1
|
Chaudhary S, Srivastava VK, Kumar M, Lakshmi GBVS, Agarwal DC, Ojha S, Kumar M, Kumar T, Pandey RK, Ghosh S, Avasthi DK, Yadav RP, Singh RS, Singh UB. Formation of partially embedded Au nanostructures: Ion beam irradiation on thin film. Microsc Res Tech 2024; 87:2301-2311. [PMID: 38747091 DOI: 10.1002/jemt.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 09/02/2024]
Abstract
The Au partially embedded nanostructure (PEN) is synthesized by ion irradiation on an Au thin film deposited on a glass substrate using a 50 keV Ar ion. Scanning electron microscopy results show ion beam-induced restructuring from irregularly shaped nanostructures (NSs) to spherical Au NSs, and further ion irradiation leads to the formation of well-separated spherical nanoparticles. Higuchi's algorithm of surface analysis is utilized to find the evolution of surface morphology with ion irradiation in terms of the Hurst exponent and fractal dimension. The Au PEN is evidenced by Rutherford backscattering spectrometry and optical studies. Also, the depth of the mechanism behind synthesized PEN is explained on the basis of theoretical simulations, namely, a unified thermal spike and a Monte Carlo simulation consisting of dynamic compositional changes (TRIDYN). Another set of plasmonic NSs was formed on the surface by thermal annealing of the Au film on the substrate. Glucose sensing has been studied on the two types of plasmonic layers: nanoparticles on the surface and PEN. The results reveal the sensing responses of both types of plasmonic layers. However, PEN retains its plasmonic behavior as the NSs are still present after washing with water, which demonstrates the potential for reusability. RESEARCH HIGHLIGHTS: Synthesis of PENs by ion irradiation Utilization of Higuchi's algorithm to explore the surface morphology. Unified thermal spike and TRIDYN simulations being used to explain the results. Glucose is only used as a test case for reusability of substrate.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Vinay K Srivastava
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - G B V S Lakshmi
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - D C Agarwal
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Sunil Ojha
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
| | - Manish Kumar
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
| | - Tanuj Kumar
- Department of Nanosciences and Materials, Central University of Jammu, Jammu, India
| | - Ratnesh K Pandey
- Department of Physics, School of Engineering, UPES, Dehradun, India
| | - Santanu Ghosh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - D K Avasthi
- Department of Physics, School of Engineering, UPES, Dehradun, India
| | - R P Yadav
- Department of Physics, Deen Dayal Upadhyay Govt. P.G. College, Prayagraj, India
| | - Ravi S Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Udai B Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Huang Q, Wu J, Zeng D, Zhou P. Graphene-Wrapped ZnO Nanocomposite with Enhanced Room-Temperature Photo-Activated Toluene Sensing Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1009. [PMID: 38473480 DOI: 10.3390/ma17051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Graphene-wrapped ZnO nanocomposites were fabricated by a simple solvothermal technology with a one-pot route. The structure and morphology of these as-fabricated samples were systematically characterized. The adding of graphene enhanced the content of the oxygen vacancy defect of the sample. All gas-sensing performances of sensors based on as-prepared samples were thoroughly studied. Sensors displayed an ultrahigh response and exceptional selectivity at room temperature under blue light irradiation. This excellent and enhanced toluene gas-sensing property was principally attributed to the synergistic impacts of the oxygen vacancy defect and the wrapped graphene in the composite sensor. The photo-activated graphene-wrapped ZnO sensor illustrated potential application in the practical detection of low concentrations of toluene under explosive environments.
Collapse
Affiliation(s)
- Qingwu Huang
- Analytical and Testing Center of Huazhong University of Science and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074, China
- Nanomaterials and Smart Sensors Laboratory (NSSL), Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074, China
| | - Jinjin Wu
- Analytical and Testing Center of Huazhong University of Science and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074, China
| | - Dawen Zeng
- Nanomaterials and Smart Sensors Laboratory (NSSL), Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074, China
| | - Peng Zhou
- Analytical and Testing Center of Huazhong University of Science and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074, China
| |
Collapse
|
3
|
Bhatt HN, Pena-Zacarias J, Beaven E, Zahid MI, Ahmad SS, Diwan R, Nurunnabi M. Potential and Progress of 2D Materials in Photomedicine for Cancer Treatment. ACS APPLIED BIO MATERIALS 2023; 6:365-383. [PMID: 36753355 PMCID: PMC9975046 DOI: 10.1021/acsabm.2c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Over the last decades, photomedicine has made a significant impact and progress in treating superficial cancer. With tremendous efforts many of the technologies have entered clinical trials. Photothermal agents (PTAs) have been considered as emerging candidates for accelerating the outcome from photomedicine based cancer treatment. Besides various inorganic and organic candidates, 2D materials such as graphene, boron nitride, and molybdenum disulfide have shown significant potential for photothermal therapy (PTT). The properties such as high surface area to volume, biocompatibility, stability in physiological media, ease of synthesis and functionalization, and high photothermal conversion efficiency have made 2D nanomaterials wonderful candidates for PTT to treat cancer. The targeting or localized activation could be achieved when PTT is combined with chemotherapies, immunotherapies, or photodynamic therapy (PDT) to provide better outcomes with fewer side effects. Though significant development has been made in the field of phototherapeutic drugs, several challenges have restricted the use of PTT in clinical use and hence they have not yet been tested in large clinical trials. In this review, we attempted to discuss the progress, properties, applications, and challenges of 2D materials in the field of PTT and their application in photomedicine.
Collapse
Affiliation(s)
- Himanshu N. Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Jaqueline Pena-Zacarias
- Department of Biological Sciences, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Elfa Beaven
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Ikhtiar Zahid
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Sheikh Shafin Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, Environmental Science & Engineering, and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
4
|
Jalalvand AR, Shokri F, Yari A. Co-operation of electrochemistry and chemometrics to develop a novel electrochemical aptasensor based on generation of first- and second-order data for selective and sensitive determination of the prostate specific antigen biomarker. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Robust and recyclable graphene/chitosan composite aerogel microspheres for adsorption of oil pollutants from water. Carbohydr Polym 2022; 290:119416. [DOI: 10.1016/j.carbpol.2022.119416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
|
6
|
Myndrul V, Iatsunskyi I, Babayevska N, Jarek M, Jesionowski T. Effect of Electrode Modification with Chitosan and Nafion ® on the Efficiency of Real-Time Enzyme Glucose Biosensors Based on ZnO Tetrapods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4672. [PMID: 35806796 PMCID: PMC9267381 DOI: 10.3390/ma15134672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
Noninvasive, continuous glucose detection can provide some insights into daily fluctuations in blood glucose levels, which can help us balance diet, exercise, and medication. Since current commercially available glucose sensors can barely provide real-time glucose monitoring and usually imply different invasive sampling, there is an extraordinary need to develop new harmless methods for detecting glucose in non-invasive body fluids. Therefore, it is crucial to design (bio)sensors that can detect very low levels of glucose (down to tens of µM) normally found in sweat or tears. Apart from the selection of materials with high catalytic activity for glucose oxidation, it is also important to pay considerable attention to the electrode functionalization process, as it significantly contributes to the overall detection efficiency. In this study, the (ZnO tetrapods) ZnO TPs-based electrodes were functionalized with Nafion and chitosan polymers to compare their glucose detection efficiency. Cyclic voltammetry (CV) measurements have shown that chitosan-modified ZnO TPs require a lower applied potential for glucose oxidation, which may be due to the larger size of chitosan micelles (compared to Nafion micelles), and thus easier penetration of glucose through the chitosan membrane. However, despite this, both ZnO TPs modified with chitosan and Nafion membranes, provided quite similar glucose detection parameters (sensitivities, 7.5 µA mM-1 cm-1 and 19.2 µA mM-1 cm-1, and limits of detection, 24.4 µM and 22.2 µM, respectively). Our results show that both electrodes have a high potential for accurate real-time sweat/tears glucose detection.
