1
|
Verma S, Pathak AK, Rahman BMA. Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures. MICROMACHINES 2024; 15:502. [PMID: 38675314 PMCID: PMC11052336 DOI: 10.3390/mi15040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light-matter interactions. Metals, semiconductors, and 2D materials exhibit plasmonic resonances at diverse wavelengths, spanning from ultraviolet (UV) to far infrared, dictated by their unique properties and structures. Surface plasmons offer a platform for various light-matter interaction mechanisms, capitalizing on the orders-of-magnitude enhancement of the electromagnetic field within plasmonic structures. This enhancement has been substantiated through theoretical, computational, and experimental studies. In this comprehensive review, we delve into the plasmon-enhanced processes on metallic and metamaterial-based sensors, considering factors such as geometrical influences, resonating wavelengths, chemical properties, and computational methods. Our exploration extends to practical applications, encompassing localized surface plasmon resonance (LSPR)-based planar waveguides, polymer-based biochip sensors, and LSPR-based fiber sensors. Ultimately, we aim to provide insights and guidelines for the development of next-generation, high-performance plasmonic technological devices.
Collapse
Affiliation(s)
- Sneha Verma
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Akhilesh Kumar Pathak
- Center for Smart Structures and Materials, Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - B. M. Azizur Rahman
- School of Science and Technology, City University of London, London EC1V0HB, UK
| |
Collapse
|
2
|
Kou Y, Zhang XG, Li H, Zhang KL, Xu QC, Zheng QN, Tian JH, Zhang YJ, Li JF. SERS-Based Hydrogen Bonding Induction Strategy for Gaseous Acetic Acid Capture and Detection. Anal Chem 2024; 96:4275-4281. [PMID: 38409670 DOI: 10.1021/acs.analchem.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.
Collapse
Affiliation(s)
- Yichuan Kou
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hongmei Li
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai-Le Zhang
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing-Chi Xu
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Physical Science and Technology, College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
4
|
Verma S, Ghosh S, Rahman B. All-Opto Plasmonic-Controlled Bulk and Surface Sensitivity Analysis of a Paired Nano-Structured Antenna with a Label-Free Detection Approach. SENSORS 2021; 21:s21186166. [PMID: 34577373 PMCID: PMC8473198 DOI: 10.3390/s21186166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022]
Abstract
Gold nanoantennas have been used in a variety of biomedical applications due to their attractive electronic and optical properties, which are shape- and size-dependent. Here, a periodic paired gold nanostructure exploiting surface plasmon resonance is proposed, which shows promising results for Refractive Index (RI) detection due to its high electric field confinement and diffraction limit. Here, single and paired gold nanostructured sensors were designed for real-time RI detection. The Full-Width at Half-Maximum (FWHM) and Figure-Of-Merit (FOM) were also calculated, which relate the sensitivity to the sharpness of the peak. The effect of different possible structural shapes and dimensions were studied to optimise the sensitivity response of nanosensing structures and identify an optimised elliptical nanoantenna with the major axis a, minor axis b, gap between the pair g, and heights h being 100 nm, 10 nm, 10 nm, and 40 nm, respectively. In this work, we investigated the bulk sensitivity, which is the spectral shift per refractive index unit due to the change in the surrounding material, and this value was calculated as 526–530 nm/RIU, while the FWHM was calculated around 110 nm with a FOM of 8.1. On the other hand, the surface sensing was related to the spectral shift due to the refractive index variation of the surface layer near the paired nanoantenna surface, and this value for the same antenna pair was calculated as 250 nm/RIU for a surface layer thickness of 4.5 nm.
Collapse
|
5
|
Nanophotonic biosensors harnessing van der Waals materials. Nat Commun 2021; 12:3824. [PMID: 34158483 PMCID: PMC8219843 DOI: 10.1038/s41467-021-23564-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Low-dimensional van der Waals (vdW) materials can harness tightly confined polaritonic waves to deliver unique advantages for nanophotonic biosensing. The reduced dimensionality of vdW materials, as in the case of two-dimensional graphene, can greatly enhance plasmonic field confinement, boosting sensitivity and efficiency compared to conventional nanophotonic devices that rely on surface plasmon resonance in metallic films. Furthermore, the reduction of dielectric screening in vdW materials enables electrostatic tunability of different polariton modes, including plasmons, excitons, and phonons. One-dimensional vdW materials, particularly single-walled carbon nanotubes, possess unique form factors with confined excitons to enable single-molecule detection as well as in vivo biosensing. We discuss basic sensing principles based on vdW materials, followed by technological challenges such as surface chemistry, integration, and toxicity. Finally, we highlight progress in harnessing vdW materials to demonstrate new sensing functionalities that are difficult to perform with conventional metal/dielectric sensors. This review presents an overview of scenarios where van der Waals (vdW) materials provide unique advantages for nanophotonic biosensing applications. The authors discuss basic sensing principles based on vdW materials, advantages of the reduced dimensionality as well as technological challenges.
Collapse
|
6
|
Marrapu H, Avasarala R, Soma VR, Balivada SK, Podagatlapalli GK. Silver nanoribbons achieved by picosecond ablation using cylindrical focusing and SERS-based trace detection of TNT. RSC Adv 2020; 10:41217-41228. [PMID: 35519204 PMCID: PMC9057809 DOI: 10.1039/d0ra05942k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022] Open
Abstract
We report the fabrication of silver nanoribbons by picosecond laser ablation of bulk silver (Ag) targets submerged in double distilled water (DDW) using a cylindrical focusing geometry. The laser ablation was performed by ∼2 picosecond laser pulses and the corresponding light sheet engendered by a cylindrical lens of focal length ∼4.5 cm. The input pulse energies employed at a wavelength ∼800 nm in the experiments were ∼1000 μJ, ∼1200 μJ, and ∼1400 μJ. In contrast to the case of ablation with spherical lenses, cylindrical lens ablation produced nanoparticles (NPs) and nanostructures (NSs) in 20% less time. The data obtained from the optical characterizations exemplify that localized surface plasmon resonance (LSPR) was observed at 406 nm, 408 nm, and 410 nm for the input energies of ∼1000 μJ, ∼1200 μJ, and ∼1400 μJ, respectively. Interestingly, it was observed that the ablation performed at an input energy of ∼1200 μJ demonstrated the fabrication of Ag nanoribbons rather than the formation of Ag NPs. Selected area electron diffraction (SAED) data of the nanoribbons recorded revealed their crystalline phase and linear morphology. Ag nanomaterials (NPs and ribbons) synthesized in these experiments were employed to detect the explosive molecules of 2,4,6-trinitrotoluene (TNT) at a concentration 25 nM using the technique of surface enhanced Raman scattering. The enhancement factor in the case of Ag nanoribbons (width of ∼20-30 nm, length of ∼0.6-2 μm), obtained using the cylindrical focussing geometry at input pulse energies of ∼1200 μJ, was estimated to be ∼107 for the 1362 cm-1 mode, corresponding to the symmetric NO2 stretch of TNT.
