1
|
Wang J, Wu W, Zhang W, Zhao Y, Wang H, Yuan S, Zhang J. Synthesis, Electrical Conductivity, and Wave-Absorption Performances of Bamboo-Based Composites Co-Doped with Graphene Oxide and Polyaniline. Polymers (Basel) 2024; 17:78. [PMID: 39795481 PMCID: PMC11722793 DOI: 10.3390/polym17010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Bamboo was carbonized and further modified via co-doping with graphene oxide (GO) and polyaniline (PANI) to prepare microwave absorption composites (GO/PANI/CB) by in situ polymerization of 1R-(-)-Camphorsulfonic acid (L-CSA). The conductivity of GO/PANI/CB reached 2.17 ± 0.05 S/cm under the optimized process conditions. The oxygen-containing group of GO reacts with PANI to form hydrogen bonds and thus polymerize. The GO and PANI particles covered the carbonized bamboo (CB) surface in a disordered aggregation form. Based on the measuring method of the vector network analyzer (VNA), the microwave-absorption performance of GO/PANI/CB was investigated. With 30% addition of GO/PANI/CB, the minimum reflection loss (RLmin) at 7.12 GHz with a thickness of 3.5 mm of samples reached -49.83 dB. The effective absorption bandwidth (<-10 dB) is as high as 4.72 GHz with a frequency range of 11.68-16.40 GHz and a thickness of 2 mm. Compared with many PANI based electromagnetic wave absorbing materials reported in recent years, GO/PANI/CB provides improved microwave-absorption performance while maintaining high absorption bandwidth. GO/PANI/CB exhibited the advantages of simple preparation, low cost, renewability, light texture, thinness, wide absorption bandwidth, and strong absorption ability, and can be used for new microwave absorption materials.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.W.); (W.W.); (W.Z.); (Y.Z.); (H.W.)
| | - Wangjun Wu
- Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.W.); (W.W.); (W.Z.); (Y.Z.); (H.W.)
- College of Chemistry and Materials Engineering, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Wenfu Zhang
- Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.W.); (W.W.); (W.Z.); (Y.Z.); (H.W.)
| | - Ying Zhao
- Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.W.); (W.W.); (W.Z.); (Y.Z.); (H.W.)
| | - Hongyan Wang
- Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.W.); (W.W.); (W.Z.); (Y.Z.); (H.W.)
| | - Shaofei Yuan
- Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.W.); (W.W.); (W.Z.); (Y.Z.); (H.W.)
| | - Jian Zhang
- Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.W.); (W.W.); (W.Z.); (Y.Z.); (H.W.)
| |
Collapse
|
2
|
Knapik E, Rotko G, Piotrowski M, Marszałek M. Crown Ether-Grafted Graphene Oxide-Based Materials-Synthesis, Characterization and Study of Lithium Adsorption from Complex Brine. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6269. [PMID: 39769868 PMCID: PMC11676176 DOI: 10.3390/ma17246269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Direct lithium extraction from unconventional resources requires the development of effective adsorbents. Crown ether-containing materials have been reported as promising structures in terms of lithium selectivity, but data on adsorption in real, highly saline brines are scarce. Crown ether-grafted graphene oxides were synthesized using 2-hydroxymethyl-12-crown-4, hydroxy-dibenzo-14-crown-4 and epichlorohydrin as a source of anchoring groups. The obtained carbonaceous materials were used to prepare chitosan-polyvinyl alcohol composites. The prepared materials (and intermediate products) were characterized using FTIR, XRD, Raman spectroscopy and SEM-EDS methods. Adsorption tests were performed in a pure diluted LiCl solution ([Li] = 200 mg/kg) as well as in a real, highly saline oilfield brine ([Li] ≈ 220 mg/kg), and the distribution coefficients (Kd) were determined. The obtained results show that Kd in pure LiCl solution was in the range of 0.9-75.6, while in brine it was in the range of 0.2-2.3. The study indicates that the high affinity for lithium in pure LiCl solution is mostly associated with the non-selective interaction of lithium ions with the graphene oxide matrix (COOH groups). It was also shown that the application of dibenzo-14-crown-4 moiety to graphene oxide modification groups increases the affinity of the composite material for lithium ions compared to an analogous material containing 12-crown-4-ether groups.
Collapse
Affiliation(s)
- Ewa Knapik
- AGH University of Krakow, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Grzegorz Rotko
- AGH University of Krakow, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marcin Piotrowski
- AGH University of Krakow, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow, Poland
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Marta Marszałek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| |
Collapse
|
3
|
Kim J, Jeong H, Oh E, Jang J, Lee SW, Kim DH, Han SD, Kim J, Yang J. Negative Effect of the Calendering Process on the Interphase Formation and Electrochemical Behavior of Reduced Graphene Oxide Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39374378 DOI: 10.1021/acsami.4c09721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Many studies on electrode material development for rechargeable batteries have focused on improving the intrinsic physicochemical and electrochemical properties of active materials, but the electrochemical performances of batteries are exhibited by the overall electrode unit consisting of active materials, conductive additives, and a binder. Additionally, the electrodes have undergone an essential calendering process to enhance the physical contact between those components. Therefore, the electrochemical behavior and performance of a cell should be analyzed at the electrode level, as the inherent properties of active materials might be changed in electrode preparation, including the calendaring process and real-operating environments. In this study, we aimed to understand the electrochemical properties of the reduced graphene oxide (RGO)-containing electrodes rather than the RGO-active materials by studying the changes in the RGO electrode before and after the calendering process. Specifically, the study investigates the effect of the calendering process on the electrochemically active interphase formation and electrochemical properties of the RGO electrode. We found that the calendering process deteriorates the electrochemical properties of RGO electrodes by impeding enough electrolyte wetting, limiting the formation of thin and stable solid-electrolyte interphase, and leaving unreacted RGO sheets. Additional experiments with carbon-coated silicon/RGO composite electrodes demonstrate that after the calendering process, the sequential participation of Si/C particles in the electrochemical reaction resulted in much more severe capacity degradation over repeated cycling processes. The studies suggest that fine-controlling the number of RGO sheets and maintaining enough distance between those sheets even after the calendering process are required for the utilization of RGO in rechargeable batteries.
Collapse
Affiliation(s)
- JeongA Kim
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea
| | - Harok Jeong
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea
| | - Eunchae Oh
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea
| | - Jaewon Jang
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea
| | - Sang Won Lee
- Industrialization Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Banryong-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Dong-Hyun Kim
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Sang-Don Han
- Department of Chemistry, Sejong University, Seoul 05006, Republic of Korea
| | - Jungpil Kim
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea
| | - Junghoon Yang
- Carbon & Light Materials Group, Korea Institute of Industrial Technology, Jeonju 54853, Republic of Korea
| |
Collapse
|
4
|
Shaha CK, Mahmud MAA, Saha S, Karmaker S, Saha TK. Efficient removal of sparfloxacin antibiotic from water using sulfonated graphene oxide: Kinetics, thermodynamics, and environmental implications. Heliyon 2024; 10:e33644. [PMID: 39040378 PMCID: PMC11261116 DOI: 10.1016/j.heliyon.2024.e33644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Pharmaceutical contamination poses a significant threat to global health. Due to their high solubility in water, antibiotics are difficult to remove. This study produced and used sulfonated graphene oxide (SGO) to adsorb sparfloxacin from aquatic environments. UV-Visible, Fourier transform infrared (FTIR), X-ray diffraction (XRD), XPS, SEM, TEM, EDX, particle size, Thermogravimetric analysis (TGA), and acid-base titration were used to characterize synthesized SGO particles. The BET technique determined SGO's surface area (32.25 m2/g). The calculated pHPZC of SGO was 2.5. Sparfloxacin adsorption onto SGO was analyzed using adsorption duration, medium pH, adsorbent dosages, antibiotic concentration, cations, and solution temperature. The pseudo-second-order kinetic model better described experimental kinetic data than the pseudo-first-order and Elovich models. Equilibrium isotherm data supported the Langmuir model, revealing a peak absorption capacity of 1428.57 μmol/g at 25 °C. The kinetic and isotherm models' applicability was assessed using error analysis. A thermodynamic analysis revealed an endothermic, spontaneous adsorption process with a change in entropy (ΔS) of 114.15 J/mol K and enthalpy (ΔH) of 8.44 kJ/mol. A regeneration analysis showed that SGO adsorption efficiency topped 86.4 % after five cycles.