Collapse
Affiliation(s)
- Valerii Myndrul
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej Str., 61614 Poznan, Poland
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej Str., 61614 Poznan, Poland
| | - Nataliya Babayevska
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej Str., 61614 Poznan, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej Str., 61614 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| |
Collapse
|
7
|
Yang W, Yu C, Meng F. Recycling and applications of ammonium polyphosphate/polycarbonate/acrylonitrile butadiene styrene by laser-scribing technologies for supercapacitor electrode materials. RSC Adv 2022; 12:19055-19062. [PMID: 35865584 PMCID: PMC9241056 DOI: 10.1039/d2ra02477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Fabricating a simple and valid high-property graphene-based supercapacitor employing engineered plastic waste as the original material has attracted tremendous interest. Herein we report an extendable method for producing nitrogen and phosphorus dual-doped porous three-dimensional (3D) graphene materials from the blends of ammonium polyphosphate (APP) and polycarbonate (PC)/acrylonitrile ((A), butadiene (B), and styrene (S)) (ABS) using a simple laser direct-writing technique. In APP/PC/ABS blends, APP/PC/ABS, a waste by-product generated in car interiors and exterior decoration and electronic device shells and other fields, served as a sufficient and economic carbon source, while APP was employed as a nitrogen and phosphorus source as well as flame retardant. APP/PC/ABS blends could be transformed into nitrogen and phosphorus dual-doped laser-induced graphene (NPLIG) via scribing under a CO2 laser in air conditions. In addition, a supercapacitor was fabricated applying NPLIG as the electrode material, and KOH solution as the electrolyte. The as-fabricated NPLIG supercapacitor exhibited excellent electrochemical behaviours, namely, a high specific areal capacitance (239 F g-1) at a current density of 0.05 A g-1, which outperformed many LIG-based and GO-based supercapacitors. The concept of designing supercapacitors that can be obtained with a facile laser-scribing technology can stimulate both the building of supercapacitors and preparation of graphene, and the sustainable utilization of engineering plastics.
Collapse
Affiliation(s)
- Weiwei Yang
- Norinco Group Air Ammunition Research Institute Co., Ltd Harbin 100000 China
| | - Chao Yu
- Norinco Group Air Ammunition Research Institute Co., Ltd Harbin 100000 China
| | - Fanxing Meng
- Norinco Group Air Ammunition Research Institute Co., Ltd Harbin 100000 China
| |
Collapse
|
8
|
Yousuf S, Siddique HR, Arjmand F, Tabassum S. Functionalized graphene oxide loaded GATPT as rationally designed vehicle for cancer-targeted drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Feng W, Wang J, Li B, Liu Y, Xu D, Cheng K, Zhuang J. Graphene oxide leads to mitochondrial-dependent apoptosis by activating ROS-p53-mPTP pathway in intestinal cells. Int J Biochem Cell Biol 2022; 146:106206. [PMID: 35398141 DOI: 10.1016/j.biocel.2022.106206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022]
Abstract
Owing to its unique physical and chemical properties, graphene oxide (GO) has a wide range of applications in biomedical field. However, with the gradual improvement of biosafety investigations on nanomaterials, growing literatures have pointed out that GO could lead to oxidative stress, aggravation of inflammatory responses, and even irreversible lesions in human multi-tissues, while its damage to small intestinal remained unclear. In this study, we conducted an in-depth study on the toxicological effect of GO on intestinal tissues, and further clarified its toxic effect and molecular mechanism on inducing intestinal cell death. Firstly, we characterized the shape size, potential value, Fourier Transform infrared spectroscopy (FT-IR) characterization and pro-oxidant properties of GO nanosheets. The cytotoxicity of different concentrations of GO to Caco-2 and IEC-6 cell lines was thereafter observed, which was specifically manifested as invoking NADPH Oxidase 1 (NOX1) proteins, accompanied generation of reactive oxygen species (ROS). Since that, more p53 flowed into mitochondria to combine with cyclophilin D (CYPD), thus induced mitochondrial permeability transition pore (mPTP) opening. Through ROS-CyPD-mPTP signaling pathway, GO exerted imbalance of mitochondrial homeostasis, while released cytochrome c (CytC) would ultimate caspase-dependent cell apoptosis. In vivo experiment also confirmed that the microstructure of small intestine was damaged, and the apoptosis rate and oxidative markers were significantly increased in GO-treated Sprague- Dawley (SD) rats (40 mg/kg once every other day from day 1 to day 9 by oral gavage). Based on these findings, we conclude that the adverse effects of oral exposure of GO on the biological system mainly concentrate in the digestive tract, and clarify the key role of ROS-mitochondrial homeostasis-apoptosis axis in GO-derived intestinal toxicity. Considering all these results and the fact that GO exhibited intestinal toxicity, we believe that this research providing a safety reference for its biomedical applications.
Collapse
Affiliation(s)
- Weiyu Feng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jinbang Wang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Baodong Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonggang Liu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dongli Xu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ke Cheng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhuang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
10
|
Gopi PK, Ngo DB, Chen SM, Ravikumar CH, Surareungchai W. High-performance electrochemical sensing of hazardous pesticide Paraoxon using BiVO 4 nano dendrites equipped catalytic strips. CHEMOSPHERE 2022; 288:132511. [PMID: 34688713 DOI: 10.1016/j.chemosphere.2021.132511] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Paraoxon is one of the pesticide that can induce toxicity to nervous system of living organisms. In this work, we focused on synthesizing the catalyst Bismuth Vanadate with the properties that can sense the presence of organophosphorus compounds and characterized them with various characterization methods. The structural studies done by XRD, UV spectroscopy and FTIR spectroscopy. Morphological studies were carried by SEM and TEM. Elemental analysis using XPS spectra. The proposed electrocatalyst was successfully applied as the active electrode material modifying the screen printed carbon electrode for electrochemical sensor applications. The results of the studies indicate that bismuth vanadate modified electrode exhibited four electron transfer process for reduction of nitro group and this lead to the superior electrochemical sensing performance for ethyl Paraoxon with a detection limit of 0.03 μM and good sensitivity 0.345 μA μM-1 cm-2 with excellent reproducibility, repeatability, stability and selectivity over common interferents. Furthermore, the practical application was successfully carried using the proposed modified strips to determine Paraoxon presence in the river water sample with satisfactory results. This proposed catalyst can act as a desirable candidate for the rapid electrochemical sensor.
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Duy Ba Ngo
- School of Bio Resources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Chandan Hunsur Ravikumar
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Jakkasandra Post, Ramanagaram Dist, 562112, India; Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bankhuntien-Chaitalay Road, Thakam, Bangkok, 10150, Thailand
| | - Werasak Surareungchai
- School of Bio Resources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand; Nanoscience and Nanotechnology Program, KMUTT, Bangkok, 10140, Thailand
| |
Collapse
|
11
|
Han Y, Han Y, Sun J, Liu H, Luo X, Zhang Y, Han L. Controllable Nanoparticle Aggregation through a Superhydrophobic Laser-Induced Graphene Dynamic System for Surface-Enhanced Raman Scattering Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3504-3514. [PMID: 34985257 DOI: 10.1021/acsami.1c21159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used for low-concentration molecular detection; however, challenges related to detection uniformity and repeatability are bottlenecks for practical application, especially as regards ultrasensitive detection. Here, through the coupling of bionics and fluid mechanics, a lotus-leaf effect and rose-petal effect (LLE-RPE)-integrated superhydrophobic chip is facilely developed using laser-induced graphene (LIG) fabricated on a polyimide film. Dense and uniform aggregation of gold nanoparticles (AuNPs) in droplets is realized through a constant contact angle (CCA) evaporation mode in the dynamic enrichment process, facilitating reliable ultrasensitive detection. The detection chip consists of two components: an LLE zone containing an ethanol-treated LIG superhydrophobic surface with a low-adhesive property, which functions as an AuNP-controllable aggregation zone, and an RPE zone containing an as-fabricated LIG superhydrophobic surface with water-solution pinning ability, which functions as a droplet solvent evaporation and a AuNP blending zone. AuNPs realize uniform aggregation during rolling on the LLE zone, and then get immobilized on the RPE zone to complete evaporation of the solvent, followed by Raman detection. Here, based on dense and uniform AuNP aggregation, the detection system achieves high-efficiency (242 s/18 μL) and ultralow-concentration (10-17 M) detection of a target analyte (rhodamine 6G). The proposed system constitutes a simple approach toward high-performance detection for chemical analysis, environmental monitoring, biological analysis, and medical diagnosis.
