1
|
Wu JS, Lázaro MT, Mundoor H, Wensink HH, Smalyukh II. Emergent biaxiality in chiral hybrid liquid crystals. Nat Commun 2024; 15:9941. [PMID: 39550383 DOI: 10.1038/s41467-024-54236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Biaxial nematic liquid crystals are fascinating systems sometimes referred to as the Higgs boson of soft matter because of experimental observation challenges. Here we describe unexpected states of matter that feature biaxial orientational order of colloidal supercritical fluids and gases formed by sparse rodlike particles. Colloidal rods with perpendicular surface boundary conditions exhibit a strong biaxial symmetry breaking when doped into conventional chiral nematic fluids. Minimization of free energy prompts these particles to orient perpendicular to the local molecular director and the helical axis, thereby imparting biaxiality on the hybrid molecular-colloidal system. The ensuing phase diagram features colloidal gas and liquid and supercritical colloidal fluid states with long-range biaxial orientational symmetry, as supported by analytical and numerical modeling at all hierarchical levels of ordering. Unlike for nonchiral hybrid systems, dispersions in chiral nematic hosts display biaxial orientational order at vanishing colloid volume fractions, promising both technological and fundamental research utility.
Collapse
Affiliation(s)
- Jin-Sheng Wu
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO, USA
| | - Marina Torres Lázaro
- Laboratoire de Physique des Solides - UMR 8502, Université Paris-Saclay & CNRS, Orsay, France
| | - Haridas Mundoor
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO, USA
| | - Henricus H Wensink
- Laboratoire de Physique des Solides - UMR 8502, Université Paris-Saclay & CNRS, Orsay, France
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO, USA.
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan.
- Department of Electrical, Computer, and Energy Engineering, Materials Science and Engineering Program and Soft Materials Research Center, University of Colorado, Boulder, CO, USA.
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO, USA.
| |
Collapse
|
2
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
3
|
Liu S, Ye Z, Yin Y. Seeded Growth of Plasmonic Nanostructures in Deformable Polymer Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8760-8770. [PMID: 38641343 DOI: 10.1021/acs.langmuir.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Plasmonic nanostructures exhibit optical properties highly related to their morphologies, enabling diverse applications in various areas such as biosensing, bioimaging, chemical detection, cancer therapy, and solar energy conversion. The expansive uses of these nanostructures necessitate robust and versatile synthesis methods suitable for large-scale production. Here, we introduce our recent efforts in developing a new strategy for controlling the seeded growth of plasmonic metal nanostructures, employing deformable polymer capsules to regulate the growth kinetics and the resulting particle morphology. Employing sol-gel-derived resorcinol-formaldehyde (RF) resin as a typical capsule material, we highlight its advanced features, including mechanical deformability and molecular permeability, that can be manipulated by tuning the capsule thickness and cross-linking degree. These features enable highly controllable confined seeded growth of plasmonic nanostructures. We reveal the significant role of the Ostwald ripening process of the seeds and the capsule structures in determining the morphological evolution of the plasmonic nanostructures. Moreover, we highlight some distinctive plasmonic nanostructures resulting from this unique synthesis strategy and their intriguing functionalities in various potential applications. Our discussion concludes with potential research directions to advance the development of the deformable polymer-confined seeded growth strategy into a general and robust synthesis platform for creating cutting-edge functional plasmonic nanostructures.
Collapse
Affiliation(s)
- Sangmo Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Cai Y, Naser NY, Ma J, Baneyx F. Precision Loading and Delivery of Molecular Cargo by Size-Controlled Coacervation of Gold Nanoparticles Functionalized with Elastin-like Peptides. Biomacromolecules 2024; 25:2390-2398. [PMID: 38478587 DOI: 10.1021/acs.biomac.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Thermoresponsive elastin-like peptides (ELPs) have been extensively investigated in biotechnology and medicine, but little attention has been paid to the process by which coacervation causes ELP-decorated particles to aggregate. Using gold nanoparticles (AuNPs) functionalized with a cysteine-terminated 96-repeat of the VPGVG sequence (V96-Cys), we show that the size of the clusters that reversibly form above the ELP transition temperature can be finely controlled in the 250 to 930 nm range by specifying the concentration of free V96-Cys in solution and using AuNPs of different sizes. We further find that the localized surface plasmon resonance peak of the embedded AuNPs progressively red-shifts with cluster size, likely due to an increase in particle-particle contacts. We exploit this fine control over size to homogeneously load precise amounts of the dye Nile Red and the antibiotic Tetracycline into clusters of different hydrodynamic diameters and deliver cargos near-quantitatively by deconstructing the aggregates below the ELP transition temperature. Beyond establishing a key role for free ELPs in the agglomeration of ELP-functionalized particles, our results provide a path for the thermally controlled delivery of precise quantities of molecular cargo. This capability might prove useful in combination photothermal therapies and theranostic applications, and to trigger spatially and temporally uniform responses from biological, electronic, or optical systems.
Collapse
Affiliation(s)
- Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Zid M, Pal K, Harkai S, Abina A, Kralj S, Zidanšek A. Qualitatively and Quantitatively Different Configurations of Nematic-Nanoparticle Mixtures. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:436. [PMID: 38470767 DOI: 10.3390/nano14050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
We consider the influence of different nanoparticles or micrometre-scale colloidal objects, which we commonly refer to as particles, on liquid crystalline (LC) orientational order in essentially spatially homogeneous particle-LC mixtures. We first illustrate the effects of coupling a single particle with the surrounding nematic molecular field. A particle could either act as a "dilution", i.e., weakly distorting local effective orientational field, or as a source of strong distortions. In the strong anchoring limit, particles could effectively act as topological point defects, whose topological charge q depends on particle topology. The most common particles exhibit spherical topology and consequently act as q = 1 monopoles. Depending on the particle's geometry, these effective monopoles could locally induce either point-like or line-like defects in the surrounding LC host so that the total topological charge of the system equals zero. The resulting system's configuration is topologically equivalent to a crystal-like array of monopole defects with alternating topological charges. Such configurations could be trapped in metastable or stable configurations, where the history of the sample determines a configuration selection.
Collapse
Affiliation(s)
- Maha Zid
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Ghruan, Mohali 140413, Punjab, India
| | - Saša Harkai
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska cesta 19, 1000 Ljubljana, Slovenia
| | - Andreja Abina
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Samo Kralj
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Aleksander Zidanšek
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Kołodziej G, Szostak S, Tomczyk E, Wójcik M. Tuneable Plasmonic Resonances Of A Dynamic Thin Film Of Ultrasmall Nanocrystals Modified In the Anti-Galvanic Reduction Process. Chemistry 2023; 29:e202301843. [PMID: 37642228 DOI: 10.1002/chem.202301843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 08/31/2023]
Abstract
Ultrasmall gold nanoparticles (NPs) have revolutionized nanotechnology as they are an excellent starting substrate for the synthesis of organic-inorganic hybrid materials with photonic or energy conversion applications, often with a responsive nature. However, ultrasmall NPs do not sustain plasmonic resonances, preventing their use in plasmon-related applications. In the presented work, we show a method of chemical modification of ultrasmall gold nanoparticles in order to fabricate dynamically controlled plasmonic thin films. For this purpose, we used the Anti-Galvanic Reduction process (AGR) to modify the surface of small gold nanoparticles, inducing plasmonic properties without notable size increases. Au@Ag NPs are then modified with liquid crystal-like organic ligands. The obtained NPs can assemble into densely packed films with long-range order and temperature-dependent structural properties. Namely, we detect two, fully reversible phase transitions between the hexagonal and cubic symmetries. The combination of AGR and organic surface modifications enabled us to demonstrate the possibility of managing plasmonic properties in the thin film of ~2 nm diameter metallic NPs.
Collapse
Affiliation(s)
- Grzegorz Kołodziej
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Szymon Szostak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Ewelina Tomczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
7
|
Mizuno A, Shibata Y, Fujikake H, Ono A. Plasmonic Color Switching by a Combination Device with Nematic Liquid Crystals and a Silver Nanocube Monolayer. ACS OMEGA 2023; 8:41579-41585. [PMID: 37970021 PMCID: PMC10634223 DOI: 10.1021/acsomega.3c05707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
We experimentally demonstrated electrical plasmonic color modulation by combining a nematic-phase liquid crystal (LC) layer and a silver nanocube (AgNC) monolayer. The color modulation LC/AgNC device was fabricated by filling LCs with negative dielectric anisotropy onto a densely assembled AgNC monolayer. The transmitted light color through the LC/AgNC device was modulated between green and magenta by applying voltages of 0-15 V. The peaks and dips in the transmission spectrum of the LC/AgNC device at wavelengths of 500-600 nm were switched with voltage. The switching effect of light transmission in the green region was achieved by overlapping the plasmon resonance of the AgNC monolayer and multiple transmittance peaks caused by the birefringence of the LC layer. In addition, the color inversion appeared at cross-Nicole and parallel-Nicole because the LC layer functioned like a half-wave plate due to birefringence. The electrical modulation of the plasmonic color with LCs has a high implementation capability in microdevices and is anticipated to be applied in display devices or color filters.
