1
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning-Assisted Near-Infrared Spectral Fingerprinting for Macrophage Phenotyping. ACS NANO 2024; 18:22874-22887. [PMID: 39148286 DOI: 10.1021/acsnano.4c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool that is adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Utilizing Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages compared to M2 and naive phenotypes. NIR fluorescence data also indicate that distinctive intraendosomal environments of these cell types give rise to significant differences in many optical features, such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of >95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications, such as cell phenotyping or mapping intraendosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT6 give rise to more improved model accuracy (>87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah Lyons
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Amanda Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
2
|
Li M, Luo A, Xu W, Wang H, Qiu Y, Xiao Z, Cui K. A Visual Raman Nano-Delivery System Based on Thiophene Polymer for Microtumor Detection. Pharmaceutics 2024; 16:655. [PMID: 38794317 PMCID: PMC11125006 DOI: 10.3390/pharmaceutics16050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
A visual Raman nano-delivery system (NS) is a widely used technique for the visualization and diagnosis of tumors and various biological processes. Thiophene-based organic polymers exhibit excellent biocompatibility, making them promising candidates for development as a visual Raman NS. However, materials based on thiophene face limitations due to their absorption spectra not matching with NIR (near-infrared) excitation light, which makes it difficult to achieve enhanced Raman properties and also introduces potential fluorescence interference. In this study, we introduce a donor-acceptor (D-A)-structured thiophene-based polymer, PBDB-T. Due to the D-A molecular modulation, PBDB-T exhibits a narrow bandgap of Eg = 2.63 eV and a red-shifted absorption spectrum, with the absorption edge extending into the NIR region. Upon optimal excitation with 785 nm light, it achieves ultra-strong pre-resonant Raman enhancement while avoiding fluorescence interference. As an intrinsically sensitive visual Raman NS for in vivo imaging, the PBDB-T NS enables the diagnosis of microtumor regions with dimensions of 0.5 mm × 0.9 mm, and also successfully diagnoses deeper tumor tissues, with an in vivo circulation half-life of 14.5 h. This research unveils the potential application of PBDB-T as a NIR excited visual Raman NS for microtumor diagnosis, introducing a new platform for the advancement of "Visualized Drug Delivery Systems". Moreover, the aforementioned platform enables the development of a more diverse range of targeted visual drug delivery methods, which can be tailored to specific regions.
Collapse
Affiliation(s)
- Meng Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Aoxiang Luo
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Wei Xu
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Haoze Wang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Zeyu Xiao
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| |
Collapse
|
3
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning Assisted Spectral Fingerprinting for Immune Cell Phenotyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583608. [PMID: 38496523 PMCID: PMC10942323 DOI: 10.1101/2024.03.05.583608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool, adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Through the use of Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages as compared to M2 and naïve phenotypes. NIR fluorescence data also indicate that distinctive intra-endosomal environments of these cell types give rise to significant differences in many optical features such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of > 95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications such as cell phenotyping or mapping intra-endosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT 6 give rise to more improved model accuracy (> 87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation. TOC Graphic
Collapse
|
5
|
Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. NANOSCALE 2022; 14:3987-4017. [PMID: 35244647 DOI: 10.1039/d1nr07643d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles (NPs) offer great promise for biomedical, environmental, and clinical applications due to their several unique properties as compared to their bulk counterparts. In this review article, we overview various types of metal NPs and magnetic nanoparticles (MNPs) in monolithic form as well as embedded into polymer matrices for specific drug delivery and bio-imaging fields. The second part of this review covers important carbon nanostructures that have gained tremendous attention recently in such medical applications due to their ease of fabrication, excellent biocompatibility, and biodegradability at both cellular and molecular levels for phototherapy, radio-therapeutics, gene-delivery, and biotherapeutics. Furthermore, various applications and challenges involved in the use of NPs as biomaterials are also discussed following the future perspectives of the use of NPs in biomedicine. This review aims to contribute to the applications of different NPs in medicine and healthcare that may open up new avenues to encourage wider research opportunities across various disciplines.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Metallurgical Engineering, SOE, O.P. Jindal University, Raigarh 496109, India
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Pankaj Chamoli
- School of Basic & Applied Sciences, Department of Physics, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Mrinmoy Misra
- Department of Mechatronics, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, 303007 Rajasthan, India
| | - M K Manoj
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon-16499, South Korea.
| |
Collapse
|
6
|
Cui K, Zhang Y, Chen G, Cui Y, Wu W, Zhao N, Liu T, Xiao Z. Molecular Regulation of Polymeric Raman Probes for Ultrasensitive Microtumor Diagnosis and Noninvasive Microvessle Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106925. [PMID: 35092156 DOI: 10.1002/smll.202106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Raman imaging is a powerful tool for the diagnosis of cancers and visualization of various biological processes. Polymers possessing excellent biocompatibility are promising probes for Raman imaging. However, few polymers are reported to serve as Raman probes for in vivo imaging, mainly due to the intrinsic weak Raman signal intensity and fluorescence interference of these polymers. Herein, a poly(indacenodithiophene-benzothiadiazole) (IDT-BT) polymer is presented, which emits unprecedentedly strong Raman signals under the near-infrared wavelength (785 nm) excitation, thus functioning as a Raman probe for ultrasensitive in vivo Raman imaging. Further mechanistic studies unveil that the unique Raman feature of the IDT-BT polymer relies on molecularly regulating its absorbance edge adjacent to the desired excitation wavelength, thus avoiding fluorescence interference and simultaneously emitting strong Raman scattering under preresonant excitation. Taking advantage of this discipline, the IDT-BT polymeric probe successfully realizes intraoperative Raman imaging of micrometastasis as small as 0.3 mm × 0.3 mm, comparable to the most sensitive Raman probes currently reported. Impressively, the IDT-BT enables noninvasive microvascular imaging, which is not achieved using other Raman probes. This work opens a new avenue toward the development of polymeric Raman probes for in vivo Raman imaging.
Collapse
Affiliation(s)
- Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yongming Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yanna Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenwei Wu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Na Zhao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Tize Liu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
7
|
Lee SY, Kwon M, Raja IS, Molkenova A, Han DW, Kim KS. Graphene-Based Nanomaterials for Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:125-148. [PMID: 35175615 DOI: 10.1007/978-981-16-4923-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Graphene is sp2-hybridized carbon structure-based two-dimensional (2D) sheet. Graphene-based nanomaterials possess several features such as unique mechanical, electronic, thermal, and optical properties, high specific surface area, versatile surface functionalization, and biocompatibility, which attracted researcher's interests in various fields including biomedicine. In this chapter, we particularly focused on the biomedical imaging applications of graphene-based nanomaterials like graphene oxide (GO), reduced graphene oxide (rGO), graphene quantum dots (GQDs), graphene oxide quantum dots (GOQDs), and other derivatives, which utilize their outstanding optical properties. There are some biomedical imaging modalities using Graphene-based Nanomaterials, among which we will highlight fluorescence imaging, Raman imaging, magnetic resonance imaging, and photoacoustic imaging. We also discussed the brief perspectives and future application related to them.
Collapse
Affiliation(s)
- So Yun Lee
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan, South Korea
| | - Mina Kwon
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan, South Korea
| | | | - Anara Molkenova
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, South Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, South Korea
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan, South Korea.
