1
|
Tan EX, Zhong QZ, Ting Chen JR, Leong YX, Leon GK, Tran CT, Phang IY, Ling XY. Surface-Enhanced Raman Scattering-Based Multimodal Techniques: Advances and Perspectives. ACS NANO 2024; 18:32315-32334. [PMID: 39530425 DOI: 10.1021/acsnano.4c12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a versatile molecular fingerprinting technique with rapid signal readout, high aqueous compatibility, and portability. To translate SERS for real-world applications, it is pertinent to overcome inherent challenges, including high sample variability and heterogeneity, matrix effects, and nonlinear SERS signal responses of different analytes in complex (bio)chemical matrices with numerous interfering species. In this perspective, we highlight emerging SERS-based multimodal techniques to address the key roadblocks to improving the sensitivity, specificity, and reliability of (bio)chemical detection, bioimaging, theragnosis, and theragnostic. SERS-based multimodal techniques can be broadly categorized into two categories: (1) complementary methods or systems that work together to achieve a common goal where each method compensates for the weaknesses of the other to culminate in a single enhanced outcome or (2) orthogonal techniques that are independent and provide separate but corroborating results simultaneously without interfering with each other. These multimodal techniques maximize information gained from a single experiment to achieve enhanced qualitative or quantitative analysis and broaden the range of detectable analytes from small molecules to tissues. Finally, we discuss emerging directions in multimodal platform design, instrument integration, and data analytics that aim to push the analytical limits of holistic detection.
Collapse
Affiliation(s)
- Emily Xi Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Qi-Zhi Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jaslyn Ru Ting Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yong Xiang Leong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Guo Kang Leon
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Cam Tu Tran
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore
| |
Collapse
|
2
|
Delle Cave D, Mangini M, Tramontano C, De Stefano L, Corona M, Rea I, De Luca AC, Lonardo E. Hybrid Biosilica Nanoparticles for in-vivo Targeted Inhibition of Colorectal Cancer Growth and Label-Free Imaging. Int J Nanomedicine 2024; 19:12079-12098. [PMID: 39583322 PMCID: PMC11585298 DOI: 10.2147/ijn.s480168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
Background Metastasis-initiating cells are key players in progression, resistance, and relapse of colorectal cancer (CRC), by leveraging the regulatory relationship between Transforming Growth Factor-beta (TGF-β) signaling and anti-L1 cell adhesion molecule (L1CAM). Methods This study introduces a novel strategy for CRC targeted therapy and imaging based on the use of a hybrid nanosystem made of gold nanoparticles-covered porous biosilica further modified with the (L1CAM) antibody. Results The nanosystem intracellularly delivers galunisertib (LY), a TGF-β inhibitor, aiming to inhibit epithelial-mesenchymal transition (EMT), a process pivotal for metastasis. Anti-L1CAM antibody-functionalized nanoparticles (NPs) target tumor-initiating cells expressing L1CAM, inhibiting cancer growth. The number of antibody molecules conjugated to the single NP is precisely quantified, revealing a high surface coverage that facilitates the tumor targeting. The therapeutic efficacy of the nanosystem is investigated in organoid-like cultures of CRC cells and in vivo mouse models, showing a significant reduction in tumor growth. The spatial distribution of NPs within CRC tumors from mice is investigated using a label-free optical approach based on Raman micro-spectroscopy. Conclusion This research highlights the multifunctional capabilities of engineered biosilica NPs, which offer new insights in targeted CRC therapy and imaging, improving patient outcomes and paving the way for personalized therapies.
Collapse
Affiliation(s)
- Donatella Delle Cave
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Maria Mangini
- National Research Council, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, Naples, 80131, Italy
| | - Chiara Tramontano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Marco Corona
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, Naples, 80131, Italy
| | - Enza Lonardo
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| |
Collapse
|
3
|
Liang Z, Xie S, Wang Q, Zhang B, Xiao L, Wang C, Liu X, Chen Y, Yang S, Du H, Qian Y, Ling D, Wu L, Li F. Ligand-Induced Atomically Segregation-Tunable Alloy Nanoprobes for Enhanced Magnetic Resonance Imaging. ACS NANO 2024; 18:15249-15260. [PMID: 38818704 DOI: 10.1021/acsnano.4c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bimetallic iron-noble metal alloy nanoparticles have emerged as promising contrast agents for magnetic resonance imaging (MRI) due to their biocompatibility and facile control over the element distribution. However, the inherent surface energy discrepancy between iron and noble metal often leads to Fe atom segregation within the nanoparticle, resulting in limited iron-water molecule interactions and, consequently, diminished relaxometric performance. In this study, we present the development of a class of ligand-induced atomically segregation-tunable alloy nanoprobes (STAN) composed of bimetallic iron-gold nanoparticles. By manipulating the oxidation state of Fe on the particle surface through varying molar ratios of oleic acid and oleylamine ligands, we successfully achieve surface Fe enrichment. Under the application of a 9 T MRI system, the optimized STAN formulation, characterized by a surface Fe content of 60.1 at %, exhibits an impressive r1 value of 2.28 mM-1·s-1, along with a low r2/r1 ratio of 6.2. This exceptional performance allows for the clear visualization of hepatic tumors as small as 0.7 mm in diameter in vivo, highlighting the immense potential of STAN as a next-generation contrast agent for highly sensitive MR imaging.
Collapse
Affiliation(s)
- Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenhan Wang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufan Qian
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Lianming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangyuan Li
- Songjiang Institute and Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
4
|
Yang Y, Wu S, Chen Y, Ju H. Surface-enhanced Raman scattering sensing for detection and mapping of key cellular biomarkers. Chem Sci 2023; 14:12869-12882. [PMID: 38023499 PMCID: PMC10664603 DOI: 10.1039/d3sc04650h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular biomarkers mainly contain proteins, nucleic acids, glycans and many small molecules including small biomolecule metabolites, reactive oxygen species and other cellular chemical entities. The detection and mapping of the key cellular biomarkers can effectively help us to understand important cellular mechanisms associated with physiological and pathological processes, which greatly promote the development of clinical diagnosis and disease treatment. Surface-enhanced Raman scattering (SERS) possesses high sensitivity and is free from the influence of strong self-fluorescence in living systems as well as the photobleaching of the dyes. It exhibits rich and narrow chemical fingerprint spectra for multiplexed detection, and has become a powerful tool to detect and map cellular biomarkers. In this review, we present an overview of recent advances in the detection and mapping of different classes of cellular biomarkers based on SERS sensing. These advances fully confirm that the SERS-based sensors and sensing methods have great potential for the exploration of biological mechanisms and clinical applications. Additionally, we also discuss the limitations of present research and the future developments of the SERS technology in this field.