Collapse
Affiliation(s)
- Ayana Mizuno
- Graduate
School of Science and Technology, Shizuoka
University, Hamamatsu 432-8561, Japan
| | - Yosei Shibata
- Department
of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hideo Fujikake
- Department
of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Atsushi Ono
- Graduate
School of Science and Technology, Shizuoka
University, Hamamatsu 432-8561, Japan
- Research
Institute of Electronics, Shizuoka University, Hamamatsu 432-8011, Japan
| |
Collapse
|
8
|
Bak Y, Park G, Hong T, Lee C, Lee H, Bae TH, Park JG, Yoon DK. Utilization of Physical Anisotropy in Metal-Organic Frameworks via Postsynthetic Alignment Control with Liquid Crystal. NANO LETTERS 2023; 23:7615-7622. [PMID: 37527024 DOI: 10.1021/acs.nanolett.3c02209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Metal-organic frameworks (MOFs) represent crystalline materials constructed from combinations of metal and organic units to often yield anisotropic porous structures and physical properties. Postsynthetic methods to align the MOF crystals in bulk remain scarce yet tremendously important to fully utilize their structure-driven intrinsic properties. Herein, we present an unprecedented composite of liquid crystals (LCs) and MOFs and demonstrate the use of nematic LCs to dynamically control the orientation of MOF crystals with exceptional order parameters (as high as 0.965). Unique patterns formed through a facile multidirectional alignment of MOF crystals exhibit polarized fluorescence with the fluorescence intensity of a pattern dependent on the angle of a polarizer, offering potential use in various optical applications such as an optical security label. Further, the alignment mechanism indicates that the method is applicable to numerous combinations of MOFs and LCs, which include UV polymerizable LC monomers used to fabricate free-standing composite films.
Collapse
Affiliation(s)
- Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taegyun Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Sang J, Zhou X, Xia Z, Sun J, Wang J, Shang J, Zhang Y, Zhao S, Neyts K. Dispersion and Tunable Alignment of Colloidal Silver Nanowires in a Nematic Liquid Crystal for Applications in Electric-Optic Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11016-11023. [PMID: 36700704 DOI: 10.1021/acsami.2c20987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The dispersion and tunable alignment of colloidal nanomaterials is desirable for practical applications in electric-optic (E-O) devices; however, it remains challenging for large one-dimensional nanomaterials with a large aspect ratio. Here, we demonstrate a large-scale, simple, multi-microdomain, and noncontact photoalignment technology to align colloidal silver nanowires (AgNWs, length ∼4.5 μm, diameter ∼70.6 nm) in a liquid crystal (LC) with a high two-dimensional order parameter (about 0.9). The AgNWs are precisely self-assembled via photomasks with twisted nematic and planar alignment models in microdomain regions. The AgNW orientation is tuned with an electric field, through the rotation of an LC director n, which allows three-dimensional (3D) tunable orientation combined with photoalignment. The colloidal dispersions of AgNWs in the LC cell influenced the ion transfer, elastic constant, dielectric anisotropy, and near LC alignment, changing the E-O properties of the LC devices. The 3D tunable orientation of an AgNW by photoalignment and an electric field could provide a new way to assemble large colloidal nanomaterials and fabricate functional E-O devices.
Collapse
Affiliation(s)
- Jingxin Sang
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
- Liquid Crystals and Photonics Group, ELIS Department, Ghent University, Technologiepark 126, Ghent 9000, Belgium
| | - Xin Zhou
- College of Science, Donghua University, Shanghai 201620, China
| | - Ziqi Xia
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Jiatong Sun
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianqiang Wang
- SAIC Volkswagen Automotive Co., Ltd., Yutian Road, Jiading District, Shanghai 201805, China
| | - Jianhua Shang
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Yihong Zhang
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Shuguang Zhao
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Kristiaan Neyts
- Liquid Crystals and Photonics Group, ELIS Department, Ghent University, Technologiepark 126, Ghent 9000, Belgium
| |
Collapse
|
10
|
Zhang J, Li Q, Dai C, Cheng M, Hu X, Kim HS, Yang H, Preston DJ, Li Z, Zhang X, Lee WK. Hydrogel-Based, Dynamically Tunable Plasmonic Metasurfaces with Nanoscale Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205057. [PMID: 36269881 DOI: 10.1002/smll.202205057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Flat metasurfaces with subwavelength meta-atoms can be designed to manipulate the electromagnetic parameters of incident light and enable unusual light-matter interactions. Although hydrogel-based metasurfaces have the potential to control optical properties dynamically in response to environmental conditions, the pattern resolution of these surfaces has been limited to microscale features or larger, limiting capabilities at the nanoscale, and precluding effective use in metamaterials. This paper reports a general approach to developing tunable plasmonic metasurfaces with hydrogel meta-atoms at the subwavelength scale. Periodic arrays of hydrogel nanodots with continuously tunable diameters are fabricated on silver substrates, resulting in humidity-responsive surface plasmon polaritons (SPPs) at the nanostructure-metal interfaces. The peaks of the SPPs are controlled reversibly by absorbing or releasing water within the hydrogel matrix, the matrix-generated plasmonic color rendering in the visible spectrum. This work demonstrates that metasurfaces designed with these spatially patterned nanodots of varying sizes benefit applications in anti-counterfeiting and generate multicolored displays with single-nanodot resolution. Furthermore, this work shows system versatility exhibited by broadband beam-steering on a phase modulator consisting of hydrogel supercell units in which the size variations of constituent hydrogel nanostructures engineer the wavefront of reflected light from the metasurface.
Collapse
Affiliation(s)
- Jian Zhang
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Mingliang Cheng
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Hu
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Hyun-Sik Kim
- Department of Materials Science and Engineering, University of Seoul, Seoul, 02504, Korea
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, TX, 77006, USA
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Xuefeng Zhang
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Korea
| |
Collapse
|
11
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
12
|
Li Z, Poon W, Ye Z, Qi F, Park BH, Yin Y. Magnetic Field-Modulated Plasmonic Scattering of Hybrid Nanorods for FFT-Weighted OCT Imaging in NIR-II. ACS NANO 2022; 16:12738-12746. [PMID: 35925674 DOI: 10.1021/acsnano.2c04590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a method for fast Fourier transform (FFT)-weighted optical coherence tomography (OCT) in the second biological tissue transparency window by actively modulating the plasmonic scattering of Fe3O4@Au hybrid nanorods using magnetic fields. Instead of tracking the nanoparticles' lateral displacement in conventional magnetomotive OCT imaging, we monitor the nanorod rotation and optical signal changes under an alternating magnetic field in real time. The coherent rotation of the nanorods with the field produces periodic OCT signals, and the FFT is then used to convert the periodic OCT signals in the time domain to a single peak in the frequency domain. This allows automatic screening of nanorod signals from the random biological noises and reconstruction of FFT-weighted images using a computer program based on a time-sequence image set. Compared with conventional magnetomotive OCT, the FFT-weighted imaging technique creates enhanced OCT images with dB-scale contrast over an order of magnitude higher than the original images.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Wesley Poon
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Fenglian Qi
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
13
|
Jeridi H, Niyonzima JDD, Sakr C, Missaoui A, Shahini S, Vlad A, Coati A, Goubet N, Royer S, Vickridge I, Goldmann M, Constantin D, Garreau Y, Babonneau D, Croset B, Gallas B, Lhuillier E, Lacaze E. Unique orientation of 1D and 2D nanoparticle assemblies confined in smectic topological defects. SOFT MATTER 2022; 18:4792-4802. [PMID: 35708225 DOI: 10.1039/d2sm00376g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New collective optical properties have emerged recently from organized and oriented arrays of closely packed semiconducting and metallic nanoparticles (NPs). However, it is still challenging to obtain NP assemblies which are similar everywhere on a given sample and, most importantly, share a unique common orientation that would guarantee a unique behavior everywhere on the sample. In this context, by combining optical microscopy, fluorescence microscopy and synchrotron-based grazing incidence X-ray scattering (GISAXS) of assemblies of gold nanospheres and of fluorescent nanorods, we study the interactions between NPs and liquid crystal smectic topological defects that can ultimately lead to unique NP orientations. We demonstrate that arrays of one-dimensional - 1D (dislocations) and two-dimensional - 2D (grain boundaries) topological defects oriented along one single direction confine and organize NPs in closely packed networks but also orient both single nanorods and NP networks along the same direction. Through the comparison between smectic films associated with different kinds of topological defects, we highlight that the coupling between the NP ligands and the smectic layers below the grain boundaries may be necessary to allow for fixed NP orientation. This is in contrast with 1D defects, where the induced orientation of the NPs is intrinsically induced by the confinement independently of the ligand nature. We thus succeeded in achieving the fixed polarization of assemblies of single photon emitters in defects. For gold nanospheres confined in grain boundaries, a strict orientation of hexagonal networks has been obtained with the 〈10〉 direction strictly parallel to the defects. With such closely packed and oriented NPs, new collective properties are now foreseen.