- Institute of Advanced Organic Materials, Pusan National University, Busan, South Korea.
| |
Collapse
|
8
|
Zhang C, Wu L, de Perrot M, Zhao X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front Oncol 2021; 11:693814. [PMID: 34386422 PMCID: PMC8353320 DOI: 10.3389/fonc.2021.693814] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon nanotubes (CNTs) are nanomaterials with broad applications that are produced on a large scale. Animal experiments have shown that exposure to CNTs, especially one type of multi-walled carbon nanotube, MWCNT-7, can lead to malignant transformation. CNTs have characteristics similar to asbestos (size, shape, and biopersistence) and use the same molecular mechanisms and signaling pathways as those involved in asbestos tumorigenesis. Here, a comprehensive review of the characteristics of carbon nanotubes is provided, as well as insights that may assist in the design and production of safer nanomaterials to limit the hazards of currently used CNTs.
Collapse
Affiliation(s)
- Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Licun Wu
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Department Immunology, University of Toronto, Toronto, ON, Canada
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Spontaneous Raman and Surface-Enhanced Raman Scattering Bioimaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:177-195. [PMID: 34053028 DOI: 10.1007/978-981-15-7627-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Raman spectroscopy is a specific, noninvasive and nondestructive optical technique and is able to obtain chemical information from molecules. Optical imaging based on Raman spectroscopy has been a powerful technique for monitoring minute chemical changes of biological samples and generating images through direct or indirect strategies. Two widely applied Raman imaging techniques include spontaneous Raman and surface-enhanced Raman scattering (SERS) imaging. In this chapter, we introduce the basic principles including the physics behind Raman and SERS imaging, design of Raman/SERS labels or probes, and current strategies for further improvements. The progress in the use of spontaneous Raman and SERS spectroscopy for bioimaging is discussed, either in fundamental studies or in biomedical theranostics. In addition, we give insights into the challenges and opportunities for improving Raman imaging performance.
Collapse
|
10
|
Zhao Y, Zhao T, Cao Y, Sun J, Zhou Q, Chen H, Guo S, Wang Y, Zhen Y, Liang XJ, Zhang S. Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS NANO 2021; 15:6517-6529. [PMID: 33749240 DOI: 10.1021/acsnano.0c08790] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of photothermal therapy (PTT) and gene therapy (GT) shows great potential to achieve synergistic anti-tumor activity. However, the lack of a controlled release of genes from carriers remains a severe hindrance. Herein, peptide lipid (PL) and sucrose laurate (SL) were used to coat single-walled carbon nanotubes (SCNTs) and multi-walled carbon nanotubes (MCNTs) to form bifunctional delivery systems (denoted SCNT-PS and MCNT-PS, respectively) with excellent temperature-sensitivity and photothermal performance. CNT/siRNA suppressed tumor growth by silencing survivin expression while exhibiting photothermal effects under near-infrared (NIR) light. SCNT-PS/siRNA showed very high anti-tumor activity, resulting in the complete inhibition of some tumors. It was highly efficient for systemic delivery to tumor sites and to facilitate siRNA release owing to the phase transition of the temperature-sensitive lipids, due to PL and SL coating. Thus, SCNT-PS/siRNA is a promising anti-tumor nanocarrier for combined PTT and GT.
Collapse
Affiliation(s)
- Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Tianyi Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yingnan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yifeng Wang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
11
|
Liu S, Shi D, Chen L, Yan Y, Wang X, Song Y, Pu S, Liang Y, Zhao Y, Zhang Y, Xie J. Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. NANOSCALE 2021; 13:3613-3626. [PMID: 33537695 DOI: 10.1039/d0nr08197c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A combination of chemotherapy and targeted magnetic hyperthermia (TMH) via a designed magnetic nanocrystal (MNC) drug delivery system was considered as an effective tumor synergistic therapy strategy. In this paper, we successfully synthesized tumor neovascular-targeted Mn-Zn ferrite MNCs, which encapsulated paclitaxel (PTX) in a biocompatible PEG-phospholipid (DSPE-PEG2000) layer and surface, simultaneously coupled with a tripeptide of arginine-glycine-aspartic acid (RGD). The high-performance RGD-modified MNC loaded with PTX (MNCs-PTX@RGD) embodied excellent magnetic properties, including high-contrast magnetic resonance imaging (MRI) and remarkable magnetically induced heat generation ability. We established the mouse model bearing subcutaneous 4T1 breast tumor, and demonstrated that MNCs-PTX@RGD could be effectively located in the tumor neovascular epithelial cells under the guidance of in vivo MRI. Notably, MNCs-PTX@RGD could easily penetrate into the tumor tissue from the tumor-fenestrated vascular networks for capturing a sufficient temperature (around 43 °C) exposed to an alternative current magnetic field (ACMF, 2.58 kA m-1, 390 kHz), leading to an effective TMH effect. Subsequently, the TMH-mediated temperature elevation accelerated the PTX release from the inner lipid layer, promoting the synergetic thermo-chemotherapy in vivo. The amplifying synergistic treatment strategy obviously improved the anti-tumor efficacy of MNCs-PTX@RGD, and simultaneously increased the survival time of the mice to more than 46 days, which provided a broad development prospect in clinical applications.
Collapse
Affiliation(s)
- Shuangyu Liu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Dongsheng Shi
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Ling Chen
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China. and School of Public Health, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Yu Yan
- Department of Chemistry, Bengbu Medical College, Bengbu 233030, P. R. China
| | - Xingqi Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Yingying Song
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Shengyan Pu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Yijun Liang
- School of Medical engineering, Foshan University, Foshan 528000, P. R. China
| | - Yang Zhao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Jun Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China. and State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
12
|
Marena GD, Ramos MADS, Bauab TM, Chorilli M. A Critical Review of Analytical Methods for Quantification of Amphotericin B in Biological Samples and Pharmaceutical Formulations. Crit Rev Anal Chem 2020; 52:555-576. [PMID: 32880190 DOI: 10.1080/10408347.2020.1811947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amphotericin B (AmB) is an important antifungal agent available in the clinical practice with the action mechanism related to the inhibition of ergosterol molecule present in the fungal cell wall. Given this, in order to expand AmB knowledge, this review article gathers important information of the AmB physical, chemical, and biological properties. In addition, the main analytical methods for quantifying and determining the AmB were also reported in this review, such as high-performance liquid chromatography (HPLC), liquid chromatography, tandem mass spectrophotometry (LC-MS/MS), immunoenzymatic assay (ELISA), capillary zone electrophoresis (CE) stands out and among others. Based in this review article, the scientific community will have important information to choose the best method for analysis in their scientific or clinical research, providing greater security and reliability in the obtained results.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
13
|
Vardaki MZ, Kourkoumelis N. Tissue Phantoms for Biomedical Applications in Raman Spectroscopy: A Review. Biomed Eng Comput Biol 2020; 11:1179597220948100. [PMID: 32884391 PMCID: PMC7440735 DOI: 10.1177/1179597220948100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Raman spectroscopy is a group of analytical techniques, currently applied in several research fields, including clinical diagnostics. Tissue-mimicking optical phantoms have been established as an essential intermediate stage for medical applications with their employment from spectroscopic techniques to be constantly growing. This review outlines the types of tissue phantoms currently employed in different biomedical applications of Raman spectroscopy, focusing on their composition and optical properties. It is therefore an attempt to present an informed range of options for potential use to the researchers.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
14
|
Zhang B, Wang J, Sun J, Wang Y, Chou T, Zhang Q, Shah HR, Ren L, Wang H. Self‐Reporting Gold Nanourchins for Tumor‐Targeted Chemo‐Photothermal Therapy Integrated with Multimodal Imaging. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Beilu Zhang
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Jinping Wang
- Department of Biomedical Engineering Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Yuhao Wang
- Department of Biomedical Engineering Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Tsengming Chou
- Department of Chemical Engineering and Material Science Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Qiang Zhang
- Department of Biomaterials Key Laboratory of Biomedical Engineering of Fujian Province State Key Lab of Physical Chemistry of Solid Surface College of Materials Xiamen University Xiamen Fujian 361005 P. R. China
| | - Harshal R. Shah
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Lei Ren
- Department of Biomaterials Key Laboratory of Biomedical Engineering of Fujian Province State Key Lab of Physical Chemistry of Solid Surface College of Materials Xiamen University Xiamen Fujian 361005 P. R. China
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Hoboken NJ 07030 USA
- Department of Biomedical Engineering Stevens Institute of Technology Hoboken NJ 07030 USA
| |
Collapse
|
15
|
de Paula RFO, Rosa IA, Gafanhão IFM, Fachi JL, Melero AMG, Roque AO, Boldrini VO, Ferreira LAB, Irazusta SP, Ceragioli HJ, de Oliveira EC. Reduced graphene oxide, but not carbon nanotubes, slows murine melanoma after thermal ablation using LED light in B16F10 lineage cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102231. [PMID: 32502697 DOI: 10.1016/j.nano.2020.102231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/01/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy is a minimally invasive health technology used to treat cancer and other non-malignant diseases, as well as inactivation of viruses, bacteria and fungi. In this work, we sought to combine the phototherapy technique using low intensity LED (660 nm) to induce ablation in melanoma tumor in mice treated with nanoparticles. In vitro and in vivo studies were conducted, and our results demonstrated that multi-walled carbon nanotubes (MWCNTs) do not destroy tumor cells in vivo, but stimulate the inflammatory process and angiogenesis. Reduced graphene oxide (rGO), has been shown to play a protective role associated with the LED ablation, inducing necrosis, stimulation of immune response by lymphoproliferation, and decreased tumor mass in vivo. We consider that LED alone can be very effective in controlling the growth of melanoma tumors and its association with rGO is potentiated.