Collapse
Affiliation(s)
- Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
5
|
Mansoor F, Ju H, Saeed M, Kanwal S. Facile synthesis of gold nanocages with silver nanocubes templates dual metal effects enabled SERS imaging and catalytic reduction. RSC Adv 2023; 13:31366-31374. [PMID: 37901276 PMCID: PMC10603383 DOI: 10.1039/d3ra06344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
Silver (Ag) nanomaterials featuring a cubic shape particularly represent supreme class of advance nanomaterials. This work explored a new precursor and its effect on morphological features of silver (Ag) nanocubes (NCs) serving as sacrificial templates for facile synthesis of gold NCs. The AgNCs were initially prepared utilizing sodium thiosulphate (Na2S2O3) as relatively stable S2- producing species along with a soft etchant source KCl. The effects of different potassium halides were evaluated to grasp control over seed mediated growth of Ag nanocubes. Taking the advantages of dual metallic properties, Ag@4MBA@AuNCs nanostructure was synthesized using 4-mercaptobenzoic acid (4MBA) as a Raman reporter molecule. This nanostructure showed 1010-times enhancement in surface enhanced Raman scattering (SERS) signal, leading to a highly sensitive imaging probe for the detection of even three breast cancer cells (MCF-7 cells) in vitro. Subsequently, the oxidative nanopeeling well accompanied by incorporation of Au/Ag alloy nanoparticles on AuNCs corona assembly was achieved, which facilitated the catalytic reduction of toxic nitrophenol to eco-friendly aminophenol. Such sophisticated and engineered nanoassemblies possess broad applications in bioanalysis.
Collapse
Affiliation(s)
- Farukh Mansoor
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Abu Dhabi Road Rahim Yar Khan Pakistan
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Sciences Department of Chemistry, Nanjing University Nanjing 210023 China
| | - Madiha Saeed
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University, Islamabad, Lahore Campus Lahore Pakistan
| | - Shamsa Kanwal
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Abu Dhabi Road Rahim Yar Khan Pakistan
| |
Collapse
|
6
|
Leventi AA, Braddick HJ, Billimoria K, Wallace GQ, Goenaga-Infante H, Tomkinson NCO, Faulds K, Graham D. Synthesis, characterisation and multi-modal intracellular mapping of cisplatin nano-conjugates. Chem Commun (Camb) 2023; 59:6395-6398. [PMID: 37157999 DOI: 10.1039/d3cc00925d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The synthesis of nanocarriers for the delivery of the antitumor drug cisplatin is reported. Multimodal-imaging consisting of surface enhanced Raman scattering and laser ablation inductively coupled plasma time of flight mass spectrometry was used to visualise the intracellular uptake of both the nanocarrier and drug.
Collapse
Affiliation(s)
- Aristea Anna Leventi
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
- National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, UK
| | - Henry J Braddick
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Kharmen Billimoria
- National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | | | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
7
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Sun G, Fu C, Dong M, Jin G, Song Q. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120743. [PMID: 34942414 DOI: 10.1016/j.saa.2021.120743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman Scattering (SERS) has become a powerful analytical technique for highly sensitive detection of target molecules. Its performance, however, is heavily dependent on the substrates. Relatively low sensitivity for small molecules and poor reproducibility in quantitative analysis are often encountered in most of nanoparticle modified SERS substrate. The present work starts by theoretical investigation of the electromagnetic field enhancement by nanomaterials of coinage metals with different sizes. The finite-difference time-domain (FDTD) simulation results revealed that the Ag NPs with the size around 100 nm exhibit the strongest SERS effect and the 'Ag-Ag' gaps have shown higher electromagnetic field enhancement than that of the 'Ag-Ti' gap. Subsequently, a multilayered Ag nanoparticles SERS substrate (or other coinage metals) was prepared by a two-step electroless deposition of Ag on Ti substrate. This was achieved by in situ reduction of Ag precursor to subsequently form a Ag nanoflake (Ag NF) layer and a Ag nanoparticle (Ag NPs) layer on the Ti base (Ti/AgNFs/AgNPs). The as-prepared SERS substrate showed a substantially enhanced SERS effect for small molecule detection and detection limit as low as 1.0 × 10-17 M for picric acid (PA), 1.0 × 10-14 M for p-nitrotoluene (PNT) and 1.0 × 10-6 M for uric acid (UA) were obtained respectively. The facile method developed in this work should be widely applicable for in-situ preparation of other SERs substrates.
Collapse
Affiliation(s)
- Guowei Sun
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Chen Fu
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Mengmeng Dong
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Guangxia Jin
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
9
|
Kenry, Nicolson F, Clark L, Panikkanvalappil SR, Andreiuk B, Andreou C. Advances in Surface Enhanced Raman Spectroscopy for in Vivo Imaging in Oncology. Nanotheranostics 2022; 6:31-49. [PMID: 34976579 PMCID: PMC8671959 DOI: 10.7150/ntno.62970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the application of surface enhanced Raman scattering (SERS) nanoparticles for preclinical cancer imaging has attracted increasing attention. Raman imaging with SERS nanoparticles offers unparalleled sensitivity, providing a platform for molecular targeting, and granting multiplexed and multimodal imaging capabilities. Recent progress has been facilitated not only by the optimization of the SERS contrast agents themselves, but also by the developments in Raman imaging approaches and instrumentation. In this article, we review the principles of Raman scattering and SERS, present advances in Raman instrumentation specific to cancer imaging, and discuss the biological means of ensuring selective in vivo uptake of SERS contrast agents for targeted, multiplexed, and multimodal imaging applications. We offer our perspective on areas that must be addressed in order to facilitate the clinical translation of SERS contrast agents for in vivo imaging in oncology.
Collapse
Affiliation(s)
- Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Chrysafis Andreou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
10
|
Chirizzi C, Morasso C, Caldarone AA, Tommasini M, Corsi F, Chaabane L, Vanna R, Bombelli FB, Metrangolo P. A Bioorthogonal Probe for Multiscale Imaging by 19F-MRI and Raman Microscopy: From Whole Body to Single Cells. J Am Chem Soc 2021; 143:12253-12260. [PMID: 34320323 PMCID: PMC8397317 DOI: 10.1021/jacs.1c05250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Molecular imaging
techniques are essential tools for better investigating
biological processes and detecting disease biomarkers with improvement
of both diagnosis and therapy monitoring. Often, a single imaging
technique is not sufficient to obtain comprehensive information at
different levels. Multimodal diagnostic probes are key tools to enable
imaging across multiple scales. The direct registration of in vivo imaging markers with ex vivo imaging
at the cellular level with a single probe is still challenging. Fluorinated
(19F) probes have been increasingly showing promising potentialities
for in vivo cell tracking by 19F-MRI.
Here we present the unique features of a bioorthogonal 19F-probe that enables direct signal correlation of MRI with Raman
imaging. In particular, we reveal the ability of PERFECTA, a superfluorinated
molecule, to exhibit a remarkable intense Raman signal distinct from
cell and tissue fingerprints. Therefore, PERFECTA combines in a single
molecule excellent characteristics for both macroscopic in
vivo19F-MRI, across the whole body, and microscopic
imaging at tissue and cellular levels by Raman imaging.
Collapse
Affiliation(s)
- Cristina Chirizzi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100 Pavia, Italy
| | | | - Matteo Tommasini
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100 Pavia, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", Università di Milano, Via G. B. Grassi 74, 20157 Milan, Italy
| | - Linda Chaabane
- Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), Neuroscience Division, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Renzo Vanna
- CNR-Institute for Photonics and Nanotechnologies (IFN-CNR), Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
11
|
Wei Q, Arami H, Santos HA, Zhang H, Li Y, He J, Zhong D, Ling D, Zhou M. Intraoperative Assessment and Photothermal Ablation of the Tumor Margins Using Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002788. [PMID: 33717843 PMCID: PMC7927626 DOI: 10.1002/advs.202002788] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/13/2020] [Indexed: 05/12/2023]
Abstract
Surgical resection is commonly used for therapeutic management of different solid tumors and is regarded as a primary standard of care procedure, but precise localization of tumor margins is a major intraoperative challenge. Herein, a generalized method by optimizing gold nanoparticles for intraoperative detection and photothermal ablation of tumor margins is introduced. These nanoparticles are detectable by highly sensitive surface-enhanced Raman scattering imaging. This non-invasive technique assists in delineating the two surgically challenged tumors in live mice with orthotopic colon or ovarian tumors. Any remaining residual tumors are also ablated by using post-surgical adjuvant photothermaltherapy (aPTT), which results in microscale heat generation due to interaction of these nanoparticles with near-infrared laser. Ablation of these post-operative residual micro-tumors prolongs the survival of mice significantly and delays tumor recurrence by 15 days. To validate clinical translatability of this method, the pharmacokinetics, biodistribution, Raman contrast, aPTT efficiency, and toxicity of these nanoparticles are also investigated. The nanoparticles have long blood circulation time (≈24 h), high tumor accumulation (4.87 ± 1.73%ID g-1) and no toxicity. This high-resolution and sensitive intraoperative approach is versatile and can be potentially used for targeted ablation of residual tumor after resection within different organs.