Collapse
Affiliation(s)
- Haribabu Marrapu
- Department of Electronics & Physics, GIS, GITAM deemed to be University Visakhapatnam 530045 Andhra Pradesh India
| | - Ravikiran Avasarala
- Department of Electronics & Physics, GIS, GITAM deemed to be University Visakhapatnam 530045 Andhra Pradesh India
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad Hyderabad 500046 Telangana India
| | | | | |
Collapse
|
7
|
Oh SY, Heo NS, Bajpai VK, Jang SC, Ok G, Cho Y, Huh YS. Development of a Cuvette-Based LSPR Sensor Chip Using a Plasmonically Active Transparent Strip. Front Bioeng Biotechnol 2019; 7:299. [PMID: 31737618 PMCID: PMC6839135 DOI: 10.3389/fbioe.2019.00299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 01/22/2023] Open
Abstract
This research demonstrates the development of a transmission-mode localized surface plasmon resonance (LSPR) sensor chip using a cuvette cell system for the sensitive detection of a biomolecule marker such as C-reactive protein (CRP). In order to develop a highly sensitive LSPR sensor chip, plasmonically active gold nanoparticles (AuNPs) were decorated onto various transparent substrates in the form of a uniform, high-density single layer using a self-assembly process. The transparent substrate surface was modified with amine functional groups via (3-Aminopropyl)triethoxysilane (APTES) treatment, and the ligand concentration and temperature (0.5% APTES at 60°C) were then optimized to control the binding energy with AuNPs. The optimized plasmonically active strip was subsequently prepared by dipping the amine-functionalized substrate into AuNPs for 8 h. The optimized plasmonic strip functionalized with anti-CRP was transformed into a portable LSPR sensor chip by placing it inside a cuvette cell system, and its detection performance was evaluated using CRP as a model sample. The detection limit for CRP using our LSPR sensor chip was 0.01 μg/mL, and the detection dynamic range was 0.01–10 μg/mL with a %CV of <10%, thus confirming its selectivity and good reproducibility. These findings illustrate that the highly sensitive portable LSPR biosensor developed in this study is expected to be widely used in a diverse range of fields such as diagnosis, medical care, environmental monitoring, and food quality control.
Collapse
Affiliation(s)
- Seo Yeong Oh
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Nam Su Heo
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, South Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sung-Chan Jang
- Department of Biological Engineering, Inha University, Incheon, South Korea.,Radwaste Management Center, Korea Atomic Energy Research Institute, Daejeon, South Korea
| | - Gyeongsik Ok
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun, South Korea
| | - Youngjin Cho
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun, South Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
8
|
Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol Adv 2019; 37:107440. [PMID: 31476421 DOI: 10.1016/j.biotechadv.2019.107440] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Infectious diseases such as HIV-1/AIDS, tuberculosis (TB), hepatitis B (HBV), and malaria still exert a tremendous health burden on the developing world, requiring rapid, simple and inexpensive diagnostics for on-site diagnosis and treatment monitoring. However, traditional diagnostic methods such as nucleic acid tests (NATs) and enzyme linked immunosorbent assays (ELISA) cannot be readily implemented in point-of-care (POC) settings. Recently, plasmonic-based biosensors have emerged, offering an attractive solution to manage infectious diseases in the developing world since they can achieve rapid, real-time and label-free detection of various pathogenic biomarkers. Via the principle of plasmonic-based optical detection, a variety of biosensing technologies such as surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), colorimetric plasmonic assays, and surface enhanced Raman spectroscopy (SERS) have emerged for early diagnosis of HIV-1, TB, HBV and malaria. Similarly, plasmonic-based colorimetric assays have also been developed with the capability of multiplexing and cellphone integration, which is well suited for POC testing in the developing world. Herein, we present a comprehensive review on recent advances in surface chemistry, substrate fabrication, and microfluidic integration for the development of plasmonic-based biosensors, aiming at rapid management of infectious diseases at the POC, and thus improving global health.
Collapse
|
9
|
Solvent-assisted preparation of supported lipid bilayers. Nat Protoc 2019; 14:2091-2118. [DOI: 10.1038/s41596-019-0174-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/02/2019] [Indexed: 11/08/2022]
|
10
|
Shabaninezhad M, Ramakrishna G. Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells. J Chem Phys 2019; 150:144116. [DOI: 10.1063/1.5090885] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Masoud Shabaninezhad
- Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Guda Ramakrishna
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
| |
Collapse
|
11
|
Jeong HH, Choi E, Ellis E, Lee TC. Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. J Mater Chem B 2019. [DOI: 10.1039/c9tb00557a] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hybrid gold nanoparticles for biomedical applications are reviewed in the context of a novel classification framework and illustrated by recent examples.
Collapse
Affiliation(s)
- Hyeon-Ho Jeong
- Max Planck Institute for Intelligent Systems
- 70569 Stuttgart
- Germany
- Cavendish Laboratory
- University of Cambridge
| | - Eunjin Choi
- Max Planck Institute for Intelligent Systems
- 70569 Stuttgart
- Germany
| | - Elizabeth Ellis
- Department of Chemistry
- University College London (UCL)
- WC1H 0AJ London
- UK
- Institute for Materials Research and Engineering (IMRE)
| | - Tung-Chun Lee
- Department of Chemistry
- University College London (UCL)
- WC1H 0AJ London
- UK
- Institute for Materials Discovery
| |
Collapse
|
12
|
Sperling JR, Macias G, Neale SL, Clark AW. Multilayered Nanoplasmonic Arrays for Self-Referenced Biosensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34774-34780. [PMID: 30207457 DOI: 10.1021/acsami.8b12604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanostructured sensors based on localized surface plasmon resonance (LSPR) offer a number of advantages over other optical sensing technologies, making them excellent candidates for miniaturized, label-free chemical and biological detection. Highly sensitive to local refractive index changes, the resonance peaks of the nanosensors shift by different amounts when subject to different biological and chemical environments. Modifications to the nanostructure surface allow for the detection of specific molecules and chemicals with shifts so sensitive that the presence of single molecules can be detected. However, this extreme sensitivity has its drawbacks. Resonance shifts also occur because of temperature shifts, light-intensity fluctuations, and other environmental factors. To distinguish detection from drift, a secondary sensor region is often required. This often doubles the size of the device, requires two light sources and detectors (or complex optics), doubles the sample volume required (which may be expensive, or may not be possible if the sample quantity is limited), and subjects the reference to potential biofouling. Here, we present a new proof-of-concept multilayered LSPR sensor design that incorporates both a sensing layer and an encapsulated reference layer within the same region. By doing so, we are able to monitor and correct for sensor drift without the need for a secondary reference channel. We demonstrate the suitability of this sensor for sucrose concentration measurements and for the detection of biotin-avidin interactions, while also showing that the sensor can self-correct for drift. We believe that this multilayer sensor design holds promise for point-of-care diagnostics.