Collapse
Affiliation(s)
- Rosemeire F O de Paula
- Department of Genetics and Evolution, Microbiology and Immunology - Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ingrid A Rosa
- Department of Genetics and Evolution, Microbiology and Immunology - Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Semiconductors, Instruments and Photonics, School of Electrical and Computer Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ingrid F M Gafanhão
- Department of Genetics and Evolution, Microbiology and Immunology - Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jose Luís Fachi
- Department of Genetics and Evolution, Microbiology and Immunology - Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Anna Maria G Melero
- REDEMAT-Thematic Network in Materials Engineering, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Aléxia O Roque
- Department of Genetics and Evolution, Microbiology and Immunology - Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vinícius O Boldrini
- Department of Genetics and Evolution, Microbiology and Immunology - Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luíz A B Ferreira
- Department of Genetics and Evolution, Microbiology and Immunology - Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Silvia P Irazusta
- Technology Faculty of Sorocaba (FATEC), Paula Souza State Center of Technological Education, Sorocaba, SP, Brazil
| | - Helder J Ceragioli
- Department of Semiconductors, Instruments and Photonics, School of Electrical and Computer Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Elaine C de Oliveira
- Department of Genetics and Evolution, Microbiology and Immunology - Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Technology Faculty of Sorocaba (FATEC), Paula Souza State Center of Technological Education, Sorocaba, SP, Brazil.
| |
Collapse
|
16
|
Zhao Q, Li X, Lu J, Liu Y, Sha L, Di D, Wang S. TPGS and cypate gated mesoporous carbon for enhanced thermochemotherapy of tumor. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Guo X, Li J, Arabi M, Wang X, Wang Y, Chen L. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors. ACS Sens 2020; 5:601-619. [PMID: 32072805 DOI: 10.1021/acssensors.9b02039] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecularly imprinted polymers (MIPs) receive extensive interest, owing to their structure predictability, recognition specificity, and application universality as well as robustness, simplicity, and inexpensiveness. Surface-enhanced Raman scattering (SERS) is regarded as an ideal optical detection candidate for its unique features of fingerprint recognition, nondestructive property, high sensitivity, and rapidity. Accordingly, MIP based SERS (MIP-SERS) sensors have attracted significant research interest for versatile applications especially in the field of chemo- and bioanalysis, showing excellent identification and detection performances. Herein, we comprehensively review the recent advances in MIP-SERS sensors construction and applications, including sensing principles and signal enhancement mechanisms, focusing on novel construction strategies and representative applications. First, the basic structure of the MIP-SERS sensors is briefly outlined. Second, novel imprinting strategies are highlighted, mainly including multifunctional monomer imprinting, dummy template imprinting, living/controlled radical polymerization, and stimuli-responsive imprinting. Third, typical application of MIP-SERS sensors in chemo/bioanalysis is summarized from both small and macromolecular aspects. Lastly, the challenges and perspectives of the MIP-SERS sensors are proposed, orienting sensitivity improvement and application expanding.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
18
|
Khlebtsov NG, Lin L, Khlebtsov BN, Ye J. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Theranostics 2020; 10:2067-2094. [PMID: 32089735 PMCID: PMC7019156 DOI: 10.7150/thno.39968] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/11/2019] [Indexed: 01/15/2023] Open
Abstract
Gap-enhanced Raman tags (GERTs) are emerging probes of surface-enhanced Raman scattering (SERS) spectroscopy that have found promising analytical, bioimaging, and theranostic applications. Because of their internal location, Raman reporter molecules are protected from unwanted external environments and particle aggregation and demonstrate superior SERS responses owing to the strongly enhanced electromagnetic fields in the gaps between metal core-shell structures. In this review, we discuss recent progress in the synthesis, simulation, and experimental studies of the optical properties and biomedical applications of novel spherically symmetrical and anisotropic GERTs fabricated with common plasmonic metals—gold (Au) and silver (Ag). Our discussion is focused on the design and synthetic strategies that ensure the optimal parameters and highest enhancement factors of GERTs for sensing and theranostics. In particular, we consider various core-shell structures with build-in nanogaps to explain why they would benefit the plasmonic GERTs as a superior SERS tag and how this would help future research in clinical analytics and therapeutics.
Collapse
|
19
|
Carbon nanotubes: An effective platform for biomedical electronics. Biosens Bioelectron 2019; 150:111919. [PMID: 31787449 DOI: 10.1016/j.bios.2019.111919] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Cylindrical fullerenes (or carbon nanotubes (CNTs)) have been extensively investigated as potential sensor platforms due to effective and practical manipulation of their physical and chemical properties by functionalization/doping with chemical groups suitable for novel nanocarrier systems. CNTs play a significant role in biomedical applications due to rapid development of synthetic methods, structural integration, surface area-controlled heteroatom doping, and electrical conductivity. This review article comprehensively summarized recent trends in biomedical science and technologies utilizing a promising nanomaterial of CNTs in disease diagnosis and therapeutics, based on their biocompatibility and significance in drug delivery, implants, and bio imaging. Biocompatibility of CNTs is essential for designing effective and practical electronic applications in the biomedical field particularly due to their growing potential in the delivery of anticancer agents. Furthermore, functionalized CNTs have been shown to exhibit advanced electrochemical properties, responsible for functioning of numerous oxidase and dehydrogenase based amperometric biosensors. Finally, faster signal transduction by CNTs allows charge transfer between underlying electrode and redox centres of biomolecules (enzymes).