Collapse
Affiliation(s)
- Yunrui Han
- Institute of Marine Science and Technology, Shandong University, Tsingdao, Shandong 266237, P. R. China
| | - Yingkuan Han
- Institute of Marine Science and Technology, Shandong University, Tsingdao, Shandong 266237, P. R. China
| | - Jiayang Sun
- Institute of Marine Science and Technology, Shandong University, Tsingdao, Shandong 266237, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiaoming Luo
- College of Pipeline and Civil Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao 266580, P. R. China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, Shandong 266237, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Tsingdao, Shandong 266237, P. R. China
| |
Collapse
|
12
|
Hwang H, Seong H, Lee SY, Moon JH, Kim SK, Lee JB, Myung Y, Na CW, Choi J. Synthesis of Sb 2S 3 NRs@rGO Composite as High-Performance Anode Material for Sodium-Ion Batteries. MATERIALS 2021; 14:ma14247521. [PMID: 34947117 PMCID: PMC8707198 DOI: 10.3390/ma14247521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Sodium ion batteries (SIBs) have drawn interest as a lithium ion battery (LIB) alternative owing to their low price and low deposits. To commercialize SIBs similar to how LIBs already have been, it is necessary to develop improved anode materials that have high stability and capacity to operate over many and long cycles. This paper reports the development of homogeneous Sb2S3 nanorods (Sb2S3 NRs) on reduced graphene oxide (Sb2S3 NRs @rGO) as anode materials for SIBs. Based on this work, Sb2S3 NRs show a discharge capacity of 564.42 mAh/g at 100 mA/g current density after 100 cycles. In developing a composite with reduced graphene oxide, Sb2S3 NRs@rGO present better cycling performance with a discharge capacity of 769.05 mAh/g at the same condition. This achievement justifies the importance of developing Sb2S3 NRs and Sb2S3 NRs@rGO for SIBs.
Collapse
Affiliation(s)
- Hosung Hwang
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.H.); (H.S.); (S.Y.L.); (J.H.M.); (S.K.K.)
| | - Honggyu Seong
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.H.); (H.S.); (S.Y.L.); (J.H.M.); (S.K.K.)
| | - So Yi Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.H.); (H.S.); (S.Y.L.); (J.H.M.); (S.K.K.)
| | - Joon Ha Moon
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.H.); (H.S.); (S.Y.L.); (J.H.M.); (S.K.K.)
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.H.); (H.S.); (S.Y.L.); (J.H.M.); (S.K.K.)
| | - Jin Bae Lee
- Korea Basic Science Institute, Daejeon 34133, Korea;
| | - Yoon Myung
- Dongnam Regional Division, Korea Institute of Industrial Technology, Busan 46744, Korea;
| | - Chan Woong Na
- Dongnam Regional Division, Korea Institute of Industrial Technology, Busan 46744, Korea;
- Correspondence: (C.W.N.); (J.C.)
| | - Jaewon Choi
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.H.); (H.S.); (S.Y.L.); (J.H.M.); (S.K.K.)
- Correspondence: (C.W.N.); (J.C.)
| |
Collapse
|
13
|
Electrochemical degradation of emerging pollutants via laser-induced graphene electrodes. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Liu M, Jia M, E Y, Li D. A novel ion selective electrode based on reduced graphene oxide for potentiometric determination of sarafloxacin hydrochloride. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Nguyen LD, Doan TCD, Huynh TM, Dang DMT, Dang CM. Thermally reduced graphene/nafion modified platinum disk electrode for trace level electrochemical detection of iron. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Sanad MF, Chava VSN, Shalan AE, Enriquez LG, Zheng T, Pilla S, Sreenivasan ST. Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40731-40741. [PMID: 34424665 DOI: 10.1021/acsami.1c12423] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Facile electron transport and intimate electronic contact at the catalyst-electrode interface are critical for the ideal performance of electrochemical devices such as glucose biofuel cells and biosensors. Here, through a comprehensive experimental-theoretical exploration, we demonstrate that engineering of interfacial properties, including interfacial electron dynamics, electron affinity, electrode-catalyst-adsorbate electrical synergy, and electrocatalytically active surface area, can lead to highly efficient graphene-based electrochemical devices. We selected two closely related but electronically and surface chemically different functionalized graphene analogues-graphene acid (GA) and reduced graphene oxide (rGO)-as the model graphenic platforms. Our studies reveal that compared to rGO, GA is a superior bifunctional catalyst with high oxygen reduction reaction (an onset potential of 0.8 V) and good glucose oxidation activities. Spectroscopic and electrochemical analysis of GA and rGO indicated that the higher carboxylic acid content on GA increases its overall electron affinity and coupled with improved conductivity and band alignment, which leads to GA's better electrochemical performance. The formulation of a heterostructure between GA and samarium oxide (Sm2O3) nanoparticles led to augmented conductivity (lower charge-transfer resistance) and glucose binding affinity, resulting in a further enhanced glucose oxidation activity. The interdimensional Sm2O3/GA heterostructure, leveraging their enhanced glucose oxidation capacity, exhibited excellent nonenzymatic amperometric glucose sensing performance, with a detection limit of 107 nM and a sensitivity of 20.8 μA/μM. Further, a nonenzymatic, membrane-free glucose biofuel cell (with Sm2O3/GA heterostructure as anode and GA as biocathode) produced a power density of 3.2 μW·cm-2 (in PBS spiked with 3 mM glucose), which can function as self-powered glucose sensors with 70 nM limit of detection. The study establishes the potential of interfacial engineering of GA to engage it as a highly tunable substrate for a broad range of electrochemical applications, especially in future self-powered biosensors.
Collapse
Affiliation(s)
- Mohamed Fathi Sanad
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
- Department of Environmental Sciences and Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Venkata S N Chava
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Lissette Garcia Enriquez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Ting Zheng
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, South Carolina 29607, United States
| | - Srikanth Pilla
- Department of Automotive Engineering, Clemson University, 4 Research Drive, Greenville, South Carolina 29607, United States
- Clemson Composites Centre, Clemson University, Greenville, South Carolina 29607, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29602, United States
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29602, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
17
|
Kang K, Lee H, Kim D. Effectiveness of high curvature segmentation on the curved flexible surface plasmon resonance. OPTICS EXPRESS 2021; 29:26955-26970. [PMID: 34615119 DOI: 10.1364/oe.434343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
In this report, we explore a segmentation-based approach for the calculation of surface plasmon resonance (SPR) on the curved surface with high curvature by modeling it as a contiguous array of finite segments. The approach would significantly facilitate the calculation with good accuracy because of the inherent nature that transfer matrix analysis can be used. Using the segmentation model, resonance characteristics at SPR were obtained as the curvature radius was varied. For validation of the segmentation, resonance wavelength (λSPR), reflectance at resonance (RSPR), and resonance width (δλSPR) were compared with the finite element method in the parallel and perpendicular light incidence. It was found that the results from the segmentation were in excellent agreement, λSPR in particular, while RSPR and δλSPR under parallel incidence showed disparity between the two models due to the short segmentation. Resonance of curved surface on the rigid and flexible substrate was compared and the overall trend was found to be almost identical. The segmentation is expected to provide a simple, fast, and efficient way for studying plasmonic devices with high curvature in flexible and wearable applications.
Collapse
|
18
|
Anichini C, Samorì P. Graphene-Based Hybrid Functional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100514. [PMID: 34174141 DOI: 10.1002/smll.202100514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Indexed: 06/13/2023]
Abstract
Graphene is a 2D material combining numerous outstanding physical properties, including high flexibility and strength, extremely high thermal conductivity and electron mobility, transparency, etc., which make it a unique testbed to explore fundamental physical phenomena. Such physical properties can be further tuned by combining graphene with other nanomaterials or (macro)molecules to form hybrid functional materials, which by design can display not only the properties of the individual components but also exhibit new properties and enhanced characteristics arising from the synergic interaction of the components. The implementation of the hybrid approach to graphene also allows boosting the performances in a multitude of technological applications. This review reports the hybrids formed by graphene combined with other low-dimensional nanomaterials of diverse dimensionality (0D, 1D, and 2D) and (macro)molecules, with emphasis on the synthetic methods. The most important applications of these hybrids in the fields of sensing, water purification, energy storage, biomedical, (photo)catalysis, and opto(electronics) are also reviewed, with a special focus on the superior performances of these hybrids compared to the individual, nonhybridized components.