Collapse
Affiliation(s)
- Qiaolin Wei
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000P. R. China
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
- State Key Laboratory of Modern Optical InstrumentationsZhejiang UniversityHangzhou310058P. R. China
| | - Hamed Arami
- Molecular Imaging Program at StanfordDepartment of RadiologyStanford UniversityStanfordCA94305‐5427USA
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Hongbo Zhang
- Pharmaceutical Science LaboratoryÅbo Akademi UniversityTurku20520Finland
| | - Yangyang Li
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Jian He
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Danni Zhong
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Daishun Ling
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Min Zhou
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000P. R. China
- Institute of Translational MedicineZhejiang UniversityHangzhou310009P. R. China
- State Key Laboratory of Modern Optical InstrumentationsZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education Zhejiang UniversityHangzhou310009P. R. China
| |
Collapse
|
12
|
Implications of Biomolecular Corona for Molecular Imaging. Mol Imaging Biol 2020; 23:1-10. [PMID: 33095421 DOI: 10.1007/s11307-020-01559-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
The development of nanoparticle probes has opened up new possibilities for molecular imaging in the era of precision medicine. There are a wide range of nanoprobes that are being used for various modalities that have demonstrated promising potential in early detection, disease monitoring, and theranostics. However, the rate of successful clinical translation of the nanoprobes is very low and is affected by the lack of our understanding about nanoparticle interaction with biological fluids after systemic administration, thus representing an unmet clinical need. One of the poorly understood issues relates to the formation of biomolecular corona, a layer of biomolecules formed on the surface of nanoscale materials during their interactions with biological fluids. The biomolecular corona has several significant effects on the biodistribution of nanoprobes and their imaging ability by (i) reducing their targeting efficacy and (ii) affecting the intrinsic imaging properties (e.g., contrast capacity of magnetic nanoprobes). This review provides insights on the importance of considering biomolecular corona in the development of nanoprobes, which may enable their more efficient utilization for molecular imaging applications.
Collapse
|
13
|
Du Z, Qi Y, He J, Zhong D, Zhou M. Recent advances in applications of nanoparticles in SERS in vivo imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1672. [PMID: 33073511 DOI: 10.1002/wnan.1672] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
Abstract
Surface-enhanced Raman scattering (SERS) technique has been regarded as one of the most important research methods in the field of single-molecule science. Since the previous decade, the application of nanoparticles for in vivo SERS imaging becomes the focus of research. To enhance the performance of SERS imaging, researchers have developed several SERS nanotags such as gold nanostars, copper-based nanomaterials, semiconducting quantum dots, and so on. The development of Raman equipment is also necessary owing to the current limitations. This review describes the recent advances of SERS nanoparticles and their applications for in vivo imaging in detail. Specific examples highlighting the in vivo cancer imaging and treatment application of SERS nanoparticles. A perspective on the challenges and opportunities of nanoparticles in SERS in vivo imaging is also provided. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Zhen Du
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuchen Qi
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jian He
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Danni Zhong
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Min Zhou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.,The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Li J, Wong WY, Tao XM. Recent advances in soft functional materials: preparation, functions and applications. NANOSCALE 2020; 12:1281-1306. [PMID: 31912063 DOI: 10.1039/c9nr07035d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synthetic materials and biomaterials with elastic moduli lower than 10 MPa are generally considered as soft materials. Research studies on soft materials have been boosted due to their intriguing features such as light-weight, low modulus, stretchability, and a diverse range of functions including sensing, actuating, insulating and transporting. They are ideal materials for applications in smart textiles, flexible devices and wearable electronics. On the other hand, benefiting from the advances in materials science and chemistry, novel soft materials with tailored properties and functions could be prepared to fulfil the specific requirements. In this review, the current progress of soft materials, ranging from materials design, preparation and application are critically summarized based on three categories, namely gels, foams and elastomers. The chemical, physical and electrical properties and the applications are elaborated. This review aims to provide a comprehensive overview of soft materials to researchers in different disciplines.
Collapse
Affiliation(s)
- Jun Li
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Xiao-Ming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
15
|
Chen Z, Krishnamachary B, Pachecho-Torres J, Penet MF, Bhujwalla ZM. Theranostic small interfering RNA nanoparticles in cancer precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1595. [PMID: 31642207 DOI: 10.1002/wnan.1595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
Due to their ability to effectively downregulate the expression of target genes, small interfering RNA (siRNA) have emerged as promising candidates for precision medicine in cancer. Although some siRNA-based treatments have advanced to clinical trials, challenges such as poor stability during circulation, and less than optimal pharmacokinetics and biodistribution of siRNA in vivo present barriers to the systemic delivery of siRNA. In recent years, theranostic nanomedicine integrating siRNA delivery has attracted significant attention for precision medicine. Theranostic nanomedicine takes advantage of the high capacity of nanoplatforms to ferry cargo with imaging and therapeutic capabilities. These theranostic nanoplatforms have the potential to play a major role in gene specific treatments. Here we have reviewed recent advances in the use of theranostic nanoplatforms to deliver siRNA, and discussed the opportunities as well as challenges associated with this exciting technology. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Zhihang Chen
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jesus Pachecho-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Mabrouk M, Rajendran R, Soliman IE, Ashour MM, Beherei HH, Tohamy KM, Thomas S, Kalarikkal N, Arthanareeswaran G, Das DB. Nanoparticle- and Nanoporous-Membrane-Mediated Delivery of Therapeutics. Pharmaceutics 2019; 11:E294. [PMID: 31234394 PMCID: PMC6631283 DOI: 10.3390/pharmaceutics11060294] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Pharmaceutical particulates and membranes possess promising prospects for delivering drugs and bioactive molecules with the potential to improve drug delivery strategies like sustained and controlled release. For example, inorganic-based nanoparticles such as silica-, titanium-, zirconia-, calcium-, and carbon-based nanomaterials with dimensions smaller than 100 nm have been extensively developed for biomedical applications. Furthermore, inorganic nanoparticles possess magnetic, optical, and electrical properties, which make them suitable for various therapeutic applications including targeting, diagnosis, and drug delivery. Their properties may also be tuned by controlling different parameters, e.g., particle size, shape, surface functionalization, and interactions among them. In a similar fashion, membranes have several functions which are useful in sensing, sorting, imaging, separating, and releasing bioactive or drug molecules. Engineered membranes have been developed for their usage in controlled drug delivery devices. The latest advancement in the technology is therefore made possible to regulate the physico-chemical properties of the membrane pores, which enables the control of drug delivery. The current review aims to highlight the role of both pharmaceutical particulates and membranes over the last fifteen years based on their preparation method, size, shape, surface functionalization, and drug delivery potential.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrirst)-Dokki, Giza 12622, Egypt.
