1
|
Madhusudanan M, Chowdhury M. Advancements in Novel Mechano-Rheological Probes for Studying Glassy Dynamics in Nanoconfined Thin Polymer Films. ACS POLYMERS AU 2024; 4:342-391. [PMID: 39399890 PMCID: PMC11468511 DOI: 10.1021/acspolymersau.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 10/15/2024]
Abstract
The nanoconfinement effects of glassy polymer thin films on their thermal and mechanical properties have been investigated thoroughly, especially with an emphasis on its altered glass transition behavior compared to bulk polymer, which has been known for almost three decades. While research in this direction is still evolving, reaching new heights to unravel the underlying physics of phenomena observed in confined thin polymer films, we have a much clearer picture now. This, in turn, has promoted their application in miniaturized and functional applications. To extract the full potential of such confined films, starting from their fabrication, function, and various applications, we must realize the necessity to have an understanding and availability of robust characterization protocols that specifically target thin film thermo-mechanical stability. Being nanometer-sized in thickness, often atop a solid substrate, direct mechanical testing on such films becomes extremely challenging and often encounters serious complexity from the dominating effect of the substrate. In this review, we have compiled together a few important novel and promising techniques for mechano-rheological characterization of glassy polymer thin films. The conceptual background involved in each technique, constitutive equations, methodology, and current status of research are touched upon following a pedagogical tutorial approach. Further, we discussed each technique's success and limitations, carefully covering the puzzling or contradicting observations reported within the broad nexus of glass transition temperature-viscosity-modulus-molecular mobility (including diffusion and relaxation).
Collapse
Affiliation(s)
- Mithun Madhusudanan
- Metallurgical
Engineering and Materials Science, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Mithun Chowdhury
- Metallurgical
Engineering and Materials Science, Indian
Institute of Technology Bombay, Mumbai 400076, India
- Center
for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Bhuyan S, Chandran S, Pillai DS. Harnessing Polar Interactions Tunes the Stability of Ultrathin Polymer Solution Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17699-17709. [PMID: 39102456 DOI: 10.1021/acs.langmuir.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The stability of ultrathin (<100 nm) polymer films is essential in applications like protective coatings. On the contrary, their instability may actually be desirable for the emergence of self-assembled nanoscale patterns utilized in the fabrication of functional devices. Polymer solution films exhibit two distinct kinds of instabilities, viz., dewetting (long-wave) and decomposition (short-wave). Dewetting refers to the rupture of the continuous film to form isolated domains, while decomposition leads to phase separation within the polymer solution. The focus of this work is on leveraging polar interactions between the solute and solvent molecules to tune the stability of the film. A gradient dynamics-based thin film model is developed to investigate pattern formation in a thin polar polymer solution film. The Flory-Huggins theory is suitably modified by introducing a polar interaction parameter that depends upon the concentration of the polymer and the dipole moments of monomer (μ1) and solvent molecules (μ0). A linear stability analysis is performed to determine the characteristic length scale and growth rate of the instabilities. It is shown that the range of concentration space for the occurrence of the decomposition mode is directly affected by the Flory interaction parameter (χ0), μ0, and μ1, thereby serving as control parameters to tune the width of the concentration range. It is further shown that ignoring polar interactions may lead to incorrect predictions of the instability mode, including a complete loss of the decomposition mode. In addition, the long-wave dewetting length scale is found to decrease due to bulk dipolar interactions at higher polymer concentrations. Finally, numerical simulations are carried out to track the nonlinear evolution of the interface and concentration field for both the decomposition and dewetting modes of instability.
Collapse
Affiliation(s)
- Shreyanil Bhuyan
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sivasurender Chandran
- Soft and Biological Matter Laboratory, Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Dipin S Pillai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Wang W, Sessler CD, Wang X, Liu J. In Situ Synthesis and Assembly of Functional Materials and Devices in Living Systems. Acc Chem Res 2024; 57:2013-2026. [PMID: 39007720 DOI: 10.1021/acs.accounts.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
ConspectusIntegrating functional materials and devices with living systems enables novel methods for recording, manipulating, or augmenting organisms not accessible by traditional chemical, optical, or genetic approaches. (The term "device" refers to the fundamental components of complex electronic systems, such as transistors, capacitors, conductors, and electrodes.) Typically, these advanced materials and devices are synthesized, either through chemical or physical reactions, outside the biological systems (ex situ) before they are integrated. This is due in part to the more limited repertoire of biocompatible chemical transformations available for assembling functional materials in vivo. Given that most of the assembled bulk materials are impermeable to cell membranes and cannot go through the blood-brain barrier (BBB), the external synthesis poses challenges when trying to interface these materials and devices with cells precisely and in a timely manner and at the micro- and nanoscale─a crucial requirement for modulating cellular functions. In contrast to presynthesis in a separate location, in situ assembly, wherein small molecules or building blocks are directly assembled into functional materials within a biological system at the desired site of action, has offered a potential solution for spatiotemporal and genetic control of material synthesis and assembly.In this Account, we highlight recent advances in spatially and temporally targeted functional material synthesis and assembly in living cells, tissues and animals and provide perspective on how they may enable novel probing, modulation, or augmentation of fundamental biology. We discuss several strategies, starting from the traditional nontargeted methods to targeted assembly of functional materials and devices based on the endogenous markers of the biological system. We then focus on genetically targeted assembly of functional materials, which employs enzymatic catalysis centers expressed in living systems to assemble functional materials in specific molecular-defined cell types. We introduce the recent efforts of our group to modulate membrane capacitance and neuron excitability using in situ synthesized electrically functional polymers in a genetically targetable manner. These advances demonstrate the promise of in situ synthesis and assembly of functional materials and devices, including the optogenetic polymerization developed by our lab, to interface with cells in a cellular- or subcellular-specific manner by incorporating genetic and/or optical control over material assembly. Finally, we discuss remaining challenges, areas for improvement, potential applications to other biological systems, and novel methods for the in situ synthesis of functional materials that could be elevated by incorporating genetic or material design strategies. As researchers expand the toolkit of biocompatible in situ functional material synthetic techniques, we anticipate that these advancements could potentially offer valuable tools for exploring biological systems and developing therapeutic solutions.
Collapse
Affiliation(s)
- Wenbo Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Chanan D Sessler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| |
Collapse
|
4
|
Wei H, Lin P, Shi B, Xu L, Yang X, Sun W. Study of Manipulative In Situ Pore-Formation upon Polymeric Coating on Cylindrical Substrate for Sustained Drug Delivery. Macromol Biosci 2024:e2400273. [PMID: 39038119 DOI: 10.1002/mabi.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Herein, the micro-porous polylactic acid coating applied on the surface of the cylindrical substrate is fabricated by a novel in situ pore-formation strategy based on the combinational effect of breath figure (BF) and vapor-induced phase separation (VIPS) processes. Under the condition of high environmental humidity, solvent pair of chloroform and dimethylformamide is employed for post-treatment onto pre-formed PLA coating to induce the pore-formation following the mechanism of BF and VIPS, respectively. A composite porous structure with both cellular-like and bi-continuous network morphologies is obtained. By tunning the experimental factors including the ratio of the solvent pair, environmental humidity, and temperature, morphological manipulation upon the pore morphology can be facilely achieved based on the control of mechanism transition between BF and VIPS. Paclitaxel is used as a model drug and loaded into the porous coating by the wicking effect of post-immersion. Coatings with different morphological features show varying drug loading and release capacities. The 28-day release test reveals dynamic release profiles between different coating samples, with the total release rate ranging from 35.70% to 79.96%. Optimal loading capacity of 19.28 µg cm-2 and 28-day release rate of 35.70% are achieved for the coating with composite BF-VIPS structure. This research established a cost-efficient strategy with high flexibility in the structural manipulation concerning the construction of drug-eluting coating with the feature of manipulative drug delivery.