Collapse
Affiliation(s)
- Cosimo Anichini
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
19
|
Banerjee A, Maity S, Mastrangelo CH. Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:1253. [PMID: 33578726 PMCID: PMC7916491 DOI: 10.3390/s21041253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 01/03/2023]
Abstract
Biosensors are essential tools which have been traditionally used to monitor environmental pollution and detect the presence of toxic elements and biohazardous bacteria or virus in organic matter and biomolecules for clinical diagnostics. In the last couple of decades, the scientific community has witnessed their widespread application in the fields of military, health care, industrial process control, environmental monitoring, food-quality control, and microbiology. Biosensor technology has greatly evolved from in vitro studies based on the biosensing ability of organic beings to the highly sophisticated world of nanofabrication-enabled miniaturized biosensors. The incorporation of nanotechnology in the vast field of biosensing has led to the development of novel sensors and sensing mechanisms, as well as an increase in the sensitivity and performance of the existing biosensors. Additionally, the nanoscale dimension further assists the development of sensors for rapid and simple detection in vivo as well as the ability to probe single biomolecules and obtain critical information for their detection and analysis. However, the major drawbacks of this include, but are not limited to, potential toxicities associated with the unavoidable release of nanoparticles into the environment, miniaturization-induced unreliability, lack of automation, and difficulty of integrating the nanostructured-based biosensors, as well as unreliable transduction signals from these devices. Although the field of biosensors is vast, we intend to explore various nanotechnology-enabled biosensors as part of this review article and provide a brief description of their fundamental working principles and potential applications. The article aims to provide the reader a holistic overview of different nanostructures which have been used for biosensing purposes along with some specific applications in the field of cancer detection and the Internet of things (IoT), as well as a brief overview of machine-learning-based biosensing.
Collapse
Affiliation(s)
- Aishwaryadev Banerjee
- Department of Electrical & Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Swagata Maity
- Department of Condensed Matter Physics and Materials Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata 700106, India;
| | - Carlos H. Mastrangelo
- Department of Electrical & Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Mohajeri M, Behnam B, Tasbandi A, Jamialahmadi T, Sahebkar A. Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:55-74. [PMID: 34331684 DOI: 10.1007/978-3-030-56153-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin, the main active constituent of turmeric (Curcuma longa L.), is a naturally occurring phenolic compound with a wide variety of pharmacological activities. Although it has multiple pharmaceutical properties, its bioavailability and industrial usage are hindered due to rapid hydrolysis and low water solubility. Due to the growing market of curcumin, exact determination of curcumin in trade and human biological samples is important for monitoring therapeutic actions. Different nanomaterials have been suggested for sensing curcumin; and in this case, carbon-based nanomaterials (CNMs) are one of the most outstanding developments in nanomedicine, biosensing, and regenerative medicine. There are a considerable number of reports which have shown interesting potential of CNMs-based biosensors in the sensitive and selective detection of curcumin. Therefore, this review aims to increase understanding the interaction of curcumin with CNMs in the context of biosensing.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran. .,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Aida Tasbandi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. .,Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
21
|
Yousuf S, Arjmand F, Siddique HR, Ali MS, Al-Lohedan HA, Tabassum S. Biophysical binding profile with ct-DNA and cytotoxic studies of a modulated nanoconjugate of umbelliferone cobalt oxide loaded on graphene oxide (GO) as drug carrier. J Biomol Struct Dyn 2020; 40:4558-4569. [PMID: 33331234 DOI: 10.1080/07391102.2020.1860821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In an attempt to identify suitable nano-carriers for drug delivery, natural drug umbelliferone was chosen to synthesize new modulated nanoconjugate of umbelliferone cobalt oxide with cobalt (II) nitrate in one pot assembly in the presence of tannic acid. The synthesized nanoconjugate drug (NCD) was then loaded on graphene oxide (GO) as drug carrier by simple ultrasonication method and thoroughly characterized by various spectroscopic techniques (FT-IR, SEM, TEM, XRD, EPR and thermogravimetric analysis) which revealed the successful loading of the nanoconjugate drug on GO. The UV-visible, fluorescence and electrochemical studies suggested that strong π-π stacking interactions exist between nanoconjugate drug and GO. The binding studies of NCD-GO with ct-DNA were performed by various optical and biophysical methods viz., UV-visible, fluorescence, circular dichroism (CD) and cyclic voltammetry (CV) which indicated electrostatic mode of binding towards the ct-DNA. Furthermore, condensate of nanoconjugate drug-loaded GO (NCD-GO) with ct-DNA was prepared and analyzed by scanning electron microscopy (SEM) which revealed that the interaction of NCD-GO with ct-DNA had occurred. Cleavage activity of NCD-GO with pBR322 was evaluated by gel electrophoresis and it was found that NCD-GO cleave DNA through hydrolytic pathway involving hydroxyl radical (OH). The cytotoxicity of NCD-GO was evaluated against human liver carcinoma (Huh-7), prostate cancer (Du-145) cell lines along with normal cell line (PNT 2). The results obtained showed selective cytotoxic activity of NCD-GO against Du-145 cell lines. The intracellular uptake was visualized by confocal microscopy which revealed the significant cellular uptake and internalization of nanoparticles by cells. Moreover, the adsorption of cobalt oxide umbelliferone on GO was studied by density functional theory. The process of adsorption was found exothermic in nature and the optimized geometry structure is quite stable. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shariq Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | | | - Mohd Sajid Ali
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
22
|
Zhang XF, Li JS, You WS, Zhu ZM. Ag2−O with highly exposed {111} crystal facets for efficient electrochemical oxygen evolution: Activity and mechanism. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63574-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Chen TR, Wang YX, Lee WJ, Chen KHC, Chen JD. A reduced graphene oxide-supported iridium nanocatalyst for selective transformation of alcohols into carbonyl compounds via a green process. NANOTECHNOLOGY 2020; 31:285705. [PMID: 32191921 DOI: 10.1088/1361-6528/ab814d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A nanocatalyst constructed from reduced graphene oxide and iridium atoms (RGOIrNc) showed high selectivity (99%-100%) and reliability for the transformation of aromatic alcohols into carbonyl compounds via ultrasonication without using harmful chemicals and solvents. Experimental data including Fourier transform infrared spectroscopy, x-ray diffraction, spherical-aberration-corrected field emission transmission electron microscopy and Raman spectra confirmed the nanostructure of the RGOIrNc. Noticeably, the structural characteristics of this catalyst remained unchanged within 25 catalytic cycles and the activity and selectivity for the transformation of benzylic alcohols showed good stability. The average turnover frequency is greater than 9000 h-1, the total turnover number is more than 150 000 after 25 catalytic cycles and the productivity of carbonyl compounds reaches 376 048 [Formula: see text], indicating that RGOIrNc catalyst has good durability and stability and high 'greenness'.
Collapse
Affiliation(s)
- Tsun-Ren Chen
- Department of Applied Chemistry, National Ping Tung University, Pingtong City, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Duan Q, Wang L, Wang F, Zhang H, Lu K. Direct electrodeposition of cationic pillar[6]arene-modified graphene oxide composite films and their host–guest inclusions for enhanced electrochemical performance. RSC Adv 2020; 10:21954-21962. [PMID: 35516626 PMCID: PMC9054522 DOI: 10.1039/d0ra03138k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/18/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Cationic pillar[6]arene functionalized graphene films with enhanced host–guest electrochemical recognition performance were fabricated directly from GO-CP6 dispersions by a one-step pulsed electrodeposition technique.
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
| | - Lijie Wang
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
| | - Fei Wang
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
| | - Hongsong Zhang
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
| | - Kui Lu
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
- School of Chemical Engineering and Food Science
| |
Collapse
|
25
|
Wang Z, Hao Z, Yu S, De Moraes CG, Suh LH, Zhao X, Lin Q. An Ultraflexible and Stretchable Aptameric Graphene Nanosensor for Biomarker Detection and Monitoring. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1905202. [PMID: 33551711 PMCID: PMC7861488 DOI: 10.1002/adfm.201905202] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 05/20/2023]
Abstract
An ultraflexible and stretchable field-effect transistor nanosensor is presented that uses aptamer-functionalized monolayer graphene as the conducting channel. Specific binding of the aptamer with the target biomarker induces a change in the carrier concentration of the graphene, which is measured to determine the biomarker concentration. Based on a Mylar substrate that is only 2.5-μm thick, the nanosensor is capable of conforming to underlying surfaces (e.g., those of human tissue or skin) that undergo large bending, twisting, and stretching deformations. In experimental testing, the device is rolled on cylindrical surfaces with radii down to 40 μm, twisted by angles ranging from -180° to 180°, or stretched by extensions up to 125%. With these large deformations applied either cyclically or non-recurrently, the device is shown to incur no visible mechanical damage, maintain consistent electrical properties, and allow detection of TNF-α, an inflammatory cytokine biomarker, with consistently high selectivity and low limit of detection (down to 5 × 10-12M). The nanosensor can thus potentially enable consistent and reliable detection of liquid-borne biomarkers on human skin or tissue surfaces that undergo large mechanical deformations.
