1
|
Liu H, Ji M, Xiao P, Gou J, Yin T, He H, Tang X, Zhang Y. Glucocorticoids-based prodrug design: Current strategies and research progress. Asian J Pharm Sci 2024; 19:100922. [PMID: 38966286 PMCID: PMC11222810 DOI: 10.1016/j.ajps.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Zhang ML, Li HB, Jin Y. Application and perspective of CRISPR/Cas9 genome editing technology in human diseases modeling and gene therapy. Front Genet 2024; 15:1364742. [PMID: 38666293 PMCID: PMC11043577 DOI: 10.3389/fgene.2024.1364742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) mediated Cas9 nuclease system has been extensively used for genome editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology holds great potential for various applications, including the correction of genetic defects or mutations within the human genome. The application of CRISPR/Cas9 genome editing system in human disease research is anticipated to solve a multitude of intricate molecular biology challenges encountered in life science research. Here, we review the fundamental principles underlying CRISPR/Cas9 technology and its recent application in neurodegenerative diseases, cardiovascular diseases, autoimmune related diseases, and cancer, focusing on the disease modeling and gene therapy potential of CRISPR/Cas9 in these diseases. Finally, we provide an overview of the limitations and future prospects associated with employing CRISPR/Cas9 technology for diseases study and treatment.
Collapse
Affiliation(s)
- Man-Ling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong-Bin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Li Y, Zhou S, Wu Q, Gong C. CRISPR/Cas gene editing and delivery systems for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1938. [PMID: 38456346 DOI: 10.1002/wnan.1938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
CRISPR/Cas systems stand out because of simplicity, efficiency, and other superiorities, thus becoming attractive and brilliant gene-editing tools in biomedical field including cancer therapy. CRISPR/Cas systems bring promises for cancer therapy through manipulating and engineering on tumor cells or immune cells. However, there have been concerns about how to overcome the numerous physiological barriers and deliver CRISPR components to target cells efficiently and accurately. In this review, we introduced the mechanisms of CRISPR/Cas systems, summarized the current delivery strategies of CRISPR/Cas systems by physical methods, viral vectors, and nonviral vectors, and presented the current application of CRISPR/Cas systems in cancer clinical treatment. Furthermore, we discussed prospects related to delivery approaches of CRISPR/Cas systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyao Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Xu H, Zuo S, Wang D, Zhang Y, Li W, Li L, Liu T, Yu Y, Lv Q, He Z, Sun J, Sun B. Cabazitaxel prodrug nanoassemblies with branched chain modifications: Narrowing the gap between efficacy and safety. J Control Release 2023; 360:784-795. [PMID: 37451544 DOI: 10.1016/j.jconrel.2023.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The clinical application of cabazitaxel (CTX) is restricted by severe dose-related toxicity, failing to considering therapeutic efficacy and safety together. Self-assembled prodrugs promote new drug delivery paradigms as they can self-deliver and self-formulate. However, the current studies mainly focused on the use of straight chains to construct self-assembled prodrugs, and the role of branched chains in prodrug nanoassemblies remains to be clarified. In this study, we systematically explored the structure-function relationship of prodrug nanoassemblies using four CTX prodrugs that contained branched chain aliphatic alcohols (BAs) with different alkyl lengths. Overall, CTX-SS-BA20 NPs with the proper alkyl length exhibited significant improvements in both antitumor efficacy and biosafety. Furthermore, compared with straight chain (SC) modified prodrug nanoassemblies (CTX-SS-SC20 NPs), CTX-SS-BA20 NPs still hold great therapeutic promise due to its good biosafety. These findings illustrated the significance of BAs as modified chains in designing prodrug nanoassemblies for narrowing the efficacy-to-safety gap of cancer therapy.
