1
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
2
|
Yang J, Liang Y, Li X, Zhang Y, Qian L, Ke Y, Zhang C. A Spatially Programmable DNA Nanorobot Arm to Modulate Anisotropic Gold Nanoparticle Assembly by Enzymatic Excision. Angew Chem Int Ed Engl 2023; 62:e202308797. [PMID: 37691009 DOI: 10.1002/anie.202308797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Programmable assembly of gold nanoparticle superstructures with precise spatial arrangement has drawn much attention for their unique characteristics in plasmonics and biomedicine. Bio-inspired methods have already provided programmable, molecular approaches to direct AuNP assemblies using biopolymers. The existing methods, however, predominantly use DNA as scaffolds to directly guide the AuNP interactions to produce intended superstructures. New paradigms for regulating AuNP assembly will greatly enrich the toolbox for DNA-directed AuNP manipulation and fabrication. Here, we developed a strategy of using a spatially programmable enzymatic nanorobot arm to modulate anisotropic DNA surface modifications and assembly of AuNPs. Through spatial controls of the proximity of the reactants, the locations of the modifications were precisely regulated. We demonstrated the control of the modifications on a single 15 nm AuNP, as well as on a rectangular DNA origami platform, to direct unique anisotropic AuNP assemblies. This method adds an alternative enzymatic manipulation to DNA-directed AuNP superstructure assembly.
Collapse
Affiliation(s)
- Jing Yang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuan Liang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiang Li
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Mathur D, Galvan AR, Green CM, Liu K, Medintz IL. Uptake and stability of DNA nanostructures in cells: a cross-sectional overview of the current state of the art. NANOSCALE 2023; 15:2516-2528. [PMID: 36722508 PMCID: PMC10407680 DOI: 10.1039/d2nr05868e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physical and chemical properties of synthetic DNA have transformed this prototypical biopolymer into a versatile nanoscale building block material in the form of DNA nanotechnology. DNA nanotechnology is, in turn, providing unprecedented precision bioengineering for numerous biomedical applications at the nanoscale including next generation immune-modulatory materials, vectors for targeted delivery of nucleic acids, drugs, and contrast agents, intelligent sensors for diagnostics, and theranostics, which combines several of these functionalities into a single construct. Assembling a DNA nanostructure to be programmed with a specific number of targeting moieties on its surface to imbue it with concomitant cellular uptake and retention capabilities along with carrying a specific therapeutic dose is now eminently feasible due to the extraordinary self-assembling properties and high formation efficiency of these materials. However, what remains still only partially addressed is how exactly this class of materials is taken up into cells in both the native state and as targeted or chemically facilitated, along with how stable they are inside the cellular cytosol and other cellular organelles. In this minireview, we summarize what is currently reported in the literature about how (i) DNA nanostructures are taken up into cells along with (ii) what is understood about their subsequent stability in the complex multi-organelle environment of the cellular milieu along with biological fluids in general. This allows us to highlight the many challenges that still remain to overcome in understanding DNA nanostructure-cellular interactions in order to fully translate these exciting new materials.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Angelica Rose Galvan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | - Kevin Liu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
4
|
mRNA delivery via non-viral carriers for biomedical applications. Int J Pharm 2021; 607:121020. [PMID: 34416327 DOI: 10.1016/j.ijpharm.2021.121020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022]
Abstract
As an emerging new class of nucleic acid drugs, messenger RNA (mRNA) has huge potential in immunotherapy, regenerative medicine, vaccine, and gene editing. Comparing with siRNA and pDNA, mRNA is more vulnerable to nucleases in vivo. However, the lack of effective and safe delivery methods impedes the broad application of mRNA-based therapeutics. Up to now, the delivery of mRNA remains largely unexplored, and therefore, is a hot topic in the field of gene therapy. In this review, we will summarize the ongoing challenges in mRNA-based therapeutics and unmet requirements for delivery vehicles in terms of the unique structure of mRNA. We then highlight the advancement in mRNA delivery in both fundamental research and clinical applications. Finally, a prospective will be proposed upon reviewing the current progress in mRNA delivery.
Collapse
|
5
|
Ge L, Lai Q, Liu Y, Tan Z, Zuo P, Ji X, He Z. A universal and sensitive sensing platform for biomolecular detection based on the hybridization chain reaction amplification and gold nanoparticles colorimetry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Xue C, Hu S, Gao ZH, Wang L, Luo MX, Yu X, Li BF, Shen Z, Wu ZS. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat Commun 2021; 12:2928. [PMID: 34006888 PMCID: PMC8131747 DOI: 10.1038/s41467-021-23250-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Small interfering RNA (siRNA) is an effective therapeutic to regulate the expression of target genes in vitro and in vivo. Constructing a siRNA delivery system with high serum stability, especially responsive to endogenous stimuli, remains technically challenging. Herein we develop anti-degradation Y-shaped backbone-rigidified triangular DNA bricks with sticky ends (sticky-YTDBs) and tile them onto a siRNA-packaged gold nanoparticle in a programmed fashion, forming a multi-functional three-dimensional (3D) DNA shell. After aptamers are arranged on the exterior surface, a biocompatible siRNA-encapsulated core/shell nanoparticle, siRNA/Ap-CS, is achieved. SiRNAs are internally encapsulated in a 3D DNA shell and are thus protected from enzymatic degradation by the outermost layer of YTDB. The siRNAs can be released by endogenous miRNA and execute gene silencing within tumor cells, causing cell apoptosis higher than Lipo3000/siRNA formulation. In vivo treatment shows that tumor growth is completely (100%) inhibited, demonstrating unique opportunities for next-generation anticancer-drug carriers for targeted cancer therapies.
Collapse
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shuyao Hu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhi-Hua Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lei Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Meng-Xue Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xin Yu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Bi-Fei Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
7
|
Ma J, Xu J. Logic gates in nanoscale based on interaction of thiolated DNA with AuNPs and strand displacement. Biosystems 2021; 206:104432. [PMID: 33933524 DOI: 10.1016/j.biosystems.2021.104432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Both DNA molecules and AuNPs are promising materials in Nanotechnology due to their special properties and also their interaction between each other. In this article, we present a series of methods via combining the DNA strand displacement reaction with the interaction of thiolated DNA and AuNPs to construct several logic gates, such as NOT, YES, NAND, XOR gates. The results demonstrate the computing power in nanoscale molecules and reactions.