Collapse
Affiliation(s)
- Hao Wei
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ping Lin
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Baozhang Shi
- Department of General Surgery, Ningbo Haishu People's Hospital, Ningbo, 315000, China
| | - Liping Xu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Xiaoping Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Wei Sun
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
5
|
Wen KC, Li ZA, Liu JH, Zhang C, Zhang F, Li FQ. Recent developments in ureteral stent: Substrate material, coating polymer and technology, therapeutic function. Colloids Surf B Biointerfaces 2024; 238:113916. [PMID: 38636438 DOI: 10.1016/j.colsurfb.2024.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The ureteral stent is an effective treatment for clinical ureteral stricture following urological surgery, and the functional coating of the stent could effectively inhibit bacterial colonization and other complications. The present review provides an analysis and description of the materials used in ureteral stents and their coatings. Emphasis is placed on the technological advancements of functional coatings, taking into consideration the characteristics of these materials and the properties of their active substances. Furthermore, recent advances in enhancing the therapeutic efficacy of functional coatings are also reviewed. It is anticipated that this article will serve as a valuable reference providing insights for future research development on new drug-loaded ureteral stents.
Collapse
Affiliation(s)
- Kai-Chao Wen
- School of Medicine, Shanghai University, Shanghai 200444, China; Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Zheng-An Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Ji-Heng Liu
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Feng Zhang
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Feng-Qian Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| |
Collapse
|
6
|
Takagi K, Sagawa T, Hashizume M. The pH responsiveness of fluorescein loaded in polysaccharide composite films. SOFT MATTER 2023; 19:8945-8953. [PMID: 37909071 DOI: 10.1039/d3sm01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Stimuli-responsive materials have been used in biomedical applications. Composite films fabricated using polyion complexes comprising anionic and cationic polysaccharides exhibited loading and release abilities for water-soluble molecules, the release ability of which depended on the solution pH. However, the interactions between polysaccharides and loaded molecules in the film have not been evaluated. In this study, polysaccharide composite films loaded with fluorescein (FL) as a probe molecule were fabricated and the film properties, FL ionization, and release behaviour of FL were investigated. FL loading did not significantly affect the mechanical and morphological properties of the films. The release behaviour of FL was determined by the pH of the solution as well as the electrostatic interaction between polysaccharides and FL ionic structures in FL-loaded films. Furthermore, the ionic structure change of FL that remained in the film was suppressed due to interactions with polysaccharides, such as through hydrogen bonding. Additionally, the pH responsiveness of FL in the film in the dried state was evaluated. The result shows that polysaccharide composite films were swollen because of air moisture and that the diffusion of molecules inside the film accelerated. These findings are useful to understand the properties of the loaded molecules such as ionic state and diffusiveness in the films made of polyion complexes.
Collapse
Affiliation(s)
- Konatsu Takagi
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Takuya Sagawa
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mineo Hashizume
- Graduate School of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
7
|
WIBOWO AA, BÜTÜN V. pH-responsive intermediary layer cross-linked micelles from zwitterionic triblock copolymers and investigation of their drug-release behaviors. Turk J Chem 2023; 47:1103-1115. [PMID: 38173758 PMCID: PMC10760816 DOI: 10.55730/1300-0527.3597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
ABC-type triblock copolymers, namely poly[(ethylene glycol)methyl ether]-block-poly(tert-butyl methacrylate)-block-poly[2-N-(diisopropylamino)ethyl methacrylate] (MPEG-b-PBuMA-b-PDPA), were first synthesized and then the middle blocks were successfully converted into poly(methacrylic acid) to obtain MPEG-b-PMAA-b-PDPA zwitterionic triblock copolymers. These block copolymers were soluble in water and formed micellar aggregates with complex cores via hydrogen bonding interactions between MPEG and PMAA blocks below pH 4.0. When the pH was between 5.0 and 7.0, due to charge compensation between partially protonated PDPA and partially ionized PMAA blocks, micelles with polyion complex cores were observed. If the solution pH was above 8.0, deprotonation of tertiary amine groups provided a hydrophobic character to the PDPA block, which resulted in the formation of PDPA-core micelles while MPEG/anionic PMAA hybrid blocks formed hydrated coronas. Intermediary layer cross-linked (ILCL) micelles from PDPA-core micelles were also prepared by cross-linking the inner PMAA shell. The hydrophobic drug dipyridamole (DIP) was used to investigate the release profile of ILCL micelles. DIP can be loaded to the PDPA cores of the micelles in basic aqueous media. An increase in the degree of cross-linking causes slower release for the model drug. It was concluded that the more complex matrix formation in the intermediary layer of the micelles via cross-linking retards the drug release from the core.
Collapse
Affiliation(s)
- Agung Ari WIBOWO
- Department of Polymer Science and Technology, Institute of Science, Eskişehir Osmangazi University, Meşelik Campus, Eskişehir,
Turkiye
| | - Vural BÜTÜN
- Department of Polymer Science and Technology, Institute of Science, Eskişehir Osmangazi University, Meşelik Campus, Eskişehir,
Turkiye
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, Eskişehir,
Turkiye
| |
Collapse
|
8
|
Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics 2023; 15:2227. [PMID: 37765196 PMCID: PMC10537422 DOI: 10.3390/pharmaceutics15092227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic polysaccharide-based coatings have recently emerged as versatile strategies to transform a conventional medical implant into a drug delivery system. However, the translation of these polysaccharide-based coatings into the clinic as drug delivery systems still requires a deeper understanding of their drug degradation/release profiles. This claim is supported by little or no data. In this review paper, a comprehensive description of the benefits and challenges generated by the polysaccharide-based coatings is provided. Moreover, the latest advances made towards the application of the most important representative coatings based on polysaccharide types for drug delivery are debated. Furthermore, suggestions/recommendations for future research to speed up the transition of polysaccharide-based drug delivery systems from the laboratory testing to clinical applications are given.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
9
|
Atinafu DG, Yun BY, Kim YU, Kim S. Nanopolyhybrids: Materials, Engineering Designs, and Advances in Thermal Management. SMALL METHODS 2023; 7:e2201515. [PMID: 36855164 DOI: 10.1002/smtd.202201515] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/10/2023] [Indexed: 06/09/2023]
Abstract
The fundamental requirements for thermal comfort along with the unbalanced growth in the energy demand and consumption worldwide have triggered the development and innovation of advanced materials for high thermal-management capabilities. However, continuous development remains a significant challenge in designing thermally robust materials for the efficient thermal management of industrial devices and manufacturing technologies. The notable achievements thus far in nanopolyhybrid design technologies include multiresponsive energy harvesting/conversion (e.g., light, magnetic, and electric), thermoregulation (including microclimate), energy saving in construction, as well as the miniaturization, integration, and intelligentization of electronic systems. These are achieved by integrating nanomaterials and polymers with desired engineering strategies. Herein, fundamental design approaches that consider diverse nanomaterials and the properties of nanopolyhybrids are introduced, and the emerging applications of hybrid composites such as personal and electronic thermal management and advanced medical applications are highlighted. Finally, current challenges and outlook for future trends and prospects are summarized to develop nanopolyhybrid materials.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Amgoth C, Patra S, Wasnik K, Maity P, Paik P. Controlled synthesis of thermosensitive tunable porous film of (
pNIPAM
)‐
b
‐(
PCL
) copolymer for sustain drug delivery. J Appl Polym Sci 2023. [DOI: 10.1002/app.53854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Chander Amgoth
- School of Engineering Sciences and Technology University of Hyderabad Hyderabad Telangana India
| | - Sukanya Patra
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| | - Kirti Wasnik
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| | - Pradip Maity
- CSIR‐National Chemical Laboratory Pune Maharashtra India
| | - Pradip Paik
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| |
Collapse
|
11
|
Song Y, Fukuzawa K, Hirayama T, Yamashita N, Yamada NL, Itoh S, Azuma N, Zhang H. Effects of Polarity of Polymers on Conformation and Lubricating Film Formation of Adsorbed Films. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Yuxi Song
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kenji Fukuzawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoko Hirayama