Collapse
Affiliation(s)
- Justin R Sperling
- Biomedical Engineering Research Division, School of Engineering , University of Glasgow , Glasgow G128LT , U.K
| | - Gerard Macias
- Biomedical Engineering Research Division, School of Engineering , University of Glasgow , Glasgow G128LT , U.K
| | - Steven L Neale
- Biomedical Engineering Research Division, School of Engineering , University of Glasgow , Glasgow G128LT , U.K
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering , University of Glasgow , Glasgow G128LT , U.K
| |
Collapse
|
13
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
14
|
La Spada L, Vegni L. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications. MATERIALS 2018; 11:ma11040603. [PMID: 29652853 PMCID: PMC5951487 DOI: 10.3390/ma11040603] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell's equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on "metamaterial" concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring.
Collapse
Affiliation(s)
- Luigi La Spada
- School of Computing, Electronics and Mathematics, Coventry University, Coventry CV1 5FB, UK.
| | - Lucio Vegni
- Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy.
| |
Collapse
|
15
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
16
|
Abstract
INTRODUCTION Bioanalytical sensing based on the principle of localized surface plasmon resonance experiences is currently an extremely rapid development. Novel sensors with new kinds of plasmonic transducers and innovative concepts for the signal development as well as read-out principles were identified. This review will give an overview of the development of this field. Areas covered: The focus is primarily on types of transducers by preparation or dimension, factors for optimal sensing concepts and the critical view of the usability of these devices as innovative sensors for bioanalytical applications. Expert commentary: Plasmonic sensor devices offer a high potential for future biosensing given that limiting factors such as long-time stability of the transducers, the required high sensitivity and the cost-efficient production are addressed. For higher sensitivity, the design of the sensor in shape and material has to be combined with optimal enhancement strategies. Plasmonic nanoparticles from bottom-up synthesis with a post-synthetic processing show a high potential for cost-efficient sensor production. Regarding the measurement principle, LSPRi offers a large potential for multiplex sensors and can provide a high-throughput as well as highly paralleled sensing. The main trends are expected towards optimal LSPR concepts which represent cost-efficient and robust point-of-care solutions, and the use of multiplexed devices for clinical applications.
Collapse
Affiliation(s)
- Andrea Csáki
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| | - Ondrej Stranik
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| | - Wolfgang Fritzsche
- a Department Nanobiophotonics , Leibniz Institute of Photonic Technology (IPHT) , Jena , Germany
| |
Collapse
|
17
|
Ferhan AR, Jackman JA, Park JH, Cho NJ, Kim DH. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Adv Drug Deliv Rev 2018; 125:48-77. [PMID: 29247763 DOI: 10.1016/j.addr.2017.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
The detection of cancer biomarkers represents an important aspect of cancer diagnosis and prognosis. Recently, the concept of liquid biopsy has been introduced whereby diagnosis and prognosis are performed by means of analyzing biological fluids obtained from patients to detect and quantify circulating cancer biomarkers. Unlike conventional biopsy whereby primary tumor cells are analyzed, liquid biopsy enables the detection of a wide variety of circulating cancer biomarkers, including microRNA (miRNA), circulating tumor DNA (ctDNA), proteins, exosomes and circulating tumor cells (CTCs). Among the various techniques that have been developed to detect circulating cancer biomarkers, nanoplasmonic sensors represent a promising measurement approach due to high sensitivity and specificity as well as ease of instrumentation and operation. In this review, we discuss the relevance and applicability of three different categories of nanoplasmonic sensing techniques, namely surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS), for the detection of different classes of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, 16419, Republic of Korea.
| |
Collapse
|
18
|
Taylor AB, Zijlstra P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens 2017; 2:1103-1122. [PMID: 28762723 PMCID: PMC5573902 DOI: 10.1021/acssensors.7b00382] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.
Collapse
Affiliation(s)
- Adam B. Taylor
- Molecular Biosensing for
Medical Diagnostics, Faculty of Applied Physics, & Institute for
Complex Molecular Systems, Eindhoven University
of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter Zijlstra
- Molecular Biosensing for
Medical Diagnostics, Faculty of Applied Physics, & Institute for
Complex Molecular Systems, Eindhoven University
of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
19
|
Ferhan AR, Ma GJ, Jackman JA, Sut TN, Park JH, Cho NJ. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1484. [PMID: 28644423 PMCID: PMC5539686 DOI: 10.3390/s17071484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022]
Abstract
The integration of supported lipid membranes with surface-based nanoplasmonic arrays provides a powerful sensing approach to investigate biointerfacial phenomena at membrane interfaces. While a growing number of lipid vesicles, protein, and nucleic acid systems have been explored with nanoplasmonic sensors, there has been only very limited investigation of the interactions between solution-phase nanomaterials and supported lipid membranes. Herein, we established a surface-based localized surface plasmon resonance (LSPR) sensing platform for probing the interaction of dielectric nanoparticles with supported lipid bilayer (SLB)-coated, plasmonic nanodisk arrays. A key emphasis was placed on controlling membrane functionality by tuning the membrane surface charge vis-à-vis lipid composition. The optical sensing properties of the bare and SLB-coated sensor surfaces were quantitatively compared, and provided an experimental approach to evaluate nanoparticle-membrane interactions across different SLB platforms. While the interaction of negatively-charged silica nanoparticles (SiNPs) with a zwitterionic SLB resulted in monotonic adsorption, a stronger interaction with a positively-charged SLB resulted in adsorption and lipid transfer from the SLB to the SiNP surface, in turn influencing the LSPR measurement responses based on the changing spatial proximity of transferred lipids relative to the sensor surface. Precoating SiNPs with bovine serum albumin (BSA) suppressed lipid transfer, resulting in monotonic adsorption onto both zwitterionic and positively-charged SLBs. Collectively, our findings contribute a quantitative understanding of how supported lipid membrane coatings influence the sensing performance of nanoplasmonic arrays, and demonstrate how the high surface sensitivity of nanoplasmonic sensors is well-suited for detecting the complex interactions between nanoparticles and lipid membranes.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Tun Naw Sut
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Jae Hyeon Park
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
20
|
Ferhan AR, Jackman JA, Cho NJ. Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon Resonance Sensing. Anal Chem 2017; 89:4301-4308. [PMID: 28293950 DOI: 10.1021/acs.analchem.7b00370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
On account of high surface sensitivity, localized surface plasmon resonance (LSPR) sensors have proven widely useful for studying lipid membrane configurations at solid-liquid interfaces. Key measurement capabilities include distinguishing adsorbed vesicles from supported lipid bilayers (SLBs) as well as profiling the extent of deformation among adsorbed vesicles. Such capabilities rely on detecting geometrical changes in lipid membrane configuration on a length scale that is comparable to the decay length of the LSPR-induced electromagnetic field enhancement (∼5-20 nm). Herein, we report that LSPR sensors are also capable of probing nanoscale (∼1 nm) variations in the distance between SLBs and underlying silica-coated surfaces. By tuning the electrostatic properties of lipid membranes, we could modulate the bilayer-substrate interaction and corresponding separation distance, as verified by simultaneous LSPR and quartz crystal microbalance-dissipation (QCM-D) measurements. Theoretical calculations of the expected variation in the LSPR measurement response agree well with experimental results and support that the LSPR measurement response is sensitive to subtle variations in the bilayer-substrate separation distance.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
21
|
Nugroho FAA, Frost R, Antosiewicz TJ, Fritzsche J, Larsson Langhammer EM, Langhammer C. Topographically Flat Nanoplasmonic Sensor Chips for Biosensing and Materials Science. ACS Sens 2017; 2:119-127. [PMID: 28722444 DOI: 10.1021/acssensors.6b00612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoplasmonic sensors typically comprise arrangements of noble metal nanoparticles on a dielectric support. Thus, they are intrinsically characterized by surface topography with corrugations at the 10-100 nm length scale. While irrelevant in some bio- and chemosensing applications, it is also to be expected that the surface topography significantly influences the interaction between solids, fluids, nanoparticles and (bio)molecules, and the nanoplasmonic sensor surface. To address this issue, we present a wafer-scale nanolithography-based fabrication approach for high-temperature compatible, chemically inert, topographically flat, and laterally homogeneous nanoplasmonic sensor chips. We demonstrate their sensing performance on three different examples, for which we also carry out a direct comparison with a traditional nanoplasmonic sensor with representative surface corrugation. Specifically, we (i) quantify the film-thickness dependence of the glass transition temperature in poly(methyl metacrylate) thin films, (ii) characterize the adsorption and specific binding kinetics of the avidin-biotinylated bovine serum albumin protein system, and (iii) analyze supported lipid bilayer formation on SiO2 surfaces.