Collapse
Affiliation(s)
- Chironjit Kumar Shaha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment (AERE), Gonokbari, Savar, Dhaka 1349, Bangladesh
| | | | - Sudipta Saha
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Subarna Karmaker
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tapan Kumar Saha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
5
|
Kiseleva SG, Bondarenko GN, Orlov AV, Muratov DG, Kozlov VV, Vasilev AA, Karpacheva GP. Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties. Polymers (Basel) 2024; 16:1832. [PMID: 39000686 PMCID: PMC11244527 DOI: 10.3390/polym16131832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Hybrid nanocomposites based on poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone) (PDACB) in salt form and graphene oxide (GO) have been obtained for the first time, and the significant influence of the preparation method on the composition and structure of nanocomposites and their functional properties has been demonstrated. Nanocomposites were prepared in three ways: via ultrasonic mixing of PDACB and GO; via in situ oxidative polymerization of 3,6-dianiline-2,5-dichloro-1,4-benzoquinone (DACB) in the presence of GO; and by heating a suspension of previously prepared PDACB and GO in DMF with the removal of the solvent. The results of the study of the composition, chemical structure, morphology, thermal stability and electrical properties of nanocomposites obtained via various methods are presented. Nanocomposites obtained by mixing the components in an ultrasonic field demonstrated strong intermolecular interactions between PDACB and GO both due to the formation of hydrogen bonds and π-stacking, as well as through electrostatic interactions. Under oxidative polymerization of DACB in the presence of GO, the latter participated in the oxidative process, being partially reduced. At the same time, a PDACB polymer film was formed on the surface of the GO. Prolonged heating for 4 h at 85 °C of a suspension of PDACB and GO in DMF led to the dedoping of PDACB with the transition of the polymer to the base non-conductive form and the reduction of GO. Regardless of the preparation method, all nanocomposites showed an increase in thermal stability compared to PDACB. All nanocomposites were characterized by a hopping mechanism of conductivity. Direct current (dc) conductivity σdc values varied within two orders of magnitude depending on the preparation conditions.
Collapse
Affiliation(s)
- Svetlana G. Kiseleva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr., 29, 119991 Moscow, Russia; (G.N.B.); (A.V.O.); (D.G.M.); (V.V.K.); (A.A.V.); (G.P.K.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Samantaray S, Mohanty D, Satpathy SK, Hung IM. Exploring Recent Developments in Graphene-Based Cathode Materials for Fuel Cell Applications: A Comprehensive Overview. Molecules 2024; 29:2937. [PMID: 38931001 PMCID: PMC11206633 DOI: 10.3390/molecules29122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Fuel cells are at the forefront of modern energy research, with graphene-based materials emerging as key enhancers of performance. This overview explores recent advancements in graphene-based cathode materials for fuel cell applications. Graphene's large surface area and excellent electrical conductivity and mechanical strength make it ideal for use in different solid oxide fuel cells (SOFCs) as well as proton exchange membrane fuel cells (PEMFCs). This review covers various forms of graphene, including graphene oxide (GO), reduced graphene oxide (rGO), and doped graphene, highlighting their unique attributes and catalytic contributions. It also examines the effects of structural modifications, doping, and functional group integrations on the electrochemical properties and durability of graphene-based cathodes. Additionally, we address the thermal stability challenges of graphene derivatives at high SOFC operating temperatures, suggesting potential solutions and future research directions. This analysis underscores the transformative potential of graphene-based materials in advancing fuel cell technology, aiming for more efficient, cost-effective, and durable energy systems.
Collapse
Affiliation(s)
- Somya Samantaray
- Department of Physics, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - Debabrata Mohanty
- Department of Chemical Engineering and Materials Science, Chang Gung University, Taoyuan 333323, Taiwan;
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 333323, Taiwan
| | - Santosh Kumar Satpathy
- Department of Physics, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - I-Ming Hung
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
7
|
Xu C, Zhang X, Sun M, Liu H, Lv C. Interactions between humulinone derived from aged hops and protein Z enhance the foamability and foam stability. Food Chem 2024; 434:137449. [PMID: 37716140 DOI: 10.1016/j.foodchem.2023.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Foam is one of the important characteristics of beer, including foamability, foam stability and foam texture. Protein Z (PZ) is considered to be an important component of beer foam. In this study, the interaction between PZ and humulinone, a widespread compound in aged hops, and the effect on foam properties of PZ were investigated. The fluorescence spectra showed that the stoichiometric ratio of humulinone to PZ was 4.25 ± 0.48: 1, and the binding constant was (1.64 ± 0.17) × 105 M-1. MD and FTIR results showed that the main force of interaction between PZ and humulinone was hydrogen bond, and the possible sites were Asn-37, Ser-292, Lys-290 and Pro-395. Moreover, the addition of humulinone greatly reduced the surface tension of PZ solution, and changed the secondary structure of PZ, which is beneficial for the foam stability. Under the influence of humulinone, the foamability, foam stability and foam texture of PZ all increased.
Collapse
Affiliation(s)
- Chen Xu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xuanqi Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hanhan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Janulewicz KA, Fok T, Bartosewicz B, Bartnik A, Fiedorowicz H, Wachulak P. Structural Stability and Disorder Level of Moderately Reduced Paper-like Graphene Oxide Investigated with Micro-Raman Analysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:877. [PMID: 38399127 PMCID: PMC10890625 DOI: 10.3390/ma17040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
This paper discusses the results of the micro-Raman analysis performed on paper-like graphene oxide (GO) samples consisting of many functionalised graphene layers and annealed at moderate temperatures (≤500 °C) under vacuum conditions (p ≃ 10-4 mbar). The analysis of the standalone samples revealed that the obtained material is characterised by a noticeable disorder level but still stays below the commonly accepted threshold of high or total disorder. GO formed in a simple way showed two spectral bands above 1650 cm-1 recorded very rarely or not at all and their origin has been discussed in detail. The results also confirmed the metastable character of multilayer GO after the annealing process at moderate temperatures as the C/O ratio was kept between 2 and 3 and the spectral features were stable within the annealing temperature range.
Collapse
Affiliation(s)
| | | | | | | | | | - Przemysław Wachulak
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (K.A.J.); (T.F.); (B.B.); (A.B.); (H.F.)
| |
Collapse
|
9
|
Sugak N, Pham H, Datye A, Mukhopadhyay S, Tan H, Li M, Pfefferle LD. Controlling the spacing of the linked graphene oxide system with dithiol linkers under confinement. NANOSCALE ADVANCES 2023; 5:4553-4562. [PMID: 37638151 PMCID: PMC10448350 DOI: 10.1039/d3na00324h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
2D nanoscale confined systems exhibit behavior that is markedly different from that observed at the macroscale. Confinement can be tuned by controlling the interlayer spacing between confining layers using organic dithiol linkers. Adjusting spacing and selective intercalation have important impacts for catalysis, superconductivity, spin engineering, sodium ion batteries, 2D magnets, optoelectronics, and many other applications. In this study, we report how reaction conditions and organic linkers can be used to create variable, reproducible spacings between graphene oxide to provide confinement systems. We determined the conditions under which the spacing can be variably adjusted by the type of linker used, the concentration of the linker, and the reaction conditions. Employing dithiol linkers of different lengths, such as three (TPDT) and four (QPDT) aromatic rings, we can adjust the spacing between graphene oxide layers under varied reaction conditions. Here, we show that by varying dithiol linker length and using different reaction conditions, we can reproducibly control the spacing between graphene oxide layers from 0.37 nm to over 0.50 nm.
