limit-above which optical properties show no dependency on chain length-while during deformation, the average chain length decrease below this limit and chain length distribution becomes more narrow. Since the formation mechanism results in a well-defined, parallel orientation of the oligomers on macroscopic areas, the effect of finite chain length can be studied even using conventional UV-vis-NIR spectroscopy. The scalable fabrication of oriented, linear plasmonic oligomers opens up additional opportunities for strain-dependent optical devices and mechanoplasmonic sensing.
Collapse
Affiliation(s)
- Anja Maria Steiner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
| | - Maximilian Seuss
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
| | - Svetoslav Nikolov
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Kenneth D Harris
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- National Institute for Nanotechnology , 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Christian Kuttner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics , Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , 01062 Dresden, Germany
- Department of Physical Chemistry of Polymeric Materials, Technische Universität Dresden , Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
35
|
Song Y, Tran VT, Lee J. Tuning Plasmon Resonance in Magnetoplasmonic Nanochains by Controlling Polarization and Interparticle Distance for Simple Preparation of Optical Filters. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24433-24439. [PMID: 28696665 DOI: 10.1021/acsami.7b06977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Magnetoplasmonic Fe3O4-coated Ag nanoparticles (NPs) are assembled in large scale (18 × 18 mm2) in order to observe unique modulation of plasmonic coupling and optical tunable application via both external magnetic field and the combination of magnetic dipole and electrostatic interactions of particle-particle and particle-substrate. These large nanochains film exhibits outstanding tunability of plasmonic resonance from visible to near-infrared range by controlling the polarization angle and interparticle distance (IPD). The enormous spectral shift mainly originated from far-field rather than near-field coupling of Ag cores because of the sufficiently large separation between them in which Fe3O4 shell acts as spacer. This tunable magnetoplasmonic film can be applicable in the field of anisotropic optical waveguides, tunable optical filter, and nanoscale sensing platform.
Collapse
Affiliation(s)
- Y Song
- Department of Cogno-Mechatronics Engineering, Pusan National University , Busan 46241, Republic of Korea
| | - V T Tran
- Department of Cogno-Mechatronics Engineering, Pusan National University , Busan 46241, Republic of Korea
| | - J Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University , Busan 46241, Republic of Korea
| |
Collapse
|
36
|
Greybush NJ, Liberal I, Malassis L, Kikkawa JM, Engheta N, Murray CB, Kagan CR. Plasmon Resonances in Self-Assembled Two-Dimensional Au Nanocrystal Metamolecules. ACS NANO 2017; 11:2917-2927. [PMID: 28190335 DOI: 10.1021/acsnano.6b08189] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We explore the evolution of plasmonic modes in two-dimensional nanocrystal oligomer "metamolecules" as the number of nanocrystals is systematically varied. Precise, hexagonally ordered Au nanocrystal oligomers with 1-31 members are assembled via capillary forces into polygonal topographic templates defined using electron-beam lithography. The visible and near-infrared scattering response of individual oligomers is measured by spatially resolved, polarized darkfield scattering spectroscopy. The response is highly sensitive to in-plane versus out-of-plane incident polarization, and we observe an exponentially saturating red shift in plasmon resonance wavelength as the number of nanocrystals per oligomer increases, in agreement with theoretical predictions. Simulations further elucidate the modes supported by the oligomers, including electric dipole and magnetic dipole resonances and their Fano interference. The single-oligomer sensitivity of our measurements also reveals the role of positional disorder in determining the wavelength and character of the plasmonic response. The progression of oligomer metamolecule structures studied here advances our understanding of fundamental plasmonic interactions in the transition regime between few-member plasmonic clusters and extended two-dimensional arrays.