Collapse
Affiliation(s)
| | - Rickard Frost
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tomasz J. Antosiewicz
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joachim Fritzsche
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
22
|
Jackman JA, Yorulmaz Avsar S, Ferhan AR, Li D, Park JH, Zhdanov VP, Cho NJ. Quantitative Profiling of Nanoscale Liposome Deformation by a Localized Surface Plasmon Resonance Sensor. Anal Chem 2016; 89:1102-1109. [PMID: 27983791 DOI: 10.1021/acs.analchem.6b02532] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Characterizing the shape of sub-100 nm, biological soft-matter particulates (e.g., liposomes and exosomes) adsorbed at a solid-liquid interface remains a challenging task. Here, we introduce a localized surface plasmon resonance (LSPR) sensing approach to quantitatively profile the deformation of nanoscale, fluid-phase 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes contacting a titanium dioxide substrate. Experimental and theoretical results validate that, due to its high sensitivity to the spatial proximity of phospholipid molecules near the sensor surface, the LSPR sensor can discriminate fine differences in the extent of ionic strength-modulated liposome deformation at both low and high surface coverages. By contrast, quartz crystal microbalance-dissipation (QCM-D) measurements performed with equivalent samples were qualitatively sensitive to liposome deformation only at saturation coverage. Control experiments with stiffer, gel-phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes verified that the LSPR measurement discrimination arises from the extent of liposome deformation, while the QCM-D measurements yield a more complex response that is also sensitive to the motion of adsorbed liposomes and coupled solvent along with lateral interactions between liposomes. Collectively, our findings demonstrate the unique measurement capabilities of LSPR sensors in the area of biological surface science, including competitive advantages for probing the shape properties of adsorbed, nanoscale biological particulates.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Saziye Yorulmaz Avsar
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Danlin Li
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Vladimir P Zhdanov
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore.,Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
23
|
Kojori HS, Ji Y, Paik Y, Braunschweig AB, Kim SJ. Monitoring interfacial lectin binding with nanomolar sensitivity using a plasmon field effect transistor. NANOSCALE 2016; 8:17357-17364. [PMID: 27714196 DOI: 10.1039/c6nr05544c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
By immobilizing glycopolymers onto the surface of the recently developed plasmonic field effect transistor (FET), the recognition between lectins and surface-immobilized glycopolymers can be detected over a wide dynamic range (10-10 to 10-4 M) in an environment that resembles the glycocalyx. The binding to the sensor surface by various lectins was tested, and the selectivities and relative binding affinity trends observed in solution were maintained on the sensor surface, and the significantly higher avidities are attributed to cluster-glycoside effects that occur on the surface. The combination of polymer surface chemistry and optoelectronic output in this device architecture produces amongst the highest reported detection sensitivity for ConA. This work demonstrates the benefits that arise from combining emerging device architectures and soft-matter systems to create cutting edge nanotechnologies that lend themselves to fundamental biological studies and integration into point-of-use diagnostics and sensors.
Collapse
Affiliation(s)
- Hossein Shokri Kojori
- Department of Electrical and Computer Engineering, University of Miami, Miami, Florida 33124, USA.
| | - Yiwen Ji
- Department of Chemistry, University of Miami, Miami, Florida 33124, USA
| | - Younghun Paik
- Department of Electrical and Computer Engineering, University of Miami, Miami, Florida 33124, USA.
| | - Adam B Braunschweig
- Department of Chemistry, University of Miami, Miami, Florida 33124, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA. and Department of Chemistry and Biochemistry, City University of New York-Hunter College, 695 Park Avenue, New York, New York 10065, USA
| | - Sung Jin Kim
- Department of Electrical and Computer Engineering, University of Miami, Miami, Florida 33124, USA. and Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), Miami, Florida 33124, USA
| |
Collapse
|
24
|
Wang Y, Chen J, Sun C, Rong K, Li H, Gong Q. An ultrahigh-contrast and broadband on-chip refractive index sensor based on a surface-plasmon-polariton interferometer. Analyst 2016; 140:7263-70. [PMID: 26273704 DOI: 10.1039/c5an00935a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a double-slit structure fabricated on a gold film or a subwavelength (300 nm) plasmonic waveguide, high-contrast and broadband plasmonic sensors based on the interference of surface plasmon polaritons (SPPs) are experimentally demonstrated on chips. By adjusting the focused spot position of the p-polarized incident light on the double-slit structure to compensate for the propagation loss of the SPPs, the interfering SPPs from the two slits have nearly equal intensities. As a result, nearly completely destructive interference can be experimentally achieved in a broad bandwidth (>200 nm), revealing the robust design and fabrication of the double-slit structure. More importantly, a high sensing figure of merit (FOM*) of >1 × 10(4) RIU(-1) (refractive index unit), which is much greater than the previous experimental results, is obtained at the destructive wavelength because of a high contrast ratio (C = 0.96). The high-contrast and broadband on-chip sensor fabricated on the subwavelength plasmonic waveguide may find important applications in the real-time sensing of particles and molecules.
Collapse
Affiliation(s)
- Yujia Wang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
25
|
Sahoo PK, Joseph J, Yukino R, Sandhu A. High sensitivity refractive index sensor based on simple diffraction from phase grating. OPTICS LETTERS 2016; 41:2101-2104. [PMID: 27128084 DOI: 10.1364/ol.41.002101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a technique for refractive index sensing using a phase grating structure. A grating under normal incidence can be designed such that the first-order diffracted light travels at a diffraction angle of 90° with respect to the zeroth order. The diffracted light, which is along the direction of periodicity, can further be diffracted from the grating and interfere with the zeroth-order light. Under this condition, the π phase difference that arises between the two interfering beams results in a transmission dip. We can tune this dip wavelength for senor applications, based on the grating equation. This Letter presents both simulation and experimental data that show good agreement with each other.