Collapse
|
20
|
Sun P, Zhang Y, Li K, Wang C, Zeng F, Zhu J, Wu Y, Tao X. Image-guided surgery of head and neck carcinoma in rabbit models by intra-operatively defining tumour-infiltrated margins and metastatic lymph nodes. EBioMedicine 2019; 50:93-102. [PMID: 31734170 PMCID: PMC6921159 DOI: 10.1016/j.ebiom.2019.10.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/31/2023] Open
Abstract
Background The infiltrative nature and lymphatic metastasis of head and neck squamous cell carcinoma (HNSCC) are the main reasons leading to its poor prognosis. Methods A multimodal surface-enhanced resonance Raman spectroscopy (SERRS) and magnetic resonance (MR) nanoprobe, in which paramagnetic chelators and heptamethine cyanine-based Raman reporter molecules were functionalized on a gold nanostar (AuS) surface was developed. Preoperative MRI and intraoperative SERRS-guided surgery were performed on rabbits bearing head and neck VX2 tumours to determine feasibility of the MR/SERRS probe in defining tumour marginal infiltration and lymph nodes metastasis. Findings Preoperative T1-weighted MRI (T1W-MRI) unambiguously delineated the orthotopic head and neck VX2 tumour xenograft and detected the metastatic lymph nodes in rabbit models after intravenous administration of the probe. With the assistance of a hand-held Raman detector, the probe not only intra-operatively demarcated invasive tumour margins but also successfully distinguished metastatic lymph nodes via a remarkable attenuated Raman signal. Importantly, the group of rabbits subjected to the SERRS-guided surgery exhibited prolonged median survival time (78 days) compared with that of the control group without surgical intervention (29 days) or the group treated with conventional white-light-guided surgery (42 days) (P < 0.0001). Interpretation we developed a novel AuS-based multimodal MR/SERRS probe. The capability of this probe to identify both a tumour xenograft and metastatic lymph nodes preoperatively by MRI and intra-operatively by SERRS not only avoids the need for unnecessary resection of neurological structures but also provides a new opportunity to improve the surgical prognosis of head and neck carcinoma of infiltrative nature.
Collapse
Affiliation(s)
- Pengpeng Sun
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizao Ju Road, Shanghai 200011, China
| | - Yunfei Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China; United Imaging Healthcare, Shanghai, 201807, China
| | - Kaicheng Li
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizao Ju Road, Shanghai 200011, China; Department of Radiology, Hainan West Central Hospital, Dan Zhou, Hai Nan, 571700, China
| | - Cong Wang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Feng Zeng
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China; Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinyu Zhu
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizao Ju Road, Shanghai 200011, China; Department of Radiology, Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Yingwei Wu
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizao Ju Road, Shanghai 200011, China.
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizao Ju Road, Shanghai 200011, China.
| |
Collapse
|
21
|
Liu P, Mu X, Zhang XD, Ming D. The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjug Chem 2019; 31:260-275. [DOI: 10.1021/acs.bioconjchem.9b00610] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pengfei Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Mohammad Hosseini Naveh Z, Mehmandoust Khajehdad M, Majidiyan Sarmazdeh M. A theoretical study on the chirality detection of serine amino acid based on carbon nanotubes with and without Stone-Wales defects. Struct Chem 2019. [DOI: 10.1007/s11224-019-01426-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
24
|
Yu Q, Roberts MG, Pearce S, Oliver AM, Zhou H, Allen C, Manners I, Winnik MA. Rodlike Block Copolymer Micelles of Controlled Length in Water Designed for Biomedical Applications. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00959] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Alex M. Oliver
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | | |
Collapse
|
25
|
Sharma S, Naskar S, Kuotsu K. A review on carbon nanotubes: Influencing toxicity and emerging carrier for platinum based cytotoxic drug application. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
He H, Xu M, Zong C, Zheng P, Luo L, Wang L, Ren B. Speeding Up the Line-Scan Raman Imaging of Living Cells by Deep Convolutional Neural Network. Anal Chem 2019; 91:7070-7077. [PMID: 31063356 DOI: 10.1021/acs.analchem.8b05962] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Raman imaging is a promising technique that allows the spatial distribution of different components in the sample to be obtained using the molecular fingerprint information on individual species. However, the imaging speed is the bottleneck for the current Raman imaging methods to monitor the dynamic process of living cells. In this paper, we developed an artificial intelligence assisted fast Raman imaging method over the already fast line scan Raman imaging method. The reduced imaging time is realized by widening the slit and laser beam, and scanning the sample with a large scan step. The imaging quality is improved by a data-driven approach to train a deep convolutional neural network, which statistically learns to transform low-resolution images acquired at a high speed into high-resolution ones that previously were only possible with a low imaging speed. Accompanied with the improvement of the image resolution, the deteriorated spectral resolution as a consequence of a wide slit is also restored, thereby the fidelity of the spectral information is retained. The imaging time can be reduced to within 1 min, which is about five times faster than the state-of-the-art line scan Raman imaging techniques without sacrificing spectral and spatial resolution. We then demonstrated the reliability of the current method using fixed cells. We finally used the method to monitor the dynamic evolution process of living cells. Such an imaging speed opens a door to the label-free observation of cellular events with conventional Raman microscopy.
Collapse
Affiliation(s)
- Hao He
- School of Aerospace Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Mengxi Xu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Cheng Zong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Peng Zheng
- School of Aerospace Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Lilan Luo
- School of Aerospace Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Lei Wang
- School of Aerospace Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Bin Ren
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| |
Collapse
|
27
|
Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. Nanomaterials as photothermal therapeutic agents. PROGRESS IN MATERIALS SCIENCE 2019; 99:1-26. [PMID: 30568319 PMCID: PMC6295417 DOI: 10.1016/j.pmatsci.2018.07.005] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Curing cancer has been one of the greatest conundrums in the modern medical field. To reduce side-effects associated with the traditional cancer therapy such as radiotherapy and chemotherapy, photothermal therapy (PTT) has been recognized as one of the most promising treatments for cancer over recent years. PTT relies on ablation agents such as nanomaterials with a photothermal effect, for converting light into heat. In this way, elevated temperature could kill cancer cells while avoiding significant side effects on normal cells. This theory works because normal cells have a higher heat tolerance than cancer cells. Thus, nanomaterials with photothermal effects have attracted enormous attention due to their selectivity and non-invasive attributes. This review article summarizes the current status of employing nanomaterials with photothermal effects for anti-cancer treatment. Mechanisms of the photothermal effect and various factors affecting photothermal performance will be discussed. Efficient and selective PTT is believed to play an increasingly prominent role in cancer treatment. Moreover, merging PTT with other methods of cancer therapies is also discussed as a future trend.