Collapse
Affiliation(s)
- Jingjing Ma
- School of Statistics, Shanxi University of Finance and Economics, 696 Wucheng Road, Taiyuan, Shanxi, 030006, China.
| | - Jin Xu
- School of Electronics Engineering and Computer Science, Peking University, NO.5 Yiheyuan Road, Beijing, 100871, China
| |
Collapse
|
8
|
Affiliation(s)
- Yue Wang
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
| | - Chengzhong Yu
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
- Fakultät für Chemie und Molekulartechnik Pädagogische Universität Ostchina Shanghai 200241 P. R. China
| |
Collapse
|
9
|
Wang Y, Yu C. Emerging Concepts of Nanobiotechnology in mRNA Delivery. Angew Chem Int Ed Engl 2020; 59:23374-23385. [PMID: 32400110 DOI: 10.1002/anie.202003545] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Indexed: 12/27/2022]
Abstract
Introducing mRNA into cells has attracted intense interest for diverse applications; however, success requires delivery solutions. Engineered nanomaterials have been applied as mRNA nanocarriers; their functions are designed mainly as delivery vehicles, but rarely in regulation of the protein translation. Recently, progress in nanobiotechnology has shifted the design principle of mRNA nanocarriers from simple delivery tools to translation modulators. Here, we review the emerging concepts of nanomaterials regulating mRNA translation and recent progress in mRNA delivery. Designer nanomaterials providing integrated functions for specific mRNA applications are also reviewed to provide insights for the design of next-generation nanomaterials to revolutionize mRNA technology.
Collapse
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
10
|
Vitali M, Casals E, Canals F, Colomé N, Puntes V. Simple spectroscopic determination of the hard protein corona composition in AuNPs: albumin at 75. NANOSCALE 2020; 12:15832-15844. [PMID: 32692793 DOI: 10.1039/d0nr02379e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We analyzed the different spectroscopic profiles of nanoparticle hard protein corona formation using two model proteins, albumin and immunoglobulin. When compared to serum, this served for the analysis of the hard protein corona main components. To do that, we employed time-resolved UV-Visible light absorption spectroscopy, dynamic light scattering, and zeta potential measurements during nanoparticle-protein incubation. Under the tested experimental conditions, the expected evolution from a non-stable (soft) to a stable (hard) protein corona was confirmed for serum and albumin. At the same time, immunoglobulin incubation inevitably failed to form a corona and led to nanoparticle aggregation. The formation profiles of the protein corona were similar in the case of albumin and serum, indicating the dominance of albumin coating the nanoparticle surface when exposed to plasma. This was confirmed by mass spectrometry. Chemical digestion of the nanoparticles bearing different protein coronas gave indications of the density of the different protein coatings. Overall, this study of the protein corona by determining the adsorption kinetics finger-print enables the development of precise nanotechnologies avoiding cumbersome processes and delaying proteomics analysis.
Collapse
Affiliation(s)
- Michele Vitali
- Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
11
|
Zhu R, Song J, Zhou Y, Lei P, Li Z, Li HW, Shuang S, Dong C. Dual sensing reporter system of assembled gold nanoparticles toward the sequential colorimetric detection of adenosine and Cr(III). Talanta 2019; 204:294-303. [PMID: 31357297 DOI: 10.1016/j.talanta.2019.05.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 01/15/2023]
Abstract
A facile and sensitive sequential colorimetric detection strategy for adenosine and Cr3+ has been presented by using the aptamer and 11-mercaptoundecanoic acid assembled gold nanoparticles. The thiolated DNA and 11-mercaptoundecanoic acid was simultaneously assembled to the surface of gold nanoparticles in one step by gold-sulfur interaction. Adenosine aptamer was linked to functionalized gold nanaoparticles based on the strict complementary nature of the DNA base pairs. Conformational change of aptamer will be induced due to its specific binding with targets. As a result, this aptamer tethered aggregated nanoparticles underwent fast disassembly into dispersed nanoparticles upon binding of adenosine, and this distance change between particles induced a distinct solution color changing from blue to red. The dispersed particles were sensitive to Cr3+ due to the chelation effect between the carboxyl group of 11-mercaptoundecanoic acid and metal ions, and further occurred obvious aggregation accompanying with a color change from red to blue. Depended on this principle, a sensitive and selective sequential colorimetric sensor for detection of adenosine and Cr3+ was developed. The proposed colorimetric sensor exhibited wide linear ranges and low detection limits towards the detection of adenosine and Cr3+. Regarding adenosine, linear range was 1 × 10-7 ∼ 1 × 10-4 M with low detection limit of 1.8 × 10-8 M, and the naked eye detection limit was estimated as 20 μM. With regard to Cr3+, good linear relationship was ranged from 1 × 10-10 to 1 × 10-6 M with low detection limit of 1.7 × 10-11 M,and the naked eye detection limit was as low as 0.1 nM. Meanwhile, bifunctional recognition was successfully used for practical human urine samples with good recoveries from 89.0% to 112.6% for adenosine and 90.2%-113.4% for Cr3+. It also highlights the potential applications of other aptamers and ligands in cascade analysis of other analytes.
Collapse
Affiliation(s)
- Ruiqi Zhu
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jinping Song
- College of Chemistry and Environmental Engineering, and Institute of Applied Chemistry, Shanxi Datong University, Datong, 037009, China.
| | - Ying Zhou
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Peng Lei
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zhongping Li
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shaomin Shuang
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environment Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
12
|
Chan KP, Chao SH, Kah JCY. Exploiting Protein Corona around Gold Nanoparticles Conjugated to p53 Activating Peptides To Increase the Level of Stable p53 Proteins in Cells. Bioconjug Chem 2019; 30:920-930. [DOI: 10.1021/acs.bioconjchem.9b00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kian Ping Chan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore 117597
| | - James Chen Yong Kah
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583
| |
Collapse
|
13
|
Chan KP, Chao SH, Kah JCY. Enhanced Secretion of Functional Insulin with DNA-Functionalized Gold Nanoparticles in Cells. ACS Biomater Sci Eng 2019; 5:1602-1610. [DOI: 10.1021/acsbiomaterials.9b00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kian Ping Chan
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore 117597
| | - James Chen Yong Kah
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583
| |
Collapse
|
14
|
Xiong Q, Lee GY, Ding J, Li W, Shi J. Biomedical applications of mRNA nanomedicine. NANO RESEARCH 2018; 11:5281-5309. [PMID: 31007865 PMCID: PMC6472920 DOI: 10.1007/s12274-018-2146-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 05/20/2023]
Abstract
As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.