Collapse
Affiliation(s)
| | | | - Ludivine Malassis
- Complex Assemblies of Soft Matter Laboratory (COMPASS), UMI 3254, CNRS-Solvay-UPenn , Bristol, Pennsylvania 19007, United States
| | | | | | | | | |
Collapse
|
37
|
Lloyd JA, Ng SH, Liu ACY, Zhu Y, Chao W, Coenen T, Etheridge J, Gómez DE, Bach U. Plasmonic Nanolenses: Electrostatic Self-Assembly of Hierarchical Nanoparticle Trimers and Their Response to Optical and Electron Beam Stimuli. ACS NANO 2017; 11:1604-1612. [PMID: 28165711 DOI: 10.1021/acsnano.6b07336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Asymmetric nanoparticle trimers composed of particles with increasing diameter act as "plasmonic lenses" and have been predicted to exhibit ultrahigh confinement of electromagnetic energy in the space between the two smallest particles. Here we present an electrostatic self-assembly approach for creating gold nanoparticle trimers with an assembly yield of over 60%. We demonstrate that the trimer assembly leads to characteristic red-shifts and show the localization of the relevant plasmon modes by means of cathodoluminescence and electron energy loss spectroscopy. The results are analyzed in terms of surface plasmon hybridization.
Collapse
Affiliation(s)
- Julian A Lloyd
- Department of Materials Science and Engineering, Monash University , Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication , Wellington Road 151, Clayton, Victoria 3168, Australia
| | - Soon Hock Ng
- Department of Materials Science and Engineering, Monash University , Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication , Wellington Road 151, Clayton, Victoria 3168, Australia
| | - Amelia C Y Liu
- Monash Centre for Electron Microscopy, Monash University , Clayton, Victoria 3800, Australia
- School of Physics, Monash University , Clayton, Victoria 3800, Australia
| | - Ye Zhu
- Department of Materials Science and Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Wei Chao
- Department of Materials Science and Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Toon Coenen
- DELMIC BV , Thijsseweg 11, 2629 JA, Delft, The Netherlands
| | - Joanne Etheridge
- Department of Materials Science and Engineering, Monash University , Clayton, Victoria 3800, Australia
- Monash Centre for Electron Microscopy, Monash University , Clayton, Victoria 3800, Australia
| | - Daniel E Gómez
- Melbourne Centre for Nanofabrication , Wellington Road 151, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation , Manufacturing, Research Way, Clayton, Victoria 3168, Australia
- School of Applied Science, RMIT University , Melbourne, Victoria 3000, Australia
| | - Udo Bach
- Department of Materials Science and Engineering, Monash University , Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication , Wellington Road 151, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation , Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
38
|
Armao JJ, Nyrkova I, Fuks G, Osypenko A, Maaloum M, Moulin E, Arenal R, Gavat O, Semenov A, Giuseppone N. Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid-Liquid Interface. J Am Chem Soc 2017; 139:2345-2350. [PMID: 28099810 PMCID: PMC5647876 DOI: 10.1021/jacs.6b11179] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 11/29/2022]
Abstract
The study of supramolecular polymers in the bulk, in diluted solution, and at the solid-liquid interface has recently become a major topic of interest, going from fundamental aspects to applications in materials science. However, examples of supramolecular polymers at the liquid-liquid interface are mostly unexplored. Here, we describe the supramolecular polymerization of triarylamine molecules and their light-triggered organization at a chloroform-water interface. The resulting interfacial nematic layer of these 1D supramolecular polymers is further used as a template for the precise alignment of spherical gold nanoparticles coming from the water phase. These hybrid thin films are spontaneously formed in a single process, without chemical prefunctionalization of the metallic nanoparticles, and their ordering is improved by centrifugation. The resulting polymer chains and strings of nanoparticles can be co-aligned with high anisotropy over very large distances. By using a combination of experimental and theoretical investigations, we decipher the full sequence of this oriented self-assembly process. In such a highly anisotropic configuration, electron energy loss spectroscopy reveals that the self-assembled nanoparticles behave as plasmonic waveguides.