Collapse
Affiliation(s)
- Junqi Chen
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Chengyun Ning
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Zhengnan Zhou
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Peng Yu
- College of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory for Biomedical Engineering, Guangzhou 510641, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Oklahoma, United States
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Oklahoma, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
28
|
Zhang Y, Wu M, Wu M, Zhu J, Zhang X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS OMEGA 2018; 3:9126-9145. [PMID: 31459047 PMCID: PMC6644613 DOI: 10.1021/acsomega.8b01071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 05/30/2023]
Abstract
Molecular imaging has been widely used not only as an important detection technology in the field of medical imaging for cancer diagnosis but also as a theranostic approach for cancer in recent years. Multifunctional carbon-based nanomaterials (MCBNs), characterized by unparalleled optical, electronic, and thermal properties, have attracted increasing interest and demonstrably hold the greatest promise in biomolecular imaging and therapy. As such, it should come as no surprise that MCBNs have already revealed a great deal of potential applications in biomedical areas, such as bioimaging, drug delivery, and tumor therapy. Carbon nanomaterials can be categorized as graphene, single-walled carbon nanotubes, mesoporous carbon, nanodiamonds, fullerenes, or carbon dots on the basis of their morphologies. In this article, reports of the use of MCBNs in various chemical conjugation/functionalization strategies, focusing on their applications in cancer molecular imaging and imaging-guided therapy, will be comprehensively summarized. MCBNs show the possibility to serve as optimal candidates for precise cancer biotheranostics.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Minghao Wu
- Department
of Radiology, Tianjin Medical University
Cancer Institute and Hospital, National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer Key Laboratory
of Cancer Prevention and Therapy, Tianjin 300060, P. R.
China
| | - Mingjie Wu
- Institut
National de la Recherche Scientifique-Énergie Matériaux
et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Jingyi Zhu
- School
of Pharmaceutical Science, Nanjing Tech
University, Nanjing 211816, P. R. China
| | - Xuening Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| |
Collapse
|
29
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
30
|
Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis. SENSORS 2017; 17:s17112689. [PMID: 29160798 PMCID: PMC5713634 DOI: 10.3390/s17112689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.
Collapse
|
31
|
|
32
|
Jenkins SV, Nima ZA, Vang KB, Kannarpady G, Nedosekin DA, Zharov VP, Griffin RJ, Biris AS, Dings RPM. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precis Oncol 2017; 1:27. [PMID: 29872709 PMCID: PMC5871908 DOI: 10.1038/s41698-017-0030-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/29/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022] Open
Abstract
An ongoing need for new cancer therapeutics exists, especially ones that specifically home and target triple-negative breast cancer. Because triple-negative breast cancer express low or are devoid of estrogen, progesterone, or Her2/Neu receptors, another target must be used for advanced drug delivery strategies. Here, we engineered a nanodrug delivery system consisting of silver-coated gold nanorods (AuNR/Ag) targeting epithelial cell adhesion/activating molecule (EpCAM) and loaded with doxorubicin. This nanodrug system, AuNR/Ag/Dox-EpCAM, was found to specifically target EpCAM-expressing tumors compared to low EpCAM-expressing tumors. Namely, the nanodrug had an effective dose (ED50) of 3 μM in inhibiting 4T1 cell viability and an ED50 of 110 μM for MDA-MD-231 cells. Flow cytometry data indicated that 4T1 cells, on average, express two orders of magnitude more EpCAM than MDA-MD-231 cells, which correlates with our ED50 findings. Moreover, due to the silver coating, the AuNR/Ag can be detected simultaneously by surface-enhanced Raman spectroscopy and photoacoustic microscopy. Analysis by these imaging detection techniques as well as by inductively coupled plasma mass spectrometry showed that the targeted nanodrug system was taken up by EpCAM-expressing cells and tumors at significantly higher rates than untargeted nanoparticles (p < 0.05). Thus, this approach establishes a plasmonically active nanodrug theranostic for triple-negative breast cancer and, potentially, a delivery platform with improved multimodal imaging capability for other clinically relevant chemotherapeutics with dose-limiting toxicities, such as platinum-based or taxane-based therapies. Silver-coated gold nanorods deliver drugs to a difficult-to-treat breast cancer by targeting an over-expressed antigen on its surface. Ruud Dings and colleagues at the University of Arkansas in the USA loaded the chemotherapeutic drug doxorubicin onto silver-coated gold nanorods that were conjugated with an antibody that specifically targets an over-expressed antigen on many types of ‘triple-negative breast cancers’ (TNBCs). Unlike other breast cancers, TNBCs lack certain receptors, making them difficult to target with cancer therapies. The team found that one of the two TNBC cell lines studied over-expressed the epithelial antigen EpCAM 100 times more than the other. Their drug-loaded silver-coated gold nanorods specifically targeted the EpCAM over-expressing cells over the low-expressing ones. The nanorods’ coatings also allowed them to be easily detected by two different imaging techniques: surfaced-enhanced Raman spectroscopy and photoacoustic microscopy.
Collapse
Affiliation(s)
- Samir V Jenkins
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Zeid A Nima
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Kieng B Vang
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Ganesh Kannarpady
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Dmitry A Nedosekin
- 3The Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Vladimir P Zharov
- 3The Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Robert J Griffin
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Alexandru S Biris
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Ruud P M Dings
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
33
|
Gobi N, Vijayakumar D, Keles O, Erogbogbo F. Infusion of Graphene Quantum Dots to Create Stronger, Tougher, and Brighter Polymer Composites. ACS OMEGA 2017; 2:4356-4362. [PMID: 31457728 PMCID: PMC6641722 DOI: 10.1021/acsomega.6b00517] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/06/2017] [Indexed: 05/31/2023]
Abstract
Incorporation of nanoparticles into polymer resins has recently attracted a significant amount of attention from researchers for the nanoparticles' ability to alter the properties of the resin. Whereas graphene-based structures possess a two-dimensional honeycomb arrangement of carbon atoms that makes them desirable for engineering composite materials, quantum dot formulations have been primarily used in optoelectronic applications that take advantage of quantum confinement and size-tunable properties. Graphene and quantum dots (GQDs) are ubiquitous in the current research literature; however, the impact of GQD on the physical properties of polymer resins like epoxy remains unclear. Here, we show that infusing GQD into an epoxy polymer matrix results in (1) a 2.6-fold increase in the toughness of the polymer resins, (2) a 2.25-fold increase in the tensile strength of the polymer resins compared to its original tensile strength, (3) uniform loading at weight percentages as high as 10% of the polymer resin, (4) an 18% change to the max % increase in tensile strain compared to that of the neat polymer resin without GQDs, even though there is an increase in tensile strength, and (5) a 2.5-times increase in Young's modulus compared to that of the neat polymer resin, all while maintaining excellent optical properties of the composite formulation. Our results demonstrate that GQDs with dual acid and alcohol functional groups can enable high loading percentages, which, in turn, give rise to composite materials that are simultaneously stronger and tougher. We believe that these GQDs, created from an abundant source, are a starting point for new and more sophisticated composite materials with potential in mechanical, electrical, and photosensitive applications.
Collapse
|
34
|
Qiu X, You X, Chen X, Chen H, Dhinakar A, Liu S, Guo Z, Wu J, Liu Z. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. Int J Nanomedicine 2017; 12:4349-4360. [PMID: 28652737 PMCID: PMC5473606 DOI: 10.2147/ijn.s130648] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rapid development of near-infrared surface-enhanced Raman scattering (NIR SERS) imaging technology has attracted strong interest from scientists and clinicians due to its narrow spectral bandwidth, low background interference, and deep imaging depth. In this report, the graphene oxide (GO)-wrapped gold nanorods (GO@GNRs) were developed as a smart and robust nanoplatform for ultrafast NIR SERS bioimaging. The fabricated GO@ GNRs could efficiently load various NIR probes, and the in vitro evaluation indicated that the nanoplatform could exhibit a higher NIR SERS activity in comparison with traditional gold nanostructures. The GOs were prepared by directly pyrolyzing citric acid for greater convenience, and GO@GNRs were fabricated via a facile synthesis strategy. Higher NIR SERS activity, facile synthesis method, excellent biocompatibility, and superb stability make the GO@GNRs/probe complex promising nanoprobes for NIR SERS-based bioimaging applications.