Collapse
Affiliation(s)
- Qingqing Xiong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060 China
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Jianxun Ding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wenliang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- School of Pharmacy, Jilin Medical University, Jilin, 132013 China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
15
|
Rodriguez-Quijada C, Sánchez-Purrà M, de Puig H, Hamad-Schifferli K. Physical Properties of Biomolecules at the Nanomaterial Interface. J Phys Chem B 2018; 122:2827-2840. [DOI: 10.1021/acs.jpcb.8b00168] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Maria Sánchez-Purrà
- Department of Engineering, University of Massachusetts, Boston, Massachusetts 02125, United States
| | - Helena de Puig
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts, Boston, Massachusetts 02125, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Chan KP, Chao SH, Kah JCY. Universal mRNA Translation Enhancement with Gold Nanoparticles Conjugated to Oligonucleotides with a Poly(T) Sequence. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5203-5212. [PMID: 29363938 DOI: 10.1021/acsami.7b16390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA-conjugated gold nanoparticles (AuNPs) have been shown to enhance the translation of mRNA. However, the specific sequence on the DNA dictates the specific mRNA to be enhanced. This study describes poly(thymine)-functionalized AuNPs (AuNP-p(T)DNA) capable of enhancing the translation of any mRNA template that is incorporated into pcDNA6 vector with bovine growth hormone (BGH) polyadenylation signal (P(A)). We demonstrated this by incorporating four genes: green fluorescence protein (GFP), general control nonderepressible 5 (GCN5), cAMP-responsive element binding protein 1 (CREB1), and X-box-binding protein 1-spliced (XBP-1S) separately into pcDNA6 vector with BGH P(A) before their expression in HeLa lysate. The addition of AuNP-p(T)DNA to HeLa lysate containing GFP, GCN5, CREB1, and XBP-1S mRNA increased protein synthesis 1.80, 1.99, 1.95, and 2.20 times, respectively. Similar translation enhancement was also observed in a multiplex reaction containing the mRNA of three genes together in the lysate. Complementary p(T)DNA hybridization to the poly(A) tail of the mRNA was critical as the removal of either p(T)DNA or BGH P(A) in XBP-1S mRNA or the replacement of p(T)DNA with p(A)DNA reduced the translation back to baseline level. Finally, an optimum length of 25 nucleotides for the DNA oligomer and a AuNP-p(T)DNA:mRNA ratio of 0.658 achieved a 3.08-fold translation enhancement. The AuNP-p(T)DNA nanoconstruct could be incorporated into commercial cell-free protein synthesis kits as a universal translation enhancer.
Collapse
Affiliation(s)
- Kian Ping Chan
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive, Singapore 117456, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583, Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
- Department of Microbiology and Immunology, National University of Singapore , 5 Science Drive 2, Blk MD4, Level 3, Singapore 117597, Singapore
| | - James Chen Yong Kah
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583, Singapore
| |
Collapse
|
17
|
Mazrad ZAI, Lee K, Chae A, In I, Lee H, Park SY. Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. J Mater Chem B 2018; 6:1149-1178. [PMID: 32254177 DOI: 10.1039/c7tb03323k] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the past decade, fluorescent carbon nanoparticles (FNPs) prepared from natural resources and biomaterials have been attractive due to their various properties, such as unique optical properties, great biocompatibility, water dispersion, and facile surface functionalization. Depending on the properties of the carbon sources and the subsequent carbonization processes, internal/external stimuli responsive carbon nanoparticles have been generated that are useful for theranostic and sensing applications. In this review, we highlight the recent developments in the use of FNPs in nanomedicine in great detail, particularly for FNPs responding to internal stimuli, including redox, pH, and enzymes, and external stimuli, including temperature, light, and magnetic fields, for drug delivery and sensing applications. Furthermore, we hope to provide insight that could stimulate further research aiming for unparalleled useful applications. As a result, there are many possibilities that can be explored from this smart material.
Collapse
Affiliation(s)
- Zihnil Adha Islamy Mazrad
- Department of Chemical & Biological Engineering and Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
18
|
Thorat ND, Lemine OM, Bohara RA, Omri K, El Mir L, Tofail SAM. Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys 2018; 18:21331-9. [PMID: 27427175 DOI: 10.1039/c6cp03430f] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoparticle-based cancer diagnosis-therapy integrative systems (cancer theranostics) represent an emerging approach in oncology. To address this issue in the present work iron oxide (γ-Fe2O3-maghemite) nanoparticles (IONPs) were encapsulated within the matrix of (bis(p-sulfonatophenyl)phenylphosphine)-methoxypolyethylene glycol-thiol (mPEG) polymer vesicles using a two-step process for active chemotherapeutic cargo loading in cancer theranostics. This formation method gives simple access to highly reactive surface groups present on IONPs together with good control over the vesicle size (50-100 nm). The simultaneous loading of a chemotherapeutic drug cargo (doxorubicin) and its in vitro release in cancer cells was achieved. The feasibility of controlled drug release under different pH conditions was demonstrated in the case of encapsulated doxorubicin molecules, showing the viability of the concept of stimulated drug delivery for magneto-chemotherapy. These polymer-magnetic nanocargoes (PMNCs) exhibit enhanced contrast properties that open potential applications for magnetic resonance imaging. These self-assembled magnetic polymersomes can be used as efficient multifunctional nanocarriers for combined therapy and imaging.