Collapse
Affiliation(s)
- Joseph J. Armao
- SAMS
Research Group, Institut Charles Sadron, University of Strasbourg−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex 2
Strasbourg, France
| | - Irina Nyrkova
- Institut
Charles Sadron−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex
2
Strasbourg, France
| | - Gad Fuks
- SAMS
Research Group, Institut Charles Sadron, University of Strasbourg−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex 2
Strasbourg, France
| | - Artem Osypenko
- SAMS
Research Group, Institut Charles Sadron, University of Strasbourg−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex 2
Strasbourg, France
| | - Mounir Maaloum
- SAMS
Research Group, Institut Charles Sadron, University of Strasbourg−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex 2
Strasbourg, France
| | - Emilie Moulin
- SAMS
Research Group, Institut Charles Sadron, University of Strasbourg−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex 2
Strasbourg, France
| | - Raul Arenal
- Laboratorio
de Microscopias Avanzadas (LMA), Instituto
de Nanociencia de Aragon (INA)
, U. Zaragoza, 50018
Zaragoza, Spain
- Fundacion
ARAID
, 50018
Zaragoza, Spain
| | - Odile Gavat
- SAMS
Research Group, Institut Charles Sadron, University of Strasbourg−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex 2
Strasbourg, France
| | - Alexander Semenov
- Institut
Charles Sadron−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex
2
Strasbourg, France
| | - Nicolas Giuseppone
- SAMS
Research Group, Institut Charles Sadron, University of Strasbourg−CNRS
, 23 rue du Loess, BP 84047, 67034 Cedex 2
Strasbourg, France
| |
Collapse
|
39
|
Ross MB, Bourgeois MR, Mirkin CA, Schatz GC. Magneto-Optical Response of Cobalt Interacting with Plasmonic Nanoparticle Superlattices. J Phys Chem Lett 2016; 7:4732-4738. [PMID: 27934204 DOI: 10.1021/acs.jpcc.5b10800] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The magneto-optical Kerr effect is a striking phenomenon whereby the optical properties of a material change under an applied magnetic field. Though promising for sensing and data storage technology, these properties are typically weak in magnitude and are inherently limited by the bulk properties of the active magnetic material. In this work, we theoretically demonstrate that plasmonic thin-film assemblies on a cobalt substrate can achieve tunable transverse magneto-optical (TMOKE) responses throughout the visible and near-infrared (300-900 nm). In addition to exhibiting wide spectral tunability, this response can be varied in sign and magnitude by changing the plasmonic volume fraction (1-20%), the composition and arrangement of the assembly, and the shape of the nanoparticle inclusions. Of particular interest is the newly discovered sensitivity of the sign and intensity of the TMOKE spectrum to collective metallic plasmonic behavior in silver, mixed silver-gold, and anisotropic superlattices.
Collapse
Affiliation(s)
- Michael B Ross
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Marc R Bourgeois
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Guo S, Talebi N, Sigle W, Vogelgesang R, Richter G, Esmann M, Becker SF, Lienau C, van Aken PA. Reflection and Phase Matching in Plasmonic Gold Tapers. NANO LETTERS 2016; 16:6137-6144. [PMID: 27552231 DOI: 10.1021/acs.nanolett.6b02353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigate different dynamic mechanisms, reflection and phase matching, of surface plasmons in a three-dimensional single-crystalline gold taper excited by relativistic electrons. Plasmonic modes of gold tapers with various opening angles from 5° to 47° are studied both experimentally and theoretically, by means of electron energy-loss spectroscopy and finite-difference time-domain numerical calculations, respectively. Distinct resonances along the taper shaft are observed in tapers independent of opening angles. We show that, despite their similarity, the origin of these resonances is different at different opening angles and results from a competition between two coexisting mechanisms. For gold tapers with large opening angles (above ∼20°), phase matching between the electron field and that of higher-order angular momentum modes of the taper is the dominant contribution to the electron energy-loss because of the increasing interaction length between electron and the taper near-field. In contrast, reflection from the taper apex dominates the EELS contrast in gold tapers with small opening angles (below ∼10°). For intermediate opening angles, a gradual transition of these two mechanisms was observed.