| | - Rajakumari Rajendran
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Islam E Soliman
- Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | | | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrirst)-Dokki, Giza 12622, Egypt.
| | - Khairy M Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Nandakumar Kalarikkal
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | | | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK.
| |
Collapse
|
17
|
Xia Y, Padmanabhan P, Sarangapani S, Gulyás B, Vadakke Matham M. Bifunctional Fluorescent/Raman Nanoprobe for the Early Detection of Amyloid. Sci Rep 2019; 9:8497. [PMID: 31186449 PMCID: PMC6560097 DOI: 10.1038/s41598-019-43288-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/27/2019] [Indexed: 11/09/2022] Open
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the abnormal aggregation of amyloid beta (Aβ) peptides. Therefore the detection of Aβ peptides and imaging of amyloid plaques are considered as promising diagnostic methods for AD. Here we report a bifunctional nanoprobe prepared by conjugating gold nanoparticles (AuNPs) with Rose Bengal (RB) dye. RB is chosen due to its unique Raman fingerprints and affinity with Aβ peptides. After the conjugation, Raman signals of RB were significantly enhanced due to the surface-enhanced Raman scattering (SERS) effect. Upon binding with Aβ42 peptides, a spectrum change was detected, and the magnitude of the spectrum changes can be correlated with the concentration of target peptides. The peptide/probe interaction also induced a remarkable enhancement in the probes' fluorescence emission. This fluorescence enhancement was further utilized to image amyloid plaques in the brain slices from transgenic mice. In this study, the RB-AuNPs were used for both SERS-based detection of Aβ42 peptides and fluorescence-based imaging of amyloid plaques. Compared to monofunctional probes, the multifunctional probe is capable to provide more comprehensive pathophysiological information, and therefore, the implementation of such multifunctional amyloid probes is expected to help the investigation of amyloid aggregation and the early diagnosis of AD.
Collapse
Affiliation(s)
- Yang Xia
- School of Mechanical and Aerospace Engineering, Center for Optical and Laser Engineering (COLE), Nanyang Technological University (NTU), Singapore, 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 637553, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 637553, Singapore.
| | - Sreelatha Sarangapani
- School of Mechanical and Aerospace Engineering, Center for Optical and Laser Engineering (COLE), Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 637553, Singapore
| | - Murukeshan Vadakke Matham
- School of Mechanical and Aerospace Engineering, Center for Optical and Laser Engineering (COLE), Nanyang Technological University (NTU), Singapore, 639798, Singapore.
| |
Collapse
|
18
|
Zhao X, Zeng L, Hosmane N, Gong Y, Wu A. Cancer cell detection and imaging: MRI-SERS bimodal splat-shaped Fe3O4/Au nanocomposites. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing. Biosens Bioelectron 2018; 119:10-17. [DOI: 10.1016/j.bios.2018.07.061] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/21/2022]
|
20
|
Lane LA, Xue R, Nie S. Emergence of two near-infrared windows for in vivo and intraoperative SERS. Curr Opin Chem Biol 2018; 45:95-103. [PMID: 29631122 PMCID: PMC6076872 DOI: 10.1016/j.cbpa.2018.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
Two clear windows in the near-infrared (NIR) spectrum are of considerable current interest for in vivo molecular imaging and spectroscopic detection. The main rationale is that near-infrared light can penetrate biological tissues such as skin and blood more efficiently than visible light because these tissues scatter and absorb less light at longer wavelengths. The first clear window, defined as light wavelengths between 650nm and 950nm, has been shown to be far superior for in vivo and intraoperative optical imaging than visible light. The second clear window, operating in the wavelength range of 1000-1700nm, has been reported to further improve detection sensitivity, spatial resolution, and tissue penetration because tissue photon scattering and background interference are further reduced at longer wavelengths. Here we discuss recent advances in developing biocompatible plasmonic nanoparticles for in vivo and intraoperative surface-enhanced Raman scattering (SERS) in both the first and second NIR windows. In particular, a new class of 'broad-band' plasmonic nanostructures is well suited for surface Raman enhancement across a broad range of wavelengths allowing a direct comparison of detection sensitivity and tissue penetration between the two NIR window. Also, optimized and encoded SERS nanoparticles are generally nontoxic and are much brighter than near-infrared quantum dots (QDs), raising new possibilities for ultrasensitive detection of microscopic tumors and image-guided precision surgery.
Collapse
Affiliation(s)
- Lucas A Lane
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| | - Ruiyang Xue
- Departments of Bioengineering, Chemistry, Electrical and Computer Engineering, and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuming Nie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China; Departments of Bioengineering, Chemistry, Electrical and Computer Engineering, and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
21
|
Yoon GJ, Lee SY, Lee SB, Park GY, Choi JH. Synthesis of Iron Oxide/Gold Composite Nanoparticles Using Polyethyleneimine as a Polymeric Active Stabilizer for Development of a Dual Imaging Probe. NANOMATERIALS 2018; 8:nano8050300. [PMID: 29734725 PMCID: PMC5977314 DOI: 10.3390/nano8050300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
The combination of magnetic and plasmonic properties using iron oxide/gold nanocomposite particles is crucial for the development of multimodal molecular imaging probes. In this study, iron oxide/gold composite nanoparticles (NanoIOGs) were synthesized via the on-site reduction of an Au precursor salt by polyethyleneimine (PEI) molecules attached to iron oxide nanoparticles (IONPs), and they were employed in magnetic resonance and dark-field microscope imaging. PEI is considered as a polymeric active stabilizer (PAS), acting as a reducing agent for the synthesis of Au and a dispersant for nanoparticles. When the IONPs prepared at the PEI concentration of 0.02 wt. % were used for the NanoIOG synthesis, Au nanoseeds were formed around the IONPs. The alloy clusters of IONPs/Au crystals were produced with further reduction depending on PEI concentration. The NanoIOGs exhibited superparamagnetism in a magnetic field and plasmonic response in a dark-field (DF) microscope. The sizes, morphologies, magnetizations, and r₂ relaxivities of NanoIOGs were affected significantly by the amount of PEI added during the NanoIOG synthesis. It is suggested that the PAS-mediated synthesis is simple and effective, and can be applied to various nanostructured Au-metal alloys.
Collapse
Affiliation(s)
- Gyu Jin Yoon
- Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - So Young Lee
- Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Seung Bin Lee
- Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Ga Young Park
- Department of Bio-fibers and materials Science, Kyungpook National University, Daegu 41566, Korea.
| | - Jin Hyun Choi
- Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 41566, Korea.