Collapse
Affiliation(s)
- Hezhen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiyi Zuo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanhao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Binzhou 256603, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
5
|
Hillman T. The use of plant-derived exosome-like nanoparticles as a delivery system of CRISPR/Cas9-based therapeutics for editing long non-coding RNAs in cancer colon cells. Front Oncol 2023; 13:1194350. [PMID: 37388221 PMCID: PMC10301836 DOI: 10.3389/fonc.2023.1194350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023] Open
Abstract
Colon cancer is one of the leading causes of cancer in the United States. Colon cancer develops from the many gene mutations found in the genomes of colon cancer cells. Long non-coding RNAs (lncRNAs) can cause the development and progression of many cancers, including colon cancer. LncRNAs have been and could be corrected through the gene-editing technology of the clustered repeats of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system to reduce the proliferation of cancer cells in the colon. However, many current delivery systems for transporting CRISPR/Cas9-based therapeutics in vivo need more safety and efficiency. CRISPR/Cas9-based therapeutics require a safe and effective delivery system to more directly and specifically target cancer cells present in the colon. This review will present pertinent evidence for the increased efficiency and safety of using plant-derived exosome-like nanoparticles as nanocarriers for delivering CRISPR/Cas9-based therapeutics to target colon cancer cells directly.
Collapse
|
6
|
Abstract
Solid lipid nanoparticles are promising carriers that allow for the delivery of poorly water-soluble drugs and have the potential to achieve sustained drug release or targeted delivery to the site of interest. Here we describe the preparation of solid lipid nanoparticles by forming a microemulsion at an elevated temperature which, upon cooling, yields a suspension of solid nanoparticles. This nanotemplate engineering method is inexpensive, reproducible, and easy to scale up.
Collapse
|
7
|
Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, Zhang H. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev 2021; 176:113891. [PMID: 34324887 DOI: 10.1016/j.addr.2021.113891] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9) is a potent technology for gene-editing. Owing to its high specificity and efficiency, CRISPR/Cas9 is extensity used for human diseases treatment, especially for cancer, which involves multiple genetic alterations. Different concepts of cancer treatment by CRISPR/Cas9 are established. However, significant challenges remain for its clinical applications. The greatest challenge for CRISPR/Cas9 therapy is how to safely and efficiently deliver it to target sites in vivo. Nanotechnology has greatly contributed to cancer drug delivery. Here, we present the action mechanisms of CRISPR/Cas9, its application in cancer therapy and especially focus on the nanotechnology-based delivery of CRISPR/Cas9 for cancer gene editing and immunotherapy to pave the way for its clinical translation. We detail the difficult barriers for CRISIR/Cas9 delivery in vivo and discuss the relative solutions for encapsulation, target delivery, controlled release, cellular internalization, and endosomal escape.
Collapse
Affiliation(s)
- Xiaoyu Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Yonghui Wang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Oliver Koivisto
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Junnian Zhou
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.
| |
Collapse
|
8
|
Canioni R, Reynaud F, Leite-Nascimento T, Gueutin C, Guiblin N, Ghermani NE, Jayat C, Daull P, Garrigue JS, Fattal E, Tsapis N. Tiny dexamethasone palmitate nanoparticles for intravitreal injection: Optimization and in vivo evaluation. Int J Pharm 2021; 600:120509. [PMID: 33766637 DOI: 10.1016/j.ijpharm.2021.120509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Tiny nanoparticles of dexamethasone palmitate (DXP) were designed as transparent suspensions for intravitreal administration to treat age-related macular degeneration (AMD). The influence of three surfactants (PEG-40-stearate and Pluronic block copolymers F68 and F127) on nanoparticles size and stability was investigated and led to an optimal formulation based on Pluronic F127 stabilizing DXP nanoparticles. Size measurements and TEM revealed tiny nanoparticles (around 35 nm) with a low opacity, compatible with further intravitreal injection. X-Ray powder diffraction (XRPD) and transmission electronic microscopy (TEM) performed on freeze-dried samples showed that DXP nanoparticles were rather monodisperse and amorphous. The efficacy of DXP nanoparticles was assessed in vivo on pigmented rabbits with unilateral intravitreal injections. After breakdown of the blood-retinal barrier (BRB) induced by injection of rhVEGF165 with carrier protein, DXP nanoparticles induced a restoration of the BRB 1 month after their intravitreal injection. However, their efficacy was limited in time most probably by clearance of DXP nanoparticles after 2 months due to their small size.