Collapse
Affiliation(s)
- Surong Guo
- Max Planck Institute for Solid State Research , Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Nahid Talebi
- Max Planck Institute for Solid State Research , Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Wilfried Sigle
- Max Planck Institute for Solid State Research , Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ralf Vogelgesang
- Institute of Physics and Center of Interface Science, Carl von Ossietzky University of Oldenburg , 26129 Oldenburg, Germany
| | - Gunther Richter
- Max Planck Institute for Intelligent Systems , Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Martin Esmann
- Institute of Physics and Center of Interface Science, Carl von Ossietzky University of Oldenburg , 26129 Oldenburg, Germany
| | - Simon F Becker
- Institute of Physics and Center of Interface Science, Carl von Ossietzky University of Oldenburg , 26129 Oldenburg, Germany
| | - Christoph Lienau
- Institute of Physics and Center of Interface Science, Carl von Ossietzky University of Oldenburg , 26129 Oldenburg, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research , Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
41
|
Barrow SJ, Collins SM, Rossouw D, Funston AM, Botton GA, Midgley PA, Mulvaney P. Electron Energy Loss Spectroscopy Investigation into Symmetry in Gold Trimer and Tetramer Plasmonic Nanoparticle Structures. ACS NANO 2016; 10:8552-63. [PMID: 27482623 DOI: 10.1021/acsnano.6b03796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a combined scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) investigation into the mode symmetries of plasmonic nanoparticle trimer and tetramer structures. We obtain nanometer-resolved energy loss spectra for both trimer and tetramer structures and compare these to boundary element method simulations. We show that EELS, in conjunction with eigenmode simulations, offers a complete characterization of the individual superstructures, and we trace the evolution of both optically dark and bright modes and identify multipolar mode contributions. We then apply this technique to tetramer structures that exhibit an expanded range of mode symmetries for two-dimensional and three-dimensional self-assembled geometries. These findings provide a comprehensive experimental account of the available photonic states in self-assembled nanoparticle clusters.
Collapse
Affiliation(s)
- Steven J Barrow
- School of Chemistry and Bio21 Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - David Rossouw
- Materials Science and Engineering, McMaster University , Hamilton, Ontario L8S 4L8, Canada
| | - Alison M Funston
- Chemistry Department, Monash University , Clayton, Victoria 3800, Australia
| | - Gianluigi A Botton
- Materials Science and Engineering, McMaster University , Hamilton, Ontario L8S 4L8, Canada
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Paul Mulvaney
- School of Chemistry and Bio21 Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Lin G, Chee SW, Raj S, Král P, Mirsaidov U. Linker-Mediated Self-Assembly Dynamics of Charged Nanoparticles. ACS NANO 2016; 10:7443-7450. [PMID: 27494560 DOI: 10.1021/acsnano.6b01721] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using in situ liquid cell transmission electron microscopy (TEM), we visualized a stepwise self-assembly of surfactant-coated and hydrated gold nanoparticles (NPs) into linear chains or branched networks. The NP binding is facilitated by linker molecules, ethylenediammonium, which form hydrogen bonds with surfactant molecules of neighboring NPs. The observed spacing between bound neighboring NPs, ∼15 Å, matches the combined length of two surfactants and one linker molecule. Molecular dynamics simulations reveal that for lower concentrations of linkers, NPs with charged surfactants cannot be fully neutralized by strongly binding divalent linkers, so that NPs carry higher effective charges and tend to form chains, due to poor screening. The highly polar NP surfaces polarize and partly immobilize nearby water molecules, which promotes NPs binding. The presented experimental and theoretical approach allows for detail observation and explanation of self-assembly processes in colloidal nanosystems.
Collapse
Affiliation(s)
- Guanhua Lin
- Department of Physics, National University of Singapore , 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , 117546, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore , 117543, Singapore
- NanoCore, National University of Singapore , 117576, Singapore
| | - See Wee Chee
- Department of Physics, National University of Singapore , 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , 117546, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore , 117543, Singapore
| | | | | | - Utkur Mirsaidov
- Department of Physics, National University of Singapore , 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , 117546, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore , 117543, Singapore
- NanoCore, National University of Singapore , 117576, Singapore
| |
Collapse
|
43
|
Zhang KJ, Da B, Ding ZJ. LSP modes of Ag nanocube and dimer studied by DDA simulation. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- K. J. Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics; University of Science and Technology of China; Hefei Anhui 230026 China
| | - B. Da
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Z. J. Ding
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
44
|
Talebi N, Ozsoy-Keskinbora C, Benia HM, Kern K, Koch CT, van Aken PA. Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi2Se3 Probed by Electron Beams. ACS NANO 2016; 10:6988-6994. [PMID: 27309040 DOI: 10.1021/acsnano.6b02968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bi2Se3 has recently attracted a lot of attention because it has been reported to be a platform for the realization of three-dimensional topological insulators. Due to this exotic characteristic, it supports excitations of a two-dimensional electron gas at the surface and, hence, formation of Dirac-plasmons. In addition, at higher energies above its bandgap, Bi2Se3 is characterized by a naturally hyperbolic electromagnetic response, with an interesting interplay between type-I and type-II hyperbolic behaviors. However, still not all the optical modes of Bi2Se3 have been explored. Here, using mainly electron energy-loss spectroscopy and corresponding theoretical modeling we investigate the full photonic density of states that Bi2Se3 sustains, in the energy range of 0.8 eV-5 eV. We show that at energies below 1 eV, this material can also support wedge Dyakonov waves. Furthermore, at higher energies a huge photonic density of states is excited in structures such as waveguides and resonators made of Bi2Se3 due to the hyperbolic dispersion.