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Naoki Yamashita
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Norifumi L. Yamada
- Neutron Science Division, High Energy Accelerator Research Organization (KEK), 203-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Shintaro Itoh
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Azuma
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hedong Zhang
- Department of Complex Systems Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Kulshrestha P, Kyoung Shin B, Falak S, Sung Huh D. Bio-inspired hierarchical structure of polyaniline on the surface of porous polymer film through interfacial polymerization as a smart material sensitive to pH. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
13
|
Yu Y, Appadoo V, Ren J, Hacker TA, Liu B, Lynn DM. pH-Responsive Polyelectrolyte Coatings that Enable Catheter-Mediated Transfer of DNA to the Arterial Wall in Short and Clinically Relevant Inflation Times. ACS Biomater Sci Eng 2022; 8:4377-4389. [PMID: 36121432 DOI: 10.1021/acsbiomaterials.2c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and characterization of pH-responsive polymer coatings that enable catheter balloon-mediated transfer of DNA to arterial tissue in short, clinically relevant inflation times. Our approach exploits the pH-dependent ionization of poly(acrylic acid) (PAA) to promote disassembly and release of plasmid DNA from polyelectrolyte multilayers. We characterized the contact transfer of multilayers composed of PAA, plasmid DNA, and linear poly(ethyleneimine) (LPEI) identified as promising in prior studies on the delivery of DNA to arterial tissue. In contrast to thinner films evaluated previously, we found thicker coatings composed of 32 repeating (LPEI/PAA/LPEI/DNA)x tetralayers to swell substantially in physiologically relevant media (in PBS; pH = 7.4). In some cases, these coatings also disintegrated or delaminated rapidly from their underlying substrates, suggesting the potential for enhanced balloon-mediated transfer. We developed a technically straightforward agarose gel-based hole-insertion model to characterize factors (inflation time, lumen size, etc.) that influence contact transfer of DNA when film-coated balloons are inflated into contact with soft surfaces. Those studies and the results of in vivo experiments using small animal (rat) and large animal (pig) models of peripheral arterial injury revealed catheters coated with these materials to promote robust contact transfer of DNA to soft hydrogel surfaces and the luminal surfaces of arterial tissue using inflation times as short as 30 s. These short inflation times are relevant in the context of clinical vascular interventions in peripheral arteries. Additional studies demonstrated that contact transfer of DNA using these short times can promote subsequent dissemination and transport of DNA to the medial tissue layer, suggesting the potential for use in therapeutically relevant applications of balloon-mediated gene transfer.
Collapse
Affiliation(s)
- Yan Yu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jun Ren
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin 53792, United States
| | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Polymer-solvent interaction and conformational changes at a molecular level: Implication to solvent-assisted deformation and aggregation at the polymer surface. J Colloid Interface Sci 2022; 616:221-233. [DOI: 10.1016/j.jcis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
|
15
|
Díaz J, Soltau M, Lísal M, Carbone P, Pagonabarraga I. Adsorption of amphiphilic grafted polymers as polymer corrosion inhibitors: insights from mesoscopic simulations. Phys Chem Chem Phys 2022; 24:11992-12001. [PMID: 35532223 DOI: 10.1039/d2cp00504b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The homogeneous covering of amphiphillic polymer molecules onto metallic surfaces is of great importance for corrosion inhibitor applications. Lyophillic side chains grafted onto a lyophobic backbone act as anchors that allow the molecule to absorb at the metallic surface preventing the exposure with the solvent. Coarse-grained simulations are used to study the sorption and conformation behaviour of amphiphillic grafted polymers for corrosion inhibition. The backbone insolubility is found to play a key role in the sorption and conformation behaviour in the dilute limit. For finite concentrations, moderate backbone solubility and moderate molecule concentrations achieve optimal surface coverage, while highly a lyophobic backbone leads to bulk-like structures as a consequence of aggregation.
Collapse
Affiliation(s)
- Javier Díaz
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime - Avenue Forel 2, Lausanne, 1015, Switzerland.
| | | | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague, Czech Republic.,Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst nad Labem, Czech Republic
| | - Paola Carbone
- Department of Chemical Engineering, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime - Avenue Forel 2, Lausanne, 1015, Switzerland. .,Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
16
|
Sakamoto Y, Suehiro F, Akiba I, Nishimura T. Supramolecular Shear-Thinning Glycopeptide Hydrogels for Injectable Enzyme Prodrug Therapy Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5883-5890. [PMID: 35471982 DOI: 10.1021/acs.langmuir.2c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transplantable catalytic reactors have attracted considerable attention as therapeutic biomedical materials. However, existing transplantable reactors such as biocatalytic films are limited by their invasiveness. Here, we report the fabrication of biocatalytic supramolecular hydrogels via self-assembly of amphiphilic glycopeptides. We show that the hydrogels have shear-thinning properties, demonstrating their potential to be administered using a syringe. Enzymes can be loaded into the hydrogels by simply adding enzyme solution, and the enzyme-loaded hydrogels can transform a prodrug into an anticancer drug that inhibits tumor cell growth. This study demonstrates the potential of these biocatalytic hydrogels as injectable therapeutic reactors for enzyme prodrug therapy.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Fumi Suehiro
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Isamu Akiba
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
17
|
Garzón H, Suárez LJ, Muñoz S, Cardona J, Fontalvo M, Alfonso-Rodríguez CA. Biomaterials Used for Periodontal Disease Treatment: Focusing on Immunomodulatory Properties. Int J Biomater 2022; 2022:7693793. [PMID: 35528847 PMCID: PMC9072036 DOI: 10.1155/2022/7693793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 12/25/2022] Open
Abstract
The growing use of biomaterials with different therapeutic purposes increases the need for their physiological understanding as well as to seek its integration with the human body. Chronic inflammatory local pathologies, generally associated with infectious or autoimmunity processes, have been a current therapeutic target due to the difficulty in their treatment. The recent development of biomaterials with immunomodulatory capacity would then become one of the possible strategies for their management in local pathologies, by intervening in situ, without generating alterations in the systemic immune response. The treatment of periodontal disease as an inflammatory entity has involved the use of different approaches and biomaterials. There is no conclusive, high evidence about the use of these biomaterials in the regeneration of periodontitis sequelae, so the profession keeps looking for other different strategies. The use of biomaterials with immunomodulatory properties could be one, with a promising future. This review of the literature summarizes the scientific evidence about biomaterials used in the treatment of periodontal disease.
Collapse
Affiliation(s)
- H. Garzón
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - L. J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - S. Muñoz
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - J. Cardona
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - M. Fontalvo
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - C. A. Alfonso-Rodríguez
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
18
|
Beurton J, Boudier A, Barozzi Seabra A, Vrana NE, Clarot I, Lavalle P. Nitric Oxide Delivering Surfaces: An Overview of Functionalization Strategies and Efficiency Progress. Adv Healthc Mater 2022; 11:e2102692. [PMID: 35358359 DOI: 10.1002/adhm.202102692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/27/2022] [Indexed: 12/15/2022]
Abstract
An overview on the design of nitric oxide (NO) delivering surfaces for biomedical purposes is provided, with a focus on the advances of the past 5 years. A localized supply of NO is of a particular interest due to the pleiotropic biological effects of this diatomic compound. Depending on the generated NO flux, the surface can mimic a physiological release profile to provide an activity on the vascular endothelium or an antibacterial activity. Three requirements are considered to describe the various strategies leading to a surface delivering NO. Firstly, the coating must be selected in accordance with the properties of the substrate (nature, shape, dimensions…). Secondly, the releasing and/or generating kinetics of NO should match the targeted biological application. Currently, the most promising structures are developed to provide an adaptable NO supply driven by pathophysiological needs. Finally, the biocompatibility and the stability of the surface must also be considered regarding the expected residence time of the device. A critical point of view is proposed to help readers in the design of the NO delivering surface according to its expected requirement and therapeutic purpose.