Collapse
|
26
|
Roh J, Back SH, Ahn DJ. Shape-Persistent Replica Synthesis of Gold/Silver Bimetallic Nanoplates Using Tailored Silica Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1322-1327. [PMID: 26765777 DOI: 10.1002/smll.201500799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Shape-persistent replica synthesis of Au/Ag bimetallic nanoplates is invented. Using a tailored silica cage as a template for the synthesis, a successful shape-replication of Au/Ag bimetallic nanoplate is achieved at the cage core having geometry of initial Ag nanoplate. This work can open up the simple fabrication of multicomponent metallic particles, with nanogeometry being defined early at the initial stage.
Collapse
Affiliation(s)
- Jinkyu Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Hyuk Back
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
27
|
Matthews JR, Payne CM, Hafner JH. Analysis of Phospholipid Bilayers on Gold Nanorods by Plasmon Resonance Sensing and Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9893-9900. [PMID: 26302310 DOI: 10.1021/acs.langmuir.5b01203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and localized surface plasmon resonance sensing (LSPR) have been applied for a detailed analysis of lipid bilayers at the surface of gold nanorods. The spatial dependence of surface enhancement and the optical effects of the lipid phase transition confirm the presence of a bilayer membrane structure. Deuterated lipids exchanged rapidly between the nanorod surface and lipid vesicles in solution, suggesting a loosely bound, natural membrane structure. However, at a low solution concentration of lipid vesicles, the lipids on the gold nanorod surface convert to a nonbilayer structure, which could impact biological applications of these nanomaterials.
Collapse
Affiliation(s)
- James R Matthews
- Department of Physics and Astronomy and ‡Department of Chemistry, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Courtney M Payne
- Department of Physics and Astronomy and ‡Department of Chemistry, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Jason H Hafner
- Department of Physics and Astronomy and ‡Department of Chemistry, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
28
|
Zhang L, Christensen SM, Bendix PM, Bhatia VK, Loft S, Stamou D. Interferometric Detection of Single Gold Nanoparticles Calibrated against TEM Size Distributions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3550-3555. [PMID: 25824101 DOI: 10.1002/smll.201403498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Single nanoparticle analysis: An interferometric optical approach calibrates sizes of gold nanoparticles (AuNPs) from the interference intensities by calibrating their interferometric signals against the corresponding transmission electron microscopy measurements. This method is used to investigate whether size affects the diffusion behavior of AuNPs conjugated to supported lipid bilayer membranes and to multiplex the simultaneous detection of three different AuNP labels.
Collapse
Affiliation(s)
- Lixue Zhang
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Sune M Christensen
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Poul Martin Bendix
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Vikram Kjøller Bhatia
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Steffen Loft
- Institute of Public Health Department of Environmental Health, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Dimitrios Stamou
- Bio-Nanotechnology Laboratory, Department of Chemistry Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
29
|
Kausar ASMZ, Reza AW, Latef TA, Ullah MH, Karim ME. Optical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology. SENSORS (BASEL, SWITZERLAND) 2015; 15:8787-831. [PMID: 25884787 PMCID: PMC4431286 DOI: 10.3390/s150408787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 01/25/2023]
Abstract
The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.
Collapse
Affiliation(s)
| | - Ahmed Wasif Reza
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Tarik Abdul Latef
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohammad Habib Ullah
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
30
|
Oh E, Jackman JA, Yorulmaz S, Zhdanov VP, Lee H, Cho NJ. Contribution of temperature to deformation of adsorbed vesicles studied by nanoplasmonic biosensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:771-781. [PMID: 25531903 DOI: 10.1021/la504267g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
With increasing temperature, biological macromolecules and nanometer-sized aggregates typically undergo complex and poorly understood reconfigurations, especially in the adsorbed state. Herein, we demonstrate the strong potential of using localized surface plasmon resonance (LSPR) sensors to address challenging questions related to this topic. By employing an LSPR-based gold nanodisk array platform, we have studied the adsorption of sub-100-nm diameter 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles on titanium oxide at two temperatures, 23 and 50 °C. Inside this temperature range, DPPC lipid vesicles undergo the gel-to-fluid phase transition accompanied by membrane area expansion, while DOPC lipid vesicles remain in the fluid-phase state. To interpret the corresponding measurement results, we have derived general equations describing the effect of deformation of adsorbed vesicles on the LSPR signal. At the two temperatures, the shape of adsorbed DPPC lipid vesicles on titanium oxide remains nearly equivalent, while DOPC lipid vesicles become less deformed at higher temperature. Adsorption and rupture of DPPC lipid vesicles on silicon oxide were also studied for comparison. In contrast to the results obtained on titanium oxide, adsorbed vesicles on silicon oxide become more deformed at higher temperature. Collectively, the findings demonstrate that increasing temperature may ultimately promote, hinder, or have negligible effect on the deformation of adsorbed vesicles. The physics behind these observations is discussed, and helps to clarify the interplay of various, often hidden, factors involved in adsorption of biological macromolecules at interfaces.
Collapse
Affiliation(s)
- Eunkyul Oh
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | | | | | | | | | | |
Collapse
|
31
|
Zan GH, Jackman JA, Kim SO, Cho NJ. Controlling lipid membrane architecture for tunable nanoplasmonic biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4828-32. [PMID: 25079046 DOI: 10.1002/smll.201400518] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/21/2014] [Indexed: 05/07/2023]
Abstract
Tunable nanoplasmonic biosensing for lipid and protein applications is reported based on controlling lipid membrane architecture on surfaces. The interaction of a peptide with lipid membranes is highly sensitive to the membrane architecture on top of plasmonic nanodisks, and the measurement response varies in a manner which is consistent with the surrounding lipid environment.
Collapse
Affiliation(s)
- Goh Haw Zan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore
| | | | | | | |
Collapse
|
32
|
Lee YK, Kim S, Nam JM. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles. Chemphyschem 2014; 16:77-84. [PMID: 25345401 DOI: 10.1002/cphc.201402529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 11/11/2022]
Abstract
Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles.
Collapse
Affiliation(s)
- Young Kwang Lee
- Department of Chemistry, Seoul National University, Seoul 151-747 (South Korea); Howard Hughes Medical Institute and Department of Chemistry, University of California, Berkeley, CA 94720 (USA)
| | | | | |
Collapse
|
33
|
Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP. Molecular plasmonics for nanoscale spectroscopy. Chem Soc Rev 2014; 43:1230-47. [PMID: 23982428 DOI: 10.1039/c3cs60187k] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Surface- and tip-enhanced Raman and LSPR spectroscopies have developed over the past 15 years as unique tools for uncovering the properties of single particles and single molecules that are unobservable in ensemble measurements. Measurements of individual events provide insight into the distribution of molecular properties that are averaged over in ensemble experiments. Raman and LSPR spectroscopy can provide detailed information on the identity of molecular species and changes in the local environment, respectively. In this review a detailed discussion is presented on single-molecule and single-particle Raman and LSPR spectroscopy focusing on the major developments in the fields and applications of the techniques.