Collapse
Affiliation(s)
- Romain Canioni
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Franceline Reynaud
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France; School of Pharmacy, Federal University of Rio de Janeiro, 21944-59 Rio de Janeiro, Brazil
| | - Thais Leite-Nascimento
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France; Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems, School of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Claire Gueutin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nicolas Guiblin
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Nour-Eddine Ghermani
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France; Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | | | | | | | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
9
|
The Application of Nanotechnology in the Codelivery of Active Constituents of Plants and Chemotherapeutics for Overcoming Physiological Barriers during Antitumor Treatment. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9083068. [PMID: 31915707 PMCID: PMC6930735 DOI: 10.1155/2019/9083068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Antitumor therapy using a combination of drugs has shown increased clinical efficacy. Active constituents derived from plants can offer several advantages, such as high efficiacy, low toxicity, extensive effects, and multiple targets. At present, the combination of plants' active constituents and chemotherapeutic drugs has attracted increased attention. Nanodrug delivery systems (NDDSs) have been widely used in tumor-targeted therapy because of their efficacy of delivering antitumor drugs. The in vivo process of tumor-targeted NDDSs has several steps. They include blood circulation, tumor accumulation and penetration, target cell internalization and uptake, and drug release and drug response. In each step, NDDSs encounter multiple barriers that prevent their effective delivery to target sites. Studies have been performed to find alternative strategies to overcome these barriers. We reviewed the recent progress of codelivery of active constituents of plants and chemotherapeutics using NDDSs. Progress into transversing the physiological barriers for more effective in vivo antitumor delivery will be discussed in this review.
Collapse
|
10
|
Lorscheider M, Tsapis N, Simón-Vázquez R, Guiblin N, Ghermani N, Reynaud F, Canioni R, Abreu S, Chaminade P, Fattal E. Nanoscale Lipophilic Prodrugs of Dexamethasone with Enhanced Pharmacokinetics. Mol Pharm 2019; 16:2999-3010. [PMID: 31117740 DOI: 10.1021/acs.molpharmaceut.9b00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The encapsulation of glucocorticoids, such as dexamethasone, in nanoparticles (NPs) faces two main issues: a low drug loading and the destabilization of the nanoparticle suspension due to drug crystallization. Here, we successfully formulated a prodrug of dexamethasone, dexamethasone palmitate (DXP), into nanoparticles stabilized by the sole presence of distearoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG2000). Two formulation processes, nanoprecipitation and emulsion-evaporation, allowed the formation of stable nanoparticles. By adjusting the drug/lipid ratio and the DXP concentration, nanoparticles of DXP (DXP-NPs) with a size between 130 and 300 nm can be obtained. Owing to the presence of DSPE-PEG2000, a high drug entrapment efficiency of 98% w/w was reached for both processes, corresponding to a very high equivalent dexamethasone drug loading of around 50% w/w in the absence of crystallization upon storage at 4 °C. The anti-inflammatory activity of DXP-NPs was preserved when incubated with macrophages activated with lipopolysaccharide. Pharmacokinetics parameters were evaluated after intravenous (IV) injection of DXP-NPs to healthy mice. The release of DXM from DXP-NPs in plasma was clearly controlled up to 18 h compared with the free drug, which was rapidly eliminated from plasma after administration. In conclusion, a novel type of nanoparticle combining the advantages of prodrugs and nanoparticles was designed, easy to produce with a high loading efficiency and leading to modified pharmacokinetics and tissue distribution after IV administration.
Collapse
Affiliation(s)
- Mathilde Lorscheider
- Institut Galien Paris-Sud , CNRS, Univ. Paris-Sud, Univ. Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud , CNRS, Univ. Paris-Sud, Univ. Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Rosana Simón-Vázquez
- Immunology, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Orense, Pontevedra and Vigo (IBI) , University of Vigo , Campus Lagoas Marcosende, Pontevedra 36310 , Spain
| | - Nicolas Guiblin