Collapse
Affiliation(s)
- Jordan Beurton
- Université de Lorraine CITHEFOR Nancy F‐54000 France
- Institut National de la Santé et de la Recherche Médicale Inserm UMR_S 1121 Biomaterials and Bioengineering Strasbourg F‐67085 France
- Université de Strasbourg Faculté de Chirurgie Dentaire de Strasbourg Strasbourg F‐67000 France
| | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH) Federal University of ABC (UFABC) Santo André SP CEP 09210‐580 Brazil
| | | | - Igor Clarot
- Université de Lorraine CITHEFOR Nancy F‐54000 France
| | - Philippe Lavalle
- Université de Strasbourg Faculté de Chirurgie Dentaire de Strasbourg Strasbourg F‐67000 France
- Center for Natural and Human Sciences (CCNH) Federal University of ABC (UFABC) Santo André SP CEP 09210‐580 Brazil
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| |
Collapse
|
19
|
Schulz M, Brinkhuis R, Crean C, Sear RP, Keddie JL. Suppression of self-stratification in colloidal mixtures with high Péclet numbers. SOFT MATTER 2022; 18:2512-2516. [PMID: 35297936 DOI: 10.1039/d2sm00194b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The non-equilibrium assembly of bimodal colloids during evaporative processes is an attractive means to achieve gradient or stratified layers in thick films. Here, we show that the stratification of small colloids on top of large is prevented when the viscosity of the continuous aqueous phase is too high. We propose a model where a too narrow width of the gradient in concentration of small colloids suppresses the stratification.
Collapse
Affiliation(s)
- M Schulz
- Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | - R Brinkhuis
- Allnex, Nieuwe Kanaal 7N, 6709 PA Wageningen, The Netherlands
| | - C Crean
- Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - R P Sear
- Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | - J L Keddie
- Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
20
|
Rengaraj A, Bosc L, Machillot P, McGuckin C, Milet C, Forraz N, Paliard P, Barbier D, Picart C. Engineering of a Microscale Niche for Pancreatic Tumor Cells Using Bioactive Film Coatings Combined with 3D-Architectured Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13107-13121. [PMID: 35275488 PMCID: PMC7614000 DOI: 10.1021/acsami.2c01747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-photon polymerization has recently emerged as a promising technique to fabricate scaffolds for three-dimensional (3D) cell culture and tissue engineering. Here, we combined 3D-printed microscale scaffolds fabricated using two-photon polymerization with a bioactive layer-by-layer film coating. This bioactive coating consists of hyaluronic acid and poly(l-lysine) of controlled stiffness, loaded with fibronectin and bone morphogenic proteins 2 and 4 (BMP2 and BMP4) as matrix-bound proteins. Planar films were prepared using a liquid handling robot directly in 96-well plates to perform high-content studies of cellular processes, especially cell adhesion, proliferation, and BMP-induced signaling. The behaviors of two human pancreatic cell lines PANC1 (immortalized) and PAN092 (patient-derived cell line) were systematically compared and revealed important context-specific cell responses, notably in response to film stiffness and matrix-bound BMPs (bBMPs). Fibronectin significantly increased cell adhesion, spreading, and proliferation for both cell types on soft and stiff films; BMP2 increased cell adhesion and inhibited proliferation of PANC1 cells and PAN092 on soft films. BMP4 enhanced cell adhesion and proliferation of PANC1 and showed a bipolar effect on PAN092. Importantly, PANC1 exhibited a strong dose-dependent BMP response, notably for bBMP2, while PAN092 was insensitive to BMPs. Finally, we proved that it is possible to combine a microscale 3D Ormocomp scaffold fabricated using the two-photon polymerization technique with the bioactive film coating to form a microscale tumor tissue and mimic the early stages of metastatic cancer.
Collapse
Affiliation(s)
- Arunkumar Rengaraj
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Lauriane Bosc
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
| | - Colin McGuckin
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Clément Milet
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Nico Forraz
- Cell Therapy Research Institute, CTIBiotech, 5 avenue Lionel Terray, 69330 Meyzieu, France
| | - Philippe Paliard
- Microlight 3D, 5 avenue du Grand Sablon, 38700 La Tronche, France
| | - Denis Barbier
- Microlight 3D, 5 avenue du Grand Sablon, 38700 La Tronche, France
| | - Catherine Picart
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, Bât C3, 17 rue des Martyrs, 38054, Grenoble, France
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 3 parvis Louis Néel, 38016 Grenoble, France
- Institut Universitaire de France (IUF), Ministère de l’Enseignement Supérieur, de la Recherche et de I’Industrie, 1 rue Descartes, 75 231 Paris Cedex 05, France
| |
Collapse
|
21
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
22
|
Tang JSJ, Smaczniak AD, Tepper L, Rosencrantz S, Aleksanyan M, Dähne L, Rosencrantz RR. Glycopolymer based LbL Multilayer Thin Films with Embedded Liposomes. Macromol Biosci 2022; 22:e2100461. [PMID: 35080349 DOI: 10.1002/mabi.202100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Layer-by-layer (LbL) self-assembly emerged as an efficient technique for fabricating coating systems for, e.g., drug delivery systems with great versatility and control. In this work, we describe protecting group free and aqueous-based syntheses of bioinspired glycopolymer electrolytes. Thin films of the glycopolymers are fabricated by LbL self-assembly and function as scaffolds for liposomes, which potentially can encapsulate active substances. We investigate the adsorbed mass, pH stability and integrity of glycopolymer coatings as well as the embedded liposomes via whispering gallery mode (WGM) technology and quartz crystal microbalance with dissipation (QCM-D) monitoring, which enable label-free characterization. Glycopolymer thin films, with and without liposomes, are stable in the physiological pH range. QCM-D measurements verify the integrity of lipid vesicles. Thus, we present the fabrication of glycopolymer-based surface coatings with embedded and intact liposomes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jo Sing Julia Tang
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany.,University of Potsdam, Institute of Chemistry, Chair of Polymer Materials and Polymer Technologies, Potsdam-Golm, 14476, Germany
| | | | - Lucas Tepper
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany
| | - Sophia Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany
| | - Mina Aleksanyan
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany
| | - Lars Dähne
- Surflay Nanotec GmbH, Max-Planck Straße 3, Berlin, 12489, Germany
| | - Ruben R Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany
| |
Collapse
|
23
|
Mateos-Maroto A, Fernández-Peña L, Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers (Basel) 2022; 14:polym14030479. [PMID: 35160468 PMCID: PMC8838751 DOI: 10.3390/polym14030479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022] Open
Abstract
Polyelectrolyte multilayered capsules (PEMUCs) obtained using the Layer-by-Layer (LbL) method have become powerful tools for different biomedical applications, which include drug delivery, theranosis or biosensing. However, the exploitation of PEMUCs in the biomedical field requires a deep understanding of the most fundamental bases underlying their assembly processes, and the control of their properties to fabricate novel materials with optimized ability for specific targeting and therapeutic capacity. This review presents an updated perspective on the multiple avenues opened for the application of PEMUCs to the biomedical field, aiming to highlight some of the most important advantages offered by the LbL method for the fabrication of platforms for their use in the detection and treatment of different diseases.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
24
|
|
25
|
Carrascosa-Tejedor J, Santamaria A, Tummino A, Varga I, Efstratiou M, Lawrence MJ, Maestro A, Campbell RA. Polyelectrolyte/surfactant films: from 2D to 3D structural control. Chem Commun (Camb) 2022; 58:10687-10690. [DOI: 10.1039/d2cc03766a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible control of the 3D structure of polyelectrolyte/surfactant films at the air/water interface is showcased. A recently discovered mechanism is exploited to form highly efficient, stable and biocompatible films by...