Collapse
Affiliation(s)
- Nikita Sugak
- Department of Chemical and Environmental Engineering, Yale University PO Box 208286 New Haven CT 06510-8286 USA
| | - Hien Pham
- Department of Chemical & Biological Engineering, University of New Mexico Albuquerque NM 87131 USA
| | - Abhaya Datye
- Department of Chemical & Biological Engineering, University of New Mexico Albuquerque NM 87131 USA
| | - Shomeek Mukhopadhyay
- Department of Chemical and Environmental Engineering, Yale University PO Box 208286 New Haven CT 06510-8286 USA
| | - Haiyan Tan
- CAMMA Laboratory, Institute of Materials Science, University of Connecticut PO Box 06269 Storrs CT USA
| | - Min Li
- Materials Characterization Core Yale West Campus West Haven CT 06516 USA
| | - Lisa D Pfefferle
- Department of Chemical and Environmental Engineering, Yale University PO Box 208286 New Haven CT 06510-8286 USA
| |
Collapse
|
10
|
Saldaña-Robles A, Arcibar-Orozco JA, Guerrero-Mosqueda LR, Damián-Ascencio CE, Marquez-Herrera A, Corona M, Gallegos-Muñoz A, Cano-Andrade S. Synthesis of Composites for the Removal of F - Anions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2277. [PMID: 37630861 PMCID: PMC10458539 DOI: 10.3390/nano13162277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023]
Abstract
This work presents the synthesis of amine and ferrihydrite functionalized graphene oxide for the removal of fluoride from water. The synthesis of the graphene oxide and the modified with amine groups is developed by following the modified Hummer's method. Fourier transform infrared spectrometry, X-ray, Raman spectroscopy, thermogravimetric analysis, surface charge distribution, specific surface area and porosity, adsorption isotherms, and the van't Hoff equation are used for the characterization of the synthesized materials. Results show that the addition of amines with ferrihydrite generates wrinkles on the surface layers, suggesting a successful incorporation of nitrogen onto the graphene oxide; and as a consequence, the adsorption capacity per unit area of the materials is increased.
Collapse
Affiliation(s)
- Adriana Saldaña-Robles
- Department of Agricultural Engineering, University of Guanajuato, Ex Hacienda El Copal km 9, Irapuato 36500, Mexico; (L.R.G.-M.); (A.M.-H.)
| | | | - Luz Rocío Guerrero-Mosqueda
- Department of Agricultural Engineering, University of Guanajuato, Ex Hacienda El Copal km 9, Irapuato 36500, Mexico; (L.R.G.-M.); (A.M.-H.)
| | | | - Alfredo Marquez-Herrera
- Department of Agricultural Engineering, University of Guanajuato, Ex Hacienda El Copal km 9, Irapuato 36500, Mexico; (L.R.G.-M.); (A.M.-H.)
| | - Miguel Corona
- Mechanical Engineering and Management, Autonomous University of San Luis Potosi, COARA, San Luis Potosi 78000, Mexico;
| | - Armando Gallegos-Muñoz
- Department of Mechanical Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico; (A.G.-M.); (S.C.-A.)
| | - Sergio Cano-Andrade
- Department of Mechanical Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico; (A.G.-M.); (S.C.-A.)
| |
Collapse
|
11
|
Petit T, Lounasvuori M, Chemin A, Bärmann P. Nanointerfaces: Concepts and Strategies for Optical and X-ray Spectroscopic Characterization. ACS PHYSICAL CHEMISTRY AU 2023; 3:263-278. [PMID: 37249937 PMCID: PMC10214513 DOI: 10.1021/acsphyschemau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 05/31/2023]
Abstract
Interfaces at the nanoscale, also called nanointerfaces, play a fundamental role in physics and chemistry. Probing the chemical and electronic environment at nanointerfaces is essential in order to elucidate chemical processes relevant for applications in a variety of fields. Many spectroscopic techniques have been applied for this purpose, although some approaches are more appropriate than others depending on the type of the nanointerface and the physical properties of the different phases. In this Perspective, we introduce the major concepts to be considered when characterizing nanointerfaces. In particular, the interplay between the characteristic length of the nanointerfaces, and the probing and information depths of different spectroscopy techniques is discussed. Differences between nano- and bulk interfaces are explained and illustrated with chosen examples from optical and X-ray spectroscopies, focusing on solid-liquid nanointerfaces. We hope that this Perspective will help to prepare spectroscopic characterization of nanointerfaces and stimulate interest in the development of new spectroscopic techniques adapted to the nanointerfaces.
Collapse
|
12
|
Luo X, Yuan P, Luo J, Xiao H, Li J, Zheng H, Du B, Li D, Chen Y. The Enhancing Effect of Stable Oxygen Functional Groups on Porous-Carbon-Supported Pt Catalysts for Alkaline Hydrogen Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1415. [PMID: 37111000 PMCID: PMC10145733 DOI: 10.3390/nano13081415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
The oxygen functionalization of carbon materials has widely been employed to improve the catalytic performance of carbon-supported Pt (Pt/C) catalysts. Hydrochloric acid (HCl) has often been employed to clean carbons during the preparation of carbon materials. However, the effect of oxygen functionalization through a HCl treatment of porous carbon (PC) supports on the performance of the alkaline hydrogen evolution reaction (HER) has rarely been investigated. Herein, the impact of HCl combined with the heat treatment of PC supports on the HER performance of Pt/C catalysts has been comprehensively investigated. The structural characterizations revealed similar structures of pristine and modified PC. Nevertheless, the HCl treatment resulted in abundant hydroxyl and carboxyl groups and the further heat treatment formed thermally stable carbonyl and ether groups. Among the catalysts, Pt loading on the HCl-treated PC followed by a heat treatment at 700 °C (Pt/PC-H-700) exhibited elevated HER activity with a lower overpotential of 50 mV at 10 mA cm-2 when compared to the unmodified Pt/PC (89 mV). Pt/PC-H-700 also exhibited better durability than the Pt/PC. Overall, novel insights into the impact of the surface chemistry properties of porous carbon supports on the HER performance of Pt/C catalysts were provided, which were useful for highlighting the feasible improvement of HER performances by regulating the surface oxygen species of porous carbon supports.
Collapse
Affiliation(s)
- Xianyou Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Ping Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Junhui Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Haoming Xiao
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Junyi Li
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Heng Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Baodong Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Yong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
13
|
Lounasvuori M, Sun Y, Mathis TS, Puskar L, Schade U, Jiang DE, Gogotsi Y, Petit T. Vibrational signature of hydrated protons confined in MXene interlayers. Nat Commun 2023; 14:1322. [PMID: 36898985 PMCID: PMC10006414 DOI: 10.1038/s41467-023-36842-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The hydration structure of protons has been studied for decades in bulk water and protonated clusters due to its importance but has remained elusive in planar confined environments. Two-dimensional (2D) transition metal carbides known as MXenes show extreme capacitance in protic electrolytes, which has attracted attention in the energy storage field. We report here that discrete vibrational modes related to protons intercalated in the 2D slits between Ti3C2Tx MXene layers can be detected using operando infrared spectroscopy. The origin of these modes, not observed for protons in bulk water, is attributed to protons with reduced coordination number in confinement based on Density Functional Theory calculations. This study therefore demonstrates a useful tool for the characterization of chemical species under 2D confinement.
Collapse
Affiliation(s)
- Mailis Lounasvuori
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Yangyunli Sun
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Tyler S Mathis
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, USA
| | - Ljiljana Puskar
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Ulrich Schade
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, USA
| | - Tristan Petit
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.
| |
Collapse
|
14
|
Dutta R, Rajendran K, Jana SK, Saleena LM, Ghorai S. Use of Graphene and Its Derivatives for the Detection of Dengue Virus. BIOSENSORS 2023; 13:349. [PMID: 36979561 PMCID: PMC10046626 DOI: 10.3390/bios13030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Every year, the dengue virus and its principal mosquito vector, Aedes sp., have caused massive outbreaks, primarily in equatorial countries. The pre-existing techniques available for dengue detection are expensive and require trained personnel. Graphene and its derivatives have remarkable properties of electrical and thermal conductivity, and are flexible, light, and biocompatible, making them ideal platforms for biosensor development. The incorporation of these materials, along with appropriate nanomaterials, improves the quality of detection methods. Graphene can help overcome the difficulties associated with conventional techniques. In this review, we have given comprehensive details on current graphene-based diagnostics for dengue virus detection. We have also discussed state-of-the-art biosensing technologies and evaluated the advantages and disadvantages of the same.