- Department of Bio-fibers and materials Science, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
22
|
|
23
|
Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev 2018; 118:4946-4980. [PMID: 29638112 DOI: 10.1021/acs.chemrev.7b00668] [Citation(s) in RCA: 913] [Impact Index Per Article: 152.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) inherits the rich chemical fingerprint information on Raman spectroscopy and gains sensitivity by plasmon-enhanced excitation and scattering. In particular, most Raman peaks have a narrow width suitable for multiplex analysis, and the measurements can be conveniently made under ambient and aqueous conditions. These merits make SERS a very promising technique for studying complex biological systems, and SERS has attracted increasing interest in biorelated analysis. However, there are still great challenges that need to be addressed until it can be widely accepted by the biorelated communities, answer interesting biological questions, and solve fatal clinical problems. SERS applications in bioanalysis involve the complex interactions of plasmonic nanomaterials with biological systems and their environments. The reliability becomes the key issue of bioanalytical SERS in order to extract meaningful information from SERS data. This review provides a comprehensive overview of bioanalytical SERS with the main focus on the reliability issue. We first introduce the mechanism of SERS to guide the design of reliable SERS experiments with high detection sensitivity. We then introduce the current understanding of the interaction of nanomaterials with biological systems, mainly living cells, to guide the design of functionalized SERS nanoparticles for target detection. We further introduce the current status of label-free (direct) and labeled (indirect) SERS detections, for systems from biomolecules, to pathogens, to living cells, and we discuss the potential interferences from experimental design, measurement conditions, and data analysis. In the end, we give an outlook of the key challenges in bioanalytical SERS, including reproducibility, sensitivity, and spatial and time resolution.
Collapse
Affiliation(s)
- Cheng Zong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Mengxi Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Li-Jia Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ting Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiao-Shan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
24
|
Lin LS, Song J, Yang HH, Chen X. Yolk-Shell Nanostructures: Design, Synthesis, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704639. [PMID: 29280201 DOI: 10.1002/adma.201704639] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Indexed: 05/20/2023]
Abstract
Yolk-shell nanostructures (YSNs) composed of a core within a hollow cavity surrounded by a porous outer shell have received tremendous research interest owing to their unique structural features, fascinating physicochemical properties, and widespread potential applications. Here, a comprehensive overview of the design, synthesis, and biomedical applications of YSNs is presented. The synthetic strategies toward YSNs are divided into four categories, including hard-templating, soft-templating, self-templating, and multimethod combination synthesis. For the hard- or soft-templating strategies, different types of rigid or vesicle templates are used for making YSNs. For the self-templating strategy, a number of unconventional synthetic methods without additional templates are introduced. For the multimethod combination strategy, various methods are applied together to produce YSNs that cannot be obtained directly by only a single method. The biomedical applications of YSNs including biosensing, bioimaging, drug/gene delivery, and cancer therapy are discussed in detail. Moreover, the potential superiority of YSNs for these applications is also highlighted. Finally, some perspectives on the future research and development of YSNs are provided.
Collapse
Affiliation(s)
- Li-Sen Lin
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jibin Song
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Huang-Hao Yang
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Xiao L, Parchur AK, Gilbertson TA, Zhou A. SERS-fluorescence bimodal nanoprobes for in vitro imaging of fatty acid responsive receptor GPR120. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 10:22-29. [PMID: 29449902 PMCID: PMC5808993 DOI: 10.1039/c7ay02039b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
G-protein-coupled receptor 120 (GPR120), as a member of the rhodopsin family of G-protein-coupled receptors, has been shown to function as a sensor for dietary fat in the gustatory and digestive systems. Its specific role in the chemoreception of fatty acids, which is thought to be crucial in understanding the mechanism surrounding the control of fat intake and, accordingly, in the treatment of obesity, remains unclear. Here we report a novel surface-enhanced Raman spectroscopy (SERS)-fluorescence bimodal microscopic technique for detection and imaging of GPR120 in single living cells. CaMoO4:Eu3+@AuNR hybrid nanoparticles are synthesized and characterized as imaging probes. Biocompatibility and imaging capability of the probes are investigated using a model HEK293 cell line with an inducible GPR120 gene transfection. Cellular distribution of GPR120 is visualized by single-cell SERS and fluorescence imaging. A dose-dependent GPR120 response to linoleic acid treatment is revealed by SERS.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Abdul K. Parchur
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
| | | | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
| |
Collapse
|
26
|
Jin Y, Wang Y, Chen M, Xiao X, Zhang T, Wang J, Jiang K, Fan S, Li Q. Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32369-32376. [PMID: 28853546 DOI: 10.1021/acsami.7b08807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We introduce a simple and cost-effective approach for fabrication of effective surface-enhanced Raman spectroscopy (SERS) substrates. It is shown that the as-fabricated substrates show excellent SERS effects in various probe molecules with high sensitivity, that is, picomolar level detection, and also good reliability. With a SERS enhancement factor beyond 108 and excellent reproducibility (deviation less than 5%) of signal intensity, the fabrication of the SERS substrate is realized on a four-inch wafer and proven to be effective in pesticide residue detection. The SERS substrate is realized first through the fabrication of quasi-periodic nanostructured silicon with dimension features in tens of nanometers using superaligned carbon nanotubes networks as an etching mask, after which a large amount of hot spots with nanometer gaps are formed through deposition of a gold film. With rigorous nanostructure design, the enhanced performance of electromagnetic field distribution for nanostructures is optimized. With the advantage of cost-effective large-area preparation, it is believed that the as-fabricated SERS substrate could be used in a wide variety of actual applications where detection of trace amounts is necessary.
Collapse
Affiliation(s)
- Yuanhao Jin
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Yingcheng Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Mo Chen
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Xiaoyang Xiao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Tianfu Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Jiaping Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Kaili Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Shoushan Fan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Qunqing Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University , Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
27
|
Cha MG, Lee S, Park S, Kang H, Lee SG, Jeong C, Lee YS, Kim C, Jeong DH. A dual modal silver bumpy nanoprobe for photoacoustic imaging and SERS multiplexed identification of in vivo lymph nodes. NANOSCALE 2017; 9:12556-12564. [PMID: 28820223 DOI: 10.1039/c7nr03742b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multimodal imaging can provide complementary biomedical information which has huge potential in pre-clinical and clinical imaging and sensing. In this study, we introduce dual modal NIR silver bumpy nanoprobes for in vivo imaging and multiplexed detection of biomolecules by both photoacoustic imaging (PAI) and surface-enhanced Raman scattering (SERS) techniques. For this study, we used silica-coated silver bumpy nanoshell probes (AgNS@SiO2). AgNS@SiO2 have strong NIR-absorption and scattering properties compared with other nanostructures, and therefore, can be a good candidate for photoacoustic (PA) and SERS multimodal imaging. We obtained PA images of the skin and SLNs of rats by injecting various kinds of Raman-labeled AgNS@SiO2. Multiplexed identification of the injected AgNS@SiO2 was achieved by measuring SERS signals. AgNS@SiO2 have the potential to be applied in detecting cancer biomarkers by locating biomarkers quickly using PA imaging, and identification by multiplexed target measurement using SERS signals in vivo.
Collapse
Affiliation(s)
- Myeong Geun Cha
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xiao L, Tian X, Harihar S, Li Q, Li L, Welch DR, Zhou A. Gd 2O 3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:218-225. [PMID: 28365452 PMCID: PMC5427483 DOI: 10.1016/j.saa.2017.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075cm-1. By spatially mapping the SERS intensity at 1075cm-1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA
| | - Xiumei Tian
- Department of Biomedical Engineering, Guangzhou Medical College, Guangzhou 510182, People's Republic of China
| | - Sitaram Harihar
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Qifei Li
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA; Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning 530003, Guangxi, People's Republic of China
| | - Li Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA.
| |
Collapse
|
29
|
Jamieson LE, Asiala SM, Gracie K, Faulds K, Graham D. Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:415-437. [PMID: 28301754 DOI: 10.1146/annurev-anchem-071015-041557] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since its discovery in 1974, surface-enhanced Raman scattering (SERS) has gained momentum as an important tool in analytical chemistry. SERS is used widely for analysis of biological samples, ranging from in vitro cell culture models, to ex vivo tissue and blood samples, and direct in vivo application. New insights have been gained into biochemistry, with an emphasis on biomolecule detection, from small molecules such as glucose and amino acids to larger biomolecules such as DNA, proteins, and lipids. These measurements have increased our understanding of biological systems, and significantly, they have improved diagnostic capabilities. SERS probes display unique advantages in their detection sensitivity and multiplexing capability. We highlight key considerations that are required when performing bioanalytical SERS measurements, including sample preparation, probe selection, instrumental configuration, and data analysis. Some of the key bioanalytical measurements enabled by SERS probes with application to in vitro, ex vivo, and in vivo biological environments are discussed.