- École Centrale Paris, Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS) , UMR CNRS 8580, CentraleSupélec, Univ. Paris Saclay , 3 Rue Joliot Curie, 91190 Gif-sur-Yvette , France
| | - Noureddine Ghermani
- Institut Galien Paris-Sud , CNRS, Univ. Paris-Sud, Univ. Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Franceline Reynaud
- Institut Galien Paris-Sud , CNRS, Univ. Paris-Sud, Univ. Paris-Saclay , 92290 Châtenay-Malabry , France.,School of Pharmacy , Federal University of Rio de Janeiro , 21944-59 Rio de Janeiro , Brazil
| | - Romain Canioni
- Institut Galien Paris-Sud , CNRS, Univ. Paris-Sud, Univ. Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Sonia Abreu
- Lip(Sys)2 EA7357 Lipides, Systèmes analytiques et biologiques , Univ. Paris-Sud, Univ. Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Pierre Chaminade
- Lip(Sys)2 EA7357 Lipides, Systèmes analytiques et biologiques , Univ. Paris-Sud, Univ. Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Elias Fattal
- Institut Galien Paris-Sud , CNRS, Univ. Paris-Sud, Univ. Paris-Saclay , 92290 Châtenay-Malabry , France
| |
Collapse
|
11
|
Shi H, Huang S, He J, Han L, Zhang W, Zhong Q. 1-Laurin-3-Palmitin as a Novel Matrix of Solid Lipid Particles: Higher Loading Capacity of Thymol and Better Stability of Dispersions Than Those of Glyceryl Monostearate and Glyceryl Tripalmitate. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E489. [PMID: 30934814 PMCID: PMC6523428 DOI: 10.3390/nano9040489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
To develop solid lipid nanoparticles (SLNs) with a new lipid matrix for delivery of hydrophobic bioactive molecules, high purity 1-laurin-3-palmitin (1,3-LP) was synthesized and the prepared 1,3-LP SLNs were compared with those of two common SLN matrices in glyceryl monostearate (GMS) and glyceryl tripalmitate (PPP). Conditions of preparing SLNs were first optimized by evaluating the particle size, polydispersity index (PDI), zeta-potential, and stability. Thereafter, the performance of SLN loading of a model compound in thymol was studied. The loading capacity of thymol in 1,3-LP SLNs was 16% of lipids and higher than 4% and 12% for GMS- and PPP-SLNs, respectively. The 1,3-LP SLNs also had the best efficiency to entrapment thymol during the prolonged storage. X-ray diffraction (XRD) analyses confirmed the excellent crystalline stability of 1,3-LP leading to the stable entrapment efficiency and better stability of thymol-loaded SLNs. Conversely, the polymorphic transformation of GMS and PPP resulted in the declined entrapment efficiency of thymol in the corresponding SLNs. This work indicated the 1,3-diacylglycerol (DAG) SLNs could be used as a promising delivery system for the encapsulation of hydrophobic bioactive molecules with high loading capacity and stability.
Collapse
Affiliation(s)
- Hao Shi
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Shuangshuang Huang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Junbo He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lijuan Han
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Weinong Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
12
|
Dexamethasone palmitate nanoparticles: An efficient treatment for rheumatoid arthritis. J Control Release 2019; 296:179-189. [PMID: 30659904 DOI: 10.1016/j.jconrel.2019.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by joint inflammation, bone and cartilage erosion. The use of glucocorticoids in the treatment of RA is hampered by significant side effects induced by their unfavorable pharmacokinetics. Delivering glucocorticoids by means of nanotechnologies is promising but the encapsulation of highly crystalline and poorly water-soluble drugs results in poor loading and low stability. We report here the design of 130 nm nanoparticles made of solely dexamethasone palmitate, stabilized by polyethylene glycol-linked phospholipids displaying a negative zeta potential (-55 mV), high entrapment efficiency and stability over 21 days under storage at 4 °C. X ray diffraction showed no crystallization of the drug. When incubated in serum, nanoparticles released free dexamethasone which explains the in vitro anti-inflammatory effect on LPS-activated RAW 264.7 macrophages. Moreover, we demonstrate in a murine collagen-induced arthritis model the improved therapeutic efficacy of these nanoparticles. Their passive accumulation in arthritic joints leads to disease remission and recovery of the joint structure at a dose of 1 mg/kg dexamethasone, without any adverse effects. Dexamethasone palmitate nanoparticles are promising in the treatment of inflammation in rheumatoid arthritis with a very significant difference occurring at the late stage of inflammation allowing to prevent the progression of the disease.