Collapse
Affiliation(s)
- Reshmi Dutta
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Kokilavani Rajendran
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Lilly M. Saleena
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Raiganj 733134, India
| |
Collapse
|
15
|
Rodriguez Herrero Y, Ullah A. Hydrophobic Polyhedral Oligomeric Silsesquioxane Support Enhanced Methanol Production from CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36808935 DOI: 10.1021/acsami.3c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The abundance of CO2 from the cement industry, power generation, petroleum production, and combustion of biomass makes it a readily available feedstock to produce chemicals and materials, although it has yet to achieve optimal development. Even though syngas (CO + H2) hydrogenation to methanol is an established industrial process, when the same catalytic system based on Cu/ZnO/Al2O3 is employed with CO2, the water formed as a byproduct reduces the activity, stability, and selectivity of the process. Here, we explored the potential of phenyl polyhedral oligomeric silsesquioxane (POSS) as a hydrophobic support of Cu/ZnO for direct CO2 hydrogenation to methanol. Mild calcination of the copper-zinc-impregnated POSS material affords the formation of CuZn-POSS nanoparticles with Cu and ZnO homogeneously dispersed with an average particle size of 7 and 15 nm supported on O-POSS and D-POSS, respectively. The composite supported on D-POSS was able to reach a 3.8% yield of methanol with a 4.4% of CO2 conversion and with selectivity as high as 87.5% within 18 h. The structural investigation of the catalytic system reveals that CuO/ZnO are electron withdrawers in the presence of the siloxane cage of POSS. The catalytic system metal-POSS is stable and recyclable under H2 reduction and CO2/H2 conditions. We tested the use of microbatch reactors in heterogeneous reactions as a rapid and effective tool for catalyst screening. The increased number of phenyls in the structure of POSS results in an increased hydrophobic character that plays a decisive role in the methanol formation after comparison with CuO/ZnO supported on reduced graphene oxide with 0% selectivity to methanol under the study conditions. The materials were characterized using scanning electron microscopy, transmission electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, powder X-ray diffraction, Fourier transform infrared analysis, Brunauer-Emmett-Teller specific surface area analysis, contact angle, and thermogravimetry. The gaseous products were characterized by gas chromatography coupled with thermal conductivity detectors and flame ionization detectors.
Collapse
Affiliation(s)
- Yanet Rodriguez Herrero
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| |
Collapse
|
16
|
Aggarwal S, Ikram S. A comprehensive review on bio-mimicked multimolecular frameworks and supramolecules as scaffolds for enzyme immobilization. Biotechnol Bioeng 2023; 120:352-398. [PMID: 36349456 DOI: 10.1002/bit.28282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Immobilization depicts a propitious route to optimize the catalytic performances, efficient recovery, minimizing autocatalysis, and also augment the stabilities of enzymes, particularly in unnatural environments. In this opinion, supramolecules and multimolecular frameworks have captivated immense attention to achieve profound controllable interactions between enzyme molecules and well-defined natural or synthetic architectures to yield protein bioconjugates with high accessibility for substrate binding and enhanced enantioselectivities. This scholastic review emphasizes the possibilities of associating multimolecular complexes with biological entities via several types of interactions, namely covalent interactions, host-guest complexation, π - π ${\rm{\pi }}-{\rm{\pi }}$ interactions, intra/inter hydrogen bondings, electrostatic interactions, and so forth offers remarkable applications for the modulations of enzymes. The potential synergies between artificial supramolecular structures and biological systems are the primary concern of this pedagogical review. The majority of the research primarily focused on the dynamic biomolecule-responsive supramolecular assemblages and multimolecular architectures as ideal platforms for the recognition and modulation of proteins and cells. Embracing sustainable green demeanors of enzyme immobilizations in a quest to reinforce site-selectivity, catalytic efficiency, and structural integrality of enzymes are the contemporary requirements of the biotechnological sectors that instigate the development of novel biocatalytic systems.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
17
|
Wang Z, Tong W, Li L, Li Y, Yang J, Chai M, Cao T, Wang X, Wang X, Zhang X, Li X, Zhang Y. Piezocatalytic effect and mechanism of rGO/PVDF-HFP porous film driven by water flow. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Cadmium (II) Organo Tetrakis-[1,2]-Oxathiin (CdOTOT): A 3D sandwiched frameworks with efficient hydrogen production. J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Menezes IR, Sakai T, Hattori Y, Kaneko K. Effect of preheating temperature on adsorption of N2 and Ar on graphene oxide. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Liu D, Wei S, Wang D. Improving the Sensing Properties of Graphene MEMS Pressure Sensor by Low-Temperature Annealing in Atmosphere. SENSORS (BASEL, SWITZERLAND) 2022; 22:8082. [PMID: 36298432 PMCID: PMC9606897 DOI: 10.3390/s22208082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The high demand for pressure devices with miniaturization and a wide bearing range has encouraged researchers to explore new high-performance sensors from different approaches. In this study, a sensitive element based on graphene in-plane compression properties for realizing pressure sensing is experimentally prepared using microelectromechanical systems (MEMS) fabrication technology; it consists of a 50 µm thick, 1400 µm wide square multilayer component membrane and a graphene monolayer with a meander pattern. The prepared sample is extensively characterized and analyzed by using various techniques, including atomic force microscopy, Raman spectroscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, COMSOL finite element method, and density functional theory. The sensing performance of the new pressure sensor based on the sensitive element are obtained by theoretical analysis for electromechanical measurements of the sensitive element before and after low-temperature annealing in atmosphere. Results demonstrate that atmospheric annealing at 300 °C enhances the pressure sensing sensitivity by 4 times compared to pristine graphene without annealing, which benefits from the desorption of hydroxyl groups on the graphene surface during annealing. The sensitivity is comparable and even better than that of previous sensors based on graphene in-plane properties. Our results provide new insights into realizing high-performance MEMS devices based on 2D sensitive materials.
Collapse
Affiliation(s)
- Daosen Liu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Communication and Electronic Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Shengsheng Wei
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dejun Wang
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Sun T, Zhu Z. Light resonantly enhances the permeability of functionalized membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022; 350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in nanotechnology have enabled us to develop sophisticated multifunctional nanoparticles or nanosystems for targeted diagnosis and treatment of several illnesses, including cancers. To effectively treat any solid tumor, the therapy should preferably target just the malignant cells/tissue with minor damage to normal cells/tissues. Graphene oxide (GO) nanoparticles have gained considerable interest owing to their two-dimensional planar structure, chemical/mechanical stability, excellent photosensitivity, superb conductivity, high surface area, and good biocompatibility in cancer therapy. Many compounds have been functionalized on the surface of GO to increase their biological applications and minimize cytotoxicity. The review presents an overview of the physicochemical characteristics, strategies for various modifications, toxicity and biocompatibility of graphene and graphene oxide, current trends in developing GO-based nano constructs as a drug delivery cargo and other biological applications, including chemo-photothermal therapy, chemo-photodynamic therapy, bioimaging, and theragnosis in cancer. Further, the review discusses the challenges and opportunities of GO, GO-based nanomaterials for the said applications. Overall, the review focuses on the therapeutic potential of strategically developed GO nanomedicines and comprehensively discusses their opportunities and challenges in cancer therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sree Lakshmi Vemula
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahima Tejasvni Gupta
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahesh Vilasrao Giram
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sangishetty Akhil Kumar
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
24
|
New insights into the structure and chemical reduction of graphene oxide membranes for use in isotopic water separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Bagheri H, Pasha MA, Lakouraj MM, Hasantabar V, Mohseni M. Highly efficient, bioactive, and bifunctional sorbent p-n-p visible light heterogeneous photocatalyst utilizing ultra-fine ZnS nanoparticles embedded in a polymeric nanocomposite. RSC Adv 2022; 12:15950-15972. [PMID: 35733686 PMCID: PMC9134219 DOI: 10.1039/d2ra01810a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
This study reports the successful synthesis of a ZnS@GO@Pani polymeric nanocomposite (NC) via chemical polymerization. The product was used for simultaneous photocatalytic degradation-adsorption of malachite green (MG), a carcinogenic and widely used dye. The physicochemical properties of the prepared NC were characterized by various techniques. Morphological and XRD results confirmed the fine size of ZnS nanoparticles (NPs) with an approximate mean size of 5 nm, uniformly distributed within the polymeric matrix. For comparative purposes, photocatalytic dye degradation-adsorption of this nanohybrid was explored both in the dark and under natural light. It was observed that 0.1 g of the ternary NC in MG aqueous solution (20 ppm) leads to dye adsorption within 15 minutes with an efficiency of 70% under dark conditions. Also, MG removal efficiency of up to 90% was achieved in 15 minutes under natural light owing to integrated photocatalytic degradation-adsorption mechanisms. Adsorption isotherm studies were performed considering Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) models. The results showed that the Freundlich isotherm with R 2 = 0.988 is well consistent with the experimental data. Integrated photocatalytic degradation-adsorption kinetics were modeled with pseudo-first-order (PFO) and pseudo-second-order (PSO) models where PSO with R 2 = 0.999 best fitted the data, implying the predominant role of chemical adsorption in the dye removal process. Antibacterial tests revealed superior antibacterial activity of the prepared ZnS@GO@Pani NC against both Gram-negative and Gram-positive bacteria, demonstrating the remarkable synergistic effect of ZnS NPs embedded in the GO@Pani matrix. Accordingly, the prepared NC could be regarded as a promising candidate for wastewater treatment applications. The leaching and regeneration studies also confirmed that the prepared NC is a non-toxic dye removal agent with good reusability.