Collapse
Affiliation(s)
- Matthew D Sonntag
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Jackman JA, Zhdanov VP, Cho NJ. Nanoplasmonic biosensing for soft matter adsorption: kinetics of lipid vesicle attachment and shape deformation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9494-503. [PMID: 25035920 DOI: 10.1021/la502431x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An indirect nanoplasmonic sensing platform is reported for investigating the kinetics of attachment and shape deformation associated with lipid vesicle adsorption onto a titanium oxide-coated substrate. The localized surface plasmon resonance (LSPR) originates from embedded gold nanodisks and is highly sensitive to the local lipid environment. To interpret the corresponding results, we have extended treatments of diffusion-limited adsorption kinetics and adsorbate-related LSPR physics, identified the expected scaling laws for the LSPR-tracked kinetics measured at different lipid concentrations and/or nanometer-scale vesicle sizes in the case when vesicle deformation is negligible, and scrutinized experimental deviations accordingly. After adsorption, the smallest 58 nm diameter vesicles were found to maintain shape on the time scale of adsorption at high lipid concentrations in solution, and shape deformation became more appreciable at lower lipid concentrations. Higher saturation coverage was observed with increasing lipid concentration, which is attributed to the difference in relative time scales of vesicle attachment and deformation. For larger vesicles between 80 and 160 nm diameter, deviations associated with their shape deformation and correlations with the location of gold nanodisks became more apparent at moderate and high coverages. Taken together, the results obtained support that the quantitative measurement capabilities of nanoplasmonic biosensing should be considered for applications demanding highly surface-sensitive characterization of soft matter adsorption and related phenomena at liquid-solid interfaces.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | | | | |
Collapse
|
35
|
Boulais E, Lachaine R, Hatef A, Meunier M. Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.06.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Choi CJ, Semancik S. Effect of interdome spacing on the resonance properties of plasmonic nanodome arrays for label-free optical sensing. OPTICS EXPRESS 2013; 21:28304-28313. [PMID: 24514341 DOI: 10.1364/oe.21.028304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we report on experimental and theoretical studies that investigate how the structural properties of plasmonic nanodome array devices determine their optical properties and sensing performance. We examined the effect of the interdome gap spacing within the plasmonic array structures on the performance for detection of change in local refractive index environment for label-free capture affinity biosensing applications. Optical sensing properties were characterized for nanodome array devices with interdome spacings of 14 nm, 40 nm, and 79 nm, as well as for a device where adjacent domes are in contact. For each interdome spacing, the extinction spectrum was measured using a broadband reflection instrumentation, and finite-difference-time-domain (FDTD) simulation was used to model the local electric field distribution associated with the resonances. Based on these studies, we predict that nanodome array devices with gap between 14 nm to 20 nm provide optimal label-free capture affinity biosensing performances, where the dipole resonance mode exhibits the highest overall surface sensitivity, as well as the lowest limit of detection.
Collapse
|
37
|
Raziman TV, Martin OJF. Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures. OPTICS EXPRESS 2013; 21:21500-21507. [PMID: 24104025 DOI: 10.1364/oe.21.021500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We study the effect of realistically rounding nanorod antennae and gap antennae on their far field and near field properties. The simulations show that both scattering behaviour and polarisation charge distribution depend significantly on rounding. Rounding is also seen to have a major effect on coupling between nanostructures. The results suggest that it is important to incorporate the effect of rounding to be able to design plasmonic nanostructures with desired properties.
Collapse
|
38
|
Choi CJ, Semancik S. Multi-resonant plasmonic nanodome arrays for label-free biosensing applications. NANOSCALE 2013; 5:8138-8145. [PMID: 23884400 DOI: 10.1039/c3nr02374e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The characteristics and utility of plasmonic nanodome arrays capable of supporting multiple resonance modes are described. A low-cost, large-area replica molding process is used to produce, on flexible plastic substrates, two-dimensional periodic arrays of cylinders that are subsequently coated with SiO2 and Ag thin films to form dome-shaped structures, with 14 nm spacing between the features, in a precise and reproducible fashion. Three distinct optical resonance modes, a grating diffraction mode and two localized surface plasmon resonance (LSPR) modes, are observed experimentally and confirmed by finite-difference-time-domain (FDTD) modeling which is used to calculate the electromagnetic field distribution of each resonance around the nanodome array structure. Each optical mode is characterized by measuring sensitivity to bulk refractive index changes and to surface effects, which are examined using stacked polyelectrolyte layers. The utility of the plasmonic nanodome array as a functional interface for biosensing applications is demonstrated by performing a bioassay to measure the binding affinity constant between protein A and human immunoglobulin G (IgG) as a model system. The nanoreplica molding process presented in this work allows for simple, inexpensive, high-throughput fabrication of nanoscale plasmonic structures over a large surface area (120 × 120 mm(2)) without the requirement for high resolution lithography or additional processes such as etching or liftoff. The availability of multiple resonant modes, each with different optical properties, allows the nanodome array surface to address a wide range of biosensing problems with various target analytes of different sizes and configurations.
Collapse
Affiliation(s)
- Charles J Choi
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.
| | | |
Collapse
|
39
|
Rivas G, Alfonso C, Jiménez M, Monterroso B, Zorrilla S. Macromolecular interactions of the bacterial division FtsZ protein: from quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube. Biophys Rev 2013; 5:63-77. [PMID: 28510160 DOI: 10.1007/s12551-013-0115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022] Open
Abstract
The division of Escherichia coli is an essential process strictly regulated in time and space. It requires the association of FtsZ with other proteins to assemble a dynamic ring during septation, forming part of the functionally active division machinery, the divisome. FtsZ reversibly interacts with FtsA and ZipA at the cytoplasmic membrane to form a proto-ring, the first molecular assembly of the divisome, which is ultimately joined by the rest of the division-specific proteins. In this review we summarize the quantitative approaches used to study the activity, interactions, and assembly properties of FtsZ under well-defined solution conditions, with the aim of furthering our understanding of how the behavior of FtsZ is controlled by nucleotides and physiological ligands. The modulation of the association and assembly properties of FtsZ by excluded-volume effects, reproducing in part the natural crowded environment in which this protein has evolved to function, will be described. The subsequent studies on the reactivity of FtsZ in membrane-like systems using biochemical, biophysical, and imaging technologies are reported. Finally, we discuss the experimental challenges to be met to achieve construction of the minimum protein set needed to initiate bacterial division, without cells, in a cell-like compartment. This integrated approach, combining quantitative and synthetic strategies, will help to support (or dismiss) conclusions already derived from cellular and molecular analysis and to complete our understanding on how bacterial division works.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mercedes Jiménez
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Silvia Zorrilla
- Instituto de Química Física "Rocasolano" (CSIC), c/Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
40
|
Dahlin AB, Wittenberg NJ, Höök F, Oh SH. Promises and Challenges of Nanoplasmonic Devices for Refractometric Biosensing. NANOPHOTONICS 2013; 2:83-101. [PMID: 24159429 PMCID: PMC3804425 DOI: 10.1515/nanoph-2012-0026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Optical biosensors based on surface plasmon resonance (SPR) in metallic thin films are currently standard tools for measuring molecular binding kinetics and affinities - an important task for biophysical studies and pharmaceutical development. Motivated by recent progress in the design and fabrication of metallic nanostructures, such as nanoparticles or nanoholes of various shapes, researchers have been pursuing a new generation of biosensors harnessing tailored plasmonic effects in these engineered nanostructures. Nanoplasmonic devices, while demanding nanofabrication, offer tunability with respect to sensor dimension and physical properties, thereby enabling novel biological interfacing opportunities and extreme miniaturization. Here we provide an integrated overview of refractometric biosensing with nanoplasmonic devices and highlight some recent examples of nanoplasmonic sensors capable of unique functions that are difficult to accomplish with conventional SPR. For example, since the local field strength and spatial distribution can be readily tuned by varying the shape and arrangement of nanostructures, biomolecular interactions can be controlled to occur in regions of high field strength. This may improve signal-to-noise and also enable sensing a small number of molecules. Furthermore, the nanoscale plasmonic sensor elements may, in combination with nanofabrication and materials-selective surface-modifications, make it possible to merge affinity biosensing with nanofluidic liquid handling.