Collapse
Affiliation(s)
- Ziran Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Zhuang Hao
- Department of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shifeng Yu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Leejee H Suh
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xuezeng Zhao
- Department of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
26
|
Shi Z, Li X, Yu L, Wu X, Wu J, Guo C, Li CM. Atomic matching catalysis to realize a highly selective and sensitive biomimetic uric acid sensor. Biosens Bioelectron 2019; 141:111421. [PMID: 31207567 DOI: 10.1016/j.bios.2019.111421] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
A main challenge for biomimetic non-enzyme biosensors is to achieve high selectivity. Herein, an innovative biomimetic non-enzyme sensor for electrochemical detection of uric acid (UA) with high selectivity and sensitivity is realized by growing Prussian blue (PB) nanoparticles on nitrogen-doped carbon nanotubes (N-doped CNTs). The enhancement mechanism of the biomimetic UA sensor is proposed to be atomically matched active sites between two reaction sites (oxygen atoms of 2, 8-trione, 6.9 Å) of UA molecule and two redox centers (FeII on the diagonal, 7.2 Å) of PB. Such an atomically matching manner not only promotes strong adsorption of UA on PB but also selectively enhances electron transfer between reaction sites of UA and active FeII centers of PB. This biomimetic UA sensor can offer great selectivity to avoid interferences from other oxidative and reductive species, showing excellent selectivity. An electrochemical biomimetic sensor based on PB/N-doped CNTs was applied to in situ detect UA in human serum, delivering a wide dynamic detection range (0.001-1 mM) and a low detection limit (0.26 μM). This work provides a high-performance UA sensor while shedding a scientific light on using atomic matching catalysis to fabricate highly sensitive and selective biomimetic sensors.
Collapse
Affiliation(s)
- Zhuanzhuan Shi
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ling Yu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jinggao Wu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
27
|
Dong R, Chen D, Li N, Xu Q, Li H, He J, Lu J. Enhancement of organic pollutants bio-decontamination from aqueous solution using newly-designed Pseudomonas putida-GA/MIL-100(Fe) bio-nanocomposites. ENVIRONMENTAL RESEARCH 2019; 173:237-245. [PMID: 30928854 DOI: 10.1016/j.envres.2019.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/09/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
As a natural adsorption material, graphene has become a hot research topic in water treatment due to its unique framework, large surface area, low cost, and simple preparation. Here, a series of composite material aerogels (GA/MIL-100(Fe)) consisting of Fe metal-organic frameworks (MIL-100 (Fe)) and graphene-based aerogel (GA) were prepared through a hydrothermal and step-by-step strategy and used for the adsorption of an azo dye in wastewater, scilicet acid orange 10 (AO10). The adsorption equilibrium of AO10 solutions with concentrations of 50 and 100 mg/L was reached within 45 min but the dye could not be fully removed. Besides, the synthesized composite material (GA/MIL-100(Fe)) was a good carrier for immobilized Pseudomonas putida cells due to its good biocompatibility and non-toxicity. A new, environmentally friendly adsorption and biodegradation process has been exploited here, which was to immobilize bacterial cells to the surface of GA/MIL-100(Fe) by a covalent bonding method to form a novel biocomposite material. The material could be used to completely remove AO10 dyes in 14 and 26 h from solutions with initial AO10 concentrations of 50 and 100 mg/L, respectively. This way of combining biological and physical adsorption has a higher processing efficiency and shows huge potential for the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Ruifang Dong
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China.
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China.
| |
Collapse
|
28
|
Baek S, Kim J, Kim H, Park S, Ban HW, Gu DH, Jeong H, Kim F, Lee J, Jung BM, Choa YH, Kim KH, Son JS. Controlled Grafting of Colloidal Nanoparticles on Graphene through Tailored Electrostatic Interaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11824-11833. [PMID: 30843681 DOI: 10.1021/acsami.9b01519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nanoparticle/graphene hybrid composites have been of great interest in various disciplines due to their unique synergistic physicochemical properties. In this study, we report a facile and generalized synthesis method for preparing nanoparticle/exfoliated graphene (EG) composites by tailored electrostatic interactions. EG was synthesized by an electrochemical method, which produced selectively oxidized graphene sheets at the edges and grain boundaries. These EG sheets were further conjugated with polyethyleneimine to provide positive charges at the edges. The primary organic ligands of the colloidal nanoparticles were exchanged with Cl- or MoS42- anions, generating negatively charged colloidal nanoparticles in polar solvents. By simple electrostatic interactions between the EG and nanoparticles in a solution, nanoparticles were controllably assembled at the edges of the EG. Furthermore, the generality of this process was verified for a wide range of nanoparticles, such as semiconductors, metals, and magnets, on the EG. As a model application, designed composites with size-controlled FeCo nanoparticle/EG were utilized as electromagnetic interference countermeasure materials that showed a size-dependent shift of the frequency ranges on the electromagnetic absorption properties. The current generalized process will offer great potential for the large-scale production of well-designed graphene nanocomposites for electronic and energy applications.
Collapse
Affiliation(s)
- Seongheon Baek
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Jinu Kim
- Department of Physics , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Han Kim
- Department of Materials Science and Chemical Engineering , Hanyang University , Ansan 15588 , Republic of Korea
| | - Sangmin Park
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hyeong Woo Ban
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Da Hwi Gu
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hyewon Jeong
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Fredrick Kim
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Joonsik Lee
- Functional Composites Department , Korea Institute of Materials Science (KIMS) , Changwon 51508 , Republic of Korea
| | - Byung Mun Jung
- Functional Composites Department , Korea Institute of Materials Science (KIMS) , Changwon 51508 , Republic of Korea
| | - Yong-Ho Choa
- Department of Materials Science and Chemical Engineering , Hanyang University , Ansan 15588 , Republic of Korea
| | - Ki Hyeon Kim
- Department of Physics , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Jae Sung Son
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| |
Collapse
|
29
|
Nakhanivej P, Yu X, Park SK, Kim S, Hong JY, Kim HJ, Lee W, Hwang JY, Yang JE, Wolverton C, Kong J, Chhowalla M, Park HS. Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. NATURE MATERIALS 2019; 18:156-162. [PMID: 30531848 DOI: 10.1038/s41563-018-0230-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/23/2018] [Indexed: 05/23/2023]
Abstract
Bulk and two-dimensional black phosphorus are considered to be promising battery materials due to their high theoretical capacities of 2,600 mAh g-1. However, their rate and cycling capabilities are limited by the intrinsic (de-)alloying mechanism. Here, we demonstrate a unique surface redox molecular-level mechanism of P sites on oxidized black phosphorus nanosheets that are strongly coupled with graphene via strong interlayer bonding. These redox-active sites of the oxidized black phosphorus are confined at the amorphorized heterointerface, revealing truly reversible pseudocapacitance (99% of total stored charge at 2,000 mV s-1). Moreover, oxidized black-phosphorus-based electrodes exhibit a capacitance of 478 F g-1 (four times greater than black phosphorus) with a rate capability of ~72% (compared to 21.2% for black phosphorus) and retention of ~91% over 50,000 cycles. In situ spectroelectrochemical and theoretical analyses reveal a reversible change in the surface electronic structure and chemical environment of the surface-exposed P redox sites.