Collapse
Affiliation(s)
- Hanieh Bagheri
- Department of Solid-State Physics, Faculty of Basic Science, University of Mazandaran 47416-95447 Babolsar Iran
| | - Mohammad Akbarzadeh Pasha
- Department of Solid-State Physics, Faculty of Basic Science, University of Mazandaran 47416-95447 Babolsar Iran
| | - Moslem Mansour Lakouraj
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar 47416-95447 Iran
| | - Vahid Hasantabar
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar 47416-95447 Iran
| | - Mojtaba Mohseni
- Department of Molecular and Cell Biology, University of Mazandaran Babolsar 47416-95447 Iran
| |
Collapse
|
26
|
Basso Peressut A, Di Virgilio M, Bombino A, Latorrata S, Muurinen E, Keiski RL, Dotelli G. Investigation of Sulfonated Graphene Oxide as the Base Material for Novel Proton Exchange Membranes. Molecules 2022; 27:1507. [PMID: 35268613 PMCID: PMC8912047 DOI: 10.3390/molecules27051507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
This work deals with the development of graphene oxide (GO)-based self-assembling membranes as possible innovative proton conductors to be used in polymer electrolyte membrane fuel cells (PEMFCs). Nowadays, the most adopted electrolyte is Chemours' Nafion; however, it reveals significant deficiencies such as strong dehydration at high temperature and low humidity, which drastically reduces its proton conductivity. The presence of oxygenated moieties in the GO framework makes it suitable for functionalization, which is required to enhance the promising, but insufficient, proton-carrying features of GO. In this study, sulfonic acid groups (-SO3H) that should favor proton transport were introduced in the membrane structure via a reaction between GO and concentrated sulfuric acid. Six acid-to-GO molar ratios were adopted in the synthesis procedure, giving rise to final products with different sulfonation degrees. All the prepared samples were characterized by means of TGA, ATR-FTIR and Raman spectroscopy, temperature-dependent XRD, SEM and EDX, which pointed out morphological and microstructural changes resulting from the functionalization stage, confirming its effectiveness. Regarding functional features, electrochemical impedance spectroscopy (EIS) as well as measurements of ion exchange capacity (IEC) were carried out to describe the behavior of the various samples, with pristine GO and commercial Nafion® 212 used as reference. EIS tests were performed at five different temperatures (20, 40, 60, 80 and 100 °C) under high (95%) and medium (42%) relative humidity conditions. Compared to both GO and Nafion® 212, the sulfonated specimens demonstrate an increase in the number of ion-carrying groups, as proved by both IEC and EIS tests, which reveal the enhanced proton conductivity of these novel membranes. Specifically, an acid-to-GO molar ratio of 10 produces a six-fold improvement of IEC (4.23 meq g-1) with respect to pure GO (0.76 meq g-1), while a maximum eight-fold improvement (5.72 meq g-1) is achieved in SGO-15.
Collapse
Affiliation(s)
- Andrea Basso Peressut
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Matteo Di Virgilio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Antonella Bombino
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Saverio Latorrata
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Esa Muurinen
- Environmental and Chemical Engineering Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland; (E.M.); (R.L.K.)
| | - Riitta L. Keiski
- Environmental and Chemical Engineering Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland; (E.M.); (R.L.K.)
| | - Giovanni Dotelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| |
Collapse
|
27
|
An improved Hummers method to synthesize graphene oxide using much less concentrated sulfuric acid. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
TiO2-coated graphene oxide-molybdate complex as a new separable nanocatalyst for the synthesis of pyrrole derivatives by Paal-Knorr reaction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Kumar P, Bajpai H, Gopinath CS, Luwang MN. Sulfur Functionalization via Epoxide Ring Opening on a Reduced Graphene Oxide Surface to Form Metal (II) Organo-bis-[1,2]-oxathiin. Inorg Chem 2021; 61:279-286. [PMID: 34932334 DOI: 10.1021/acs.inorgchem.1c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The epoxide ring-opening reaction in graphene oxide (GO) by nucleophiles is a very fascinating and advanced methodology to develop novel functional material. Herewith, we report an advanced strategy for opening the epoxide ring on the rGO surface via easily an available nucleophile (Na2S), which is further functionalized with O atom to obtain four-membered rings (FMRs). The Cd coordination with the S atom puts extra stress on the FMR leading to the C-C bond cleavage of the four-membered heteroatomic rings on the rGO surface. This strategic approach leads to the fabrication of an innovative metal (II) organo-bis-[1,2]-oxathiin (MOBOT) chemical moiety (M = Cd, Zn). The MOBOT compound further shows enhanced H2 generation activity and hence is promising as a potential photocatalyst for solar hydrogen generation. This compound might also be a potential candidate for optoelectronic applications.
Collapse
Affiliation(s)
- Praveen Kumar
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201002, India
| | - Himanshu Bajpai
- Catalysis and Inorganic Chemistry Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201002, India
| | - Chinnakonda S Gopinath
- Catalysis and Inorganic Chemistry Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201002, India
| | - Meitram Niraj Luwang
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
30
|
Li C, Lu Y, Yan J, Yu W, Zhao R, Du S, Niu K. Effect of long-term ageing on graphene oxide: structure and thermal decomposition. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202309. [PMID: 34909209 PMCID: PMC8652269 DOI: 10.1098/rsos.202309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
After long-term ageing, the structure of graphene oxide prepared by the modified Hummers method changed. Because of the desorption of oxygen-containing functional groups, the C/O ratio of graphene oxide increased from 1.96 to 2.76. However, the average interlayer distance decreased from 0.660 to 0.567 nm. The content of -CH- and -CH2- decreased; however, the type of oxygen-containing functional groups did not change. Moreover, I D/I G increased from 0.87 to 0.92, indicating that the defect density decreased because of desorbing oxygen functional groups after ageing. When the temperature exceeded 60°C, CO2 produced by decomposing graphene oxide was detected. The thermal decomposition changed after ageing. The decomposition peak temperature decreased from 216°C to 195°C. The CO2 amount produced remained almost unchanged; however, the amount of CO, SO2 and H2O decreased. After ageing, the apparent activation energy of graphene oxide decreased from 150 to 134 kJ mol-1.