Collapse
|
13
|
Pashirova TN, Zueva IV, Petrov KA, Babaev VM, Lukashenko SS, Rizvanov IK, Souto EB, Nikolsky EE, Zakharova LY, Masson P, Sinyashin OG. Nanoparticle-Delivered 2-PAM for Rat Brain Protection against Paraoxon Central Toxicity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16922-16932. [PMID: 28504886 DOI: 10.1021/acsami.7b04163] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solid lipid nanoparticles (SLNs) are among the most promising nanocarriers to target the blood-brain barrier (BBB) for drug delivery to the central nervous system (CNS). Encapsulation of the acetylcholinesterase reactivator, pralidoxime chloride (2-PAM), in SLNs appears to be a suitable strategy for protection against poisoning by organophosphorus agents (OPs) and postexposure treatment. 2-PAM-loaded SLNs were developed for brain targeting and delivery via intravenous (iv) administration. 2-PAM-SLNs displayed a high 2-PAM encapsulation efficiency (∼90%) and loading capacity (maximum 30.8 ± 1%). Drug-loaded particles had a mean hydrodynamic diameter close to 100 nm and high negative zeta potential (-54 to -15 mV). These properties contribute to improve long-term stability of 2-PAM-SLNs when stored both at room temperature (22 °C) and at 4 °C, as well as to longer circulation time in the bloodstream compared to free 2-PAM. Paraoxon-poisoned rats (2 × LD50) were treated with 2-PAM-loaded SLNs at a dose of 2-PAM of 5 mg/kg. 2-PAM-SLNs reactivated 15% of brain AChE activity. Our results confirm the potential use of SLNs loaded with positively charged oximes as a medical countermeasure both for protection against OPs poisoning and for postexposure treatment.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Irina V Zueva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Konstantin A Petrov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
- Kazan Federal University , 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Vasily M Babaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Svetlana S Lukashenko
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Ildar Kh Rizvanov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | | | - Evgeny E Nikolsky
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
- Kazan State Medical University , 49 Butlerova Street, Kazan 420012, Russia
| | - Lucia Ya Zakharova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Patrick Masson
- Kazan Federal University , 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Oleg G Sinyashin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| |
Collapse
|
14
|
Sun J, Song Y, Lu M, Lin X, Liu Y, Zhou S, Su Y, Deng Y. Evaluation of the antitumor effect of dexamethasone palmitate and doxorubicin co-loaded liposomes modified with a sialic acid–octadecylamine conjugate. Eur J Pharm Sci 2016; 93:177-83. [DOI: 10.1016/j.ejps.2016.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023]
|
15
|
Lu F, Doane TL, Zhu JJ, Burda C. A method for separating PEGylated Au nanoparticle ensembles as a function of grafting density and core size. Chem Commun (Camb) 2014; 50:642-4. [DOI: 10.1039/c3cc47124a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Wang W, Li C, Zhang J, Dong A, Kong D. Tailor-made gemcitabine prodrug nanoparticles from well-defined drug–polymer amphiphiles prepared by controlled living radical polymerization for cancer chemotherapy. J Mater Chem B 2014; 2:1891-1901. [DOI: 10.1039/c3tb21558j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel prodrug nanoparticles with a tailorable high drug payload and in vivo anti-cancer activity assembled from well-defined gemcitabine–polymer conjugate amphiphiles prepared by RAFT polymerization are presented.
Collapse
Affiliation(s)
- Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin, China
| | - Anjie Dong
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin, China
| |
Collapse
|
17
|
Angayarkanny S, Baskar G, Mandal AB. Nanocarriers of solid lipid from micelles of amino acids surfactants coated with polymer nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6805-6814. [PMID: 23718941 DOI: 10.1021/la400605v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polymer nanoparticle coated micelle assemblies of lauryl ester of tyrosine (LET) act as potential nanocarriers for the model solid lipid stearyl alcohol. The coating is afforded by a simple methodology of heterophase polymerization reaction of styrene or the mixture of styrene and butyl acrylate at a mole ratio of 0.8:0.2 in the presence of 200 mM LET in water. On the contrary, the polymer nanoparticles produced under similar conditions in the presence of a structurally similar surfactant, lauryl ester of phenyl alanine (LEP), failed to act as nanocarrier. The micelle templates of LET and LEP favored polymerization under controlled conditions as observed from the near monodisperse distribution of molecular weight and size of the polymers. The particle size distribution of poly(styrene) (PS) and poly(styrene-co-butyl acryalte) (PS-co-PBA) nanoparticles from LET was smaller at 24 and 20 nm in comparison to those from LEP. The encapsulation efficiency of polymer nanoparticles from LET surfactant is explained on the basis of difference in the coating of micelle assemblies, which we believe must be arising due to difference in the solubilization site of the monomers in the surfactant micelles before polymerization reaction. The solubilization of the model monomer, benzene at different regions, varying between shell and core of LET and LEP micelles is established from (1)H nuclear magnetic resonance spectra. The evidence for the coating of micelle assemblies from surface tension measurements and the encapsulation of stearyl alcohol in the polymer nanoparticle dispersions from LET drawn from transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis is discussed.