Collapse
Affiliation(s)
- Nahid Talebi
- Max Planck Institute for Solid State Research , D-70569 Stuttgart, Germany
| | | | - Hadj M Benia
- Max Planck Institute for Solid State Research , D-70569 Stuttgart, Germany
| | - Klaus Kern
- Max Planck Institute for Solid State Research , D-70569 Stuttgart, Germany
- Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Christoph T Koch
- Humboldt University of Berlin , Department of Physics, 12489 Berlin, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research , D-70569 Stuttgart, Germany
| |
Collapse
|
45
|
Cherqui C, Thakkar N, Li G, Camden JP, Masiello DJ. Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy. Annu Rev Phys Chem 2016; 67:331-57. [DOI: 10.1146/annurev-physchem-040214-121612] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Charles Cherqui
- Department of Chemistry, University of Washington, Seattle, Washington 98195;
| | - Niket Thakkar
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195
| | - Guoliang Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556;
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556;
| | - David J. Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195;
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
46
|
Xiong M, Jin X, Ye J. Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains. NANOSCALE 2016; 8:4991-4999. [PMID: 26864389 DOI: 10.1039/c5nr09101b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible and infrared wavelengths, which indicates that these chain structures potentially can be used as a common substrate for both surface enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) application. This fabrication method also offers a general strategy alternative to top-down processing that enables the construction of nanostructures for metamaterials, electromagnetic energy transport, and optical waveguide.
Collapse
Affiliation(s)
- Min Xiong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xiulong Jin
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jian Ye
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
47
|
Coenen T, Schoen DT, Mann SA, Rodriguez SRK, Brenny BJM, Polman A, Brongersma ML. Nanoscale Spatial Coherent Control over the Modal Excitation of a Coupled Plasmonic Resonator System. NANO LETTERS 2015; 15:7666-70. [PMID: 26457569 DOI: 10.1021/acs.nanolett.5b03614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate coherent control over the optical response of a coupled plasmonic resonator by high-energy electron beam excitation. We spatially control the position of an electron beam on a gold dolmen and record the cathodoluminescence and electron energy loss spectra. By selective coherent excitation of the dolmen elements in the near field, we are able to manipulate modal amplitudes of bonding and antibonding eigenmodes. We employ a combination of CL and EELS to gain detailed insight in the power dissipation of these modes at the nanoscale as CL selectively probes the radiative response and EELS probes the combined effect of Ohmic dissipation and radiation.
Collapse
Affiliation(s)
- Toon Coenen
- Center for Nanophotonics, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - David T Schoen
- Geballe Laboratory for Advanced Materials, Stanford University , Stanford, California 94305, United States
| | - Sander A Mann
- Center for Nanophotonics, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Said R K Rodriguez
- Center for Nanophotonics, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
- Philips Research Laboratories , High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
| | - Benjamin J M Brenny
- Center for Nanophotonics, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Albert Polman
- Center for Nanophotonics, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
48
|
Vidal C, Wang D, Schaaf P, Hrelescu C, Klar TA. Optical Plasmons of Individual Gold Nanosponges. ACS PHOTONICS 2015; 2:1436-1442. [PMID: 26523285 PMCID: PMC4616225 DOI: 10.1021/acsphotonics.5b00281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Indexed: 05/28/2023]
Abstract
The search for novel plasmonic nanostructures, which can act simultaneously as optical detectors and stimulators, is crucial for many applications in the fields of biosensing, electro- and photocatalysis, electrochemistry, and biofuel generation. In most of these areas, a large surface-to-volume ratio, as well as high density of active surface sites, is desirable. We investigate sponge-like, that is, fully porous, nanoparticles, called nanosponges, where both the gold and the air phase are fully percolated in three dimensions. We correlate, on a single nanoparticle basis, their optical scattering spectra (using dark field microscopy) with their individual morphology (using electron microscopy). We find that the scattering spectra of nanosponges depend only weakly on their size and outer shape, but are greatly influenced by their unique percolation, in qualitative agreement with numerical simulations.