Collapse
Affiliation(s)
- Haifa Jeridi
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
- OMNES Education Research Center, ECE Paris, 37 Quai de Grenelle, 75015 Paris, France
| | - Jean de Dieu Niyonzima
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
- Physics department, School of Science, College of Science and Technology, University of Rwanda, Po. Box: 3900, Kigali, Rwanda
| | - Charbel Sakr
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Amine Missaoui
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
| | - Sharif Shahini
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
- Department of Physics and Materials Science, University of Luxembourg, 162a, Avenue de la Faencerie, L-1511, Luxembourg
| | - Alina Vlad
- Synchrotron SOLEIL, BP 48, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Alessandro Coati
- Synchrotron SOLEIL, BP 48, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Nicolas Goubet
- CNRS, Sorbonne Université, Laboratoire de la Molécule aux Nano-objets; Réactivité, Interactions et Spectroscopies MONARIS, 4 Pl Jussieu, Case Co, F-75005 Paris, France
| | - Sébastien Royer
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
| | - Ian Vickridge
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
| | - Michel Goldmann
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
- Synchrotron SOLEIL, BP 48, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Doru Constantin
- Université de Strasbourg, Institut Charles Sadron, CNRS UPR022, 67034 Strasbourg Cedex, France
| | - Yves Garreau
- Synchrotron SOLEIL, BP 48, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - David Babonneau
- Departement Physique et Mecanique des Materiaux, Institut P', UPR 3346 CNRS, Université de Poitiers SP2MI, TSA 41123, 86073 Poitiers cedex 9, France
| | - Bernard Croset
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
| | - Bruno Gallas
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
| | - Emmanuelle Lacaze
- Sorbonne Université, CNRS, Institut des Nano-Sciences de Paris (INSP), F-75005 Paris, France.
| |
Collapse
|
14
|
Bankova D, Brouckaert N, Podoliak N, Beddoes B, White E, Buchnev O, Kaczmarek M, D'Alessandro G. Characterization of optically thin cells and experimental liquid crystals. APPLIED OPTICS 2022; 61:4663-4669. [PMID: 36255943 DOI: 10.1364/ao.456659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/16/2022] [Indexed: 06/16/2023]
Abstract
The current development of new liquid crystal devices often requires the use of thin cells and new experimental materials. Characterizing these devices and materials with optical methods can be challenging if (1) the total phase lag is small ("thin cells") or (2) the liquid crystal optical and dielectric properties are only partially known. We explore the limitations of these two challenges for efficient characterization and assessment of new, to the best of our knowledge, liquid crystal devices. We show that it is possible to extract a wealth of liquid crystal parameters even for cells with a phase lag of ΔΦ≈π, such as E7 liquid crystal in a 1.5 µm cell, using cross-polarized intensity measurements. The reliability of the optical method is also demonstrated for liquid crystals without precise values of dielectric or refractive index coefficients.
Collapse
|
15
|
Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Until now, the ability to form a self-assembled monolayer (SAM) on a surface has been investigated according to deposition techniques, which in turn depend on surface-coater interactions. In this paper, we pursued two goals: to form a SAM on a gold nanosurface and to correlate its formation to the nanosurface curvature. To achieve these objectives, gold nanoparticles of different shapes (spheres, rods, and triangles) were functionalized with a luminescent thiolated bipyridine (Bpy-SH), and the SAM formation was studied by investigating the photo-physics of Bpy-SH. We have shown that emission wavelength and excited-state lifetime of Bpy-SH are strongly correlated to the formation of specific aggregates within SAMs, the nature of these aggregates being in close correlation to the shape of the nanoparticles. Micro-Raman spectroscopy investigation was used to test the SERS effect of gold nanoparticles on thiolated bipyridine forming SAMs.
Collapse
|
16
|
Kim D, Ndaya D, Bosire R, Masese FK, Li W, Thompson SM, Kagan CR, Murray CB, Kasi RM, Osuji CO. Dynamic magnetic field alignment and polarized emission of semiconductor nanoplatelets in a liquid crystal polymer. Nat Commun 2022; 13:2507. [PMID: 35523816 PMCID: PMC9076605 DOI: 10.1038/s41467-022-30200-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Reconfigurable arrays of 2D nanomaterials are essential for the realization of switchable and intelligent material systems. Using liquid crystals (LCs) as a medium represents a promising approach, in principle, to enable such control. In practice, however, this approach is hampered by the difficulty of achieving stable dispersions of nanomaterials. Here, we report on good dispersions of pristine CdSe nanoplatelets (NPLs) in LCs, and reversible, rapid control of their alignment and associated anisotropic photoluminescence, using a magnetic field. We reveal that dispersion stability is greatly enhanced using polymeric, rather than small molecule, LCs and is considerably greater in the smectic phases of the resulting systems relative to the nematic phases. Aligned composites exhibit highly polarized emission that is readily manipulated by field-realignment. Such dynamic alignment of optically-active 2D nanomaterials may enable the development of programmable materials for photonic applications and the methodology can guide designs for anisotropic nanomaterial composites for a broad set of related nanomaterials. Liquid crystals (LC) are promising materials for the fabrication of reconfigurable arrays of 2D nanomaterials but it remains difficult to achieve stable dispersions of nanomaterials. Here, the authors report on good dispersions of pristine CdSe nanoplatelets (NPLs) in LCs, and reversible, rapid control of their alignment and associated anisotropic photoluminescence using a magnetic field.
Collapse
Affiliation(s)
- Dahin Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dennis Ndaya
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA.,Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Reuben Bosire
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Francis K Masese
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Weixingyue Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah M Thompson
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rajeswari M Kasi
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA.,Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Shi J, Ma C, Ren M, Xu M, Zhu J, Qiu L, Ding Y, Zhang J, Lu H. Stable and tunable single-mode lasers based on cholesteric liquid crystal microdroplets. APPLIED OPTICS 2022; 61:2937-2942. [PMID: 35471268 DOI: 10.1364/ao.456377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Although many studies on cholesteric liquid crystal (CLC) microdroplet single-mode lasers are available, it has been shown that the stability and tunability of such microdroplets are difficult to achieve simultaneously. In this paper, a new, to the best of our knowledge, method is proposed for the mass and rapid preparation of stable and tunable monodisperse CLC microdroplet single-mode lasers. This is based on the formation of polymer networks on the surface of the microdroplet via interfacial polymerization and a disruption of the orderliness of the polymer networks by increasing the temperature during polymerization, which results in a single pitch inside the microdroplets. This approach enables CLC microdroplet single-mode lasers to achieve improved environmental robustness, while maintaining the same temperature tunability as the unpolymerized sample. Our method has promising future applications in integrated optics, flexible devices, and sensors.
Collapse
|
18
|
Yuan Y, Almohammadi H, Probst J, Mezzenga R. Plasmonic Amyloid Tactoids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106155. [PMID: 34658087 PMCID: PMC11468577 DOI: 10.1002/adma.202106155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Despite their link to neurodegenerative diseases, amyloids of natural and synthetic sources can also serve as building blocks for functional materials, while possessing intrinsic photonic properties. Here, it is demonstrated that orientationally ordered amyloid fibrils exhibit polarization-dependent fluorescence, and can mechanically align rod-shaped plasmonic nanoparticles codispersed with them. The coupling between the photonic fibrils in liquid crystalline phases and the plasmonic effect of the nanoparticles leads to selective activation of plasmonic extinctions as well as enhanced fluorescence from the hybrid material. These findings are consistent with numerical simulations of the near-field plasmonic enhancement around the nanoparticles. The study provides an approach to synthesize the intrinsic photonic and mechanical properties of amyloid into functional hybrid materials, and may help improve the detection of amyloid deposits based on their enhanced intrinsic luminescence.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Hamed Almohammadi
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Julie Probst
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8093Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
- Department of MaterialsETH ZürichZürich8093Switzerland
| |
Collapse
|
19
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
20
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
21
|
Mai Z, Yuan Y, Tai JB, Senyuk B, Liu B, Li H, Wang Y, Zhou G, Smalyukh II. Nematic Order, Plasmonic Switching and Self-Patterning of Colloidal Gold Bipyramids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102854. [PMID: 34541830 PMCID: PMC8596134 DOI: 10.1002/advs.202102854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular-colloidal self-organization. However, owing to formation of particle-induced singular defects and complex elasticity-mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization-dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5 rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer-scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.