Collapse
|
26
|
Kuai L, Liu F, Chiou BS, Avena-Bustillos RJ, McHugh TH, Zhong F. Controlled release of antioxidants from active food packaging: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Lu X, Cai S, Niu B, Li X, He Q, He X. ADVANCES IN TECHNIQUES AND APPLICATIONS OF RUBBER SURFACE GRAFTING MODIFICATION. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
To meet the requirement in the application of medical devices, composites, biomaterials, corrosion resistance, and selective adsorptions, rubber surface modification is usually indispensable. Grafting treatment is one of most significate treatment methods. In this paper, we focus on rubber surface grafting modification, including grafting techniques and applications. Different grafting methods—including monomer grafting polymerization and coupling reaction—are covered and compared briefly. The related applications of surface grafting modification techniques, such as improving compatibility of waste rubber as fillers, hydrophobicity and lipophilicity of sponge rubber for oil–water separation, biocompatibility of rubber in the medical field, and forming surface patterns, are demonstrated in detail. The new research directions of surface grafting techniques as well as main challenges in application are also discussed.
Collapse
Affiliation(s)
- Xiaolong Lu
- Southwest Petroleum University, Chendu, People's Republic of China
| | - Shuwei Cai
- Southwest Petroleum University, Chendu, People's Republic of China
| | - Ben Niu
- Southwest Petroleum University, Chendu, People's Republic of China
| | - Xian Li
- Southwest Petroleum University, Chendu, People's Republic of China
| | - Qin He
- Southwest Petroleum University, Chendu, People's Republic of China
| | - Xianru He
- Southwest Petroleum University, Chendu, People's Republic of China
| |
Collapse
|
28
|
Naskar D, Sapru S, Ghosh AK, Reis RL, Dey T, Kundu SC. Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomed Mater 2021; 16. [PMID: 34428758 DOI: 10.1088/1748-605x/ac20a0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 01/27/2023]
Abstract
The emerging field of tissue engineering and regenerative medicines utilising artificial polymers is facing many problems. Despite having mechanical stability, non-toxicity and biodegradability, most of them lack cytocompatibility and biocompatibility. Natural polymers (such as collagen, hyaluronic acid, fibrin, fibroin, and others), including blends, are introduced to the field to solve some of the relevant issues. Another natural biopolymer: silkworm silk gained special attention primarily due to its specific biophysical, biochemical, and material properties, worldwide availability, and cost-effectiveness. Silk proteins, namely fibroin and sericin extracted from domesticated mulberry silkwormBombyx mori, are studied extensively in the last few decades for tissue engineering. Wild nonmulberry silkworm species, originated from India and other parts of the world, also produce silk proteins with variations in their nature and properties. Among the nonmulberry silkworm species,Antheraea mylitta(Indian Tropical Tasar),A. assamensis/A. assama(Indian Muga), andSamia ricini/Philosamia ricini(Indian Eri), along withA. pernyi(Chinese temperate Oak Tasar/Tussah) andA. yamamai(Japanese Oak Tasar) exhibit inherent tripeptide motifs of arginyl glycyl aspartic acid in their fibroin amino acid sequences, which support their candidacy as the potential biomaterials. Similarly, sericin isolated from such wild species delivers unique properties and is used as anti-apoptotic and growth-inducing factors in regenerative medicines. Other characteristics such as biodegradability, biocompatibility, and non-inflammatory nature make it suitable for tissue engineering and regenerative medicine based applications. A diverse range of matrices, including but not limited to nano-micro scale structures, nanofibres, thin films, hydrogels, and porous scaffolds, are prepared from the silk proteins (fibroins and sericins) for biomedical and tissue engineering research. This review aims to represent the progress made in medical and non-medical applications in the last couple of years and depict the present status of the investigations on Indian nonmulberry silk-based matrices as a particular reference due to its remarkable potentiality of regeneration of different types of tissues. It also discusses the future perspective in tissue engineering and regenerative medicines in the context of developing cutting-edge techniques such as 3D printing/bioprinting, microfluidics, organ-on-a-chip, and other electronics, optical and thermal property-based applications.
Collapse
Affiliation(s)
- Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Sunaina Sapru
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, IL, Israel
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| |
Collapse
|
29
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Optical absorbance of the tympanic membrane in rat and human samples. PLoS One 2021; 16:e0254902. [PMID: 34293032 PMCID: PMC8297804 DOI: 10.1371/journal.pone.0254902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Chronic infections are often connected to biofilm formation. In presence of implants, this can lead to loss of the implant. Systemic or local application of drugs is relatively ineffective in case of biofilm formation. One technique to provide antibacterial properties on demand is the antibacterial photodynamic therapy (aPDT). Using this technique, these properties can be “switched on” by light illumination. In the middle ear with the semitransparent tympanic membrane, it might be possible in future to activate the antibacterial effect without opening the membrane. Therefore, we investigated the optical absorbance spectra of the tympanic membrane. Optical absorbance spectra were measured in ex vivo preparations from neonatal and adult rats with the membrane still being attached to the surrounding bony ring and four human samples. After performing area scans, the spot with the lowest absorbance being surrounded by a ring like structure with higher absorbance was chosen as region of interest for scanning wavelengths between 300 and 900 nm. Absorbance is generally higher at lower wavelengths with a local absorbance maximum at 420 nm and a weak second maximum with two neighbouring peaks at 540 / 580 nm and is significantly higher in adult rats compared to neonatal rats where about 10% of light was transmitted. The human samples show similar characteristics with a little higher absorbance. For activation of aPDT through the tympanic membrane, larger wavelengths are more promising. Whether the amount of light transmitted through the membrane would be sufficient to induce aPDT remains to be tested in further experiments.
Collapse
|
31
|
Ma C, Nikiforov A, De Geyter N, Dai X, Morent R, Ostrikov KK. Future antiviral polymers by plasma processing. Prog Polym Sci 2021; 118:101410. [PMID: 33967350 PMCID: PMC8085113 DOI: 10.1016/j.progpolymsci.2021.101410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/11/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is largely threatening global public health, social stability, and economy. Efforts of the scientific community are turning to this global crisis and should present future preventative measures. With recent trends in polymer science that use plasma to activate and enhance the functionalities of polymer surfaces by surface etching, surface grafting, coating and activation combined with recent advances in understanding polymer-virus interactions at the nanoscale, it is promising to employ advanced plasma processing for smart antiviral applications. This trend article highlights the innovative and emerging directions and approaches in plasma-based surface engineering to create antiviral polymers. After introducing the unique features of plasma processing of polymers, novel plasma strategies that can be applied to engineer polymers with antiviral properties are presented and critically evaluated. The challenges and future perspectives of exploiting the unique plasma-specific effects to engineer smart polymers with virus-capture, virus-detection, virus-repelling, and/or virus-inactivation functionalities for biomedical applications are analysed and discussed.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- Antiviral polymers
- BSA, bovine serum albumin
- CF4, tetrafluoromethane
- COVID-19, coronavirus disease 2019
- DC, direct current
- H2, hydrogen
- HBV, hepatitis B virus
- HMDSO, hexamethyldisiloxane
- IPNpp, plasma polymerized isopentyl nitrite
- MERS-CoV, middle east respiratory syndrome
- MW, microwave
- NO, nitric oxide
- PC, polycarbonate
- PDMS, polydimethylsiloxane
- PECVD, plasma-enhanced chemical vapour deposition
- PEG, polyethene glycol
- PET, polyethene terephthalate
- PFM, pentafluorophenyl methacrylate
- PP, polypropylene
- PPE, personal protective equipment
- PS, polystyrene
- PTFE, polytetrafluoroethylene
- PVC, polyvinyl chloride
- REF, reference
- RF, radio frequency
- RONS, reactive oxygen and nitrogen species
- RSV, respiratory syncytial virus
- RT-PCR, reverse transcription-polymerase chain reaction
- RV, rhinovirus
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SEM, scanning electron microscopy
- TEOS-O2, tetraethyl orthosilicate and oxygen
- UV, ultraviolet
- WCA, water contact angle
- plasma processing
- surface modification
- ΔD, the variation of the dissipation
- Δf, the frequency shift
Collapse
Affiliation(s)
- Chuanlong Ma
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Xiaofeng Dai
- Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), 4000 Brisbane, Australia
| |
Collapse
|
32
|
Dennyson Savariraj A, Salih A, Alam F, Elsherif M, AlQattan B, Khan AA, Yetisen AK, Butt H. Ophthalmic Sensors and Drug Delivery. ACS Sens 2021; 6:2046-2076. [PMID: 34043907 PMCID: PMC8294612 DOI: 10.1021/acssensors.1c00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed.