Collapse
Affiliation(s)
- Nanasaheb D Thorat
- Department of Physics & Energy, University of Limerick, Limerick, Ireland. and Materials & Surface Science Institute, Bernal Institute, University of Limerick, Limerick, Ireland
| | - O M Lemine
- Physics Department, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Raghvendra A Bohara
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416006, India
| | - Karim Omri
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes, Tunisia
| | - L El Mir
- Physics Department, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia and Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416006, India
| | - Syed A M Tofail
- Department of Physics & Energy, University of Limerick, Limerick, Ireland. and Materials & Surface Science Institute, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
19
|
Kadam US, Chavhan RL, Schulz B, Irudayaraj J. Single molecule Raman spectroscopic assay to detect transgene from GM plants. Anal Biochem 2017; 532:60-63. [DOI: 10.1016/j.ab.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
|
20
|
Chan KP, Gao Y, Goh JX, Susanti D, Yeo ELL, Chao SH, Kah JCY. Exploiting the Protein Corona from Cell Lysate on DNA Functionalized Gold Nanoparticles for Enhanced mRNA Translation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10408-10417. [PMID: 28276241 DOI: 10.1021/acsami.6b15269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study describes the use of DNA functionalized gold nanoparticles (AuNPs) to enhance the synthesis of proteins in cell lysate and examines the mechanisms behind the enhanced mRNA translation. With an appropriate DNA oligomer sequence that hybridizes to the 3'-untranslated region of two mRNA of interest, insulin and green fluorescent protein (GFP), we found that these DNA conjugated AuNPs (AuNP-DNA) introduced into HeLa cell lysate enhanced the synthesis of insulin and GFP by up to 2.18 and 1.80-fold, respectively, over baseline production with just the mRNA present. The insulin synthesis was markedly reduced with non-DNA citrate-capped AuNP (1.25-fold) and AuNP-DNA with a nonspecific poly(T) sequence (1.25-fold). We showed that both nonspecific adsorption of ribosomes and translation factors to form a lysate protein corona on AuNP-DNA and weak hybridization between DNA oligomers and mRNA of interest were important factors that brought translation factors, ribosomes, and mRNA into close proximity of each other. This could reduce the recycling time of ribosomes during mRNA translation, thereby increasing the efficiency of protein synthesis. The outcome of this work shows that with rational DNA design, it could be possible to modulate intracellular biological processes with AuNP-DNA and increase their production of proteins for various biomedical applications.
Collapse
Affiliation(s)
- Kian Ping Chan
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117456
| | - Yang Gao
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
| | - Jeremy Xianwei Goh
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
| | - Dewi Susanti
- Faculty of Science, National University of Singapore , Singapore 117546
| | - Eugenia Li Ling Yeo
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
- Department of Microbiology and Immunology, National University of Singapore , Singapore 117545
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117456
| |
Collapse
|
21
|
Tam JO, de Puig H, Yen CW, Bosch I, Gómez-Márquez J, Clavet C, Hamad-Schifferli K, Gehrke L. A comparison of nanoparticle-antibody conjugation strategies in sandwich immunoassays. J Immunoassay Immunochem 2016; 38:355-377. [PMID: 27982728 PMCID: PMC6202116 DOI: 10.1080/15321819.2016.1269338] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Point-of-care (POC) diagnostics such as lateral flow and dipstick immunoassays use gold nanoparticle (NP)-antibody conjugates for visual readout. We investigated the effects of NP conjugation, surface chemistries, and antibody immobilization methods on dipstick performance. We compared orientational, covalent conjugation, electrostatic adsorption, and a commercial conjugation kit for dipstick assays to detect dengue virus NS1 protein. Assay performance depended significantly on their conjugate properties. We also tested arrangements of multiple test lines within strips. Results show that orientational, covalent conjugation with PEG shield could improve NS1 detection. These approaches can be used to optimize immunochromatographic detection for a range of biomarkers.
Collapse
Affiliation(s)
- Justina O Tam
- a Winchester Engineering and Analytical Center , U.S. Food and Drug Administration , Winchester , Massachusetts
| | - Helena de Puig
- b Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts
| | - Chun-Wan Yen
- a Winchester Engineering and Analytical Center , U.S. Food and Drug Administration , Winchester , Massachusetts
- c Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge , Massachusetts
| | - Irene Bosch
- c Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge , Massachusetts
| | - Jose Gómez-Márquez
- d MIT Little Devices Lab and the MIT-SUTD International Design Centre , Massachusetts Institute of Technology , Cambridge , Massachusetts
| | - Charles Clavet
- a Winchester Engineering and Analytical Center , U.S. Food and Drug Administration , Winchester , Massachusetts
| | - Kimberly Hamad-Schifferli
- b Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts
- e Department of Engineering , University of Massachusetts Boston , Boston , Massachusetts
| | - Lee Gehrke
- c Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge , Massachusetts
- f Department of Microbiology and Immunobiology , Harvard Medical School , Boston , Massachusetts
| |
Collapse
|
22
|
Shahabi S, Treccani L, Dringen R, Rezwan K. Utilizing the protein corona around silica nanoparticles for dual drug loading and release. NANOSCALE 2015; 7:16251-16265. [PMID: 26377025 DOI: 10.1039/c5nr04726a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A protein corona forms spontaneously around silica nanoparticles (SNPs) in serum-containing media. To test whether this protein corona can be utilized for the loading and release of anticancer drugs we incorporated the hydrophilic doxorubicin, the hydrophobic meloxicam as well as their combination in the corona around SNPs. The application of corona-covered SNPs to osteosarcoma cells revealed that drug-free particles did not affect the cell viability. In contrast, SNPs carrying a protein corona with doxorubicin or meloxicam lowered the cell proliferation in a concentration-dependent manner. In addition, these particles had an even greater antiproliferative potential than the respective concentrations of free drugs. The best antiproliferative effects were observed for SNPs containing both doxorubicin and meloxicam in their corona. Co-localization studies revealed the presence of doxorubicin fluorescence in the nucleus and lysosomes of cells exposed to doxorubicin-containing coated SNPs, suggesting that endocytotic uptake of the SNPs facilitates the cellular accumulation of the drug. Our data demonstrate that the protein corona, which spontaneously forms around nanoparticles, can be efficiently exploited for loading the particles with multiple drugs for therapeutic purposes. As drugs are efficiently released from such particles they may have a great potential for nanomedical applications.
Collapse
Affiliation(s)
- Shakiba Shahabi
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany.
| | | | | | | |
Collapse
|
23
|
Maiolo D, Del Pino P, Metrangolo P, Parak WJ, Baldelli Bombelli F. Nanomedicine delivery: does protein corona route to the target or off road? Nanomedicine (Lond) 2015; 10:3231-47. [PMID: 26470748 DOI: 10.2217/nnm.15.163] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nanomedicine aims to find novel solutions for urgent biomedical needs. Despite this, one of the most challenging hurdles that nanomedicine faces is to successfully target therapeutic nanoparticles to cells of interest in vivo. As for any biomaterials, once in vivo, nanoparticles can interact with plasma biomolecules, forming new entities for which the name protein coronas (PCs) have been coined. The PC can influence the in vivo biological fate of a nanoparticle. Thus for guaranteeing the desired function of an engineered nanomaterial in vivo, it is crucial to dissect its PC in terms of formation and evolution within the body. In this contribution we will review the 'good' and 'bad' sides of the PC, starting from the scientific aspects to the technological applications.