Collapse
Affiliation(s)
- Xuejun Qiu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Xinru You
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xing Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Haolin Chen
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Arvind Dhinakar
- Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Songhao Liu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Zhouyi Guo
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiming Liu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| |
Collapse
|
35
|
Zhang Y, Qiu Y, Lin L, Gu H, Xiao Z, Ye J. Ultraphotostable Mesoporous Silica-Coated Gap-Enhanced Raman Tags (GERTs) for High-Speed Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3995-4005. [PMID: 28074643 DOI: 10.1021/acsami.6b15170] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surface-enhanced Raman scattering (SERS) tags can be utilized as optical labeling nanoprobes similar to fluorescent dyes and quantum dots for bioimaging with additional advantages of fingerprint vibrational signals as unique optical codes and ultranarrow line widths for multiplexing. However, the development of the SERS imaging technique is much less well-established compared to the devlopment of fluorescence imaging mainly because of speed limitations. An effective strategy for improving the SERS imaging speed and simultaneously maintaining the photostability of SERS tags has not, to the best of our knowledge, been reported. In this work, mesoporous silica- (MS-) coated gap-enhanced Raman tags (GERTs) were designed with built-in Raman reporters for off-resonance near-infrared laser excitation and reduced photothermal effects, leading to ultraphotostability during laser irradiation. Additionally, they achieve large amplification of Raman signals by combining the chemical (CHEM) and electromagnetic (EM) enhancement effects due to the subnanometer core-shell junction, so SERS imaging can be performed in a dramatically reduced duration. With these unique structural and optical advantages, MS GERTs exhibit high storage, pH, serum, and photostabilities; strong Raman enhancements; and favorable biocompatibility. Therefore, MS GERTs achieve long-term cell imaging that can last for 30 min without being photobleached and also maintain decent imaging effects. Furthermore, MS GERTs enable continuous and stable imaging in living tissues for more than 30 min. With these advantages, MS GERTs might potentially have more biomedical applications.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, ‡Department of Pharmacology, Institute of Medical Sciences & Translational Medicine Collaborative Innovation Center & Collaborative Innovation Center of Systems Biomedicineand, §Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, and △Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Yuanyuan Qiu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, ‡Department of Pharmacology, Institute of Medical Sciences & Translational Medicine Collaborative Innovation Center & Collaborative Innovation Center of Systems Biomedicineand, §Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, and △Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Li Lin
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, ‡Department of Pharmacology, Institute of Medical Sciences & Translational Medicine Collaborative Innovation Center & Collaborative Innovation Center of Systems Biomedicineand, §Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, and △Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Hongchen Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, ‡Department of Pharmacology, Institute of Medical Sciences & Translational Medicine Collaborative Innovation Center & Collaborative Innovation Center of Systems Biomedicineand, §Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, and △Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Zeyu Xiao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, ‡Department of Pharmacology, Institute of Medical Sciences & Translational Medicine Collaborative Innovation Center & Collaborative Innovation Center of Systems Biomedicineand, §Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, and △Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, ‡Department of Pharmacology, Institute of Medical Sciences & Translational Medicine Collaborative Innovation Center & Collaborative Innovation Center of Systems Biomedicineand, §Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, and △Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| |
Collapse
|
36
|
|
37
|
Hwang Y, Park SH, Lee JW. Applications of Functionalized Carbon Nanotubes for the Therapy and Diagnosis of Cancer. Polymers (Basel) 2017; 9:E13. [PMID: 30970690 PMCID: PMC6432390 DOI: 10.3390/polym9010013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/28/2022] Open
Abstract
Carbon nanotubes (CNTs) are attractive nanostructures that serve as multifunctional transporters in biomedical applications, especially in the field of cancer therapy and diagnosis. Owing to their easily tunable nature and remarkable properties, numerous functionalizations and treatments of CNTs have been attempted for their utilization as hybrid nano-carriers in the delivery of various anticancer drugs, genes, proteins, and immunotherapeutic molecules. In this review, we discuss the current advances in the applications of CNT-based novel delivery systems with an emphasis on the various functionalizations of CNTs. We also highlight recent findings that demonstrate their important roles in cancer imaging applications, demonstrating their potential as unique agents with high-level ultrasonic emission, strong Raman scattering resonance, and magnetic properties.
Collapse
Affiliation(s)
- Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Sung-Hoon Park
- Department of Mechanical Engineering, Soongsil University, Dongjak-gu, Seoul 06978, Korea.
| | - Jin Woo Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea.
| |
Collapse
|
38
|
Gulzar A, Yang P, He F, Xu J, Yang D, Xu L, Jan MO. Bioapplications of graphene constructed functional nanomaterials. Chem Biol Interact 2017; 262:69-89. [DOI: 10.1016/j.cbi.2016.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
39
|
Krafft C, Schie IW, Meyer T, Schmitt M, Popp J. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem Soc Rev 2016; 45:1819-49. [PMID: 26497570 DOI: 10.1039/c5cs00564g] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
First, the potential role of Raman-based techniques in biomedicine is introduced. Second, an overview about the instrumentation for spontaneous and coherent Raman scattering microscopic imaging is given with a focus of recent developments. Third, imaging strategies are summarized including sequential registration with laser scanning microscopes, line imaging and global or wide-field imaging. Finally, examples of biomedical applications are presented in the context of single cells, laser tweezers, tissue sections, biopsies and whole animals.
Collapse
Affiliation(s)
- C Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - I W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - T Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - M Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - J Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
40
|
Chaban VV, Pal S, Prezhdo OV. Laser-Induced Explosion of Nitrated Carbon Nanotubes: Nonadiabatic and Reactive Molecular Dynamics Simulations. J Am Chem Soc 2016; 138:15927-15934. [DOI: 10.1021/jacs.6b08082] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vitaly V. Chaban
- Instituto
de Ciência e Tecnologia, Universidade Federal de São Paulo, São
José dos Campos, 12231-280 São Paulo, Brazil
| | - Sougata Pal
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
41
|
Chaudhari AA, Ashmore D, Nath SD, Kate K, Dennis V, Singh SR, Owen DR, Palazzo C, Arnold RD, Miller ME, Pillai SR. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J Nanobiotechnology 2016; 14:58. [PMID: 27412259 PMCID: PMC4944237 DOI: 10.1186/s12951-016-0211-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/30/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Due to increasing antibiotic resistance, the use of silver coated single walled carbon nanotubes (SWCNTs-Ag) and antimicrobial peptides (APs) is becoming popular due to their antimicrobial properties against a wide range of pathogens. However, stability against various conditions and toxicity in human cells are some of the major drawbacks of APs and SWCNTs-Ag, respectively. Therefore, we hypothesized that APs-functionalized SWCNTs-Ag could act synergistically. Various covalent functionalization protocols described previously involve harsh treatment of carbon nanotubes for carboxylation (first step in covalent functionalization) and the non-covalently functionalized SWCNTs are not satisfactory. METHODS The present study is the first report wherein SWCNTs-Ag were first carboxylated using Tri sodium citrate (TSC) at 37 °C and then subsequently functionalized covalently with an effective antimicrobial peptide from Therapeutic Inc., TP359 (FSWCNTs-Ag). SWCNTs-Ag were also non covalently functionalized with TP359 by simple mixing (SWCNTs-Ag-M) and both, the FSWCNTs-Ag (covalent) and SWCNTs-Ag-M (non-covalent), were characterized by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet visualization (UV-VIS) and transmission electron microscopy (TEM). Further the antibacterial activity of both and TP359 were investigated against two gram positive (Staphylococcus aureus and Streptococcus pyogenes) and two gram negative (Salmonella enterica serovar Typhimurium and Escherichia coli) pathogens and the cellular toxicity of TP359 and FSWCNTs-Ag was compared with plain SWCNTs-Ag using murine macrophages and lung carcinoma cells. RESULTS FT-IR analysis revealed that treatment with TSC successfully resulted in carboxylation of SWCNTs-Ag and the peptide was indeed attached to the SWCNTs-Ag evidenced by TEM images. More importantly, the present study results further showed that the minimum inhibitory concentration (MIC) of FSWCNTs-Ag were much lower (~7.8-3.9 µg/ml with IC50: ~4-5 µg/ml) compared to SWCNTs-Ag-M and plain SWCNTs-Ag (both 62.6 µg/ml, IC50: ~31-35 µg/ml), suggesting that the covalent conjugation of TP359 with SWCNTs-Ag was very effective on their counterparts. Additionally, FSWCNTs-Ag are non-toxic to the eukaryotic cells at their MIC concentrations (5-2.5 µg/ml) compared to SWCNTs-Ag (62.5 µg/ml). CONCLUSION In conclusion, we demonstrated that covalent functionalization of SWCNTs-Ag and TP359 exhibited an additive antibacterial activity. This study described a novel approach to prepare SWCNT-Ag bio-conjugates without loss of antimicrobial activity and reduced toxicity, and this strategy will aid in the development of novel and biologically important nanomaterials.