Collapse
Affiliation(s)
- Lauren E Jamieson
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Steven M Asiala
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Kirsten Gracie
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Karen Faulds
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| |
Collapse
|
30
|
Gao X, Yue Q, Liu Z, Ke M, Zhou X, Li S, Zhang J, Zhang R, Chen L, Mao Y, Li C. Guiding Brain-Tumor Surgery via Blood-Brain-Barrier-Permeable Gold Nanoprobes with Acid-Triggered MRI/SERRS Signals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603917. [PMID: 28295679 DOI: 10.1002/adma.201603917] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 02/03/2017] [Indexed: 05/27/2023]
Abstract
Surgical resection is a mainstay in the treatment of malignant brain tumors. Surgeons, however, face great challenges in distinguishing tumor margins due to their infiltrated nature. Here, a pair of gold nanoprobes that enter a brain tumor by crossing the blood-brain barrier is developed. The acidic tumor environment triggers their assembly with the concomitant activation of both magnetic resonance (MR) and surface-enhanced resonance Raman spectroscopy (SERRS) signals. While the bulky aggregates continuously trap into the tumor interstitium, the intact nanoprobes in normal brain tissue can be transported back into the blood stream in a timely manner. Experimental results show that physiological acidity triggers nanoparticle assembly by forming 3D spherical nanoclusters with remarkable MR and SERRS signal enhancements. The nanoprobes not only preoperatively define orthotopic glioblastoma xenografts by magnetic resonance imaging (MRI) with high sensitivity and durability in vivo, but also intraoperatively guide tumor excision with the assistance of a handheld Raman scanner. Microscopy studies verify the precisely demarcated tumor margin marked by the assembled nanoprobes. Taking advantage of the nanoprobes' rapid excretion rate and the extracellular acidification as a hallmark of solid tumors, these nanoprobes are promising in improving brain-tumor surgical outcome with high specificity, safety, and universality.
Collapse
Affiliation(s)
- Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Zining Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Mengjing Ke
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Xingyu Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Sihan Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Shanghai Cancer Center, Fudan University, 270 Dongan Road, Shanghai, 200032, China
| | - Ren Zhang
- Center of Analysis and Measurement, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
31
|
Sangtani A, Nag OK, Field LD, Breger JC, Delehanty JB. Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28299903 DOI: 10.1002/wnan.1466] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/04/2017] [Accepted: 01/29/2017] [Indexed: 01/01/2023]
Abstract
With continued advancements in nanoparticle (NP) synthesis and in the interfacing of NPs with biological systems has come the exponential growth in the use of NPs for therapeutic drug delivery and imaging applications. In recent years, the advent of NP multifunctionality-the ability to perform multiple, disparate functions on a single NP platform-has garnered much excitement for the potential realization of highly functional NP-mediated drug delivery for use in the clinical setting. This Overview will survey the current state of the art (reports published within the last 5 years) of multifunctional NPs for therapeutic drug delivery, imaging or a combination thereof. We provide extensive examples of both soft (micelles, liposomes, polymeric NPs) and hard (noble metals, quantum dots, metal oxides) NP formulations that have been used for multimodal drug delivery and imaging. The criteria for inclusion, herein, is that there must be at least two therapeutic drug cargos or imaging agents or a combination of the two. We next offer an assessment of the cytotoxicity of therapeutic NP constructs in biological systems. We then conclude with a forward-looking perspective on how we expect this field to develop in the coming years. WIREs Nanomed Nanobiotechnol 2017, 9:e1466. doi: 10.1002/wnan.1466 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ajmeeta Sangtani
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,National Research Council, Washington, DC, USA
| | - Lauren D Field
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
32
|
Chen R, Riviere JE. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:207-253. [PMID: 28168670 DOI: 10.1007/978-3-319-47754-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.
Collapse
Affiliation(s)
- Ran Chen
- Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, 66506, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
33
|
Wang D, Jin Y, Zhu X, Yan D. Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Chen R, Riviere JE. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27863136 DOI: 10.1002/wnan.1440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
Abstract
The understanding of nano-bio interactions is deemed essential in the design, application, and safe handling of nanomaterials. Proper characterization of the intrinsic physicochemical properties, including their size, surface charge, shape, and functionalization, is needed to consider the fate or impact of nanomaterials in biological and environmental systems. The characterizations of their interactions with surrounding chemical species are often hindered by the complexity of biological or environmental systems, and the drastically different surface physicochemical properties among a large population of nanomaterials. The complexity of these interactions is also due to the diverse ligands of different chemical properties present in most biomacromolecules, and multiple conformations they can assume at different conditions to minimize their conformational free energy. Often these interactions are collectively determined by multiple physical or chemical forces, including electrostatic forces, hydrogen bonding, and hydrophobic forces, and calls for multidimensional characterization strategies, both experimentally and computationally. Through these characterizations, the understanding of the roles surface physicochemical properties of nanomaterials and their surface interactions with biomacromolecules can play in their applications in biomedical and environmental fields can be obtained. To quantitatively decipher these physicochemical surface interactions, computational methods, including physical, statistical, and pharmacokinetic models, can be used for either analyses of large amounts of experimental characterization data, or theoretical prediction of the interactions, and consequent biological behavior in the body after administration. These computational methods include molecular dynamics simulation, structure-activity relationship models such as biological surface adsorption index, and physiologically-based pharmacokinetic models. WIREs Nanomed Nanobiotechnol 2017, 9:e1440. doi: 10.1002/wnan.1440 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ran Chen
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA.,Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA.,Department of Anatomy and Physiology, College of Veterinary Medicine, Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
35
|
Heo JH, Yi GS, Lee BS, Cho HH, Lee JW, Lee JH. A significant enhancement of color transition from an on-off type achromatic colorimetric nanosensor for highly sensitive multi-analyte detection with the naked eye. NANOSCALE 2016; 8:18341-18351. [PMID: 27761546 DOI: 10.1039/c6nr05919h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here, we report the development of an achromatic nanoparticle-based colorimetric sensor (achromatic nanosensor) with an on-off type color change that significantly enhances the color transition and increases the sensitivity of the sensor for naked-eye inspection. The achromatic nanosensor was prepared via a modified CMYK (CRYK) subtractive color model by combining DNA-functionalized gold nanoparticles (AuNPs-DNA), silver nanoparticles (AgNPs-DNA), and gold nanorods (AuNRs-DNA). The initially black-colored achromatic nanosensor not only allowed multiplexed detection by generating target-specific diverse color changes, but also improved the recognition of color changes by the naked eye. Thus, this on-off type color change enabled analysis near the limit of detection (LOD) with the naked eye. In addition, we developed a new image processing method adapted for this achromatic sensor. By quantifying the saturation value of the color images of the achromatic sensor, we could significantly amplify the color signal of the samples, which is difficult to achieve with general colorimetric sensors. The practical application of this achromatic nanosensor for biomarker detection was demonstrated with thrombin and platelet-derived growth factor (PDGF) in human blood plasma. These results provide a new sensing platform that is applicable to most NP-based colorimetric sensing systems for a wide range of applications, including biomolecular diagnosis, chemical pollutant sensing, environmental monitoring, etc.