Collapse
Affiliation(s)
- Daniele Maiolo
- Fondazione Centro Europeo Nanomedicina c/o Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, & Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| | - Pablo Del Pino
- CIC Biomagune, San Sebastian, Spain.,Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | - Pierangelo Metrangolo
- Fondazione Centro Europeo Nanomedicina c/o Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, & Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.,VTT-Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland
| | - Wolfgang J Parak
- CIC Biomagune, San Sebastian, Spain.,Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | - Francesca Baldelli Bombelli
- Fondazione Centro Europeo Nanomedicina c/o Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, & Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
24
|
Liu X, Li H, Jin Q, Ji J. Surface tailoring of nanoparticles via mixed-charge monolayers and their biomedical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4230-4242. [PMID: 25123827 DOI: 10.1002/smll.201401440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/26/2014] [Indexed: 06/03/2023]
Abstract
The recent convergence of nanomaterials and medicine has provided an expanding horizon for people to achieve encouraging advances in many biomedical applications such as cancer diagnosis and therapy. However, to realize desirable functions in the rather complex biological systems, a suitable surface coating is greatly in need for nanoparticles (NPs), regardless of the species. In this review, a recently developed surface modification strategy is highlighted--mixed-charge monolayers--with an emphasis on the nanointerfaces of inorganic NPs. Two typical mixed-charge gold NPs (AuNPs) prepared from surface modifications with different combinations of oppositely charged alkanethiols are shown as detailed examples to discuss how the mixed-charge monolayer can help NPs meet the criteria for in vitro and in vivo biomedical applications, including those critical issues like colloidal stability, nonfouling properties, and smart responses (pH-sensitivity) for tumor targeting.
Collapse
Affiliation(s)
- Xiangsheng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | | | | |
Collapse
|
25
|
Chen N, Li J, Song H, Chao J, Huang Q, Fan C. Physical and biochemical insights on DNA structures in artificial and living systems. Acc Chem Res 2014; 47:1720-30. [PMID: 24588263 DOI: 10.1021/ar400324n] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONSPECTUS: Highly specific DNA base-pairing is the basis for both fulfilling its genetic role and constructing novel nanostructures and hybrid conjugates with inorganic nanomaterials (NMs). There exist many remarkable differences in the physical properties of single-stranded (ss) and double-stranded (ds) DNA, which play important roles in regulation of biological processes in nature. Rapid advances in nanoscience and nanotechnology pose new questions on how DNA and DNA structures interact with inorganic nanomaterials or cells and animals, which should be important for their biological and biomedical applications. In this Account, we intend to provide an overview on many facets of DNA and DNA structures in artificial and living systems, with the focus on their properties and functions at the interfaces of inorganic nanomaterials and biological systems. ssDNA, dsDNA, and DNA nanostructures interact with NMs in different ways. In particular, gold nanoparticles and graphene oxide exhibit strikingly different affinity toward ssDNA and dsDNA. Such binding differences can be coupled with optical properties of NMs. For example, DNA hybridization can effectively modulate the plasmonic and catalytic properties of gold nanoparticles. By exploitation of these interactions, there have been many ways for sensitive transduction of biomolecular recognition for various sensing applications. Alternatively, modulation of the properties of DNA and DNA structures with NMs has led to new tools for genetic analysis including genotyping and haplotyping. Self-assembled DNA nanostructures have emerged as a new type of NMs with pure biomolecules. These nanostructures can be designed in one, two, or three dimensions with various sizes, shapes, and geometries. They also have characteristics of uniform size, precise addressability, excellent water solubility, and biocompatibility. These nanostructures provide a new toolbox for biophysical studies with unparalleled advantages, for example, NMR-based protein structure determination and single-molecule studies. Also importantly, DNA nanostructures have proven highly useful in various applications including biological detection, bioreactors, and nanomedicine. In particular, DNA nanostructures exhibit high cellular permeability, a property that is not available for ssDNA and dsDNA, which is required for their drug delivery applications. DNA and DNA structures can also form hybrids with inorganic NMs. Notably, DNA anchored at the interface of inorganic NMs behaves differently from that at the macroscopic interface. Several types of DNA-NM conjugates have exerted beneficial effects for bioassays and in vitro translation of proteins. Even more interestingly, hybrid nanoconjugates demonstrate distinct properties under the context of biological systems such as cultured cells or animal models. These unprecedented properties not only arouse great interest in studying such interfaces but also open new opportunities for numerous applications in artificial and living systems.
Collapse
Affiliation(s)
- Nan Chen
- Division of Physical Biology & Bioimaging Center, Shanghai Sychrotron Radiation Facility (SSRF), CAS Key Laboratory of Microscale Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Sychrotron Radiation Facility (SSRF), CAS Key Laboratory of Microscale Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Haiyun Song
- Key
Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Chao
- Division of Physical Biology & Bioimaging Center, Shanghai Sychrotron Radiation Facility (SSRF), CAS Key Laboratory of Microscale Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center, Shanghai Sychrotron Radiation Facility (SSRF), CAS Key Laboratory of Microscale Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Sychrotron Radiation Facility (SSRF), CAS Key Laboratory of Microscale Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
26
|
Kadam U, Moeller CA, Irudayaraj J, Schulz B. Effect of T-DNA insertions on mRNA transcript copy numbers upstream and downstream of the insertion site in Arabidopsis thaliana explored by surface enhanced Raman spectroscopy. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:568-77. [PMID: 24460907 DOI: 10.1111/pbi.12161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 05/23/2023]
Abstract
We report the effect of a T-DNA insertion on the expression level of mRNA transcripts of the TWISTED DWARF 1 (TWD1) gene upstream and downstream of the T-DNA insertion site in Arabidopsis. A novel approach based on surface-enhanced Raman spectroscopy (SERS) was developed to detect and quantify the effect of a T-DNA insertion on mRNA transcript accumulation at 5'- and 3'-ends of the TWD1 gene. A T-DNA insertion mutant in the TWD1 gene (twd1-2) was chosen to test the sensitivity and the feasibility of the approach. The null mutant of the FK506-like immunophilin protein TWD1 in Arabidopsis shows severe dwarfism and strong disoriented growth of plant organs. A spontaneous arising suppressor allele of twd1-2 called twd-sup displayed an intermediate phenotype between wild type and the knockout phenotype of twd1-2. Both twd1 mutant alleles have identical DNA sequences at the TWD1 locus including the T-DNA insertion in the fourth intron of the TWD1 gene but they show clear variability in the mutant phenotype. We present here the development and application of SERS-based mRNA detection and quantification using the expression of the TWD1 gene in wild type and both mutant alleles. The hallmarks of our SERS approach are a robust and fast assay to detect up to 0.10 fm of target molecules including the ability to omit in vitro transcription and amplification steps after RNA isolation. Instead we perform direct quantification of RNA molecules. This enables us to detect and quantify rare RNA molecules at high levels of precision and sensitivity.