Collapse
Affiliation(s)
| | - Ahmed Salih
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fahad Alam
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Elsherif
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bader AlQattan
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ammar A. Khan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Ali K. Yetisen
- Department
of Physics, Lahore University of Management
Sciences, Lahore Cantonment 54792, Lahore, Pakistan
| | - Haider Butt
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
33
|
Effect of Different Physical Cross-Linkers on Drug Release from Hydrogel Layers Coated on Magnetically Steerable 3D-Printed Microdevices. TECHNOLOGIES 2021. [DOI: 10.3390/technologies9020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the last few decades, the introduction of microrobotics has drastically changed the way medicine will be approached in the future. The development of untethered steerable microdevices able to operate in vivo inside the human body allows a high localization of the therapeutical action, thus limiting invasiveness and possible medical complications. This approach results are particularly useful in drug delivery, where it is highly beneficial to administer the drug of choice exclusively to the target organ to avoid overdosage and side effects. In this context, drug releasing layers can be loaded on magnetically moveable platforms that can be guided toward the target organ to perform highly targeted release. In the present paper, we evaluate the possible application of alginate hydrogel layers on moveable platforms manufactured by coupling additive manufacturing with wet metallization. Such alginate layers are reticulated using three different physical crosslinkers: Ca, Zn or Mn. Their effect on drug release kinetics and on device functionality is evaluated. In the case of alginate reticulated using Mn, the strongly pH dependent behavior of the resulting hydrogel is evaluated as a possible way to introduce a triggered release functionality on the devices.
Collapse
|
34
|
In-Situ One-Step Direct Loading of Agents in Poly(acrylic acid) Coating Deposited by Aerosol-Assisted Open-Air Plasma. Polymers (Basel) 2021; 13:polym13121931. [PMID: 34200744 PMCID: PMC8230359 DOI: 10.3390/polym13121931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
In biomaterials and biotechnology, coatings loaded with bioactive agents are used to trigger biological responses by acting as drug release platforms and modulating surface properties. In this work, direct deposition of poly(acrylic acid) coatings containing various agents, such as dyes, fluorescent molecules, was achieved by aerosol-assisted open-air plasma. Using an original precursors injection strategy, an acrylic acid aerosol was loaded with an aqueous aerosol and deposited on silicon wafers. Results clearly showed that agents dissolved in the aqueous aerosol were successfully entrapped in the final coating. The effect of aerosols concentration, flow rate, and treatment time, on the coating morphology and the amount of entrapped agents, was also investigated. It was demonstrated that this process has the potential to entrap a tunable amount of any sensible water-soluble agent without altering its activity. To the best of our knowledge, this is the first time that the loading of an aqueous aerosol in coatings deposited by plasma from a liquid aerosol precursor is reported. This innovative approach complements plasma deposition of coatings loaded with bioactive agents from aqueous aerosols with the use of non-volatile liquid precursors.
Collapse
|
35
|
Forrest EC, Knepper R, Brumbach MT, Rodriguez MA, Archuleta K, Marquez MP, Tappan AS. Engineering the Microstructure and Morphology of Explosive Films via Control of Interfacial Energy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1670-1681. [PMID: 33351583 DOI: 10.1021/acsami.0c10193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Physical vapor deposition of organic explosives enables growth of polycrystalline films with a unique microstructure and morphology compared to the bulk material. This study demonstrates the ability to control crystal orientation and porosity in pentaerythritol tetranitrate films by varying the interfacial energy between the substrate and the vapor-deposited explosive. Variation in density, porosity, surface roughness, and optical properties is achieved in the explosive film, with significant implications for initiation sensitivity and detonation performance of the explosive material. Various surface science techniques, including angle-resolved X-ray photoelectron spectroscopy and multiliquid contact angle analysis, are utilized to characterize interfacial characteristics between the substrate and explosive film. Optical microscopy and scanning electron microscopy of pentaerythritol tetranitrate surfaces and fracture cross sections illustrate the difference in morphology evolution and the microstructure achieved through surface energy modification. X-ray diffraction studies with the Tilt-A-Whirl three-dimensional pole figure rendering and texture analysis software suite reveal that high surface energy substrates result in a preferred (110) out-of-plane orientation of pentaerythritol tetranitrate crystallites and denser films. Low surface energy substrates create more randomly textured pentaerythritol tetranitrate and lead to nanoscale porosity and lower density films. This work furthers the scientific basis for interfacial engineering of polycrystalline organic explosive films through control of surface energy, enabling future study of dynamic and reactive detonative phenomena at the microscale. Results of this study also have potential applications to active pharmaceutical ingredients, stimuli-responsive polymer films, organic thin film transistors, and other areas.
Collapse
Affiliation(s)
- Eric C Forrest
- Primary Standards Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Robert Knepper
- Energetic Materials Dynamic & Reactive Science, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Michael T Brumbach
- Materials Characterization & Performance, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark A Rodriguez
- Materials Characterization & Performance, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kim Archuleta
- Materials Characterization & Performance, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Michael P Marquez
- Energetic Materials Dynamic & Reactive Science, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Alexander S Tappan
- Energetic Materials Dynamic & Reactive Science, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
36
|
Nishimura T, Nakamura Y, Kinoshita N, Yamamoto K, Sasaki Y, Akiyoshi K. Biocatalytic Hybrid Films Self-Assembled from Carbohydrate Block Copolymers and Polysaccharides for Enzyme Prodrug Therapy. ACS APPLIED BIO MATERIALS 2020; 3:8865-8871. [PMID: 35019562 DOI: 10.1021/acsabm.0c01174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biocatalytic films are attracting growing attention for their significant potential as scaffolds for therapeutic reactor devices. However, conventional film fabrication methods result either in enzyme denaturation or require cumbersome procedures. Here, we report the preparation of biocatalytic films via self-assembly of a carbohydrate block copolymer and a polysaccharide. Enzyme-loaded films can be prepared by simply drying the polymer solution, and the loaded enzymes retain their biocatalytic activities in the film for prolonged periods of time. We also demonstrate that the enzyme-loaded films can successfully transform a prodrug into an antitumor drug that inhibits tumor cell growth. Our work highlights the potential of these biocatalytic self-assembled films as therapeutic reactor devices for enzyme prodrug therapy. Given the simplicity of the preparation method, this approach could improve the versatility of biocatalytic films and consequently expand their applicability from exclusive use in therapeutic reactor devices to sensing and diagnosis.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yusuke Nakamura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoya Kinoshita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
37
|
Ru L, Wu N, Wei K, Zeng Y, Li Q, Weng C, Ren C, Ren B, Huo D, Li Y, Hu X, Qin Z, Fang Y, Zhu C, Liu Y. Improving cell survival and engraftment in vivo via layer-by-layer nanocoating of hESC-derived RPE cells. Stem Cell Res Ther 2020; 11:495. [PMID: 33239074 PMCID: PMC7687756 DOI: 10.1186/s13287-020-01986-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell transplants have served as a cell therapy for treating retinal degenerative diseases. However, how to optimize the survival and engraftment of hESC-RPE cells is a great challenge. METHODS Here, we report hESC-RPE cells that are embedded with polyelectrolytes gelatin and alginate by layer-by-layer (LbL) self-assembly technique, based on the opposite charge of alternate layers. Cells were assessed for cell survival, immunogenicity, and function in vitro and in vivo. RESULTS This strategy obviously decreased the immunogenicity of hESC-RPE cells without affecting its activity. LbL-RPE cell transplants into the subretinal space of Royal College of Surgeons (RCS) rats optimized cell engraftment and decreased immunogenicity compared to untreated RPE cell transplants (immunosuppression was not used during the 21-week study). Visual-functional assay with electroretinogram recordings (ERGs) also showed higher B wave amplitudes in RCS rats with LbL-RPE cell transplants. CONCLUSIONS We demonstrate that transplanted LbL-RPE cells have better viability and grafting efficiency, optimized immunogenicity, and visual function. Therefore, LbL engineering is a promising method to increase the efficacy of hESC-RPE cell transplantation.