Collapse
Affiliation(s)
- Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Gyu Sung Yi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Byoung Sang Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Hui Hun Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Jin Woong Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea. and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| |
Collapse
|
36
|
In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions. J Colloid Interface Sci 2016; 465:279-85. [DOI: 10.1016/j.jcis.2015.11.073] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/24/2015] [Indexed: 01/12/2023]
|
37
|
Carrouée A, Allard-Vannier E, Même S, Szeremeta F, Beloeil JC, Chourpa I. Sensitive Trimodal Magnetic Resonance Imaging-Surface-Enhanced Resonance Raman Scattering-Fluorescence Detection of Cancer Cells with Stable Magneto-Plasmonic Nanoprobes. Anal Chem 2015; 87:11233-41. [DOI: 10.1021/acs.analchem.5b02419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ambre Carrouée
- Université
François Rabelais, EA6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37 200 Tours, France
- CNRS-UPR
4301
- Centre de Biophysique Moléculaire
- Equipe Complexes métalliques et IRM pour les applications
biomédicales, rue Charles Sadron, 45 071 Orléans, France
| | - Emilie Allard-Vannier
- Université
François Rabelais, EA6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37 200 Tours, France
| | - Sandra Même
- CNRS-UPR
4301
- Centre de Biophysique Moléculaire
- Equipe Complexes métalliques et IRM pour les applications
biomédicales, rue Charles Sadron, 45 071 Orléans, France
| | - Frederic Szeremeta
- CNRS-UPR
4301
- Centre de Biophysique Moléculaire
- Equipe Complexes métalliques et IRM pour les applications
biomédicales, rue Charles Sadron, 45 071 Orléans, France
| | - Jean-Claude Beloeil
- CNRS-UPR
4301
- Centre de Biophysique Moléculaire
- Equipe Complexes métalliques et IRM pour les applications
biomédicales, rue Charles Sadron, 45 071 Orléans, France
| | - Igor Chourpa
- Université
François Rabelais, EA6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37 200 Tours, France
| |
Collapse
|
38
|
A facile and general route to synthesize silica-coated SERS tags with the enhanced signal intensity. Sci Rep 2015; 5:14934. [PMID: 26450559 PMCID: PMC4598865 DOI: 10.1038/srep14934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022] Open
Abstract
Silica-coated SERS tags have been attracting greater attention in recent years. However, the reported methods to synthesize these tags are tedious, and often subjected to the limited signal intensity. Here, we report a facile and general method to prepare the silica-coated Ag SERS tags with the enhanced signal intensity by no introducing the primers. This approach mainly depends on the colloidal stability of the Ag NPs in alcohol solution. By decreasing the concentration of salt in Ag NP solution, the citrate-stabilized Ag NPs can be well dispersed in alcohol solution. Based on this, the Ag SERS tags can be directly coated with thickness-controlled and homogeneous silica shells. This approach is highly reproducible for silica shell growth and signal intensity, not depending on the properties of Raman molecules, proved by 7 kinds of the Raman molecules. Moreover, this kind of SERS tags coated with silica hold the stronger SERS signals than the traditional method due to no interference from the priming molecules.
Collapse
|
39
|
Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection. Toxins (Basel) 2015; 7:3771-84. [PMID: 26402704 PMCID: PMC4591649 DOI: 10.3390/toxins7093771] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 12/17/2022] Open
Abstract
We demonstrate for the first time, the development of titanium dioxide nanoparticles (TiO2) quenching based aptasensing platform for detection of target molecules. TiO2 quench the fluorescence of FAM-labeled aptamer (fluorescein labeled aptamer) upon the non-covalent adsorption of fluorescent labeled aptamer on TiO2 surface. When OTA interacts with the aptamer, it induced aptamer G-quadruplex complex formation, weakens the interaction between FAM-labeled aptamer and TiO2, resulting in fluorescence recovery. As a proof of concept, an assay was employed for detection of Ochratoxin A (OTA). At optimized experimental condition, the obtained limit of detection (LOD) was 1.5 nM with a good linearity in the range 1.5 nM to 1.0 µM for OTA. The obtained results showed the high selectivity of assay towards OTA without interference to structurally similar analogue Ochratoxin B (OTB). The developed aptamer assay was evaluated for detection of OTA in beer sample and recoveries were recorded in the range from 94.30%–99.20%. Analytical figures of the merits of the developed aptasensing platform confirmed its applicability to real samples analysis. However, this is a generic aptasensing platform and can be extended for detection of other toxins or target analyte.
Collapse
|
40
|
Lane LA, Qian X, Nie S. SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chem Rev 2015; 115:10489-529. [DOI: 10.1021/acs.chemrev.5b00265] [Citation(s) in RCA: 607] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lucas A. Lane
- Departments
of Biomedical Engineering and Chemistry, Emory University and Georgia Institute of Technology, Health Sciences Research Building,
Room E116, 1760 Haygood Drive, Atlanta, Georgia 30322, United States
| | - Ximei Qian
- Departments
of Biomedical Engineering and Chemistry, Emory University and Georgia Institute of Technology, Health Sciences Research Building,
Room E116, 1760 Haygood Drive, Atlanta, Georgia 30322, United States
| | - Shuming Nie
- Departments
of Biomedical Engineering and Chemistry, Emory University and Georgia Institute of Technology, Health Sciences Research Building,
Room E116, 1760 Haygood Drive, Atlanta, Georgia 30322, United States
- College
of Engineering and Applied Sciences, Nanjing University, 22 Hankou
Road, Nanjing, Jiangsu Province 210093, China
| |
Collapse
|
41
|
Gao Y, Li Y, Chen J, Zhu S, Liu X, Zhou L, Shi P, Niu D, Gu J, Shi J. Multifunctional gold nanostar-based nanocomposite: Synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials 2015; 60:31-41. [DOI: 10.1016/j.biomaterials.2015.05.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/03/2015] [Indexed: 01/24/2023]
|
42
|
Botchway SW, Coulter JA, Currell FJ. Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy. Br J Radiol 2015; 88:20150170. [PMID: 26118301 PMCID: PMC4730966 DOI: 10.1259/bjr.20150170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles offer alternative options in cancer therapy both as drug delivery carriers and as direct therapeutic agents for cancer cell inactivation. More recently, gold nanoparticles (AuNPs) have emerged as promising radiosensitizers achieving significantly elevated radiation dose enhancement factors when irradiated with both kilo-electron-volt and mega-electron-volt X-rays. Use of AuNPs in radiobiology is now being intensely driven by the desire to achieve precise energy deposition in tumours. As a consequence, there is a growing demand for efficient and simple techniques for detection, imaging and characterization of AuNPs in both biological and tumour samples. Spatially accurate imaging on the nanoscale poses a serious challenge requiring high- or super-resolution imaging techniques. In this mini review, we discuss the challenges in using AuNPs as radiosensitizers as well as various current and novel imaging techniques designed to validate the uptake, distribution and localization in mammalian cells. In our own work, we have used multiphoton excited plasmon resonance imaging to map the AuNP intracellular distribution. The benefits and limitations of this approach will also be discussed in some detail. In some cases, the same “excitation” mechanism as is used in an imaging modality can be harnessed to make it also a part of therapy modality (e.g. phototherapy)—such examples are discussed in passing as extensions to the imaging modality concerned.