Collapse
Affiliation(s)
- Zhijian Mai
- Guangdong Provincial Key Laboratory of Optical Information Materials and TechnologyNational Center for International Research on Green OptoelectronicsInstitute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
- Department of Physics and Soft Materials Research CenterUniversity of ColoradoBoulderCO80309USA
| | - Ye Yuan
- Department of Physics and Soft Materials Research CenterUniversity of ColoradoBoulderCO80309USA
| | - Jung‐Shen B. Tai
- Department of Physics and Soft Materials Research CenterUniversity of ColoradoBoulderCO80309USA
| | - Bohdan Senyuk
- Department of Physics and Soft Materials Research CenterUniversity of ColoradoBoulderCO80309USA
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and TechnologyNational Center for International Research on Green OptoelectronicsInstitute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and TechnologyNational Center for International Research on Green OptoelectronicsInstitute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and TechnologyNational Center for International Research on Green OptoelectronicsInstitute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and TechnologyNational Center for International Research on Green OptoelectronicsInstitute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Ivan I. Smalyukh
- Department of Physics and Soft Materials Research CenterUniversity of ColoradoBoulderCO80309USA
- Materials Science and Engineering ProgramDepartment of Electrical, Computer and Energy EngineeringUniversity of ColoradoBoulderCO80309USA
- Renewable and Sustainable Energy InstituteNational Renewable Energy Laboratory and University of ColoradoBoulderCO80309USA
| |
Collapse
|
22
|
El Rifaii K, Davidson P, Michot L, Hamon C. Gold-clay nanocomposite colloids with liquid-crystalline and plasmonic properties. Chem Commun (Camb) 2021; 57:10359-10362. [PMID: 34533146 DOI: 10.1039/d1cc03826e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imparting liquid-crystal (LC) materials with the plasmonic properties of metal nanoparticles is actively pursued for applications. We achieved this goal by synthetizing gold nanoparticles onto clay nanosheets, leading to nematic nanocomposite suspensions. Optical observations and structural analysis show the growth of the gold nanoparticles without altering the LC properties of the nanosheets. These colloids display plasmonic structural colours and they can be aligned by an electric field, which is relevant for fundamental and materials chemistry of colloidal LC.
Collapse
Affiliation(s)
- Karin El Rifaii
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Laurent Michot
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005 Paris, France
| | - Cyrille Hamon
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| |
Collapse
|
23
|
Sudha DG, Ochoa J, Hirst LS. Colloidal aggregation in anisotropic liquid crystal solvent. SOFT MATTER 2021; 17:7532-7540. [PMID: 34323242 DOI: 10.1039/d1sm00542a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mutual attraction between colloidal particles in an anisotropic fluid, such as the nematic liquid crystal phase, leads to the formation of hierarchical aggregate morphologies distinct from those that tend to form in isotropic fluids. Previously it was difficult to study this aggregation process for a large number of colloids due to the difficulty of achieving a well dispersed initial colloid distribution under good imaging conditions. In this paper, we report the use of a recently developed self-assembling colloidal system to investigate this process. Hollow, micron-scale colloids are formed in situ in the nematic phase and subsequently aggregate to produce fractal structures and colloidal gels, the structures of which are determined by colloid concentration and temperature quench depth through the isotropic to nematic phase transition point. This self-assembling colloidal system provides a unique method to study particle aggregation in liquid crystal over large length scales. We use fluorescence microscopy over a range of length scales to measure aggregate structure as a function of temperature quench depth, observe ageing mechanisms and explore the driving mechanisms in this unique system. Our analyses suggest that aggregate dynamics depend on a combination of Frank elasticity relaxation, spontaneous defect line annihilation and internal aggregate fracturing.
Collapse
Affiliation(s)
- Devika Gireesan Sudha
- Department of Physics, University of California, Merced, 5200 N. Lake Rd, Merced, CA 95343, USA.
| | | | | |
Collapse
|
24
|
Senyuk B, Mundoor H, Smalyukh II, Wensink HH. Nematoelasticity of hybrid molecular-colloidal liquid crystals. Phys Rev E 2021; 104:014703. [PMID: 34412251 DOI: 10.1103/physreve.104.014703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/25/2021] [Indexed: 11/07/2022]
Abstract
Colloidal rods immersed in a thermotropic liquid-crystalline solvent are at the basis of so-called hybrid liquid crystals, which are characterized by tunable nematic fluidity with symmetries ranging from conventional uniaxial nematic or antinematic to orthorhombic [Mundoor et al., Science 360, 768 (2018)SCIEAS0036-807510.1126/science.aap9359]. We provide a theoretical analysis of the elastic moduli of such systems by considering interactions between the individual rods with the embedding solvent through surface-anchoring forces, as well as steric and electrostatic interactions between the rods themselves. For uniaxial systems, the presence of colloidal rods generates a marked increase of the splay elasticity, which we found to be in quantitative agreement with experimental measurements. For orthorhombic hybrid liquid crystals, we provide estimates of all 12 elastic moduli and show that only a small subset of those elastic constants play a relevant role in describing the nematoelastic properties. The complexity and possibilities related to identifying the elastic moduli in experiments are briefly discussed.
Collapse
Affiliation(s)
- B Senyuk
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - H Mundoor
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - I I Smalyukh
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA.,Department of Electrical, Computer, and Energy Engineering, Materials Science and Engineering Program and Soft Materials Research Center, University of Colorado, Boulder, Colorado 80309, USA.,Chemical Physics Program, Departments of Chemistry and Physics, University of Colorado, Boulder, Colorado 80309, USA.,Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, USA
| | - H H Wensink
- Laboratoire de Physique des Solides, Université Paris-Saclay & CNRS, UMR 8502, 91405 Orsay, France
| |
Collapse
|
25
|
Lee C, Osuji CO. 100th Anniversary of Macromolecular Science Viewpoint: Opportunities for Liquid Crystal Polymers in Nanopatterning and Beyond. ACS Macro Lett 2021; 10:945-957. [PMID: 35549196 DOI: 10.1021/acsmacrolett.1c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liquid-crystal polymers (LCPs) integrate at a molecular level the characteristics of two important material classes, i.e., liquid crystals (LCs) and polymers. As a result, they exhibit a wide variety of intriguing physical phenomena and have useful properties in various settings. In the nearly 50 years since the discovery of the first melt-processable LCPs, there has been a remarkable expansion in the field encompassing the development of new chain architectures, the incorporation of new classes of mesogens, and the exploration of new properties and applications. As engineering materials, LCPs are historically best known in the context of high strength fibers. In a more contemporary study, the pairing of LC mesophase assembly with block copolymer (BCP) self-assembly in LC BCPs has resulted in a fascinating interplay of ordering phenomena and rich phase behavior, while lightly cross-linked networks, LC elastomers, are extensively investigated as shape memory materials based on their thermomechanical actuation. As this Viewpoint describes, these and other examples are active areas of research in which new, compelling opportunities for LCPs are emerging. We highlight a few selected areas that we view as being potentially significant in the near future, with a particular emphasis on nanopatterning. Here, the ability to readily access small feature sizes, the fluidity of the LC mesophase, and LC-based handles for achieving orientation control present a compelling combination. Opportunities for LCPs are also presented under the broad rubric of "beyond nanopatterning", and we discuss relevant challenges and potential new directions in the field.
Collapse
Affiliation(s)
- Changyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chinedum O. Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Smalyukh II. Thermal Management by Engineering the Alignment of Nanocellulose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001228. [PMID: 32519371 DOI: 10.1002/adma.202001228] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
One of the grand current research challenges is to improve the energy efficiency of residential and commercial buildings, which cumulatively consume more than 40% of the energy generated globally. In addition to improving the comfort of the inhabitants and mitigating the growing energy consumption problem, new building materials and technologies could provide a safe strategy for geoengineering to mitigate global climate change. Herein, recent progress in developing such advanced materials from nanocellulose, which is often derived from wood or even dirty feedstocks like waste, is reviewed. By using chemical and bacteria-enabled processing, nanocellulose can be used to fabricate broadband photonic reflectors, thermally super-insulating aerogels, solar gain regulators, and low-emissivity coatings, with potential applications in windows, roofs, walls, and other components of buildings envelopes. These material developments draw inspiration from advanced energy management found in nature, such as the nanoporous photonic structures that evolved in cuticles of beetles. Fabrication of such materials takes advantage of mesoscale liquid crystalline self-assembly, which allows for pre-designed control of cellulose nanoparticle orientations at the mesoscale. With the potential fully realized, such materials could one day transform the current energy-lossy buildings into energy plants on Earth and possibly even enable extraterrestrial habitats.