Collapse
Affiliation(s)
- Liyan Ru
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Nan Wu
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Keyu Wei
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, State Key Laboratory of Trauma, Burn and Combined injury, Department of Plastic and Aesthetic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuxiao Zeng
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Qiyou Li
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Chuanhuang Weng
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Chunge Ren
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Bangqi Ren
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Da Huo
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, State Key Laboratory of Trauma, Burn and Combined injury, Department of Plastic and Aesthetic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yijian Li
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Xisu Hu
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Zuoxin Qin
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Yajie Fang
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, State Key Laboratory of Trauma, Burn and Combined injury, Department of Plastic and Aesthetic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Yong Liu
- Department of Ophthalmology, Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
38
|
Kazemzadeh-Narbat M, Cheng H, Chabok R, Alvarez MM, de la Fuente-Nunez C, Phillips KS, Khademhosseini A. Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 2020; 41:94-120. [PMID: 33070659 DOI: 10.1080/07388551.2020.1828810] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Indwelling and implanted medical devices are subject to contamination by microbial pathogens during surgery, insertion or injection, and ongoing use, often resulting in severe nosocomial infections. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics to reduce the incidence of such infections, as they exhibit broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria, microbial biofilms, fungi, and viruses. In this review-perspective, we first provide an overview of the progress made in this field over the past decade with an emphasis on the local release of AMPs from implant surfaces and immobilization strategies for incorporating these agents into a wide range of medical device materials. We then provide a regulatory science perspective addressing the characterization and testing of AMP coatings based on the type of immobilization strategy used with a focus on the US market regulatory niche. Our goal is to help narrow the gulf between academic studies and preclinical testing, as well as to support a future literature base in order to develop the regulatory science of antimicrobial coatings.
Collapse
Affiliation(s)
- Mehdi Kazemzadeh-Narbat
- Office of Device Evaluation, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hao Cheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rosa Chabok
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Microsystems Technologies Laboratories, MIT, Cambridge, MA, USA.,Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, México
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - K Scott Phillips
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Barbosa JR, Carvalho Junior RND. Occurrence and possible roles of polysaccharides in fungi and their influence on the development of new technologies. Carbohydr Polym 2020; 246:116613. [PMID: 32747253 PMCID: PMC7293488 DOI: 10.1016/j.carbpol.2020.116613] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/23/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The article summarizes the roles of polysaccharides in the biology of fungi and their relationship in the development of new technologies. The comparative approach between the evolution of fungi and the chemistry of glycobiology elucidated relevant aspects about the role of polysaccharides in fungi. Also, based on the knowledge of fungal glycobiology, it was possible to address the development of new technologies, such as the production of new anti-tumor drugs, vaccines, biomaterials, and applications in the field of robotics. We conclude that polysaccharides activate pathways of apoptosis, secretion of pro-inflammatory substances, and macrophage, inducing anticancer activity. Also, the activation of the immune system, which opens the way for the production of vaccines. The development of biomaterials and parts for robotics is a promising and little-explored field. Finally, the article is multidisciplinary, with a different and integrated approach to the role of nature in the sustainable development of new technologies.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho Junior
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
40
|
Shao J, Cao S, Williams DS, Abdelmohsen LKEA, van Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem Int Ed Engl 2020; 59:16918-16925. [PMID: 32533754 PMCID: PMC7540338 DOI: 10.1002/anie.202003748] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 01/05/2023]
Abstract
Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non-degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near-infrared (NIR)-irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s-1 . These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.
Collapse
Affiliation(s)
- Jingxin Shao
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology, Helix (STO 3.41)P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Shoupeng Cao
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology, Helix (STO 3.41)P. O. Box 5135600 MBEindhovenThe Netherlands
| | - David S. Williams
- Department of ChemistryCollege of ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology, Helix (STO 3.41)P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology, Helix (STO 3.41)P. O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
41
|
Vera-González N, Shukla A. Advances in Biomaterials for the Prevention and Disruption of Candida Biofilms. Front Microbiol 2020; 11:538602. [PMID: 33042051 PMCID: PMC7527432 DOI: 10.3389/fmicb.2020.538602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Candida species can readily colonize a multitude of indwelling devices, leading to biofilm formation. These three-dimensional, surface-associated Candida communities employ a multitude of sophisticated mechanisms to evade treatment, leading to persistent and recurrent infections with high mortality rates. Further complicating matters, the current arsenal of antifungal therapeutics that are effective against biofilms is extremely limited. Antifungal biomaterials are gaining interest as an effective strategy for combating Candida biofilm infections. In this review, we explore biomaterials developed to prevent Candida biofilm formation and those that treat existing biofilms. Surface functionalization of devices employing clinically utilized antifungals, other antifungal molecules, and antifungal polymers has been extremely effective at preventing fungi attachment, which is the first step of biofilm formation. Several mechanisms can lead to this attachment inhibition, including contact killing and release-based killing of surrounding planktonic cells. Eliminating mature biofilms is arguably much more difficult than prevention. Nanoparticles have shown the most promise in disrupting existing biofilms, with the potential to penetrate the dense fungal biofilm matrix and locally target fungal cells. We will describe recent advances in both surface functionalization and nanoparticle therapeutics for the treatment of Candida biofilms.
Collapse
Affiliation(s)
- Noel Vera-González
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Anita Shukla
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
- Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| |
Collapse
|
42
|
Jeong W, Kim E, Jeong J, Bisht H, Kang H, Hong D. Development of Stimulus-Responsive Degradable Film via Codeposition of Dopamine and Cystamine. Chem Asian J 2020; 15:2622-2626. [PMID: 32125079 DOI: 10.1002/asia.202000216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 11/09/2022]
Abstract
Herein, we report a degradable film that can be coated on various substrates by the codeposition of dopamine and cystamine. The thickness of the resulting film (pDC) varies depending on the initial ratio of dopamine/cystamine dissolved in a solution; the thickest film (ca. 60 nm) is obtained under optimized codeposition conditions. Selective degradation of pDC occurs in the presence of tris(2-carboxyethyl)phosphine (TCEP), the reaction kinetics of which are highly dependent on the TCEP concentration. For further application as a drug-delivery platform, doxorubicin can be loaded within the pDC film, which is released actively under film degradation in response to TCEP. We expect that the developed pDC film will be a useful tool for developing drug delivery cargo, antibacterial surface, and cell surface coating for various biomedical applications.