Collapse
Affiliation(s)
- S W Botchway
- 1 Science and Technology Facility Council, Research Complex at Harwell, CLF, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, UK
| | - J A Coulter
- 2 School of Pharmacy, McClay Research Centre, Queen's University Belfast, Belfast, UK
| | - F J Currell
- 3 School of Mathematics and Physics, Queens University Belfast, Belfast, UK
| |
Collapse
|
43
|
Ju KY, Lee S, Pyo J, Choo J, Lee JK. Bio-inspired development of a dual-mode nanoprobe for MRI and Raman imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:84-9. [PMID: 25228029 DOI: 10.1002/smll.201401611] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/23/2014] [Indexed: 05/20/2023]
Abstract
New generation dual-mode imaging probes for MRI and Raman imaging techniques are developed, inspired by the hyper intense contrast enhancing capability in T1 -weighted MRI and characteristic Raman signal of natural melanin. MDA-MB-231cells labeled with dual-mode imaging probe are successfully detected in both T1-weighted MRI and Raman imaging.
Collapse
Affiliation(s)
- Kuk-Youn Ju
- School of Chemistry, Seoul National University, Seoul, 151-747, Korea
| | | | | | | | | |
Collapse
|
44
|
Cabral RM, Baptista PV. Anti-cancer precision theranostics: a focus on multifunctional gold nanoparticles. Expert Rev Mol Diagn 2014; 14:1041-52. [DOI: 10.1586/14737159.2014.965683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Yang L, Li P, Liu J. Progress in multifunctional surface-enhanced Raman scattering substrate for detection. RSC Adv 2014. [DOI: 10.1039/c4ra09231g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
46
|
Chang H, Kang H, Yang JK, Jo A, Lee HY, Lee YS, Jeong DH. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11859-11863. [PMID: 25078544 DOI: 10.1021/am503675x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is critical to create isotropic hot spots in developing a reproducible, homogeneous, and ultrasensitive SERS probe. Here, an Ag shell-Au satellite (Ag-Au SS) nanostructure composed of an Ag shell and surrounding Au nanoparticles was developed as a near-IR active SERS probe. The heterometallic shell-satellite structure based SERS probe produced intense and uniform SERS signals (SERS enhancement factor ∼1.4 × 10(6) with 11% relative standard deviation) with high detectability (100% under current measurement condition) by 785 nm photoexcitation. This signal enhancement was independent of the laser polarizations, which reflects the isotropic feature of the SERS activity of Ag-Au SS from the three-dimensional (3D) distribution of SERS hot spots between the shell and the surrounding satellite particles. The Ag-Au SS nanostructure shows a great potential as a reproducible and quantifiable NIR SERS probe for in vivo targets.
Collapse
Affiliation(s)
- Hyejin Chang
- Department of Chemistry Education, and §Interdisciplinary Program in Nano-Science and Technology, #School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Balcioglu M, Rana M, Robertson N, Yigit MV. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12100-12110. [PMID: 25014711 DOI: 10.1021/am503553h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be tuned with surface functionalized DNA molecules.
Collapse
Affiliation(s)
- Mustafa Balcioglu
- Department of Chemistry and RNA Institute, University at Albany , SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | | | | | | |
Collapse
|
48
|
Kang H, Yang JK, Noh MS, Jo A, Jeong S, Lee M, Lee S, Chang H, Lee H, Jeon SJ, Kim HI, Cho MH, Lee HY, Kim JH, Jeong DH, Lee YS. One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J Mater Chem B 2014; 2:4415-4421. [PMID: 32261541 DOI: 10.1039/c4tb00442f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A seedless, one-step synthetic route to uniform bumpy silver nanoshells (AgNSs) as highly NIR sensitive SERS substrates is reported. These substrates can incorporate Raman label compounds and biocompatible polymers on their surface. AgNS based NIR-SERS probes are successfully applied to cell tracking in a live animal using a portable Raman system.
Collapse
Affiliation(s)
- Homan Kang
- Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul, 151-742, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Niu X, Chen H, Wang Y, Wang W, Sun X, Chen L. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5152-60. [PMID: 24617579 DOI: 10.1021/am500411m] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorescent-surface enhanced Raman scattering (F-SERS) dual mode tags showed great potential for bioimaging due to the combined advantages of intuitive, fast imaging of fluorescence and multiplex capability of SERS technique. In previously reported F-SERS tags, organic fluorescent dyes or quantum dots were generally selected to generate fluorescence signal. Herein, we reported the first proof-of-concept upconversion fluorescence (UCF)-SERS dual mode tags based on near infrared (NIR) laser (980 nm) excited upconversion nanoparticles (UCNPs) for live-cell and in vivo imaging. Three components involved in this tag: NaYF4:Yb,Er UCNPs@SiO2 serving as the fluorescent core of the tag; silver nanoparticles in situ grown on the surface of UCNPs@SiO2 for generating characteristic Raman signal; and denatured BSA coating rendering the tag's stability and biocompatibility. The UCF-SERS tags integrated the NIR imaging capability of both fluorescent UCNPs and plasmonic SERS nanoprobe, which facilitated dual mode bioimaging investigation, especially for living animals. Ex vivo experiments revealed that with 980 nm and 785 nm NIR laser irradiations, the UCF and SERS signals of the tags could be detected from 3 and 7 mm deep pork tissues, respectively. Furthermore, the in vivo imaging capabilities of UCF-SERS tags were successfully demonstrated on living mice. The developed dual modality tags held great potential for medical diagnostics and therapy.
Collapse
Affiliation(s)
- Xiaojuan Niu
- School of Pharmacy, Yantai University , Yantai 264005, China
| | | | | | | | | | | |
Collapse
|
50
|
Conde J, Bao C, Cui D, Baptista PV, Tian F. Antibody-drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. J Control Release 2014; 183:87-93. [PMID: 24704711 DOI: 10.1016/j.jconrel.2014.03.045] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/16/2022]
Abstract
Inspired by the ability of SERS nanoantennas to provide an integrated platform to enhance disease targeting in vivo, we developed a highly sensitive probe for in vivo tumour recognition with the capacity to target specific cancer biomarkers such as epidermal growth factor receptors (EGFR) on human cancer cells and xenograft tumour models. Here, we used ~90nm gold nanoparticles capped by a Raman reporter, encapsulated and entrapped by larger polymers and a FDA antibody-drug conjugate - Cetuximab (Erbitux®) - that specifically targets EGFR and turns off a main signalling cascade for cancer cells to proliferate and survive. These drug/SERS gold nanoantennas present a high Raman signal both in cancer cells and in mice bearing xenograft tumours. Moreover, the Raman detection signal is accomplished simultaneously by extensive tumour growth inhibition in mice, making these gold nanoantennas ideal for cancer nanotheranostics, i.e. tumour detection and tumour cell inhibition at the same time.
Collapse
Affiliation(s)
- João Conde
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza 50018, Spain; CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Chenchen Bao
- Department of Bio-Nano Science and Engineering, National Key Laboratory of Micro/Nano Fabrication Technology, Institute of Micro&Nano Science and Technology, Shanghai, PR China
| | - Daxiang Cui
- Department of Bio-Nano Science and Engineering, National Key Laboratory of Micro/Nano Fabrication Technology, Institute of Micro&Nano Science and Technology, Shanghai, PR China
| | - Pedro V Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Furong Tian
- Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin, Ireland.
| |
Collapse
|