Collapse
Affiliation(s)
- Chen Li
- Army Engineering University of People's Liberation Army, Shijiazhuang Campus, No. 97 Heping West Road of Shijiazhuang, Shijiazhuang, Hebei province 050003, People's Republic of China
- Institute of Chemical Defence, Academy of Military Science, Zhijiang, Hubei province 443200, People's Republic of China
| | - Yanling Lu
- Army Engineering University of People's Liberation Army, Shijiazhuang Campus, No. 97 Heping West Road of Shijiazhuang, Shijiazhuang, Hebei province 050003, People's Republic of China
| | - Jun Yan
- Department of Road and Bridge Engineering, Transportation Vocational and Technical College, Shijiazhuang, Hebei province 050003, People's Republic of China
| | - Weibo Yu
- Army Engineering University of People's Liberation Army, Shijiazhuang Campus, No. 97 Heping West Road of Shijiazhuang, Shijiazhuang, Hebei province 050003, People's Republic of China
| | - Ran Zhao
- Army Engineering University of People's Liberation Army, Shijiazhuang Campus, No. 97 Heping West Road of Shijiazhuang, Shijiazhuang, Hebei province 050003, People's Republic of China
| | - Shiguo Du
- Army Engineering University of People's Liberation Army, Shijiazhuang Campus, No. 97 Heping West Road of Shijiazhuang, Shijiazhuang, Hebei province 050003, People's Republic of China
| | - Ke Niu
- Army Engineering University of People's Liberation Army, Shijiazhuang Campus, No. 97 Heping West Road of Shijiazhuang, Shijiazhuang, Hebei province 050003, People's Republic of China
| |
Collapse
|
31
|
Devendar L, Shijeesh MR, Sakorikar T, Ganapathi KL, Jaiswal M. Intercalated water mediated electromechanical response of graphene oxide films on flexible substrates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:025001. [PMID: 34584030 DOI: 10.1088/1361-648x/ac2ad0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The confinement of water between sub-nanometer bounding walls of layered two-dimensional materials has generated tremendous interest. Here, we examined the influence of confined water on the mechanical and electromechanical response of graphene oxide films, prepared with variable oxidative states, casted on polydimethylsiloxane substrates. These films were subjected to uniaxial strain under controlled humid environments (5 to 90% RH), while dc transport studies were performed in tandem. Straining resulted in the formation of quasi-periodic linear crack arrays. The extent of water intercalation determined the density of cracks formed in the system thereby, governing the electrical conductance of the films under strain. The crack density at 5% strain, varied from 0 to 3.5 cracks mm-1for hydrated films and 8 to 22 cracks mm-1for dry films, across films with different high oxidative states. Correspondingly, the overall change in the electrical conductance at 5% strain was observed to be ∼5 to 20 folds for hydrated films and ∼20 to 35 folds for the dry films. The results were modeled with a decrease in the in-plane elastic modulus of the film upon water intercalation, which was attributed to the variation in the nature of hydrogen bonding network in graphene oxide lamellae.
Collapse
Affiliation(s)
- Lavudya Devendar
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - M R Shijeesh
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - Tushar Sakorikar
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - K Lakshmi Ganapathi
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - Manu Jaiswal
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
32
|
Exploration of the Cs Trapping Phenomenon by Combining Graphene Oxide with α-K 6P 2W 18O 62 as Nanocomposite. MATERIALS 2021; 14:ma14195577. [PMID: 34639973 PMCID: PMC8509777 DOI: 10.3390/ma14195577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/20/2022]
Abstract
A graphene oxide-based α-K6P2W18O62 (Dawson-type polyoxometalate) nanocomposite was formed by using two types of graphene oxide (GO) samples with different C/O compositions. Herein, based on the interaction of GO, polyoxometalates (POMs), and their nanocomposites with the Cs cation, quantitative data have been provided to explicate the morphology and Cs adsorption character. The morphology of the GO-POM nanocomposites was characterized by using TEM and SEM imaging. These results show that the POM particle successfully interacted above the surface of GO. The imaging also captured many small black spots on the surface of the nanocomposite after Cs adsorption. Furthermore, ICP-AES, the PXRD pattern, IR spectra, and Raman spectra all emphasized that the Cs adsorption occurred. The adsorption occurred by an aggregation process. Furthermore, the difference in the C/O ratio in each GO sample indicated that the ratio has significantly influenced the character of the GO-POM nanocomposite for the Cs adsorption. It was shown that the oxidized zone (sp2/sp3 hybrid carbon) of each nanocomposite sample was enlarged by forming the nanocomposite compared to the corresponding original GO sample. The Cs adsorption performance was also influenced after forming a composite. The present study also exhibited the fact that the sharp and intense diffractions in the PXRD were significantly reduced after the Cs adsorption. The result highlights that the interlayer distance was changed after Cs adsorption in all nanocomposite samples. This has a good correlation with the Raman spectra in which the second-order peaks changed after Cs adsorption.
Collapse
|
33
|
Micro Scalable Graphene Oxide Productions Using Controlled Parameters in Bench Reactor. NANOMATERIALS 2021; 11:nano11081975. [PMID: 34443806 PMCID: PMC8398880 DOI: 10.3390/nano11081975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
The detailed study of graphene oxide (GO) synthesis by changing the graphite/oxidizing reagents mass ratios (mG/mROxi), provided GO nanosheets production with good yield, structural quality, and process savings. Three initial samples containing different amounts of graphite (3.0 g, 4.5 g, and 6.0 g) were produced using a bench reactor under strictly controlled conditions to guarantee the process reproducibility. The produced samples were analyzed by Raman spectroscopy, atomic force microscopy (AFM), x-ray diffraction (XDR), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetry (TGA) techniques. The results showed that the major GO product comprised of nanosheets containing between 1–5 layers, with lateral size up to 1.8 µm. Therefore, it was possible to produce different batches of graphene oxide with desirable physicochemical characteristics, keeping the amount of oxidizing reagent unchanged. The use of different proportions (mG/mROxi) is an important strategy that provides to produce GO nanostructures with high structural quality and scale-up, which can be well adapted in medium-sized bench reactor.
Collapse
|
34
|
Zhao J, Wang D, Zhang F, Liu Y, Chen B, Wang ZL, Pan J, Larsson R, Shi Y. Real-Time and Online Lubricating Oil Condition Monitoring Enabled by Triboelectric Nanogenerator. ACS NANO 2021; 15:11869-11879. [PMID: 34170109 PMCID: PMC8320232 DOI: 10.1021/acsnano.1c02980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 05/21/2023]
Abstract
An intelligent monitoring lubricant is essential for the development of smart machines because unexpected and fatal failures of critical dynamic components in the machines happen every day, threatening the life and health of humans. Inspired by the triboelectric nanogenerators (TENGs) work on water, we present a feasible way to prepare a self-powered triboelectric sensor for real-time monitoring of lubricating oils via the contact electrification process of oil-solid contact (O-S TENG). Typical intruding contaminants in pure base oils can be successfully monitored. The O-S TENG has very good sensitivity, which even can respectively detect at least 1 mg mL-1 debris and 0.01 wt % water contaminants. Furthermore, the real-time monitoring of formulated engine lubricating oil in a real engine oil tank is achieved. Our results show that electron transfer is possible from an oil to solid surface during contact electrification. The electrical output characteristic depends on the screen effect from such as wear debris, deposited carbons, and age-induced organic molecules in oils. Previous work only qualitatively identified that the output ability of liquid can be improved by leaving less liquid adsorbed on the TENG surface, but the adsorption mass and adsorption speed of liquid and its consequences for the output performance were not studied. We quantitatively study the internal relationship between output ability and adsorbing behavior of lubricating oils by quartz crystal microbalance with dissipation (QCM-D) for liquid-solid contact interfaces. This study provides a real-time, online, self-powered strategy for intelligent diagnosis of lubricating oils.
Collapse
Affiliation(s)
- Jun Zhao
- Division
of Machine Elements, Luleå University
of Technology, Luleå, SE-971 87 Sweden
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Di Wang
- Division
of Machine Elements, Luleå University
of Technology, Luleå, SE-971 87 Sweden
| | - Fan Zhang
- Department
of Engineering and Design, School of Engineering and Information, University of Sussex, Brighton, BN1 9RH, United Kingdom
| | - Yuan Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Baodong Chen
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhong Lin Wang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Jinshan Pan
- Division
of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Roland Larsson
- Division
of Machine Elements, Luleå University
of Technology, Luleå, SE-971 87 Sweden
| | - Yijun Shi
- Division
of Machine Elements, Luleå University
of Technology, Luleå, SE-971 87 Sweden
| |
Collapse
|
35
|
Zhao Y, Zhou C, Kong C, Chen L. Ultrathin Reduced Graphene Oxide/Organosilica Hybrid Membrane for Gas Separation. JACS AU 2021; 1:328-335. [PMID: 34467296 PMCID: PMC8395671 DOI: 10.1021/jacsau.0c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 06/13/2023]
Abstract
Here, reduced graphene oxide (r-GO) nanosheets were embedded in an organosilica network to assemble an ultrathin hybrid membrane on the tubular ceramic substrate. With the organosilica nanocompartments inside the r-GO stacks and the intensified polymerization, r-GO sheets endow the as-prepared hybrid membranes with high H2 and CO2 separation performance. The resulting selectivities of H2/CH4 and CO2/CH4 are found to be 223 and 55, respectively, together with gas permeance of approximately 2.5 × 10-7 mol·m-2·s-1·Pa-1 for H2 and 6.1 × 10-8 mol·m-2·s-1·Pa-1 for CO2 at room temperature and 0.2 MPa. To separate larger molecules from H2, the H2/C3H8 and H2/i-C4H10 selectivities are as high as 1775 and 2548, respectively. Moreover, at 150 °C and 0.2 MPa, the hybrid membrane retains high separation performances with ideal selectivities higher than 200 and 30 for H2/CH4 and CO2/CH4, respectively, which are attractive for gas separation and purification of practical applications.