Collapse
Affiliation(s)
- Ulhas Kadam
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA; Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
27
|
Cho TJ, MacCuspie RI, Gigault J, Gorham JM, Elliott JT, Hackley VA. Highly stable positively charged dendron-encapsulated gold nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3883-3893. [PMID: 24625049 DOI: 10.1021/la5002013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the development of a novel cationic dendron (TAG1-PCD) and a positively charged gold nanoparticle-dendron conjugate (PCD-AuNP). TAG1-PCD was designed by considering the reactivity, hydrophilicity, and cationic nature that is required to yield a stable gold conjugate in aqueous media. The PCD-AuNPs, nominally 10 nm in size, were synthesized by reduction of chloroauric acid in the presence of TAG1-PCD. The physicochemical properties of PCD-AuNPs were characterized by dynamic light scattering, transmission electron microscopy, UV-vis absorbance, and X-ray photoelectron spectroscopy for investigation of size distribution, shape uniformity, surface plasmon resonance bands, and Au-dendron bonding. Asymmetric-flow field flow fractionation was employed to confirm the in situ size, purity, and surface properties of the PCD-AuNPs. Additionally, the stability of PCD-AuNPs was systematically evaluated with respect to shelf life determination, stability in biological media and a wide range of pH values, chemical resistance against cyanide, redispersibility from lyophilized state, and stability at temperatures relevant to biological systems. Dose dependent cell viability was evaluated in vitro using the human lung epithelial cell line A549 and a monkey kidney Vero cell line. Observations from in vitro studies are discussed. Overall, the investigation confirmed the successful development of stable PCD-AuNPs with excellent stability in biologically relevant test media containing proteins and electrolytes, and with a shelf life exceeding 6 months. The excellent aqueous stability and apparent lack of toxicity for this conjugate enhances its potential use as a test material for investigating interactions between positively charged NPs and biocellular and biomolecular systems, or as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division and ‡Biosystems and Biomaterials Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | | | | | | | | | | |
Collapse
|
28
|
Kadam US, Schulz B, lrudayaraj J. Detection and quantification of alternative splice sites in Arabidopsis genes AtDCL2 and AtPTB2 with highly sensitive surface enhanced Raman spectroscopy (SERS) and gold nanoprobes. FEBS Lett 2014; 588:1637-43. [DOI: 10.1016/j.febslet.2014.02.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 11/30/2022]
|
29
|
Bonini M, Berti D, Baglioni P. Nanostructures for magnetically triggered release of drugs and biomolecules. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Yeom JH, Ryou SM, Won M, Park M, Bae J, Lee K. Inhibition of Xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA. PLoS One 2013; 8:e75369. [PMID: 24073264 PMCID: PMC3779183 DOI: 10.1371/journal.pone.0075369] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold nanoparticle-DNA oligonucleotide (AuNP-DNA) conjugates can serve as universal vehicles for more efficient delivery of mRNA into human cells, as well as into xenograft tumors generated in mice. Injections of BAX mRNA loaded on AuNP-DNA conjugates into xenograft tumors resulted in highly efficient mRNA delivery. The delivered mRNA directed the efficient production of biologically functional BAX protein, a pro-apoptotic factor, consequently inhibiting tumor growth. These results demonstrate that mRNA delivery by AuNP-DNA conjugates can serve as a new platform for the development of safe and efficient gene therapy.
Collapse
Affiliation(s)
- Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Mi Ryou
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Miae Won
- Department of Pharmacy, CHA University, Seongnam, Republic of Korea
| | - Mira Park
- Department of Pharmacy, CHA University, Seongnam, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- * E-mail: (KL); (JB)
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
- * E-mail: (KL); (JB)
| |
Collapse
|
31
|
Park JW, Jin Lee S, Choi EJ, Kim J, Song JY, Bock Gu M. An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. Biosens Bioelectron 2013; 51:324-9. [PMID: 23994614 DOI: 10.1016/j.bios.2013.07.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/27/2022]
Abstract
In this study, we successfully developed a ssDNA aptamer pairs by using an advanced immobilization-free SELEX method with affinity-based selection and counter-screening process at every round. By implementing this method, two different aptamers specifically binding to bovine viral diarrhea virus type 1(BVDV type 1) with high affinity were successfully screened. This aptamer pair was applied to ultrasensitive detection platform for BVDV type 1 in a sandwich manner. The ultrasensitive detection of BVDV type 1 using one of aptamers conjugated with gold nanoparticles was obtained in aptamer-aptamer sandwich type sensing format, with the limit of detection of 800 copies/ml, which is comparable to a real-time PCR method.
Collapse
Affiliation(s)
- Jee-Woong Park
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea
| | | | | | | | | | | |
Collapse
|
32
|
Design of gold nanoparticle and DNA oligomer conjugates for enhancement or suppression of in vitro gene expression. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7202-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Xu M, Zhuang J, Chen X, Chen G, Tang D. A difunctional DNA–AuNP dendrimer coupling DNAzyme with intercalators for femtomolar detection of nucleic acids. Chem Commun (Camb) 2013; 49:7304-6. [DOI: 10.1039/c3cc43205j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Affiliation(s)
- Kimberly Hamad-Schifferli
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Abstract
Nanoparticle-protein conjugates hold great promise in biomedical applications. Diverse strategies have been developed to link nanoparticles to proteins. This chapter describes a method to assemble and purify nanoparticle-protein conjugates. First, stable and biocompatible 1.5 nm gold nanoparticles are synthesized. Conjugation of the nanoparticle to the protein is then achieved via two different approaches that do not require heavy chemical modifications or cloning: cysteine-gold covalent bonding, or electrostatic attachment of the nanoparticle to charged groups of the protein. Co-functionalization of the nanoparticle with PEG thiols is recommended to help protein folding. Finally, structural characterization is performed with circular dichroism, as this spectroscopy technique has proven to be effective at examining protein secondary structure in nanoparticle-protein conjugates.