Collapse
Affiliation(s)
- Atul A. Chaudhari
- />Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL USA
| | - D’andrea Ashmore
- />Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL USA
| | - Subrata deb Nath
- />Department of Mechanical Engineering, University of Louisville, Louisville, KY USA
| | - Kunal Kate
- />Department of Mechanical Engineering, University of Louisville, Louisville, KY USA
| | - Vida Dennis
- />Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL USA
| | - Shree R. Singh
- />Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL USA
| | - Don R. Owen
- />Therapeutic Peptides Inc., 7053 Revenue Drive, Baton Rouge, LA 70809 USA
| | - Chris Palazzo
- />Therapeutic Peptides Inc., 7053 Revenue Drive, Baton Rouge, LA 70809 USA
| | - Robert D. Arnold
- />Department of Drug Discovery and Development, Auburn University, Auburn, AL USA
| | - Michael E. Miller
- />Research Instrumentation Facility, Auburn University, Auburn, AL USA
| | - Shreekumar R. Pillai
- />Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL USA
| |
Collapse
|
42
|
Chen H, Liu Z, Li S, Su C, Qiu X, Zhong H, Guo Z. Fabrication of Graphene and AuNP Core Polyaniline Shell Nanocomposites as Multifunctional Theranostic Platforms for SERS Real-time Monitoring and Chemo-photothermal Therapy. Am J Cancer Res 2016; 6:1096-104. [PMID: 27279904 PMCID: PMC4893638 DOI: 10.7150/thno.14361] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
In this work, novel theranostic platforms based on graphene oxide and AuNP core polyaniline shell (GO-Au@PANI) nanocomposites are fabricated for simultaneous SERS imaging and chemo-photothermal therapy. PANI, a new NIR photothermal therapy agent with strong NIR absorption, outstanding stability and low cytotoxicity is decorated on AuNPs by one-pot oxidative polymerization, then the Au@PANI core-shell nanoparticles are attached to the graphene oxide (GO) sheet via π-π stacking and electrostatic interaction. The obtained GO-Au@PANI nanohybirds exhibit excellent NIR photothermal transduction efficiency and ultrahigh drug-loading capacity. The nanocomposites can also serve as novel NIR SERS probes utilizing the intense SERS signals of PANI. Rapid SERS imaging of cancer cells is achieved using this ultrasensitive nanoprobe. GO-Au@PANI also reveals good capability of drug delivery with the DOX-loading efficiency of 189.2% and sensitive NIR/pH-responsive DOX release. The intracellular real-time drug release dynamics from the nanocomposites is monitored by SERS-fluorescence dual mode imaging. Finally, chemo-photothermal ablation of cancer cells is carried out in vitro and in vivo using GO-Au@PANI as high-performance chemo-photothermal therapeutic nanoagent. The theranostic applications of GO-Au@PANI endow it with great potential for personalized and precise cancer medicine.
Collapse
|
43
|
Bartelmess J, Quinn SJ, Giordani S. Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem Soc Rev 2016; 44:4672-98. [PMID: 25406743 DOI: 10.1039/c4cs00306c] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon based nanomaterials have emerged over the last few years as important agents for biomedical fluorescence and Raman imaging applications. These spectroscopic techniques utilize either fluorescently labelled carbon nanomaterials or the intrinsic photophysical properties of the carbon nanomaterial. In this review article we present the utilization and performance of several classes of carbon nanomaterials, namely carbon nanotubes, carbon nanohorns, carbon nanoonions, nanodiamonds and different graphene derivatives, which are currently employed for in vitro as well as in vivo imaging in biology and medicine. A variety of different approaches, imaging agents and techniques are examined and the specific properties of the various carbon based imaging agents are discussed. Some theranostic carbon nanomaterials, which combine diagnostic features (i.e. imaging) with cell specific targeting and therapeutic approaches (i.e. drug delivery or photothermal therapy), are also included in this overview.
Collapse
Affiliation(s)
- J Bartelmess
- Istituto Italiano di Tecnologia (IIT), Nano Carbon Materials, Nanophysics Department, Via Morego 30, 16163 Genova, Italy.
| | | | | |
Collapse
|
44
|
Cruz SMA, Girão AF, Gonçalves G, Marques PAAP. Graphene: The Missing Piece for Cancer Diagnosis? SENSORS 2016; 16:s16010137. [PMID: 26805845 PMCID: PMC4732170 DOI: 10.3390/s16010137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/19/2022]
Abstract
This paper reviews recent advances in graphene-based biosensors development in order to obtain smaller and more portable devices with better performance for earlier cancer detection. In fact, the potential of Graphene for sensitive detection and chemical/biological free-label applications results from its exceptional physicochemical properties such as high electrical and thermal conductivity, aspect-ratio, optical transparency and remarkable mechanical and chemical stability. Herein we start by providing a general overview of the types of graphene and its derivatives, briefly describing the synthesis procedure and main properties. It follows the reference to different routes to engineer the graphene surface for sensing applications with organic biomolecules and nanoparticles for the development of advanced biosensing platforms able to detect/quantify the characteristic cancer biomolecules in biological fluids or overexpressed on cancerous cells surface with elevated sensitivity, selectivity and stability. We then describe the application of graphene in optical imaging methods such as photoluminescence and Raman imaging, electrochemical sensors for enzymatic biosensing, DNA sensing, and immunosensing. The bioquantification of cancer biomarkers and cells is finally discussed, particularly electrochemical methods such as voltammetry and amperometry which are generally adopted transducing techniques for the development of graphene based sensors for biosensing due to their simplicity, high sensitivity and low-cost. To close, we discuss the major challenges that graphene based biosensors must overcome in order to reach the necessary standards for the early detection of cancer biomarkers by providing reliable information about the patient disease stage.