Collapse
|
36
|
Chakraborty M, Mitra I, Roy AJ, Paul S, Mallick A, Das S, Saha A, Show B, Chakrabarti PK, Ganguly T. Contrasting spectroscopic response of human hemoglobin in presence of graphene oxides and its reduced form: Comparative approach with carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119079. [PMID: 33120118 DOI: 10.1016/j.saa.2020.119079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Recently, a considerable amount of research is being directed towards study of graphene oxide (GO) and its reduced form (RGO) since their exposed functional groups make them better candidates in nanobiotechnolgy. In order to assess their biocompatibility, the nature of interactions between Human Hemoglobin (HHb) and GO/RGO are monitored since a comparative spectroscopic approach towards understanding their nature of interactions has not been investigated previously. UV-vis spectroscopy reveals hyperchromicity for HHb-GO system and hypochromicity for HHb-RGO system in the region of absorption of tryptophan/tyrosine residues. Notably, although steady-state fluorescence static quenching of HHb for GO and enhancement of fluorescence for RGO is noticed, but average fluorescence-lifetime is remaining unchanged in presence of GO/RGO. Calorimetric data illustrates three-site and five-site binding model to be the best-fit model for GO and RGO respectively. Also, synchronous fluorescence quenching corresponding to alterations in microenvironment of tryptophan/ tyrosine residues is observed only in presence of GO. Likewise FTIR spectroscopy elucidates involvement of both amide I and amide II bond of HHb backbone through H-bonding interaction only for GO. Furthermore RLS spectra demonstrate an increase and a decrease in signal for GO and RGO respectively. Surprisingly, secondary structure of HHb is maintained upon interaction with both GO/RGO, as revealed by CD spectroscopy, thus supporting their potential application in biological microenvironment. Thus it appears that the spectroscopic properties of HHb upon interaction with GO is altered upon its reduction to RGO. Furthermore the role of HHb as good candidate for bimolecular interaction has been highlighted.
Collapse
Affiliation(s)
| | - Ishani Mitra
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Arka J Roy
- School Bio-Science, Jadavpur University, Kolkata 700032, India
| | - Somnath Paul
- School of Laser Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Ayan Mallick
- Department of Physics, University of Burdwan, Burdwan, India
| | - Subrata Das
- Department of CSS, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, III/LB-B Bidhannagar, Kolkata 700 098, India
| | | | | | - Tapan Ganguly
- School of Laser Science and Engineering, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
37
|
Reduced Graphene Oxides Modulate the Expression of Cell Receptors and Voltage-Dependent Ion Channel Genes of Glioblastoma Multiforme. Int J Mol Sci 2021; 22:ijms22020515. [PMID: 33419226 PMCID: PMC7825604 DOI: 10.3390/ijms22020515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.
Collapse
|
38
|
Utech T, Pötschke P, Simon F, Janke A, Kettner H, Paiva M, Zimmerer C. Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abce05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
Collapse
|
39
|
Di Natale F, Gargiulo V, Alfè M. Adsorption of heavy metals on silica-supported hydrophilic carbonaceous nanoparticles (SHNPs). JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122374. [PMID: 32135363 DOI: 10.1016/j.jhazmat.2020.122374] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/31/2020] [Accepted: 02/21/2020] [Indexed: 05/23/2023]
Abstract
This paper reports experimental results on the removal of Cd(II), Ni(II) and Pb(II) ions using hydrophilic carbon nanoparticles (HNPs) supported over silica beads to enhance their separation from treated water. The supported HNPs (SHNPs) exhibit high removal efficiencies especially at neutral pH and low temperature (10 °C), conditions that commonly occur for natural water remediation and for some types of industrial wastewater. The maximum adsorption capacity of the SHNPs at a reference concentration of 0.2 mM is 0.042 mmol g-1, 0.027 mmol g-1 and 0.055 mmol g-1 for Cd(II), Pb(II) and Ni(II) ions, respectively. Modelling analysis on the adsorption isotherms revealed that the free Gibbs' energy of interactions between the sorbent and Ni(II) and Pb(II) ions is higher than that of Cd(II) ions indicating that the sorbents are more affine to intermediate acids, as Ni(II) and Pb(II) ions, than to soft acids, as Cd(II) ions. The sorbents exhibit appreciable adsorption capacities per gram of active phase (0.54 mg g-1 for Cd(II) ions, 13.48 mg g-1 for Ni(II) ions and 8.87 mg g-1 for Pb(II) ions) at the corresponding quality limit admitted by Italian regulations on wastewater, suggesting their possible use in water treatment plants.
Collapse
Affiliation(s)
- F Di Natale
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", P.le V. Tecchio 80, Naples, Italy
| | - V Gargiulo
- Istituto di Ricerche sulla Combustione (IRC)-CNR, P.le V. Tecchio 80, Naples, Italy.
| | - M Alfè
- Istituto di Ricerche sulla Combustione (IRC)-CNR, P.le V. Tecchio 80, Naples, Italy
| |
Collapse
|
40
|
He G, He H. Water Promotes the Oxidation of SO 2 by O 2 over Carbonaceous Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7070-7077. [PMID: 32338880 DOI: 10.1021/acs.est.0c00021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Severe haze episodes typically occur with concurrent high relative humidity. Here, the vital role of water in promoting the oxidation of SO2 by O2 on carbonaceous soot surfaces was identified at the atomic level by first-principles calculations. Water molecules can dissociate into surface hydroxyl groups through a self-catalyzed process under ambient conditions. The surface hydroxyl groups, acting as facilitators, can significantly accelerate the conversion of SO2 to SO3 (precursor of particulate sulfate) over soot aerosols by reducing the reaction barriers. Specifically, the hydroxyl groups activate the reactants and stabilize the transition states and products through hydrogen-bonding interactions, making the reactions both thermodynamically and kinetically more favorable at room temperature. The findings indicate that atmospheric humidity plays an important role in enhancing the atmospheric oxidation capacity, thus exacerbating SO2 oxidation and severe haze development. Also, this study unravels a mechanism of surface hydroxyl-assisted O2 and H2O dissociation over metal-free carbocatalysts under normal conditions.
Collapse
Affiliation(s)
- Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
41
|
Torres D, Pérez-Rodríguez S, Sebastián D, Pinilla JL, Lázaro MJ, Suelves I. Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1056. [PMID: 32486258 PMCID: PMC7352485 DOI: 10.3390/nano10061056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/16/2022]
Abstract
Nanocarbon materials present sp2-carbon domains skilled for electrochemical energy conversion or storage applications. In this work, we investigate graphene oxide nanofibers (GONFs) as a recent interesting carbon material class. This material combines the filamentous morphology of the starting carbon nanofibers (CNFs) and the interlayer spacing of graphene oxide, and exhibits a domain arrangement accessible for fast transport of electrons and ions. Reduced GONFs (RGONFs) present the partial removal of basal functional groups, resulting in higher mesoporosity, turbostratic stacking, and surface chemistry less restrictive for transport phenomena. Besides, the filament morphology minimizes the severe layer restacking shown in the reduction of conventional graphene oxide sheets. The influence of the reduction temperature (140-220 °C) on the electrochemical behaviour in aqueous 0.5 M H2SO4 of RGONFs is reported. RGONFs present an improved capacitance up to 16 times higher than GONFs, ascribed to the unique structure of RGONFs containing accessible turbostratic domains and restored electronic conductivity. Hydrothermal reduction at 140 °C results in the highest capacitance as evidenced by cyclic voltammetry and electrochemical impedance spectroscopy measurements (up to 137 F·g-1). Higher temperatures lead to the removal of sulphur groups and slightly thicker graphite domains, and consequently a decrease of the capacitance.