Collapse
Affiliation(s)
- Ivan I Smalyukh
- Department of Physics, Department of Electrical, Computer and Energy Engineering, Materials Science and Engineering Program and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
27
|
Hamon C, Beaudoin E, Launois P, Paineau E. Doping Liquid Crystals of Colloidal Inorganic Nanotubes by Additive-Free Metal Nanoparticles. J Phys Chem Lett 2021; 12:5052-5058. [PMID: 34019414 DOI: 10.1021/acs.jpclett.1c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Doping liquid-crystal phases with nanoparticles is a fast-growing field with potential breakthroughs due to the combination of the properties brought by the two components. One of the main challenges remains the long-term stability of the hybrid system, requiring complex functionalization of the nanoparticles at the expense of their self-assembly properties. Here we demonstrate the successful synthesis of additive-free noble-metal nanoparticles at the surface of charged inorganic nanotubes. Transmission electron microscopy and UV-visible spectroscopy confirm the stabilization of metallic nanoparticles on nanotubes. Meanwhile, the spontaneous formation of liquid-crystals phases induced by the nanotubes is observed, even after surface modification with metallic nanoparticles. Small-angle X-ray scattering experiments reveal that the average interparticle distance in the resulting hybrids can be easily modulated by controlling electrostatic interactions. As a proof-of-concept, we demonstrate the effectiveness of our method for the preparation of homogeneous transparent hybrid films with a high degree of alignment.
Collapse
Affiliation(s)
- Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Emmanuel Beaudoin
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Pascale Launois
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| |
Collapse
|
28
|
Yuan Y, Keller P, Smalyukh II. Elastomeric nematic colloids, colloidal crystals and microstructures with complex topology. SOFT MATTER 2021; 17:3037-3046. [PMID: 33491729 DOI: 10.1039/d0sm02135k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Control of physical behaviors of nematic colloids and colloidal crystals has been demonstrated by tuning particle shape, topology, chirality and surface charging. However, the capability of altering physical behaviors of such soft matter systems by changing particle shape and the ensuing responses to external stimuli has remained elusive. We fabricated genus-one nematic elastomeric colloidal ring-shaped particles and various microstructures using two-photon photopolymerization. Nematic ordering within both the nano-printed particle and the surrounding medium leads to anisotropic responses and actuation when heated. With the thermal control, elastomeric microstructures are capable of changing from genus-one to genus-zero surface topology. Using these particles as building blocks, we investigated elastomeric colloidal crystals immersed within a liquid crystal fluid, which exhibit crystallographic symmetry transformations. Our findings may lead to colloidal crystals responsive to a large variety of external stimuli, including electric fields and light. Pre-designed response of elastomeric nematic colloids, including changes of colloidal surface topology and lattice symmetry, are of interest for both fundamental research and applications.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Physics, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
29
|
Lu R, Ni J, Yin S, Ji Y. Responsive Plasmonic Nanomaterials for Advanced Cancer Diagnostics. Front Chem 2021; 9:652287. [PMID: 33816441 PMCID: PMC8014002 DOI: 10.3389/fchem.2021.652287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Plasmonic nanostructures, particularly of noble-metal Au and Ag, have attracted long-lasting research interests because of their intriguing physical and chemical properties. Under light excitation, their conduction electrons can form collective oscillation with the electromagnetic fields at particular wavelength, leading to localized surface plasmon resonance (LSPR). The remarkable characteristic of LSPR is the absorption and scattering of light at the resonant wavelength and greatly enhanced electric fields in localized areas. In response to the chemical and physical changes, these optical properties of plasmonic nanostructures will exhibit drastic color changes and highly sensitive peak shifts, which has been extensively used for biological imaging and disease treatments. In this mini review, we aim to briefly summarize recent progress of preparing responsive plasmonic nanostructures for biodiagnostics, with specific focus on cancer imaging and treatment. We start with typical synthetic approaches to various plasmonic nanostructures and elucidate practical strategies and working mechanism in tuning their LSPR properties. Current achievements in using responsive plasmonic nanostructures for advanced cancer diagnostics will be further discussed. Concise perspectives on existing challenges in developing plasmonic platforms for clinic diagnostics is also provided at the end of this review.
Collapse
Affiliation(s)
| | | | | | - Yiding Ji
- Suzhou Ninth People’s Hospital, Suzhou, China
| |
Collapse
|
30
|
Xuan Z, Li J, Liu Q, Yi F, Wang S, Lu W. Artificial Structural Colors and Applications. Innovation (N Y) 2021; 2:100081. [PMID: 34557736 PMCID: PMC8454771 DOI: 10.1016/j.xinn.2021.100081] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/13/2021] [Indexed: 10/25/2022] Open
Abstract
Structural colors are colors generated by the interaction between incident light and nanostructures. Structural colors have been studied for decades due to their promising advantages of long-term stability and environmentally friendly properties compared with conventional pigments and dyes. Previous studies have demonstrated many artificial structural colors inspired by naturally generated colors from plants and animals. Moreover, many strategies consisting of different principles have been reported to achieve dynamically tunable structural colors. Furthermore, the artificial structural colors can have multiple functions besides decoration, such as absorbing solar energy, anti-counterfeiting, and information encryption. In the present work, we reviewed the typical artificial structural colors generated by multilayer films, photonic crystals, and metasurfaces according to the type of structures, and discussed the approaches to achieve dynamically tunable structural colors.
Collapse
Affiliation(s)
- Zhiyi Xuan
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.,Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junyu Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingquan Liu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.,Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fei Yi
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaowei Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.,Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.,Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
31
|
Mundoor H, Wu JS, Wensink HH, Smalyukh II. Thermally reconfigurable monoclinic nematic colloidal fluids. Nature 2021; 590:268-274. [PMID: 33568825 DOI: 10.1038/s41586-021-03249-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/26/2020] [Indexed: 01/30/2023]
Abstract
Fundamental relationships are believed to exist between the symmetries of building blocks and the condensed matter phases that they form1. For example, constituent molecular and colloidal rods and disks impart their uniaxial symmetry onto nematic liquid crystals, such as those used in displays1,2. Low-symmetry organizations could form in mixtures of rods and disks3-5, but entropy tends to phase-separate them at the molecular and colloidal scales, whereas strong elasticity-mediated interactions drive the formation of chains and crystals in nematic colloids6-11. To have a structure with few or no symmetry operations apart from trivial ones has so far been demonstrated to be a property of solids alone1, but not of their fully fluid condensed matter counterparts, even though such symmetries have been considered theoretically12-15 and observed in magnetic colloids16. Here we show that dispersing highly anisotropic charged colloidal disks in a nematic host composed of molecular rods provides a platform for observing many low-symmetry phases. Depending on the temperature, concentration and surface charge of the disks, we find nematic, smectic and columnar organizations with symmetries ranging from uniaxial1,2 to orthorhombic17-21 and monoclinic12-15. With increasing temperature, we observe unusual transitions from less- to more-ordered states and re-entrant22 phases. Most importantly, we demonstrate the presence of reconfigurable monoclinic colloidal nematic order, as well as the possibility of thermal and magnetic control of low-symmetry self-assembly2,23,24. Our experimental findings are supported by theoretical modelling of the colloidal interactions between disks in the nematic host and may provide a route towards realizing many low-symmetry condensed matter phases in systems with building blocks of dissimilar shapes and sizes, as well as their technological applications.
Collapse
Affiliation(s)
- Haridas Mundoor
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - Jin-Sheng Wu
- Chemical Physics Program, Departments of Chemistry and Physics, University of Colorado, Boulder, CO, USA
| | - Henricus H Wensink
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay, France
| | - Ivan I Smalyukh
- Department of Physics, University of Colorado, Boulder, CO, USA. .,Chemical Physics Program, Departments of Chemistry and Physics, University of Colorado, Boulder, CO, USA. .,Materials Science and Engineering Program, Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO, USA. .,Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO, USA.
| |
Collapse
|
32
|
Fleury B, Senyuk B, Tasinkevych M, Smalyukh II. Interplay of Electrostatic Dipoles and Monopoles with Elastic Interactions in Nematic Liquid Crystal Nanocolloids. NANO LETTERS 2020; 20:7835-7843. [PMID: 33124422 DOI: 10.1021/acs.nanolett.0c02087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Doping of nematic liquid crystals with colloidal nanoparticles presents a rich soft matter platform for controlling material properties and discovering diverse condensed matter phases. We describe nematic nanocolloids that simultaneously exhibit strong electrostatic monopole and dipole moments and yield competing long-range anisotropic interactions. Combined with interactions due to orientational elasticity and order parameter gradients of the nematic host medium, they lead to diverse forms of self-assembly both in the bulk of an aligned liquid crystal and when one-dimensionally confined by singular topological defect lines. Such nanocolloids exhibit facile responses to electric fields. We demonstrate electric reconfigurations of nanocolloidal pair-interactions and discuss how our findings may lead to realizing ferroelectric and dielectric molecular-colloidal fluids with different point group symmetries.