Collapse
Affiliation(s)
- Puritut Nakhanivej
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Xu Yu
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Sul Ki Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soo Kim
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Research and Technology Center, Robert Bosch LLC, Cambridge, MA, USA
| | - Jin-Yong Hong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Hae Jin Kim
- Division of Material Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Wonki Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju, Republic of Korea
| | - Jun Yeon Hwang
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju, Republic of Korea
| | - Ji Eun Yang
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, UK
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manish Chhowalla
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, UK
| | - Ho Seok Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
- SKKU Advanced Institute of Nanotechnology (SAINT), College of Engineering & Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
30
|
Gu H, Tang H, Xiong P, Zhou Z. Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E130. [PMID: 30669634 PMCID: PMC6358776 DOI: 10.3390/nano9010130] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/20/2023]
Abstract
At the onset of cancer, specific biomarkers get elevated or modified in body fluids or tissues. Early diagnosis of these biomarkers can greatly improve the survival rate or facilitate effective treatment with different modalities. Potential nanomaterial-based biosensing and bioimaging are the main techniques in nanodiagnostics because of their ultra-high selectivity and sensitivity. Emerging graphene, including two dimensional (2D) graphene films, three dimensional (3D) graphene architectures and graphene hybrids (GHs) nanostructures, are attracting increasing interests in the field of biosensing and bioimaging. Due to their remarkable optical, electronic, and thermal properties; chemical and mechanical stability; large surface area; and good biocompatibility, graphene-based nanomaterials are applicable alternatives as versatile platforms to detect biomarkers at the early stage of cancer. Moreover, currently, extensive applications of graphene-based biosensing and bioimaging has resulted in promising prospects in cancer diagnosis. We also hope this review will provide critical insights to inspire more exciting researches to address the current remaining problems in this field.
Collapse
Affiliation(s)
- Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Huiling Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Ping Xiong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|
31
|
Xu M, Obodo D, Yadavalli VK. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 2019; 124-125:96-114. [PMID: 30343162 PMCID: PMC6310145 DOI: 10.1016/j.bios.2018.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Flexible biosensors form part of a rapidly growing research field that take advantage of a multidisciplinary approach involving materials, fabrication and design strategies to be able to function at biological interfaces that may be soft, intrinsically curvy, irregular, or elastic. Numerous exciting advancements are being proposed and developed each year towards applications in healthcare, fundamental biomedical research, food safety and environmental monitoring. In order to place these developments in perspective, this review is intended to present an overview on field of flexible biosensor development. We endeavor to show how this subset of the broader field of flexible and wearable devices presents unique characteristics inherent in their design. Initially, a discussion on the structure of flexible biosensors is presented to address the critical issues specific to their design. We then summarize the different materials as substrates that can resist mechanical deformation while retaining their function of the bioreceptors and active elements. Several examples of flexible biosensors are presented based on the different environments in which they may be deployed or on the basis of targeted biological analytes. Challenges and future perspectives pertinent to the current and future stages of development are presented. Through these summaries and discussion, this review is expected to provide insights towards a systematic and fundamental understanding for the fabrication and utilization of flexible biosensors, as well as inspire and improve designs for smart and effective devices in the future.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Dora Obodo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
32
|
Purposive Assembling of Poly(3-hexylthiophene) onto Chemically Treated Multi-Wall Carbon Nanotube versus Reduced Graphene Oxide. Macromol Res 2018. [DOI: 10.1007/s13233-019-7021-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Ren X, Feng J, Si P, Zhang L, Lou J, Ci L. Enhanced heterogeneous activation of peroxydisulfate by S, N co-doped graphene via controlling S, N functionalization for the catalytic decolorization of dyes in water. CHEMOSPHERE 2018; 210:120-128. [PMID: 29986217 DOI: 10.1016/j.chemosphere.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
3D porous sulfur and nitrogen co-doped graphene aerogel has been fabricated by a facile one-pot process. Both experimental and theoretical studies have demonstrated that sulfur and nitrogen co-doping could synergistically enhance the catalytic performance for activating peroxydisulfate (PDS) compared to the original and N doped graphene aerogels. The ratio of sulfur/nitrogen in the aerogel can be controlled by regulating the additions of thiourea and urea sources, and the aerogel with the S/N ratio of about 1:2.5 shows a better catalytic effect due to more significant changes in the electrostatic potential and the surface charge distribution, as revealed by the theoretical simulations. The radical quenching tests indicated that both SO4·- and ·OH radicals could be formed in the SN-rGO aerogel + PDS system and contribute most to RhB degradation.
Collapse
Affiliation(s)
- Xiaohua Ren
- SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China; Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, China.
| | - Jinkui Feng
- SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Pengchao Si
- SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Lin Zhang
- SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jun Lou
- SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China; SDU& Rice Joint Center for Carbon Nanomaterials, Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Lijie Ci
- SDU& Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
34
|
Mukheem A, Muthoosamy K, Manickam S, Sudesh K, Shahabuddin S, Saidur R, Akbar N, Sridewi N. Fabrication and Characterization of an Electrospun PHA/Graphene Silver Nanocomposite Scaffold for Antibacterial Applications. MATERIALS 2018; 11:ma11091673. [PMID: 30201852 PMCID: PMC6163631 DOI: 10.3390/ma11091673] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Many wounds are unresponsive to currently available treatment techniques and therefore there is an immense need to explore suitable materials, including biomaterials, which could be considered as the crucial factor to accelerate the healing cascade. In this study, we fabricated polyhydroxyalkanoate-based antibacterial mats via an electrospinning technique. One-pot green synthesized graphene-decorated silver nanoparticles (GAg) were incorporated into the fibres of poly-3 hydroxybutarate-co-12 mol.% hydroxyhexanoate (P3HB-co-12 mol.% HHx), a co-polymer of the polyhydroxyalkanoate (PHA) family which is highly biocompatible, biodegradable, and flexible in nature. The synthesized PHA/GAg biomaterial has been characterized by field emission scanning electron microscopy (FESEM), elemental mapping, thermogravimetric analysis (TGA), UV-visible spectroscopy (UV-vis), and Fourier transform infrared spectroscopy (FTIR). An in vitro antibacterial analysis was performed to investigate the efficacy of PHA/GAg against gram-positive Staphylococcus aureus (S. aureus) strain 12,600 ATCC and gram-negative Escherichia coli (E. coli) strain 8739 ATCC. The results indicated that the PHA/GAg demonstrated significant reduction of S. aureus and E. coli as compared to bare PHA or PHA- reduced graphene oxide (rGO) in 2 h of time. The p value (p < 0.05) was obtained by using a two-sample t-test distribution.
Collapse
Affiliation(s)
- Abdul Mukheem
- Department of Maritime Science and Technology Faculty of Science and Defence Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia.
| | - Kasturi Muthoosamy
- Department of Chemical and Nano pharmaceutical Process Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia.
| | - Sivakumar Manickam
- Department of Chemical and Nano pharmaceutical Process Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia.
| | - Kumar Sudesh
- Applied Microbiology and Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Syed Shahabuddin
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
- School of Postgraduate Studies and Research, American University of Ras Al Khaimah, Ras Al Khaimah 31208, UAE.
| | - Noor Akbar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
| | - Nanthini Sridewi
- Department of Maritime Science and Technology Faculty of Science and Defence Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
35
|
Berchmans S, Venkatesan M, Vusa CSR, Arumugam P. PAMAM Dendrimer Modified Reduced Graphene Oxide Postfunctionalized by Horseradish Peroxidase for Biosensing H 2O 2. Methods Enzymol 2018; 609:143-170. [PMID: 30244788 DOI: 10.1016/bs.mie.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this chapter, we describe the tethering of horseradish peroxidase (HRP) to reduced graphene oxide (RGO) for sensing H2O2 in serum. To accomplish this, RGO was synthesized through a green route by reducing graphene oxide (GO) prepared by Hummers method with carrot extract. The RGO was then covalently functionalized by electrochemical amination using fourth generation, amine-terminated PAMAM dendrimers. Subsequently, HRP was postfunctionalized through glutaraldehyde linkage. The synthesized RGO and the functionalization steps were well characterized by spectroscopic, microscopic, and electrochemical techniques. The application of HRP tethered RGO was demonstrated for H2O2 sensing in blood serum. This work provides scope for extending this functionalization strategy for other carbonaceous materials as well.