Collapse
Affiliation(s)
- Daniel Torres
- Instituto de Carboquímica, Consejo Superior de Investigaciones Científicas (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (S.P.-R.); (D.S.); (J.L.P.); (M.J.L.); (I.S.)
| | | | | | | | | | | |
Collapse
|
42
|
Fukuda M, Islam MS, Shudo Y, Yagyu J, Lindoy LF, Hayami S. Ion conduction switching between H + and OH - induced by pH in graphene oxide. Chem Commun (Camb) 2020; 56:4364-4367. [PMID: 32195490 DOI: 10.1039/d0cc00769b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ion conduction through graphene oxide (GO) nanosheets that is pH-switchable between H+ (in acid) and OH- (in base) ions is demonstrated. This finding is the first observation of this type for ion conductive materials and demonstrates an example of stimuli-driven ion-conduction switching.
Collapse
Affiliation(s)
- Masahiro Fukuda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Wang H, Zhou C, Zhu H, Li Y, Wang S, Shen K. Hierarchical porous carbons from carboxylated coal-tar pitch functional poly(acrylic acid) hydrogel networks for supercapacitor electrodes. RSC Adv 2020; 10:1095-1103. [PMID: 35494458 PMCID: PMC9047456 DOI: 10.1039/c9ra09141f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
A gel carbonization strategy for the synthesis of hierarchical porous carbons (HPCs) from carboxylated coal-tar pitches (CCP) functional poly(acrylic acid) (PAA) hydrogel networks for advanced supercapacitor electrodes was reported. The amphiphilic CCP and PAA polymer could be easily self-assembled to gel by the major driving force of hydrogen bonding and π–π stacking. The HPCs containing interconnected macro-/meso-/micropores were fabricated by direct carbonization of the dried hydrogels. The resultant HPCs with a high specific surface area and total pore volume of 1294.6 m2 g−1 and 1.34 cm3 g−1 respectively, as a supercapacitor electrode exhibit a high specific capacitance of 292 F g−1 at 1.0 A g−1 in two-electrode system. The electrode also exhibits ultra-long cycle life with a capacitance retention as high as 94.2% after 10 000 cycles, indicating the good electrochemical stability. Furthermore, the concept of such hierarchical architecture and synthesis strategy would expand to other materials for advanced energy storage systems, such as Na-ion batteries and metal oxides for supercapacitors. As a supercapacitor electrode exhibit a high specific capacitance of 292 F g−1 at 1.0 A g−1.![]()
Collapse
Affiliation(s)
- Haiyang Wang
- The State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116012 China +86-411-84986102.,Sinosteel Anshan Research Institute of Thermo-energy Company Limited Anshan 114044 China
| | - Chuan Zhou
- The State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116012 China +86-411-84986102
| | - Hongzhe Zhu
- Sinosteel Anshan Research Institute of Thermo-energy Company Limited Anshan 114044 China
| | - Yixuan Li
- Sinosteel Anshan Research Institute of Thermo-energy Company Limited Anshan 114044 China
| | - Shoukai Wang
- Sinosteel Anshan Research Institute of Thermo-energy Company Limited Anshan 114044 China
| | - Kaihua Shen
- The State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116012 China +86-411-84986102
| |
Collapse
|
44
|
Barroso-Bujans F, Allgaier J, Alegria A. Poly(ethylene oxide) Melt Intercalation in Graphite Oxide: Sensitivity to Topology, Cyclic versus Linear Chains. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fabienne Barroso-Bujans
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, San Sebastian 20018, Spain
- IKERBASQUE—Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, San Sebastian 20080, Spain
| | - Jürgen Allgaier
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angel Alegria
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, San Sebastian 20080, Spain
| |
Collapse
|
45
|
Babucci M, Sarac Oztuna FE, Debefve LM, Boubnov A, Bare SR, Gates BC, Unal U, Uzun A. Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Catalyst with an Iridium Loading of 14.8 wt %. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02231] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melike Babucci
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - F. Eylul Sarac Oztuna
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Louise M. Debefve
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Alexey Boubnov
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Ugur Unal
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
46
|
Electrochemical formation of graphite oxide from the mixture composed of sulfuric and nitric acids. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Wang H, Zhu H, Wang S, Qi D, Shen K. Dicarbonyl-tuned microstructures of hierarchical porous carbons derived from coal-tar pitch for supercapacitor electrodes. RSC Adv 2019; 9:20019-20028. [PMID: 35514691 PMCID: PMC9065547 DOI: 10.1039/c9ra03813b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 11/21/2022] Open
Abstract
A simple and effective template-free method to prepare hierarchical porous carbons (HPCs) has been developed by using low-cost coal-tar pitch as a starting material, anhydrous aluminum chloride as the Friedel–Crafts catalyst, and oxalyl chloride as the cross-linking agent. By a simple controllable Friedel–Crafts reaction, diketone-functionalized coal-tar pitch as the hierarchical porous coal-tar pitch precursor was obtained via a one-step carbonization to provide a well-developed micro–mesoporous network. Nitrogen adsorption and desorption measurements showed that the surface area, pore volume, pore size and pore size distributions of the resulting carbon materials was dependent on the usage of the cross-linking agent. The as-fabricated HPCs have a large Brunauer–Emmett–Teller specific surface area of 1394.6 m2 g−1 and exhibit an excellent electrochemical performance with the highest specific capacitance of 317 F g−1 at a current density of 1 A g−1 in a three-electrode system. A symmetric supercapacitor was fabricated from HPC-DK-1.0 in a two-electrode system, which exhibits a high specific capacitance of 276 F g−1 at a current density of 0.25 A g−1, a high rate capability and an excellent cycling stability with a capacitance retention of 92.9% after 10 000 cycles. The one-step carbonization method that produced HPCs for electrical double-layer capacitors represents a new approach for high-performance energy storage. The hierarchical porous carbons have an excellent cycling stability with a capacitance retention of 92.9% after 10 000 cycles.![]()
Collapse
Affiliation(s)
- Haiyang Wang
- The State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116012 PR China +86-411-84986102.,Sinosteel Anshan Research Institute of Thermo-Energy Company Limited Anshan 114044 PR China
| | - Hongzhe Zhu
- Sinosteel Anshan Research Institute of Thermo-Energy Company Limited Anshan 114044 PR China
| | - Shoukai Wang
- Sinosteel Anshan Research Institute of Thermo-Energy Company Limited Anshan 114044 PR China
| | - Debang Qi
- The State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116012 PR China +86-411-84986102
| | - Kaihua Shen
- The State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116012 PR China +86-411-84986102
| |
Collapse
|
48
|
Pan Z, Nie X, Yang J, Liu H, Li J, Wang K. Gas molecule modulated ionic migration through graphene oxide laminates. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Molecular Dynamics Investigation of the Interactions Between RNA Aptamer and Graphene-Monoxide/Boron-Nitride Surfaces: Applications to Novel Drug Delivery Systems. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01089-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Kumar P, Luwang MN. Synthesis of nanogate structure in GO-ZnS sandwich material. Sci Rep 2019; 9:937. [PMID: 30700751 PMCID: PMC6353954 DOI: 10.1038/s41598-018-37396-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022] Open
Abstract
Graphite Oxide (multi-layer) composite with other materials has a huge application in various field of science, due to its excellent and unique properties. Even though from past decade, immense research has been done by materials scientists in this field, but the chemistry is still not yet satisfactory. Here, in this work, through the discovery of Nanogate structure, we have reported for the first time the experimental results that enlightened the clear chemistry between the GO and ZnS which is further supported by the DFT calculations. This novel synthesis method led to the discovery of nanogate structure sandwiched between the GO layers. The nanogate formation also shows enhanced properties for various applications like photocatalytic activities, etc. Due to the nanogate formation, there might be a possibility of enormous generation of electrons on excitation of the composite materials, which can be a boom for various applications like photocatalysis, water splitting, solar cell, etc.
Collapse
Affiliation(s)
- Praveen Kumar
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Campus Postal Staff College Area, Ghaziabad, 201002, India
| | - Meitram Niraj Luwang
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Campus Postal Staff College Area, Ghaziabad, 201002, India.
| |
Collapse
|