Collapse
Affiliation(s)
- Blaise Fleury
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, Colorado 80309, United States
| | - Bohdan Senyuk
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, Colorado 80309, United States
| | - Mykola Tasinkevych
- Departamento de Fı́sica, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal
- Centro de Fı́sica Teórica e Computacional, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Ivan I Smalyukh
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, Colorado 80309, United States
- Department of Electrical, Computer, and Energy Engineering, Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309,United States
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309,United States
| |
Collapse
|
33
|
Liu Q, Mundoor H, Sheetah GH, Smalyukh II. Plasmonic gold-cellulose nanofiber aerogels. OPTICS EXPRESS 2020; 28:34237-34245. [PMID: 33182897 DOI: 10.1364/oe.399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Assembly of plasmonic nanomaterials into a low refractive index medium, such as an aerogel, holds a great promise for optical metamaterials, optical sensors, and photothermal energy converters. However, conventional plasmonic aerogels are opaque and optically isotropic composites, impeding them from being used as low-loss or polarization-dependent optical materials. Here we demonstrate a plasmonic-cellulose nanofiber composite aerogel that comprises of well-dispersed gold nanorods within a cellulose nanofiber network. The cellulose aerogel host is highly transparent owing to the small scattering cross-section of the nanofibers and forms a nematic liquid crystalline medium with strong optical birefringence. We find that the longitudinal surface plasmon resonance peak of gold nanorods shows a dramatic shift when probed for the cellulose aerogel compared with the wet gels. Simulations reveal the shift of surface plasmon resonance peak with gel drying can be attributed to the change of the effective refractive index of the gels. This composite material may provide a platform for three- dimensional plasmonic devices ranging from optical sensors to metamaterials.
Collapse
|
34
|
Smalyukh II. Review: knots and other new topological effects in liquid crystals and colloids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:106601. [PMID: 32721944 DOI: 10.1088/1361-6633/abaa39] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Humankind has been obsessed with knots in religion, culture and daily life for millennia, while physicists like Gauss, Kelvin and Maxwell already involved them in models centuries ago. Nowadays, colloidal particles can be fabricated to have shapes of knots and links with arbitrary complexity. In liquid crystals, closed loops of singular vortex lines can be knotted by using colloidal particles and laser tweezers, as well as by confining nematic fluids into micrometer-sized droplets with complex topology. Knotted and linked colloidal particles induce knots and links of singular defects, which can be interlinked (or not) with colloidal particle knots, revealing the diversity of interactions between topologies of knotted fields and topologically nontrivial surfaces of colloidal objects. Even more diverse knotted structures emerge in nonsingular molecular alignment and magnetization fields in liquid crystals and colloidal ferromagnets. The topological solitons include hopfions, skyrmions, heliknotons, torons and other spatially localized continuous structures, which are classified based on homotopy theory, characterized by integer-valued topological invariants and often contain knotted or linked preimages, nonsingular regions of space corresponding to single points of the order parameter space. A zoo of topological solitons in liquid crystals, colloids and ferromagnets promises new breeds of information displays and a plethora of data storage, electro-optic and photonic applications. Their particle-like collective dynamics echoes coherent motions in active matter, ranging from crowds of people to schools of fish. This review discusses the state of the art in the field, as well as highlights recent developments and open questions in physics of knotted soft matter. We systematically overview knotted field configurations, the allowed transformations between them, their physical stability and how one can use one form of knotted fields to model, create and imprint other forms. The large variety of symmetries accessible to liquid crystals and colloids offer insights into stability, transformation and emergent dynamics of fully nonsingular and singular knotted fields of fundamental and applied importance. The common thread of this review is the ability to experimentally visualize these knots in real space. The review concludes with a discussion of how the studies of knots in liquid crystals and colloids can offer insights into topologically related structures in other branches of physics, with answers to many open questions, as well as how these experimentally observable knots hold a strong potential for providing new inspirations to the mathematical knot theory.
Collapse
Affiliation(s)
- Ivan I Smalyukh
- Department of Physics, Department of Electrical, Computer and Energy Engineering, Materials Science and Engineering Program and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, United States of America
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
35
|
Neubrech F, Duan X, Liu N. Dynamic plasmonic color generation enabled by functional materials. SCIENCE ADVANCES 2020; 6:6/36/eabc2709. [PMID: 32917622 PMCID: PMC7473667 DOI: 10.1126/sciadv.abc2709] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Displays are an indispensable medium to visually convey information in our daily life. Although conventional dye-based color displays have been rigorously advanced by world leading companies, critical issues still remain. For instance, color fading and wavelength-limited resolution restrict further developments. Plasmonic colors emerging from resonant interactions between light and metallic nanostructures can overcome these restrictions. With dynamic characteristics enabled by functional materials, dynamic plasmonic coloration may find a variety of applications in display technologies. In this review, we elucidate basic concepts for dynamic plasmonic color generation and highlight recent advances. In particular, we devote our review to a selection of dynamic controls endowed by functional materials, including magnesium, liquid crystals, electrochromic polymers, and phase change materials. We also discuss their performance in view of potential applications in current display technologies.
Collapse
Affiliation(s)
- Frank Neubrech
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Kirchoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Xiaoyang Duan
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Kirchoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Na Liu
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
36
|
Zhang B, Martens K, Kneer L, Funck T, Nguyen L, Berger R, Dass M, Kempter S, Schmidtke J, Liedl T, Kitzerow HS. DNA Origami Nano-Sheets and Nano-Rods Alter the Orientational Order in a Lyotropic Chromonic Liquid Crystal. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1695. [PMID: 32872176 PMCID: PMC7560128 DOI: 10.3390/nano10091695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022]
Abstract
Rod-like and sheet-like nano-particles made of desoxyribonucleic acid (DNA) fabricated by the DNA origami method (base sequence-controlled self-organized folding of DNA) are dispersed in a lyotropic chromonic liquid crystal made of an aqueous solution of disodium cromoglycate. The respective liquid crystalline nanodispersions are doped with a dichroic fluorescent dye and their orientational order parameter is studied by means of polarized fluorescence spectroscopy. The presence of the nano-particles is found to slightly reduce the orientational order parameter of the nematic mesophase. Nano-rods with a large length/width ratio tend to preserve the orientational order, while more compact stiff nano-rods and especially nano-sheets reduce the order parameter to a larger extent. In spite of the difference between the sizes of the DNA nano-particles and the rod-like columnar aggregates forming the liquid crystal, a similarity between the shapes of the former and the latter seems to be better compatible with the orientational order of the liquid crystal.
Collapse
Affiliation(s)
- Bingru Zhang
- Faculty of Science, Department of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany; (B.Z.); (J.S.)
| | - Kevin Martens
- Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; (K.M.); (L.K.); (T.F.); (L.N.); (R.B.); (M.D.); (S.K.); (T.L.)
| | - Luisa Kneer
- Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; (K.M.); (L.K.); (T.F.); (L.N.); (R.B.); (M.D.); (S.K.); (T.L.)
| | - Timon Funck
- Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; (K.M.); (L.K.); (T.F.); (L.N.); (R.B.); (M.D.); (S.K.); (T.L.)
| | - Linh Nguyen
- Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; (K.M.); (L.K.); (T.F.); (L.N.); (R.B.); (M.D.); (S.K.); (T.L.)
| | - Ricarda Berger
- Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; (K.M.); (L.K.); (T.F.); (L.N.); (R.B.); (M.D.); (S.K.); (T.L.)
| | - Mihir Dass
- Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; (K.M.); (L.K.); (T.F.); (L.N.); (R.B.); (M.D.); (S.K.); (T.L.)
| | - Susanne Kempter
- Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; (K.M.); (L.K.); (T.F.); (L.N.); (R.B.); (M.D.); (S.K.); (T.L.)
| | - Jürgen Schmidtke
- Faculty of Science, Department of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany; (B.Z.); (J.S.)
| | - Tim Liedl
- Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; (K.M.); (L.K.); (T.F.); (L.N.); (R.B.); (M.D.); (S.K.); (T.L.)
| | - Heinz-S. Kitzerow
- Faculty of Science, Department of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany; (B.Z.); (J.S.)