Collapse
Affiliation(s)
- Sheela Berchmans
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India.
| | - Manju Venkatesan
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
| | | | | |
Collapse
|
36
|
Alarcon-Angeles G, Palomar-Pardavé M, Merkoçi A. 2D Materials-based Platforms for Electroanalysis Applications. ELECTROANAL 2018. [DOI: 10.1002/elan.201800245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Georgina Alarcon-Angeles
- Universidad Autónoma Metropolitana-Xochimilco; Departamento de Sistemas Biológicos; C.P. 04960 D.F. México
| | - Manuel Palomar-Pardavé
- Universidad Autónoma Metropolitana-Azcapotzalco; Departamento de Materiales, Área Ingeniería de Materiales; Av. San Pablo #180, Col. Reynosa-Tamaulipas CDMX C.P. 02200 Mexico
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2); CSIC and BIST, Campus UAB, Bellaterra; 08193 Barcelona Spain
- ICREA - Catalan Institution for Research and Advanced Studies; Barcelona 08010 Spain
| |
Collapse
|
37
|
Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Qu J, Chen D, Li N, Xu Q, Li H, He J, Lu J. Engineering 3D Ru/Graphene Aerogel Using Metal-Organic Frameworks: Capture and Highly Efficient Catalytic CO Oxidation at Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800343. [PMID: 29575570 DOI: 10.1002/smll.201800343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Noble metals (Au, Pt, and Ru) loaded into carbon supports show excellent performance for CO oxidation. Herein, a tunable metal-organic framework (MOF) coating is applied to a macroscopic 3D Ru/graphene aerogel (Ru/GA) composite, using a facial step-by-step method. The open macroporous structure of the Ru/GA provides pathways for the access and diffusion of reactant and product molecules. The resulting HK (HKUST-1)-containing MOF composite exhibits good performance for CO adsorption. It can simultaneously adsorb and oxidize CO, which improves the reaction rate. In this work, the catalytic efficiency of the resulting catalyst is higher than that (≈48.4%) of the Ru/GA. These findings provide a simple method for increasing the instantaneous concentration of reactants around the catalyst, which in turn increases the reaction rate. The catalytic performances of composites subjected to different pretreatment conditions are also investigated. Hopefully, this finding may provide a feasible direction for the effective management of the diverse environment issues.
Collapse
Affiliation(s)
- Jiafu Qu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| |
Collapse
|
39
|
The influence of topology and morphology of fillers on the conductivity and mechanical properties of rubber composites. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1478-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Zhao X, Wei Z, Zhao Z, Miao Y, Qiu Y, Yang W, Jia X, Liu Z, Hou H. Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6608-6617. [PMID: 29368916 DOI: 10.1021/acsami.7b16910] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel graphene oxide nanoparticle (GON)-based drug delivery system containing GONs as carriers of anticancer drugs and chitosan/dimethylmaleic anhydride-modified chitosan (CS/CS-DMMA) as surface charge-reversible shells is fabricated via the classic self-assembly of the deprotonated carboxyl of GONs and the protonated amine of the CS backbone by electrostatic interaction, and CS-DMMA serves as the outmost layer. In this GON-based drug delivery system, the GON cores as desired carriers might adsorb doxorubicin hydrochloride (DOX) via the π-π stacking interaction between the large π conjugated structures of GO and the aromatic structure of DOX. Meanwhile, the chitosan-based polyelectrolyte shells served as a smart protection screen to evade the premature release of the as-loaded DOX in normal extracellular condition, and then, the release of DOX was accelerated because of the detachment of chitosan coating at low pH. Furthermore, the re-exposure of amino groups after hydrolysis of CS-DMMA endowed the drug delivery system with positive surface charge by taking advantage of the pH difference between physiological conditions and the tumor microenvironment to enhance the cellular uptake. Then, the pH-dependent site-specific drug release was realized. The in vitro investigations confirmed that these promising GON/CS/CS-DMMA hybrids with the charge-reversible character possessed various merits including excellent encapsulation efficiency, high stability under physiological conditions, enhanced cellular uptake by HepG2 cells, and tunable intracellular chemotherapeutic agent release profiles, proving its capability as an intelligent anticancer agent nanocarrier with enhanced therapeutic effects. This smart GON/CS/CS-DMMA vehicle with the surface charge-reversible character may be used as a significant drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Xubo Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Zhihong Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Zhipeng Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Yalei Miao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Yudian Qiu
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Wenjing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450002, China
| | - Xu Jia
- School of Materials and Chemical Engineering, Zhongyuan University of Technology , Zhengzhou 450007, China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| |
Collapse
|
41
|
Yu Q, Wu Y, Liu Z, Lei S, Li G, Ye B. Novel electrochemical biosensor based on cationic peptide modified hemin/G-quadruples enhanced peroxidase-like activity. Biosens Bioelectron 2018; 107:178-183. [PMID: 29455028 DOI: 10.1016/j.bios.2018.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
This work designed an artificial substrate peptide to synthesize peptide-hemin/G-quadruplex (peptide-DNAzyme) conjugates. In addition to enhancing catalytic activity of hemin/G-quadruplex, the peptide could also be induced and cleaved by prostate specific antigen (PSA). It was the first report on peptide-DNAzyme conjugates in application of the peptide biosensor. The polyethyleneimine-reduced graphene oxide@hollow platinum nanotubes (PEI-rGO@PtNTs) nanocomposites were cast on the glassy carbon electrode in order to form the interface of biocompatibility and huge surface area for bioprobes immobilization. In absence of PSA, the peptide-DNAzyme conjugates retained intact on the surface of the electrode to produce a strong response signal. But in presence of PSA, the peptide-DNAzyme conjugates were destroyed to release electron mediators, resulting in dramatical decrease of the electrochemicl signal. Therefore, the method had high sensitivity and super selectivity with the limit of detection calculated as 2.0 fg/mL. Furthermore, the strategy would be promising to apply for other proteases by transforming the synthetic peptide module of target.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongmei Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Sheng Lei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
42
|
Singh SP, Li Y, Zhang J, Tour JM, Arnusch CJ. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes. ACS NANO 2018; 12:289-297. [PMID: 29241007 DOI: 10.1021/acsnano.7b06263] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Graphene based materials have profoundly impacted research in nanotechnology, and this has significantly advanced biomedical, electronics, energy, and environmental applications. Laser-induced graphene (LIG) is made photothermally and has enabled a rapid route for graphene layers on polyimide surfaces. However, polysulfone (PSU), poly(ether sulfone) (PES), and polyphenylsulfone (PPSU) are highly used in numerous applications including medical, energy, and water treatment and they are critical components of polymer membranes. Here we show LIG fabrication on PSU, PES, and PPSU resulting in conformal sulfur-doped porous graphene embedded in polymer dense films or porous substrates using reagent- and solvent-free methods in a single step. We demonstrate the applicability as flexible electrodes with enhanced electrocatalytic hydrogen peroxide generation, as antifouling surfaces and as antimicrobial hybrid membrane-LIG porous filters. The properties and surface morphology of the conductive PSU-, PES-, and PPSU-LIG could be modulated using variable laser duty cycles. The LIG electrodes showed enhanced hydrogen peroxide generation compared to LIG made on polyimide, and showed exceptional biofilm resistance and potent antimicrobial killing effects when treated with Pseudomonas aeruginosa and mixed bacterial culture. The hybrid PES-LIG membrane-electrode ensured complete elimination of bacterial viability in the permeate (6 log reduction), in a flow-through filtration mode at a water flux of ∼500 L m-2 h-1 (2.5 V) and at ∼22 000 L m-2 h-1 (20 V). Due to the widespread use of PSU, PES, and PPSU in modern society, these functional PSU-, PES-, and PPSU-LIG surfaces have great potential to be incorporated into biomedical, electronic, energy and environmental devices and technologies.
Collapse
Affiliation(s)
- Swatantra P Singh
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus 84990, Israel
| | - Yilun Li
- Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Jibo Zhang
- Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - James M Tour
- Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus 84990, Israel
| |
Collapse
|
43
|
Cheng C, Zhang C, Gao X, Zhuang Z, Du C, Chen W. 3D Network and 2D Paper of Reduced Graphene Oxide/Cu 2O Composite for Electrochemical Sensing of Hydrogen Peroxide. Anal Chem 2018; 90:1983-1991. [PMID: 29286638 DOI: 10.1021/acs.analchem.7b04070] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, two-dimensional (2D) and three-dimensional (3D) freestanding reduced graphene oxide-supported Cu2O composites (Cu2O-rGO) were synthesized via simple and cost-efficient hydrothermal and filtration strategies. The structural characterizations clearly showed that highly porous 3D graphene aerogel-supported Cu2O microcrystals (3D Cu2O-GA) have been successfully synthesized, and the Cu2O microcrystals are uniformly assembled in the 3D GA. Meanwhile, paper-like 2D reduced graphene oxide-supported Cu2O nanocrystals (2D Cu2O-rGO-P) have also been prepared by a filtration process. It was found that the products prepared from different precursors and methods exhibited different sensing performances for H2O2 detection. The electrochemical measurements demonstrated that the 3D Cu2O-GA has high electrocatalytic activity for the H2O2 reduction and excellent sensing performance for the electrochemical detection of H2O2 with a detection limit of 0.37 μM and a linear detection range from 1.0 μM to 1.47 mM. Meanwhile, the 2D Cu2O-rGO-P structure also showed good electrochemical sensing performance toward H2O2 detection with a much wider linear response over the concentration range from 5.0 μM to 10.56 mM. Compared to the previously reported sensing materials, the as-obtained 2D and 3D Cu2O-rGO materials exhibited higher electrochemical sensing properties toward the detection of H2O2 with high sensitivity and selectivity. The 2D and 3D Cu2O-rGO composites also exhibited high sensing performance for the real-time detection of H2O2 in human serum. The present study indicates that 2D and 3D graphene-Cu2O composites have promising applications in the fabrication of nonenzymatic electrochemical sensing devices.