Collapse
Affiliation(s)
- Wonwoo Jeong
- Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan, 46241 (Republic of, Korea
| | - Eunseok Kim
- Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan, 46241 (Republic of, Korea
| | - Jaehoon Jeong
- Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan, 46241 (Republic of, Korea
| | - Himani Bisht
- Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan, 46241 (Republic of, Korea
| | - Hyeongeun Kang
- Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan, 46241 (Republic of, Korea
| | - Daewha Hong
- Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan, 46241 (Republic of, Korea
| |
Collapse
|
43
|
Jiang T, Qi L, Hou C, Fang S, Qin W. Self-Sterilizing Polymeric Membrane Sensors Based on 6-Chloroindole Release for Prevention of Marine Biofouling. Anal Chem 2020; 92:12132-12136. [DOI: 10.1021/acs.analchem.0c03099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tianjia Jiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Longbin Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Hou
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Shengtao Fang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
44
|
Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci 2020; 2020:8886095. [PMID: 32832902 PMCID: PMC7428837 DOI: 10.1155/2020/8886095] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. The use of alginate can provide several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various routes of drug administration including targeted or localized drug-delivery systems. The development of alginates as a selected polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the system itself. The increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed. The recent advances in the in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Pharmaceutics Department, Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Jl. Mulyorejo Campus C, Surabaya 60115, Indonesia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
45
|
Shao J, Cao S, Williams DS, Abdelmohsen LKEA, Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingxin Shao
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology, Helix (STO 3.41) P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Shoupeng Cao
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology, Helix (STO 3.41) P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - David S. Williams
- Department of Chemistry College of Science Swansea University Swansea SA2 8PP UK
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology, Helix (STO 3.41) P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jan C. M. Hest
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology, Helix (STO 3.41) P. O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
46
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
47
|
Modigunta JKR, Kim JM, Cao TT, Yabu H, Huh DS. Pore-selective modification of the honeycomb-patterned porous polystyrene film with poly(N-isopropylacrylamide) and application for thermo-responsive smart material. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Vannozzi L, Gouveia P, Pingue P, Canale C, Ricotti L. Novel Ultrathin Films Based on a Blend of PEG- b-PCL and PLLA and Doped with ZnO Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21398-21410. [PMID: 32302103 DOI: 10.1021/acsami.0c00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this paper, a novel nanofilm type is proposed based on a blend of poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether (PEG-b-PCL) and poly(l-lactic acid), doped with zinc oxide nanoparticles (ZnO NPs) at different concentrations (0.1, 1, and 10 mg/mL). All nanofilm types were featured by a thickness value of ∼500 nm. Increasing ZnO NP concentrations implied larger roughness values (∼22 nm for the bare nanofilm and ∼67 nm for the films with 10 mg/mL of NPs), larger piezoelectricity (average d33 coefficient for the film up to ∼1.98 pm/V), and elastic modulus: the nanofilms doped with 1 and 10 mg/mL of NPs were much stiffer than the nondoped controls and nanofilms doped with 0.1 mg/mL of NPs. The ZnO NP content was also directly proportional to the material melting point and crystallinity and inversely proportional to the material degradation rate, thus highlighting the stabilization role of ZnO particles. In vitro tests were carried out with cells of the musculoskeletal apparatus (fibroblasts, osteoblasts, chondrocytes, and myoblasts). All cell types showed good adhesion and viability on all substrate formulations. Interestingly, a higher content of ZnO NPs in the matrix demonstrated higher bioactivity, boosting the metabolic activity of fibroblasts, myoblasts, and chondrocytes and enhancing the osteogenic and myogenic differentiation. These findings demonstrated the potential of these nanocomposite matrices for regenerative medicine applications, such as tissue engineering.
Collapse
Affiliation(s)
- Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta 33, 56127 Pisa, Italy
| | - Pedro Gouveia
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin D02 YN77, Ireland
| | - Pasqualantonio Pingue
- NEST, Scuola Normale Superiore and CNR Istituto Nanoscienze, Piazza San Silvestro 12, 56127 Pisa (PI), Italy
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta 33, 56127 Pisa, Italy
| |
Collapse
|
49
|
Parreño O, Ramos PM, Karayiannis NC, Laso M. Self-Avoiding Random Walks as a Model to Study Athermal Linear Polymers under Extreme Plate Confinement. Polymers (Basel) 2020; 12:E799. [PMID: 32260075 PMCID: PMC7240602 DOI: 10.3390/polym12040799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023] Open
Abstract
Monte Carlo (MC) simulations, built around chain-connectivity-altering moves and a wall-displacement algorithm, allow us to simulate freely-jointed chains of tangent hard spheres of uniform size under extreme confinement. The latter is realized through the presence of two impenetrable, flat, and parallel plates. Extreme conditions correspond to the case where the distance between the plates approaches the monomer size. An analysis of the local structure, based on the characteristic crystallographic element (CCE) norm, detects crystal nucleation and growth at packing densities well below the ones observed in bulk analogs. In a second step, we map the confined polymer chains into self-avoiding random walks (SAWs) on restricted lattices. We study all realizations of the cubic crystal system: simple, body centered, and face centered cubic crystals. For a given chain size (SAW length), lattice type, origin of SAW, and level of confinement, we enumerate all possible SAWs (equivalently all chain conformations) and calculate the size distribution. Results for intermediate SAW lengths are used to predict the behavior of long, fully entangled chains through growth formulas. The SAW analysis will allow us to determine the corresponding configurational entropy, as it is the driving force for the observed phase transition and the determining factor for the thermodynamic stability of the corresponding crystal morphologies.
Collapse
Key Words
- confinement, crystallization, entropy, hard sphere, polymer, random walk, Monte Carlo, phase transition, lattice model, cubic crystal system, direct enumeration
Collapse
Affiliation(s)
| | | | - Nikos Ch. Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (O.P.); (P.M.R.); (M.L.)
| | | |
Collapse
|
50
|
Ruff A, Jaikaew W, Khunkaewla P, Schuhmann W, Schulte A. Drug Release from Polymer Thin Films and Gel Pellets: Insights from Programmed Microplate Electroanalysis. Chempluschem 2020; 85:627-633. [PMID: 32237228 DOI: 10.1002/cplu.202000129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/14/2020] [Indexed: 01/09/2023]
Abstract
Robotic electroanalysis in 24-well microplates was used to determine Paracetamol (PCT) release from thin films of chitosan and two pH-sensitive synthetic polymers as well as blends of the polymers with each other and with agarose. Square-wave voltammograms were recorded automatically in a potential window of 0.35 V-0.85 V vs. Ag/AgCl/0.1 M KCl and their evaluation revealed time-dependent PCT release into acidic and basic media. Comparison of the release profiles showed that pure chitosan layers released PCT quickly in a single-phase process while liberation from synthetic polymer thin films was slower with a sigmoidal shape at pH 1.2 and pH 8.0 with a maximum release of PCT after approximately 150 and 140 min, respectively. The release profile from thicker agarose films was between those of the thin films. Agarose blended with chitosan or synthetic polymers formed films with biphasic release behavior. Chitosan linearized the initial section of the release profile in chitosan/polymer blends. The automated procedure for release testing offers the advantage of low-cost, labor-effective and error-free data acquisition. The procedure has been validated as a useful microplate assay option for release profile testing.
Collapse
Affiliation(s)
- Adrian Ruff
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Wajee Jaikaew
- School of Chemistry, Biochemistry - Electrochemistry Research Unit Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Panida Khunkaewla
- School of Chemistry, Biochemistry - Electrochemistry Research Unit Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|