Collapse
Affiliation(s)
- Cynthia Vidal
- Institute
of Applied Physics, Johannes Kepler University
Linz, 4040 Linz, Austria
| | - Dong Wang
- Institute
of Materials Engineering and Institute of Micro- and Nanotechnologies
MacroNano, Technische Universität
Ilmenau, 98693 Ilmenau, Germany
| | - Peter Schaaf
- Institute
of Materials Engineering and Institute of Micro- and Nanotechnologies
MacroNano, Technische Universität
Ilmenau, 98693 Ilmenau, Germany
| | - Calin Hrelescu
- Institute
of Applied Physics, Johannes Kepler University
Linz, 4040 Linz, Austria
| | - Thomas A. Klar
- Institute
of Applied Physics, Johannes Kepler University
Linz, 4040 Linz, Austria
| |
Collapse
|
49
|
Zhang M, Large N, Koh AL, Cao Y, Manjavacas A, Sinclair R, Nordlander P, Wang SX. High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps. ACS NANO 2015; 9:9331-9339. [PMID: 26202803 DOI: 10.1021/acsnano.5b03090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fabrication of high-density plasmonic dimers on a large (wafer) scale is crucial for applications in surface-enhanced spectroscopy, bio- and molecular sensing, and optoelectronics. Here, we present an experimental approach based on nanoimprint lithography and shadow evaporation that allows for the fabrication of high-density, large-scale homo- (Au-Au and Ag-Ag) and hetero- (Au-Ag) dimer substrates with precise and consistent sub-10-nm gaps. We performed scanning electron, scanning transmission electron, and atomic force microscopy studies along with a complete electron energy-loss spectroscopy (EELS) characterization. We observed distinct plasmonic modes on these dimers, which are well interpreted by finite-difference time-domain (FDTD) and plasmon hybridization calculations.
Collapse
Affiliation(s)
| | - Nicolas Large
- Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University , Houston, Texas, United States
| | | | - Yang Cao
- Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University , Houston, Texas, United States
| | - Alejandro Manjavacas
- Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University , Houston, Texas, United States
| | | | - Peter Nordlander
- Department of Physics and Astronomy, Laboratory for Nanophotonics, Rice University , Houston, Texas, United States
| | | |
Collapse
|
50
|
Wei J, Jiang N, Xu J, Bai X, Liu J. Strong Coupling between ZnO Excitons and Localized Surface Plasmons of Silver Nanoparticles Studied by STEM-EELS. NANO LETTERS 2015; 15:5926-5931. [PMID: 26237659 DOI: 10.1021/acs.nanolett.5b02030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigated the strong coupling between the excitons of ZnO nanowires (NWs) and the localized surface plasmons (LSPs) of individual Ag nanoparticles (NPs) by monochromated electron energy loss spectroscopy (EELS) in an aberration-corrected scanning transmission electron microscopy (STEM) instrument. The EELS results confirmed that the hybridization of the ZnO exciton with the LSPs of the Ag NP created two plexcitons: the lower branch plexcitons (LPs) with a symmetrical dipole distribution and the upper branch plexcitons (UPs) with an antisymmetrical dipole distribution. The spatial maps of the LP and UP excitations reveal the nature of the LSP-exciton interactions. With decreasing size of the Ag NP the peak energies of the LPs and UPs showed a blue-shift and an anticrossing behavior at the ZnO exciton energy was observed. The coupled oscillator model explains the dispersion curve of the plexcitons and a Rabi splitting energy of ∼170 meV was deduced. The high spatial and energy resolution STEM-EELS approach demonstrated in this work is general and can be extended to study the various coupling interactions of a plethora of metal-semiconductor nanocomposite systems.
Collapse
Affiliation(s)
- Jiake Wei
- Department of Physics, Arizona State University , Tempe, Arizona 85287, United States
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Nan Jiang
- Department of Physics, Arizona State University , Tempe, Arizona 85287, United States
| | - Jia Xu
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
| | - Jingyue Liu
- Department of Physics, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|