| |
Collapse
|
37
|
Nakamura S, Mitomo H, Yonamine Y, Ijiro K. Salt-triggered Active Plasmonic Systems Based on the Assembly/Disassembly of Gold Nanorods in a DNA Brush Layer on a Solid Substrate. CHEM LETT 2020. [DOI: 10.1246/cl.200185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Satoshi Nakamura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
38
|
He H, Liu J, Li K, Yin Z, Wang J, Luo D, Liu YJ. Linearly Polarized Emission from Shear-Induced Nematic Phase Upconversion Nanorods. NANO LETTERS 2020; 20:4204-4210. [PMID: 32412767 DOI: 10.1021/acs.nanolett.0c00601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lanthanide-doped particles exhibit unique polarization-dependent luminescence due to the anisotropic crystalline local symmetry surrounding the emitter. Precise control of the orientation of particles shows great significance for exploiting the luminescent polarization and their potential applications. Here, we demonstrated a facile polypropylene-aided shear-driven method to obtain large-scale orientationally ordered upconversion nanorods, showing a liquid-crystalline nematic phase. Upconversion nanorods with low aspect ratios were well-aligned with the crystalline c-axis along the shearing direction using monodispersed colloid nanorods as the nanoink. The order parameter of aligned upconversion nanorods can reach up to 0.95. The nematic upconversion nanorods demonstrated strong polarization-dependent luminescence with the high degrees of polarization of the 4F9/2 sublevels at 657 and 661 nm being 0.47 and 0.59, respectively. Taking advantage of these mesoscopic well-aligned upconversion nanorods, their peculiar polarized emissions are potentially useful for some interdisciplinary applications such as polarization-sensitive bioprobes and anticounterfeiting.
Collapse
Affiliation(s)
- Huilin He
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Harbin Institute of Technology, Harbin 150001, China
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhen Yin
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
39
|
Coupling magnetic and plasmonic anisotropy in hybrid nanorods for mechanochromic responses. Nat Commun 2020; 11:2883. [PMID: 32513996 PMCID: PMC7280256 DOI: 10.1038/s41467-020-16678-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/14/2020] [Indexed: 11/08/2022] Open
Abstract
Mechanochromic response is of great importance in designing bionic robot systems and colorimetric devices. Unfortunately, compared to mimicking motions of natural creatures, fabricating mechanochromic systems with programmable colorimetric responses remains challenging. Herein, we report the development of unconventional mechanochromic films based on hybrid nanorods integrated with magnetic and plasmonic anisotropy. Magnetic-plasmonic hybrid nanorods have been synthesized through a unique space-confined seed-mediated process, which represents an open platform for preparing next-generation complex nanostructures. By coupling magnetic and plasmonic anisotropy, the plasmonic excitation of the hybrid nanorods could be collectively regulated using magnetic fields. It facilitates convenient incorporation of the hybrid nanorods into polymer films with a well-controlled orientation and enables sensitive colorimetric changes in response to linear and angular motions. The combination of unique synthesis and convenient magnetic alignment provides an advanced approach for designing programmable mechanochromic devices with the desired precision, flexibility, and scalability.
Collapse
|
40
|
Ding T, Baumberg JJ. Thermo-responsive plasmonic systems: old materials with new applications. NANOSCALE ADVANCES 2020; 2:1410-1416. [PMID: 36132316 PMCID: PMC9418901 DOI: 10.1039/c9na00800d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/11/2020] [Indexed: 05/12/2023]
Abstract
Thermo-responsive plasmonic systems of gold and poly(N-isopropylacrylamide) have been actively studied for several decades but this system keeps reinventing itself, with new concepts and applications which seed new fields. In this minireview, we show the latest few years development and applications of this intriguing system. We start from the basic working principles of this puzzling system which shows different plasmon shifts for even slightly different chemistries. We then present its applications to colloidal actuation, plasmon/meta-film tuning, and bioimaging and sensing. Finally we briefly summarize and propose several promising applications of the ongoing effort in this field.
Collapse
Affiliation(s)
- Tao Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge Cambridge CB3 0HE UK
| |
Collapse
|
41
|
Do SP, Missaoui A, Coati A, Coursault D, Jeridi H, Resta A, Goubet N, Wojcik MM, Choux A, Royer S, Briand E, Donnio B, Gallani JL, Pansu B, Lhuillier E, Garreau Y, Babonneau D, Goldmann M, Constantin D, Gallas B, Croset B, Lacaze E. From Chains to Monolayers: Nanoparticle Assembly Driven by Smectic Topological Defects. NANO LETTERS 2020; 20:1598-1606. [PMID: 31951415 DOI: 10.1021/acs.nanolett.9b04347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this Letter, we show how advanced hierarchical structures of topological defects in the so-called smectic oily streaks can be used to sequentially transfer their geometrical features to gold nanospheres. We use two kinds of topological defects, 1D dislocations and 2D ribbon-like topological defects. The large trapping efficiency of the smectic dislocation cores not only surpasses that of the elastically distorted zones around the cores but also surpasses the one of the 2D ribbon-like topological defect. This enables the formation of a large number of aligned NP chains within the dislocation cores that can be quasi-fully filled without any significant aggregation outside of the cores. When the NP concentration is large enough to entirely fill the dislocation cores, the LC confinement varies from 1D to 2D. We demonstrate that the 2D topological defect cores induce a confinement that leads to planar hexagonal networks of NPs. We then draw the phase diagram driven by NP concentration, associated with the sequential confinements induced by these two kinds of topological defects. Owing to the excellent large-scale order of these defect cores, not only the NP chains but also the NP hexagonal networks can be oriented along the desired direction, suggesting a possible new route for the creation of either 1D or 2D highly anisotropic NP networks. In addition, these results open rich perspectives based on the possible creation of coexisting NP assemblies of different kinds, localized in different confining areas of a same smectic film that would thus interact thanks to their proximity but also would interact via the surrounding soft matter matrix.
Collapse
Affiliation(s)
- Syou-P'heng Do
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Amine Missaoui
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Alessandro Coati
- Synchrotron Soleil, BP 48, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | | | - Haifa Jeridi
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Andrea Resta
- Synchrotron Soleil, BP 48, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Nicolas Goubet
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Michal M Wojcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Arnaud Choux
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Sébastien Royer
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Emrick Briand
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Bertrand Donnio
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS-Université de Strasbourg, BP 43, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France
| | - Jean Louis Gallani
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS-Université de Strasbourg, BP 43, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France
| | - Brigitte Pansu
- Laboratoire de Physique des Solides, Bat. 510, UMR-CNRS 8502, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Emmanuel Lhuillier
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Yves Garreau
- Synchrotron Soleil, BP 48, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - David Babonneau
- Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS, Université de Poitiers, SP2MI, TSA 41123, 86073 Poitiers Cedex 9, France
| | - Michel Goldmann
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
- Synchrotron Soleil, BP 48, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Doru Constantin
- Laboratoire de Physique des Solides, Bat. 510, UMR-CNRS 8502, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Bruno Gallas
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Bernard Croset
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| | - Emmanuelle Lacaze
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu, 75005 Paris, France
| |
Collapse
|
42
|
Hess A, Funk AJ, Liu Q, De La Cruz JA, Sheetah GH, Fleury B, Smalyukh II. Plasmonic Metamaterial Gels with Spatially Patterned Orientational Order via 3D Printing. ACS OMEGA 2019; 4:20558-20563. [PMID: 31858040 PMCID: PMC6906772 DOI: 10.1021/acsomega.9b02418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/04/2019] [Indexed: 05/08/2023]
Abstract
Optical properties can be programmed on mesoscopic scales by patterning host materials while ordering their nanoparticle inclusions. While liquid crystals are often used to define the ordering of nanoparticles dispersed within them, this approach is typically limited to liquid crystals confined in classic geometries. In this work, the orientational order that liquid crystalline colloidal hosts impose on anisotropic nanoparticle inclusions is combined with an additive manufacturing method that enables engineered, macroscopic three-dimensional (3D) patterns of co-aligned gold nanorods and cellulose nanocrystals. These gels exhibit polarization-dependent plasmonic properties that emerge from the unique interaction between the host medium's anisotropic optical properties defined by orientationally ordered cellulose nanocrystals, from the liquid crystal's gold nanorod inclusions, and from the complexity of spatial patterns accessed with 3D printing. The gels' optical properties that are defined by the interplay of these effects are tuned by controlling the gels' order, which is tuned by adjusting the gels' cellulose nanocrystal concentrations. Lithe optical responsiveness of these composite gels to polarized radiation may enable unique technological applications like polarization-sensitive optical elements.