Collapse
Affiliation(s)
- S Angayarkanny
- Industrial Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Laboratory (CLRI), Adyar, Chennai, India
| | | | | |
Collapse
|
18
|
Kim JK, Yuan H, Nie J, Yang YT, Leggas M, Potter PM, Rinehart J, Jay M, Lu X. High payload dual therapeutic-imaging nanocarriers for triggered tumor delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2895-2903. [PMID: 22777758 PMCID: PMC3817621 DOI: 10.1002/smll.201200437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/17/2012] [Indexed: 05/29/2023]
Abstract
The in vitro and in vivo characterization of an optimized formulation of nanoparticles (NPs) loaded with a high content of dexamethasone palmitate (DEX-P), a chemotherapeutic adjuvant that decreases interstitial fluid pressure in tumors, and (111) In, a signaling agent, is described. These NPs are uniform in size and composition. Single photon emission computed tomography imaging demonstrates significant tumor uptake of (111) In-labeled DEX-P NPs in tumor-bearing mice. As with many nanoparticle-based drug delivery systems, significant liver accumulation is observed. Assessment of liver histology and blood tests show no apparent hepatic or renal toxicity of the DEX-P NPs. Conversion of DEX-P to DEX occurs when DEX-P NPs are incubated with mouse plasma, human tumor homogenate and ascites from tumor bearing mice, but not with human plasma. This conversion is slower in plasma from Es1(e) ((-/-)) /SCID mice, a potential alternative animal model that better mimics humans; however, plasma from these mice are not completely devoid of esterase activity. The difference between blood and tumor esterase activity in humans facilitates the delivery of DEX-P NPs to tumors and the release of dexamethasone by an esterase trigger.
Collapse
Affiliation(s)
- Jin-Ki Kim
- Division of Molecular Pharmaceutics Center for Nanotechnology in Drug Delivery Eshelman School of Pharmacy and Lineberger Comprehensive Cancer Center University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (USA)
- College of Pharmacy Hanyang University, Ansan, Gyeonggi, 426-791 (Republic of Korea)
| | - Hong Yuan
- Department of Radiology University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (USA)
| | - Jingxin Nie
- Department of Radiology University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (USA)
| | - Yu-Tsai Yang
- Division of Molecular Pharmaceutics Center for Nanotechnology in Drug Delivery Eshelman School of Pharmacy and Lineberger Comprehensive Cancer Center University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (USA)
| | - Markos Leggas
- Department of Pharmaceutical Sciences College of Pharmacy University of Kentucky, Lexington, Kentucky 40506 (USA)
| | - Philip M. Potter
- Department of Chemical Biology and Therapeutics St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (USA)
| | - John Rinehart
- Department of Medicine University of Kentucky, Lexington, Kentucky 40506 (USA)
| | - Michael Jay
- Division of Molecular Pharmaceutics Center for Nanotechnology in Drug Delivery Eshelman School of Pharmacy and Lineberger Comprehensive Cancer Center University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (USA)
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina 27599 (USA)
| | | |
Collapse
|
19
|
Ma P, Rahima Benhabbour S, Feng L, Mumper RJ. 2'-Behenoyl-paclitaxel conjugate containing lipid nanoparticles for the treatment of metastatic breast cancer. Cancer Lett 2012; 334:253-62. [PMID: 22902506 DOI: 10.1016/j.canlet.2012.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
Abstract
The aim of these studies was to develop a novel 2'-behenoyl-paclitaxel (C22-PX) conjugate nanoparticle (NP) formulation for the treatment of metastatic breast cancer. A lipophilic paclitaxel derivative C22-PX was synthesized and incorporated into lipid-based NPs. Free C22-PX and its NP formulation were evaluated in a series of in vitro and in vivo studies. The results demonstrated that C22-PX NPs were much better tolerated and had significantly higher plasma and tumor AUCs compared to Taxol at the maximum tolerated dose (MTD) in a subcutaneous 4T1 mouse mammary carcinoma model. These benefits resulted in significantly improved antitumor efficacy with the NP-based formulation.
Collapse
Affiliation(s)
- Ping Ma
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|