Collapse
Affiliation(s)
- Andreas B. Dahlin
- Chalmers University of Technology, Division of Bionanophotonics, Department of Applied Physics, Fysikgränd 3, 41296, Göteborg, Sweden
| | - Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, Laboratory of Nanostructures and Biosensing, University of Minnesota, Twin Cities, 200 Union St. S.E., Minneapolis, MN 55455, U.S.A
| | - Fredrik Höök
- Chalmers University of Technology, Division of Bionanophotonics, Department of Applied Physics, Fysikgränd 3, 41296, Göteborg, Sweden
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, Laboratory of Nanostructures and Biosensing, University of Minnesota, Twin Cities, 200 Union St. S.E., Minneapolis, MN 55455, U.S.A
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
41
|
Grabinski C, Schlager J, Hussain S. Hyperspectral microscopy for characterization of gold nanoparticles in biological media and cells for toxicity assessment. Methods Mol Biol 2013; 1025:167-178. [PMID: 23918337 DOI: 10.1007/978-1-62703-462-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanoparticles (NPs) are being implemented in a wide range of applications, and it is critical to proactively investigate their toxicity. Due to the extensive range of NPs being produced, in vitro studies are a valuable approach for toxicity screening. Key information required to support in vitro toxicity assessments include NP stability in biologically relevant media and fate once exposed to cells. Hyperspectral microscopy is a sensitive, real-time technique that combines the use of microscopy and spectroscopy for the measurement of the reflectance spectrum at individual pixels in a micrograph. This method has been used extensively for molecular imaging with plasmonic NPs as contrast agents (Aaron et al., Opt Express 16:2153-2167, 2008; Kumar et al., Nano Lett 7:1338-1343, 2007; Wax and Sokolov, Laser Photon Rev 3:146-158, 2009; Curry et al., Opt Express 14:6535-6542, 2006; Curry et al., J Biomed Opt 13:014022, 2008; Cognet et al., Proc Natl Acad Sci U S A 100:11350-11355, 2003; Sokolov et al., Cancer Res 63:1999-2004, 2003; Sönnichsen et al., Nat Biotechnol 23:741-745, 2005; Nusz et al., Anal Chem 80:984-989, 2008) and/or sensors (Nusz et al., Anal Chem 80:984-989, 2008; Ungureanu et al., Sens Actuators B 150:529-536, 2010; McFarland and Van Duyne, Nano Lett 3:1057-1062, 2003; Galush et al., Nano Lett 9:2077-2082, 2009; El-Sayed et al., Nano Lett 5:829-834, 2005). Here we describe an approach for using hyperspectral microscopy to characterize the agglomeration and stability of plasmonic NPs in biological media and their interactions with cells.
Collapse
Affiliation(s)
- Christin Grabinski
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | | | | |
Collapse
|
42
|
Lu M, Krishna Juluri B, Zhao Y, Jun Liu Y, Bunning TJ, Jun Huang T. Single-step holographic fabrication of large-area periodically corrugated metal films. JOURNAL OF APPLIED PHYSICS 2012; 112:113101. [PMID: 23284185 PMCID: PMC3528713 DOI: 10.1063/1.4768201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/31/2012] [Indexed: 05/28/2023]
Abstract
We have developed a simple, high-throughput, and cost-effective method to fabricate one-dimensional and two-dimensional periodically corrugated silver films over centimeter scale areas. This fabrication uses a single-step holographic patterning technique with laser intensities as low as 88.8 mW/cm(2) to deposit silver nanoparticles directly from solution to create gratings with periodicities of 570 nm. A dip in the transmission spectrum for these samples is observed due to certain visible wavelengths coupling to surface plasmon polaritons (SPPs) and the peak wavelength of this dip has a linear relationship with the surrounding material's refractive index (RI) with a sensitivity of 553.4 nm/RIU. The figure of merit (the ratio of refractive index sensitivity to the full width at half maximum (FWHM)) is typically in the range of 12-23. Our technique enables single-step fabrication of uniform, sub-wavelength periodic metal structures over a large area with low cost. Such sub-wavelength periodic metal structures are promising candidates as disposable sensors in applications such as affordable environmental monitoring systems and point-of-care diagnostics.
Collapse
|
43
|
Ringe E, Zhang J, Langille MR, Mirkin CA, Marks LD, Van Duyne RP. Correlating the structure and localized surface plasmon resonance of single silver right bipyramids. NANOTECHNOLOGY 2012; 23:444005. [PMID: 23080080 DOI: 10.1088/0957-4484/23/44/444005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Localized surface plasmon resonances (LSPRs), collective electron oscillations in metal nanoparticles, are being heavily scrutinized for applications in prototype devices and circuits, as well as for chemical and biological sensing. Both the plasmon frequency and linewidth of a LSPR are critical factors for application optimization, for which their dependence on structural factors has been qualitatively unraveled over the past decade. However, quantitative knowledge based on systematic single particle studies has only recently become available for a few particle shapes. We show here that to understand the effect of structure (both size and shape) on plasmonic properties, one must take multiple parameters into account. We have successfully done so for a large data set on silver right bipyramids. By correlating plasmon energy and linewidth with edge length and corner rounding for individual bipyramids, we have found that the corner rounding has a significant effect on the plasmon energy for particles of the same size, and thus corner rounding must be taken into account to accurately describe the dependence of a LSPR on nanoparticle size. A detailed explanation of the phenomena responsible for the observed effects and their relationship to each other is presented.