Collapse
|
36
|
Conde J, Baptista PV, Hernández Y, Sanz V, de la Fuente JM. Modification of plasmid DNA topology by ‘histone-mimetic’ gold nanoparticles. Nanomedicine (Lond) 2012; 7:1657-66. [DOI: 10.2217/nnm.12.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Our aim is to explore whether gold nanoparticles (AuNPs) functionalized with a carboxylated polyethylene glycol (PEG) and protamine (AuNP@PEG@Prot) can modulate - enhance or restrain - DNA condensation, altering DNA conformation and inducing structural changes. Understanding how these nanoconjugates modulate DNA structure, size and shape of DNA condensates, and enable control over the resulting 3D structures is of major biological and therapeutic importance. Materials & methods: Citrate-AuNPs were covered with a dense layer of a hetero-functional octa(ethylene glycol) (SH-EG(8)-COOH). Conjugation of protamine to the AuNP@PEG was achieved by taking advantage of the carboxylated surface previously generated on the surface of the NP and the remaining amino groups from the protamine, using carbodiimide and N-hydroxysulfosuccinimide coupling reactions. Results & conclusion: AuNP@PEG@Prot modulates the structure and topology of DNA, not only for condensation, but also for decondensation, via formation of higher quantities of dimers and multimers, when compared with AuNP@PEG and free protamine. Original submitted 16 July 2011; Revised submitted 9 January 2012; Published online 14 May 2012
Collapse
Affiliation(s)
- João Conde
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor s/n 50018, Zaragoza, Spain
- Centro de Investigação em Genética Molecular Humana (CIGMH), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- Centro de Investigação em Genética Molecular Humana (CIGMH), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Yulan Hernández
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Vanesa Sanz
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Jesus M de la Fuente
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor s/n 50018, Zaragoza, Spain
| |
Collapse
|
37
|
Maiti S, Das K, Dutta S, Das PK. Striking Improvement in Peroxidase Activity of Cytochrome c by Modulating Hydrophobicity of Surface-Functionalized Gold Nanoparticles within Cationic Reverse Micelles. Chemistry 2012; 18:15021-30. [DOI: 10.1002/chem.201202398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Indexed: 01/07/2023]
|
38
|
Flexible programming of cell-free protein synthesis using magnetic bead-immobilized plasmids. PLoS One 2012; 7:e34429. [PMID: 22470570 PMCID: PMC3314631 DOI: 10.1371/journal.pone.0034429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/01/2012] [Indexed: 01/23/2023] Open
Abstract
The use of magnetic bead-immobilized DNA as movable template for cell-free protein synthesis has been investigated. Magnetic microbeads containing chemically conjugated plasmids were used to direct cell-free protein synthesis, so that protein generation could be readily programmed, reset and reprogrammed. Protein synthesis by using this approach could be ON/OFF-controlled through repeated addition and removal of the microbead-conjugated DNA and employed in sequential expression of different genes in a same reaction mixture. Since the incubation periods of individual template plasmids are freely controllable, relative expression levels of multiple proteins can be tuned to desired levels. We expect that the presented results will find wide application to the flexible design and execution of synthetic pathways in cell-free chassis.
Collapse
|
39
|
Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. NANOSCALE 2012; 4:1871-80. [PMID: 22076024 PMCID: PMC4101904 DOI: 10.1039/c1nr11188d] [Citation(s) in RCA: 748] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gold nanoparticles (AuNPs) are important components for biomedical applications. AuNPs have been widely employed for diagnostics, and have seen increasing use in the area of therapeutics. In this mini-review, we present fabrication strategies for AuNPs and highlight a selection of recent applications of these materials in bionanotechnology.
Collapse
Affiliation(s)
- Yi-Cheun Yeh
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
40
|
Jewell CM, Jung JM, Atukorale PU, Carney RP, Stellacci F, Irvine DJ. Oligonucleotide Delivery by Cell-Penetrating “Striped” Nanoparticles. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104514] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Jewell CM, Jung JM, Atukorale PU, Carney RP, Stellacci F, Irvine DJ. Oligonucleotide delivery by cell-penetrating "striped" nanoparticles. Angew Chem Int Ed Engl 2011; 50:12312-12315. [PMID: 22028047 PMCID: PMC3786135 DOI: 10.1002/anie.201104514] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/17/2011] [Indexed: 01/13/2023]
Affiliation(s)
- Christopher M Jewell
- Depts. of Materials Science and Engineering and Biological Engineering, Koch Institute for Integrative Cancer Research, Ragon Institute of MGH, MIT, and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Jin-Mi Jung
- Depts. of Materials Science and Engineering and Biological Engineering, Koch Institute for Integrative Cancer Research, Ragon Institute of MGH, MIT, and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Prabhani U Atukorale
- Depts. of Materials Science and Engineering and Biological Engineering, Koch Institute for Integrative Cancer Research, Ragon Institute of MGH, MIT, and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Randy P Carney
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
| | - Darrell J Irvine
- Depts. of Materials Science and Engineering and Biological Engineering, Koch Institute for Integrative Cancer Research, Ragon Institute of MGH, MIT, and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA).,Howard Hughes Medical Institute, Chevy Chase, MD 20815 (USA)
| |
Collapse
|
42
|
de Puig H, Federici S, Baxamusa SH, Bergese P, Hamad-Schifferli K. Quantifying the nanomachinery of the nanoparticle-biomolecule interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2477-84. [PMID: 21692181 DOI: 10.1002/smll.201100530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 05/21/2023]
Abstract
A study is presented of the nanomechanical phenomena experienced by nanoparticle-conjugated biomolecules. A thermodynamic framework is developed to describe the binding of thrombin-binding aptamer (TBA) to thrombin when the TBA is conjugated to nanorods. Binding results in nanorod aggregation (viz. directed self-assembly), which is detectable by absorption spectroscopy. The analysis introduces the energy of aggregation, separating it into TBA-thrombin recognition and surface-work contributions. Consequently, it is demonstrated that self-assembly is driven by the interplay of surface work and thrombin-TBA recognition. It is shown that the work at the surface is about -10 kJ mol(-1) and results from the accumulation of in-plane molecular forces of pN magnitude and with a lifetime of <1 s, which arises from TBA nanoscale rearrangements fuelled by thrombin-directed nanorod aggregation. The obtained surface work can map aggregation regimes as a function of different nanoparticle surface conditions. Also, the thermodynamic treatment can be used to obtain quantitative information on surface effects impacting biomolecules on nanoparticle surfaces.