Collapse
Affiliation(s)
- Andrew
J. Hess
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Andrew J. Funk
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Qingkun Liu
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Joshua A. De La Cruz
- Materials
Science and Engineering, 027 UCB, Sustainability, Energy & Environment
Community, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ghadah H. Sheetah
- Materials
Science and Engineering, 027 UCB, Sustainability, Energy & Environment
Community, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Blaise Fleury
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Ivan I. Smalyukh
- Department
of Physics, 390 UCB, University of Colorado
Boulder, Boulder, Colorado 80309, United States
- Materials
Science and Engineering, 027 UCB, Sustainability, Energy & Environment
Community, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable
and Sustainable Energy Institute, National
Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, United States
- E-mail:
| |
Collapse
|
43
|
Santos RD, Melo PD, Nunes A, Meneghetti M, Lyra M, Oliveira ID. Electro-optical switching in twisted nematic samples doped with gold nanorods. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Guo Y, Li W, Li X, Zhang H, Ma H, Sun Y. Influences of nickel plated multi-walled carbon-nanotube on the electro-optical properties of nematic liquid crystal. NANOTECHNOLOGY 2019; 30:475201. [PMID: 31434061 DOI: 10.1088/1361-6528/ab3d4c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Some enhanced performances can be obtained by doping multi-walled carbon-nanotube (MWCNT) into self-organized nematic liquid crystal (NLC). However, the dispersion of MWCNT in NLC is very few, thus the enhancement is restricted. In this work, a nickel plated MWCNT (MWCNT@Ni) is synthesized to obtain a relatively high dispersion. The morphology, element and chemical bond differences between MWCNT and MWCNT@Ni are characterized. For MWCNT@Ni, there is a layer of coaxial nickel coated on the surface of MWCNT, which weakens the interaction energy between the adjacent MWCNTs and further results in a relatively high dispersion. Moreover, MWCNT@Ni has a more orderly arrangement in NLC compared with MWCNT. The results suggest that the dielectric anisotropy of MWCNT@Ni/NLC with mass fraction of 0.01 wt% is increased by ∼3.6%, and the saturation voltage is reduced by ∼7.3%. Besides, the rise time is decreased by ∼9.5% at 5 V and 1 kHz. These performances have been improved compared with MWCNT/NLC under the same mass fraction. The effect of mass fraction of MWCNT@Ni on rise time is further investigated. As a result, the rise time is decreased by ∼16.7% as MWCNT@Ni with mass fraction of 0.10 wt% is added into NLC. In general, the method to increase dispersion of dopant in NLC is proposed, which can serve as a reference to improve the performances of NLC composites.
Collapse
Affiliation(s)
- Yuqiang Guo
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China. Department of Applied Physics, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Orlova T, Plamont R, Depauw A, Katsonis N. Dynamic Spirals of Nanoparticles in Light-Responsive Polygonal Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902419. [PMID: 31389175 DOI: 10.1002/smll.201902419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticles tend to aggregate once integrated into soft matter and consequently, self-assembling nanoparticles into large-scale, regular, well-defined, and ultimately chiral patterns remains an ongoing challenge toward the design and realization of organized superstructures of nanoparticles. The patterns of nanoparticles that are reported in liquid crystals so far are all static, and this lack of responsiveness extends to assemblies of nanoparticles formed in topological singularities and other localized structures of anisotropic matter. Here, it is shown that gold nanoparticles form spiral superstructures in polygonal fields of cholesteric liquid crystals. Moreover, when the cholesteric liquid crystals incorporate molecular photoswitches in their composition, the pitch of the nanoparticulate spirals follows the light-induced reorganization of the cholesteric liquid crystals. These experimental findings indicate that chiral liquid crystals can be used as chiral and dynamic templates for soft photonic nanomaterials. Controlling the geometry of these spirals of nanoparticles will ultimately allow modulating the plasmonic signature of hybrid and chiral systems.
Collapse
Affiliation(s)
- Tetiana Orlova
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Rémi Plamont
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Alexis Depauw
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Nathalie Katsonis
- Bio-inspired and Smart Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
46
|
Kim DY, Jeong KU. Light responsive liquid crystal soft matters: structures, properties, and applications. LIQUID CRYSTALS TODAY 2019. [DOI: 10.1080/1358314x.2019.1653588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dae-Yoon Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, Korea
| |
Collapse
|
47
|
Aplinc J, Pusovnik A, Ravnik M. Designed self-assembly of metamaterial split-ring colloidal particles in nematic liquid crystals. SOFT MATTER 2019; 15:5585-5595. [PMID: 31268460 DOI: 10.1039/c9sm00842j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fabrication of orientationally and positionally ordered colloidal clusters is of interest to several fields from materials science to photonics. An interesting possibility to obtain such colloidal crystalline structures is by the self-assembly of colloidal particles in a liquid crystal matrix. This work demonstrates the self-assembly in a nematic liquid crystal of a specific type of colloidal particle, split ring resonators (SRRs), which are well known in the field of photonic metamaterials and chosen for their ability to obtain resonances in response to a magnetic field. Using free energy minimisation calculations, we specifically optimise geometrical parameters of the SRR particles to reduce and prevent formation of irregular metastable colloidal states, which in more general view corresponds to concepts of pre-designed self-assembly. Using the pre-designed particles, we then show self-assembly into two- and three-dimensional nematic colloidal crystals of split-ring particles. Our work is a contribution to the development of designed large-scale colloidal crystals, the properties of which could be finely tuned with external parameters, and are of high interest for photonic applications, specifically as tunable metamaterials.
Collapse
Affiliation(s)
- Jure Aplinc
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia.
| | - Anja Pusovnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia.
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia. and JoŽef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| |
Collapse
|
48
|
Perspectives in Liquid-Crystal-Aided Nanotechnology and Nanoscience. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122512] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The research field of liquid crystals and their applications is recently changing from being largely focused on display applications and optical shutter elements in various fields, to quite novel and diverse applications in the area of nanotechnology and nanoscience. Functional nanoparticles have recently been used to a significant extent to modify the physical properties of liquid crystals by the addition of ferroelectric and magnetic particles of different shapes, such as arbitrary and spherical, rods, wires and discs. Also, particles influencing optical properties are increasingly popular, such as quantum dots, plasmonic, semiconductors and metamaterials. The self-organization of liquid crystals is exploited to order templates and orient nanoparticles. Similarly, nanoparticles such as rods, nanotubes and graphene oxide are shown to form lyotropic liquid crystal phases in the presence of isotropic host solvents. These effects lead to a wealth of novel applications, many of which will be reviewed in this publication.
Collapse
|
49
|
Zakine R, de Silva Edirimuni D, Constantin D, Galatola P, Fournier JB. Interaction and structuration of membrane-binding and membrane-excluding colloidal particles in lamellar phases. SOFT MATTER 2019; 15:4351-4362. [PMID: 31074757 DOI: 10.1039/c9sm00230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Within the framework of a discrete Gaussian model, we present analytical results for the interaction induced by a lamellar phase between small embedded colloidal particles. We consider the two limits of particles strongly adherent to the adjacent membranes and of particles impenetrable to the membranes. Our approach takes into account the finite size of the colloidal particles, the discrete nature of the layers, and includes the Casimir-like effect of fluctuations, which is very important for dilute phases. Monte Carlo simulations of the statistical behavior of the membrane-interacting colloidal particles account semi-quantitatively, without any adjustable parameters, for the experimental data measured on silica nanospheres inserted within lyotropic smectics. We predict the existence of finite-size and densely packed particle aggregates originating from the competition between attractive interactions between colloidal particles in the same layer and repulsion between colloidal particles one layer apart.
Collapse
Affiliation(s)
- Ruben Zakine
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France.
| | | | | | | | | |
Collapse
|
50
|
Senyuk B, Aplinc J, Ravnik M, Smalyukh II. High-order elastic multipoles as colloidal atoms. Nat Commun 2019; 10:1825. [PMID: 31015420 PMCID: PMC6478862 DOI: 10.1038/s41467-019-09777-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
Achieving and exceeding diversity of colloidal analogs of chemical elements and molecules as building blocks of matter has been the central goal and challenge of colloidal science ever since Einstein introduced the colloidal atom paradigm. Recent advances in colloids assembly have been achieved by exploiting the machinery of DNA hybridization but robust physical means of defining colloidal elements remain limited. Here we introduce physical design principles allowing us to define high-order elastic multipoles emerging when colloids with controlled shapes and surface alignment are introduced into a nematic host fluid. Combination of experiments and numerical modeling of equilibrium field configurations using a spherical harmonic expansion allow us to probe elastic multipole moments, bringing analogies with electromagnetism and a structure of atomic orbitals. We show that, at least in view of the symmetry of the "director wiggle wave functions," diversity of elastic colloidal atoms can far exceed that of known chemical elements.
Collapse
Affiliation(s)
- Bohdan Senyuk
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309, USA
| | - Jure Aplinc
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.,J. Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Ivan I Smalyukh
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309, USA. .,Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, 80309, USA. .,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|