Collapse
Affiliation(s)
- Chunfeng Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Chunmei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Xiaohui Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | - Zhihua Zhuang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,University of Science and Technology of China , Hefei, Anhui 230029, China
| | - Cheng Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,University of Science and Technology of China , Hefei, Anhui 230029, China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
44
|
Ren X, Guo H, Feng J, Si P, Zhang L, Ci L. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel. CHEMOSPHERE 2018; 191:389-399. [PMID: 29054079 DOI: 10.1016/j.chemosphere.2017.10.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m2/g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min-1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO4·-) by transferring electrons to N-rGO.
Collapse
Affiliation(s)
- Xiaohua Ren
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China; Weifang University of Science and Technology, Weifang 262700, China
| | - Huanhuan Guo
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jinkui Feng
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Pengchao Si
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Lin Zhang
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| | - Lijie Ci
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
45
|
Abstract
With the recent advancement of nanomaterials and nanostructured materials, the point-of-care biosensor devices have shown a potential growth to revolutionize the future personalized health care diagnostics and therapy practices. This chapter deals with the fundamentals of nanomaterials-based biosensors. The first chapter covers the brief details of nanotechnology with its types and an introduction to the synthesis of nanomaterials and their importance to construct transducers. The different components of transducers such as electrochemical, optical, piezoelectric, thermal, surface plasmon resonance, and so on for biosensors have been explained in this chapter. Various principles utilized for development of enzymatic biosensors, immunosensors, DNA, and whole-cell biosensors have been included in this chapter. Immobilization of bioreceptors is a crucial step to fabricate biosensors and their stepwise demonstration and conjugation of nanomaterials with nanomaterials have been described.
Collapse
|
46
|
Agbolaghi S, Abbaspoor S, Massoumi B, Sarvari R, Sattari S, Aghapour S, Charoughchi S. Conversion of Face-On Orientation to Edge-On/Flat-On in Induced-Crystallization of Poly(3-hexylthiophene) via Functionalization/Grafting of Reduced Graphene Oxide with Thiophene Adducts. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Samira Agbolaghi
- Chemical Engineering Department; Faculty of Engineering; Azarbaijan Shahid Madani University; Tabriz 5375171379 Iran
| | - Saleheh Abbaspoor
- Institute of Polymeric Materials and Faculty of Polymer Engineering; Sahand University of Technology; Tabriz 5331711111 Iran
| | | | - Raana Sarvari
- Department of Chemistry; Payame Noor University; Tehran 193953697 Iran
| | - Somaye Sattari
- Department of Chemistry; Payame Noor University; Tehran 193953697 Iran
| | - Sahar Aghapour
- Institute of Polymeric Materials and Faculty of Polymer Engineering; Sahand University of Technology; Tabriz 5331711111 Iran
| | - Somaiyeh Charoughchi
- Institute of Polymeric Materials and Faculty of Polymer Engineering; Sahand University of Technology; Tabriz 5331711111 Iran
| |
Collapse
|
47
|
Maleki N, Kashanian S, Maleki E, Nazari M. A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Surface modification by graphene oxide: An efficient strategy to improve the performance of activated carbon based supercapacitors. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Lu CJ, Jiang XF, Junaid M, Ma YB, Jia PP, Wang HB, Pei DS. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. CHEMOSPHERE 2017; 184:795-805. [PMID: 28645083 DOI: 10.1016/j.chemosphere.2017.06.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 05/22/2023]
Abstract
Graphene oxide (GO) has widespread concerns in the fields of biological sciences and medical applications. Currently, studies have reported that excessive GO exposure can cause cellular DNA damage through reactive oxygen species (ROS) generation. However, DNA damage mediated response of the base excision repair (BER) pathway due to GO exposure is not elucidated yet. Therefore, we exposed HEK293T cells and zebrafish embryos to different concentrations of GO for 24 h, and transcriptional profiles of BER pathway genes, DNA damage, and cell viability were analyzed both in vitro and in vivo. Moreover, the deformation of HEK293T cells before and after GO exposure was also investigated using atomic force microscopy (AFM) to identify the physical changes occurred in the cells' structure. CCK-8 and Comet assay revealed the significant decrease in cell viability and increase in DNA damage in HEK293T cells at higher GO doses (25 and 50 μg/mL). Among the investigated genetic markers in HEK293T cells, BER pathway genes (APEX1, OGG1, CREB1, UNG) were significantly up-regulated upon exposure to higher GO dose (50 μg/mL), however, low exposure concentration (5, 25 μg/mL) failed to induce significant genetic induction except for CREB1 at 25 μg/mL. Additionally, the viscosity of HEK293T cells decreased upon GO exposure. In zebrafish, the results of up-regulated gene expressions (apex1, ogg1, polb, creb1) were consistent with those in the HEK293T cells. Taken all together, the exposure to elevated GO concentration could cause DNA damage to HEK293T cells and zebrafish embryos; BER pathway could be proposed as the possible inner response mechanism.
Collapse
Affiliation(s)
- Chun-Jiao Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xue-Feng Jiang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Pan-Pan Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Bin Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
50
|
Sarvari R, Sattari S, Massoumi B, Agbolaghi S, Beygi-Khosrowshahi Y, Kahaie-Khosrowshahi A. Composite electrospun nanofibers of reduced graphene oxide grafted with poly(3-dodecylthiophene) and poly(3-thiophene ethanol) and blended with polycaprolactone. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1740-1761. [PMID: 28691869 DOI: 10.1080/09205063.2017.1354167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, an effective method was employed for preparation of nanofibers using conducting polymer-functionalized reduced graphene oxide (rGO). First, graphene oxide (GO) was obtained from graphite by Hommer method. GO was reduced to rGO by NaBH4 and covalently functionalized with a 3-thiophene acetic acid (TAA) by an esterification reaction to reach 3-thiophene acetic acid-functionalized reduced graphene oxide macromonomer (rGO-f-TAAM). Afterward, rGO-f-TAAM was copolymerized with 3-dodecylthiophene (3DDT) and 3-thiophene ethanol (3TEt) to yield rGO-f-TAA-co-PDDT (rGO-g-PDDT) and rGO-f-TAA-co-P3TEt (rGO-g-PTEt), which were confirmed by Fourier transform infrared spectra. The grafted materials depicted better electrochemical properties and superior solubilities in organic solvents compared to GO and rGO. The soluble rGO-g-PDDT and rGO-g-PTEt composites blended with polycaprolactone were fabricated by electrospinning, and then cytotoxicity, hydrophilicity, biodegradability and mechanical properties were investigated. The grafted rGO composites exhibited a good electroactivity behavior, mainly because of the enhanced electrochemical performance. The electrospun nanofibers underwent degradation about 7 wt% after 40 days, and the fabricated scaffolds were not able to induce cytotoxicity in mouse osteoblast MC3T3-E1 cells. The soluble conducting composites developed in this study are utilizable in the fabrication of nanofibers with tissue engineering application.
Collapse
Affiliation(s)
- Raana Sarvari
- a Department of Chemistry , Payame Noor University , Tehran , Iran
| | - Somaye Sattari
- a Department of Chemistry , Payame Noor University , Tehran , Iran
| | | | - Samira Agbolaghi
- b Institute of Polymeric Materials, Sahand University of Technology , Tabriz , Iran
| | - Younes Beygi-Khosrowshahi
- c Faculty of Engineering, Chemical Engineering Department , Azarbaijan Shahid Madani University , Tabriz , Iran.,d Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology , Tabriz , Iran
| | - Amir Kahaie-Khosrowshahi
- d Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology , Tabriz , Iran
| |
Collapse
|