Collapse
Affiliation(s)
- Helena de Puig
- Department of Biological Engineering and the Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA; Institut Quimic de Sarrià, Universitat Ramon Llull Via Augusta 390, 08017 Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Li F, Li J, Wang C, Zhang J, Li XF, Le XC. Competitive protection of aptamer-functionalized gold nanoparticles by controlling the DNA assembly. Anal Chem 2011; 83:6464-7. [PMID: 21766782 DOI: 10.1021/ac201801k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Functionalization and control of nanoparticle surface are critical to the desirable application of nanoparticles. We describe a DNA assembly method that dynamically protects aptamer-functionalized gold nanoparticles (apt-AuNP) from nondesirable binding to interfering molecules. Competitive protection of the apt-AuNP was achieved by using a carefully designed DNA that served two primary functions: reducing cross-reaction by competitive hybridization to the aptamer and overcoming nonspecific adsorption by restricted access to the AuNP surface. Tuning the length and sequence of the hybridization and the overhang components of the protection DNA allowed for control of the selectivity of apt-AuNP probes for the target protein. Alternating application of the protection DNA containing a polyA and polyT overhang enabled layer-by-layer formation of the supermolecular assembly. This directed assembly of apt-AuNP resulted in enhancement of signal for visual detection of minute amounts of proteins. This method was successfully demonstrated for Western blot analysis of thrombin, with an improved detection limit of 6 ng. This study demonstrates a unique dynamic protection strategy for achieving high specificity and sensitivity in the detection of protein.
Collapse
|
44
|
Wallner A, Jafri SHM, Blom T, Gogoll A, Leifer K, Baumgartner J, Ottosson H. Formation and NMR spectroscopy of ω-thiol protected α,ω-alkanedithiol-coated gold nanoparticles and their usage in molecular charge transport junctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9057-9067. [PMID: 21667939 DOI: 10.1021/la2019007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gold nanoparticles (AuNPs) coated with stabilizing molecular monolayers are utilized in areas ranging from life sciences to nanoelectronics. Here we present a novel and facile one-pot single phase procedure for the preparation of stable AuNPs with good dispersity, which are coated with α,ω-alkanedithiols whose outer ω-thiol is protected by a triphenylmethyl group. Using dielectrophoresis we were able to trap these AuNPs, coated with ω-thiol protecting groups, in a 20 nm gold electrode nanogap. The ω-thiol group was then deprotected under acidic conditions in situ once the AuNPs were correctly positioned in the device. The subsequent deprotection resulted in an increase of conductance by up to 3 orders of magnitude, indicating that the isolated dithiol-coated AuNPs were fused into a covalently bonded network with AuNP-molecule-AuNP as well as electrode-molecule-AuNP linkages. Furthermore, complete characterization of the AuNP surface-bonded alkanedithiols was achieved using a series of one- and two-dimensional NMR spectroscopy techniques. Our spectra of the molecule-coated AuNPs show well-resolved signals, only slightly broader than for free molecules in solution, which is in contrast to many earlier reported NMR spectral data of molecules attached to AuNPs. Complementary diffusion NMR spectroscopic experiments were performed to prove that the observed alkanedithiols are definitely surface-bonded species and do not exist in free and unattached form.
Collapse
Affiliation(s)
- Andreas Wallner
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Protective effect of the apoptosis-sensing nanoparticle AnxCLIO-Cy5.5. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:291-8. [PMID: 21704591 DOI: 10.1016/j.nano.2011.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 02/02/2023]
Abstract
The diagnostic utility of the apoptosis-sensing nanoparticle (NP), AnxCLIO-Cy5.5, is well established. Here we sought to define the pathophysiological impact of the nanoparticle (NP) on apoptotic cells. Confocal microscopy showed that AnxCLIO-Cy5.5 remained bound to apoptotic cell membranes for 3 hours but by 7 hours had become completely internalized. AnxCLIO-Cy5.5 exposure did not impact energetics, metabolism or caspase-3 activity in apoptotic cells. Gene expression in cells exposed to AnxCLIO-Cy5.5 did not reveal upregulation of pro-inflammatory or cell-death pathways. Moreover, exposure to AnxCLIO-Cy5.5 decreased the frequency of membrane rupture of early apoptotic cells. Similarly, in mice exposed to 1 hour of ischemia -reperfusion, the injection of AnxCLIO-Cy5.5 at the onset of reperfusion reduced infarct size/area at risk by 16.2%. Our findings suggest that AnxCLIO-Cy5.5 may protect apoptotic cells by stabilizing their cell membranes and has the potential to become a theranostic agent, capable of both identifying and salvaging early apoptotic cells. From the Clinical Editor: This study demonstrates that AnxCLIO-Cy5.5 nanoparticles may protect apoptotic cells by cell membrane stabilization and have the potential to become a "theranostic agent" capable of identifying and salvaging early apoptotic cells.
Collapse
|
46
|
Conde J, de la Fuente JM, Baptista PV. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles. NANOTECHNOLOGY 2010; 21:505101. [PMID: 21098932 DOI: 10.1088/0957-4484/21/50/505101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.
Collapse
Affiliation(s)
- J Conde
- Centro de Investigação em Genética Molecular Humana, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
47
|
Park S, Hamad-Schifferli K. Nanoscale interfaces to biology. Curr Opin Chem Biol 2010; 14:616-22. [PMID: 20674473 PMCID: PMC2953582 DOI: 10.1016/j.cbpa.2010.06.186] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/25/2010] [Accepted: 06/28/2010] [Indexed: 11/27/2022]
Abstract
Nanotechnology has held great promise for revolutionizing biology. The biological behavior of nanomaterials depends primarily on how they interface to biomolecules and their surroundings. Unfortunately, interface issues like non-specific adsorption are still the biggest obstacles to the success of nanobiotechnology and nanomedicine, and have held back widespread practical use of nanotechnology in biology. Not only does the biological interface of nanoparticles (NPs) need to be understood and controlled, but also NPs must be treated as biological entities rather than inorganic ones. Furthermore, one can adopt an engineering perspective of the NP-biological interface, realizing that it has unique, exploitable properties.
Collapse
Affiliation(s)
- Sunho Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|