Collapse
Affiliation(s)
- Emilie Ringe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Wu HJ, Henzie J, Lin WC, Rhodes C, Li Z, Sartorel E, Thorner J, Yang P, Groves JT. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nat Methods 2012; 9:1189-91. [PMID: 23085614 PMCID: PMC3703907 DOI: 10.1038/nmeth.2211] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/11/2012] [Indexed: 11/09/2022]
Abstract
We describe a solution-phase sensor of lipid-protein binding based on localized surface plasmon resonance (LSPR) of silver nanocubes. When silica-coated nanocubes are mixed in a suspension of lipid vesicles, supported membranes spontaneously assemble on their surfaces. Using a standard laboratory spectrophotometer, we calibrated the LSPR peak shift due to protein binding to the membrane surface and then characterized the lipid-binding specificity of a pleckstrin homology domain protein.
Collapse
Affiliation(s)
- Hung-Jen Wu
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bottomley A, Prezgot D, Staff A, Ianoul A. Fine tuning of plasmonic properties of monolayers of weakly interacting silver nanocubes on thin silicon films. NANOSCALE 2012; 4:6374-82. [PMID: 22948712 DOI: 10.1039/c2nr31885g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plasmonic properties, such as refractive index sensitivity (RIS), surface enhancement of the Raman signal (SERS), fluorescence quenching, and photocatalytic activity, of monolayers of weakly interacting monodisperse silver nanocubes were qualitatively modified in a very well controlled manner by supporting them on thin silicon films with varying thickness. Such fine tunability is made possible by the strong dependence of the nanocube dipolar (D) and quadrupolar (Q) plasmon mode hybridization on the refractive index of the supporting substrate. By increasing the Si film thickness from zero to ~25 nm we were able to "shift" the D resonance mode by up to 200 nm for ~80 nm cubes without significantly affecting the Q mode. The silicon supported nanocubes showed a significant improvement in RIS via the Q mode with a figure of merit greater than 6.5 and about an order of magnitude enhancement of the SERS signal due to the stronger electric field created by the D mode. Such substrates also showed a ~10 times decrease in rhodamine 6G fluorescence as well as the rates of amorphous carbon formation. The study proposes a new way to design and engineer plasmonic nanostructures.
Collapse
Affiliation(s)
- Adam Bottomley
- Department of Chemistry, Carleton University, 1125 Colonel By Dr. Ottawa, ON, Canada
| | | | | | | |
Collapse
|
46
|
Ahijado-Guzmán R, Gómez-Puertas P, Alvarez-Puebla RA, Rivas G, Liz-Marzán LM. Surface-Enhanced Raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements. ACS NANO 2012; 6:7514-7520. [PMID: 22823235 DOI: 10.1021/nn302825u] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has been applied to detect the interaction of the FtsZ protein from Escherichia coli, an essential component of the bacterial division machinery, with either a soluble variant of the ZipA protein (that provides membrane tethering to FtsZ) or the bacterial membrane (containing the full-length ZipA naturally incorporated), on silver-coated polystyrene micrometer-sized beads. The engineered microbeads were used not only to support the bilayers but also to offer a stable support with a high density of SERS hot spots, allowing the detection of ZipA structural changes linked to the binding of FtsZ. These changes were different upon incubating the coated beads with FtsZ polymers (GTP form) as compared to oligomers (GDP form) and more pronounced when the plasmonic sensors were coated with natural bacterial membranes.
Collapse
Affiliation(s)
- Rubén Ahijado-Guzmán
- Centro de Investigaciones Biológicas, CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Sotiriou GA. Biomedical applications of multifunctional plasmonic nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 5:19-30. [DOI: 10.1002/wnan.1190] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh SH. Engineering metallic nanostructures for plasmonics and nanophotonics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:036501. [PMID: 22790420 PMCID: PMC3396886 DOI: 10.1088/0034-4885/75/3/036501] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered.
Collapse
Affiliation(s)
- Nathan C Lindquist
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, U.S.A
- Physics Department, Bethel University, St. Paul, MN, U.S.A
| | | | - Kevin M McPeak
- Optical Materials Engineering Laboratory, ETH Zürich, Zürich, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, ETH Zürich, Zürich, Switzerland
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
49
|
Xia X, Zeng J, Oetjen LK, Li Q, Xia Y. Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals. J Am Chem Soc 2012; 134:1793-801. [PMID: 22206387 DOI: 10.1021/ja210047e] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This article presents a quantitative analysis of the role played by poly(vinylpyrrolidone) (PVP) in seed-mediated growth of Ag nanocrystals. Starting from Ag nanocubes encased by {100} facets as the seeds, the resultant nanocrystals could take different shapes depending on the concentration of PVP in the solution. If the concentration was above a critical value, the seeds simply grew into larger cubes still enclosed by {100} facets. When the concentration fell below a critical value, the seeds would evolve into cuboctahedrons enclosed by a mix of {100} and {111} facets and eventually octahedrons completely covered by {111} facets. We derived the coverage density of PVP on Ag(100) surface by combining the results from two measurements: (i) cubic seeds were followed to grow at a fixed initial concentration of PVP to find out when {111} facets started to appear on the surface, and (ii) cubic seeds were allowed to grow at reduced initial concentrations of PVP to see at which concentration {111} facets started to appear from the very beginning. We could calculate the coverage density of PVP from the differences in PVP concentration and the total surface area of Ag nanocubes between these two samples. The coverage density was found to be 140 and 30 repeating units per nm(2) for PVP of 55,000 and 10,000 g/mol in molecular weight, respectively, for cubic seeds of 40 nm in edge length. These values dropped slightly to 100 and 20 repeating units per nm(2), respectively, when 100 nm Ag cubes were used as the seeds.
Collapse
Affiliation(s)
- Xiaohu Xia
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
50
|
Nanofabrication for the analysis and manipulation of membranes. Ann Biomed Eng 2011; 40:1356-66. [PMID: 22143598 DOI: 10.1007/s10439-011-0479-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022]
Abstract
Recent advancements and applications of nanofabrication have enabled the characterization and control of biological membranes at submicron scales. This review focuses on the application of nanofabrication towards the nanoscale observing, patterning, sorting, and concentrating membrane components. Membranes on living cells are a necessary component of many fundamental cellular processes that naturally incorporate nanoscale rearrangement of the membrane lipids and proteins. Nanofabrication has advanced these understandings, for example, by providing 30 nm resolution of membrane proteins with metal-enhanced fluorescence at the tip of a scanning probe on fixed cells. Naturally diffusing single molecules at high concentrations on live cells have been observed at 60 nm resolution by confining the fluorescence excitation light through nanoscale metallic apertures. The lateral reorganization on the plasma membrane during membrane-mediated signaling processes has been examined in response to nanoscale variations in the patterning and mobility of the signal-triggering molecules. Further, membrane components have been separated, concentrated, and extracted through on-chip electrophoretic and microfluidic methods. Nanofabrication provides numerous methods for examining and manipulating membranes for both greater understandings of membrane processes as well as for the application of membranes to other biophysical methods.
Collapse
|