Collapse
Affiliation(s)
- Sandra M A Cruz
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - André F Girão
- Nanoengineering Research Group, TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Gil Gonçalves
- Nanoengineering Research Group, TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Paula A A P Marques
- Nanoengineering Research Group, TEMA, Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
45
|
Wang JTW, Rubio N, Kafa H, Venturelli E, Fabbro C, Ménard-Moyon C, Da Ros T, Sosabowski JK, Lawson AD, Robinson MK, Prato M, Bianco A, Festy F, Preston JE, Kostarelos K, Al-Jamal KT. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses. J Control Release 2015; 224:22-32. [PMID: 26742944 PMCID: PMC4756275 DOI: 10.1016/j.jconrel.2015.12.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Earlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNT's brain distribution following intravenous injection. γ-Scintigraphy quantified the uptake of studied radiolabelled f-MWNT in the whole brain parenchyma and capillaries while 3D-single photon emission computed tomography/computed tomography imaging and autoradiography illustrated spatial distribution within various brain regions. Raman and multiphoton luminescence together with transmission electron microscopy confirmed the presence of intact f-MWNT in mouse brain, in a label-free manner. The results evidenced the presence of f-MWNT in mice brain parenchyma, in addition to brain endothelium. Such information on the rate and extent of regional and cellular brain distribution is needed before further implementation into neurological therapeutics can be made.
Collapse
Affiliation(s)
- Julie T-W Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Noelia Rubio
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Houmam Kafa
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Enrica Venturelli
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg F-67000, France
| | - Chiara Fabbro
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
| | - Cécilia Ménard-Moyon
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg F-67000, France
| | - Tatiana Da Ros
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
| | - Jane K Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | | | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg F-67000, France
| | - Frederic Festy
- Tissue Engineering and Biophotonics, Dental Institute, King's College London, London SE1 9RT, UK
| | - Jane E Preston
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Kostas Kostarelos
- Nanomedicine Laboratory, UCL School of Pharmacy, University College London, Brunswick Square, London, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| |
Collapse
|
46
|
Nowacki M, Wisniewski M, Werengowska-Ciecwierz K, Roszek K, Czarnecka J, Łakomska I, Kloskowski T, Tyloch D, Debski R, Pietkun K, Pokrywczynska M, Grzanka D, Czajkowski R, Drewa G, Jundziłł A, Agyin JK, Habib SL, Terzyk AP, Drewa T. Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: a multidisciplinary study of peritoneal carcinomatosis. Oncotarget 2015; 6:22776-98. [PMID: 26254295 PMCID: PMC4673199 DOI: 10.18632/oncotarget.4309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022] Open
Abstract
In general, detection of peritoneal carcinomatosis (PC) occurs at the late stage when there is no treatment option. In the present study, we designed novel drug delivery systems that are functionalized with anti-CD133 antibodies. The C1, C2 and C3 complexes with cisplatin were introduced into nanotubes, either physically or chemically. The complexes were reacted with anti-CD133 antibody to form the labeled product of A0-o-CX-chem-CD133. Cytotoxicity screening of all the complexes was performed on CHO cells. Data showed that both C2 and C3 Pt-complexes are more cytotoxic than C1. Flow-cytometry analysis showed that nanotubes conjugated to CD133 antibody have the ability to target cells expressing the CD133 antigen which is responsible for the emergence of resistance to chemotherapy and disease recurrence. The shortest survival rate was observed in the control mice group (K3) where no hyperthermic intraperitoneal chemotherapy procedures were used. On the other hand, the longest median survival rate was observed in the group treated with A0-o-C1-chem-CD133. In summary, we designed a novel drug delivery system based on carbon nanotubes loaded with Pt-prodrugs and functionalized with anti-CD133 antibodies. Our data demonstrates the effectiveness of the new drug delivery system and provides a novel therapeutic modality in the treatment of melanoma.
Collapse
Affiliation(s)
- Maciej Nowacki
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Marek Wisniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Poland
- Invest-Tech, Research and Development Center, Torun, Poland
| | - Karolina Werengowska-Ciecwierz
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Torun, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Torun, Poland
| | - I. Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Poland
| | - Tomasz Kloskowski
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Dominik Tyloch
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Robert Debski
- Department of Pediatric Hematology and Oncology, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Poland
| | - Katarzyna Pietkun
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
- Chair of Dermatology Department, Faculty of Medicine, Nicolaus Copernicus University, Toruń, Sexually Transmitted Diseases and Immunodermatology, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Dariusz Grzanka
- Chair of Dermatology Department, Faculty of Medicine, Nicolaus Copernicus University, Toruń, Sexually Transmitted Diseases and Immunodermatology, Bydgoszcz, Poland
| | - Rafał Czajkowski
- Chair of Dermatology Department, Faculty of Medicine, Nicolaus Copernicus University, Toruń, Sexually Transmitted Diseases and Immunodermatology, Bydgoszcz, Poland
| | - Gerard Drewa
- Department of Medical Biology, University of Bydgoszcz, Poland
| | - A. Jundziłł
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Joseph K. Agyin
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Samy L. Habib
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Geriatric, South Texas Veterans Health System, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Artur P. Terzyk
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Poland
| | - Tomasz Drewa
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
- Urology Department, Nicolaus Copernicus Hospital in Torun, Torun, Poland
| |
Collapse
|
47
|
Chortarea S, Clift MJD, Vanhecke D, Endes C, Wick P, Petri-Fink A, Rothen-Rutishauser B. Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology 2015; 9:983-93. [DOI: 10.3109/17435390.2014.993344] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Tichauer KM, Wang Y, Pogue BW, Liu JTC. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging. Phys Med Biol 2015; 60:R239-69. [PMID: 26134619 PMCID: PMC4522156 DOI: 10.1088/0031-9155/60/14/r239] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| | | | | | | |
Collapse
|
49
|
Hong G, Diao S, Antaris AL, Dai H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem Rev 2015; 115:10816-906. [PMID: 25997028 DOI: 10.1021/acs.chemrev.5b00008] [Citation(s) in RCA: 826] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Guosong Hong
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Shuo Diao
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Alexander L Antaris
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Hongjie Dai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
50
|
Turcheniuk K, Boukherroub R, Szunerits S. Gold-graphene nanocomposites for sensing and biomedical applications. J Mater Chem B 2015; 3:4301-4324. [PMID: 32262773 DOI: 10.1039/c5tb00511f] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent developments in materials science and nanotechnology have propelled the development of a plethora of materials with unique chemical and physical properties for biomedical applications. Graphitic nanomaterials such as carbon nanotubes, fullerenes and, more recently, graphene oxide (GO) and reduced graphene oxide (rGO) have received a great deal of interest in this domain. Besides the exceptional physico-chemical features of these materials, another advantage is that they can be easily produced in good quantities. Moreover, the presence of abundant functional groups on their surface and good biocompatibility make them highly suitable for biomedical applications. Many research groups have utilized GO and rGO nanocargos to effectively deliver insoluble drugs, nucleic acids and other molecules into cells for bioimaging and therapeutic purposes. Gold nanostructures (Au NSs), on the other hand, have also attracted great attention owing to their applications in biomedical fields, organic catalysis, etc. Loading of GO and rGO sheets with Au NSs generates a new class of functional materials with improved properties and thus provides new opportunities in the use of such hybrid materials for catalytic biosensing and biomedical applications. This review article is aimed at providing an insight into the important features of gold-graphene nanocomposites, the current research activities related to the different synthetic routes to produce these nanocomposites, and their potential applications in sensing and biomedical therapy, notably photothermal therapy (PTT).
Collapse
Affiliation(s)
- Kostiantyn Turcheniuk
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN, UMR CNRS 8520), Université Lille1, Cité Scientifique, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| | | | | |
Collapse
|