1
|
Mahmoudpour M, Jouyban A, Soleymani J, Rahimi M. Rational design of smart nano-platforms based on antifouling-nanomaterials toward multifunctional bioanalysis. Adv Colloid Interface Sci 2022; 302:102637. [PMID: 35290930 DOI: 10.1016/j.cis.2022.102637] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
The ability to design nanoprobe devices with the capability of quantitative/qualitative operation in complex media will probably underpin the main upcoming progress in healthcare research and development. However, the biomolecules abundances in real samples can considerably alter the interface performance, where unwanted adsorption/adhesion can block signal response and significantly decrease the specificity of the assay. Herein, this review firstly offers a brief outline of several significances of fabricating high-sensitivity and low-background interfaces to adjust various targets' behaviors induced via bioactive molecules on the surface. Besides, some important strategies to resist non-specific protein adsorption and cell adhesion, followed by imperative categories of antifouling reagents utilized in the construction of high-performance solid sensory interfaces, are discussed. The next section specifically highlights the various nanocomposite probes based on antifouling-nanomaterials for electrode modification containing carbon nanomaterials, noble metal nanoparticles, magnetic nanoparticles, polymer, and silicon-based materials in terms of nanoparticles, rods, or porous materials through optical or chemical strategies. We specially outline those nanoprobes that are capable of identification in complex media or those using new constructions/methods. Finally, the necessity and requirements for future advances in this emerging field are also presented, followed by opportunities and challenges.
Collapse
|
2
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Tarkistani MAM, Komalla V, Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1227. [PMID: 34066549 PMCID: PMC8148580 DOI: 10.3390/nano11051227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Recently, there has been an increased interest in iron-gold-based hybrid nanostructures, due to their combined outstanding optical and magnetic properties resulting from the usage of two separate metals. The synthesis of these nanoparticles involves thermal decomposition and modification of their surfaces using a variety of different methods, which are discussed in this review. In addition, different forms such as core-shell, dumbbell, flower, octahedral, star, rod, and Janus-shaped hybrids are discussed, and their unique properties are highlighted. Studies on combining optical response in the near-infrared window and magnetic properties of iron-gold-based hybrid nanoparticles as multifunctional nanoprobes for drug delivery, magnetic-photothermal heating as well as contrast agents during magnetic and optical imaging and magnetically-assisted optical biosensing to detect traces of targeted analytes inside the body has been reviewed.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (M.A.M.T.); (V.K.)
| |
Collapse
|
4
|
Biglione C, Glitscher EA, Arora S, Klemke B, Giulbudagian M, Laux P, Luch A, Bergueiro J, Calderón M. Galvanic Replacement as a Synthetic Tool for the Construction of Anisotropic Magnetoplasmonic Nanocomposites with Synergistic Phototransducing and Magnetic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56839-56849. [PMID: 33290035 DOI: 10.1021/acsami.0c18096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetoplasmonic nanomaterials, which combine light and magnetic field responsiveness in an advantageous manner, are attractive candidates for bio-nanoapplications. However, the synthetic access to such hybrid particles has been limited by the incompatibility of the iron- and gold-based lattices. In this work, we provide the first insights into a new synthetic strategy for developing magnetoplasmonic anisotropic nanocomposites with prominent phototransducing properties. In our approach, magnetic nanocubes based on an alloy of iron oxide, zinc, and silver were constructed. In a key second stage, the galvanic replacement of silver with gold atoms yielded satellite-like magnetoplasmonic anisotropic structures. Superior magnetic and photoconverting properties were observed for the novel magnetoplasmonic nanocomposites when compared with the pure parent structures. Moreover, the synergy between the magnetic and optical stimuli was examined, showing shape-dependent contributions in the magnetization experiments. More importantly, an excellent cell ablation capability upon laser irradiation was observed for the magnetoplasmonic nanocomposites compared to the pure magnetic or plasmonic controls. Further demonstration of these novel theragnostic agents as MRI contrast agents is also reported even during the light-irradiation event. Thus, the described particles showed promising properties for bioapplications emerging from the novel synthetic methodology.
Collapse
Affiliation(s)
- Catalina Biglione
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Emanuel A Glitscher
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Smriti Arora
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Bastian Klemke
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meiter Platz 1, 14109 Berlin, Germany
| | - Michael Giulbudagian
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Julian Bergueiro
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marcelo Calderón
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Schaak RE, Steimle BC, Fenton JL. Made-to-Order Heterostructured Nanoparticle Libraries. Acc Chem Res 2020; 53:2558-2568. [PMID: 33026804 DOI: 10.1021/acs.accounts.0c00520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoparticles that contain multiple materials connected through interfaces, often called heterostructured nanoparticles, are important constructs for many current and emerging applications. Such particles combine semiconductors, metals, insulators, catalysts, magnets, and other functional components that interact synergistically to enable applications in areas that include energy, nanomedicine, nanophotonics, photocatalysis, and active matter. To synthesize heterostructured nanoparticles, it is important to control all of the property-defining features of individual nanoparticles-size, shape, uniformity, crystal structure, composition, surface chemistry, and dispersibility-in addition to interfaces, asymmetry, and spatial organization, which facilitate communication among the constituent materials and enable their synergistic functions. While it is challenging to control all of these nanoscale features simultaneously, nanoparticle cation exchange reactions offer powerful capabilities that overcome many of the synthetic bottlenecks. In these reactions, which are often carried out on metal chalcogenide materials such as roxbyite copper sulfide (Cu1.8S) that have high cation mobilities and a high density of vacancies, cations from solution replace cations in the nanoparticle. Replacing only a fraction of the cations can produce phase-segregated products having internal interfaces, i.e., heterostructured nanoparticles. By the use of multiple partial cation exchange reactions, multicomponent heterostructured nanoparticles can be synthesized.In this Account, we discuss the use of multiple sequential partial cation exchange reactions to rationally construct complex heterostructured nanoparticles toward the goal of made-to-order synthesis. Sequential partial exchange of the Cu+ cations in roxbyite Cu1.8S spheres, rods, and plates produces a library of 47 derivatives that maintain the size, shape, and uniformity defined by the roxbyite templates while introducing various types of interfaces and different materials into the resulting heterostructured nanoparticles. When an excess of the metal salt reagent is used, the reaction time controls the extent of partial cation exchange. When a substoichiometric amount of metal salt reagent is used instead, the extent of partial cation exchange can be precisely controlled by the cation concentration. This approach allows significant control over the number, order, and location of partial cation exchange reactions. Up to seven sequential partial cation exchange reactions can be applied to roxbyite Cu1.8S nanorods to produce derivative heterostructured nanorods containing as many as six different materials, eight internal interfaces, and 11 segments, i.e. ZnS-CuInS2-CuGaS2-CoS-[CdS-(ZnS-CuInS2)]-Cu1.8S. We considered all possible injection sequences of five cations (Zn2+, Cd2+, Co2+, In3+, Ga3+) applied to all accessible Cu1.8S-derived nanorod precursors along with simple design criteria based on preferred cation exchange locations and crystal structure relationships. Using these guidelines, we mapped out synthetically feasible pathways to 65 520 distinct heterostructured nanorods, experimentally observed 113 members of this heterostructured nanorod megalibrary, and then made three of these in high yield and in isolatable quantities. By expansion of these capabilities into a broader scope of materials and identification of additional design guidelines, it should be possible to move beyond model systems and access functional targets rationally and retrosynthetically. Overall, the ability to access large libraries of complex heterostructured nanoparticles in a made-to-order manner is an important step toward bridging the gap between design and synthesis.
Collapse
|
6
|
Karaagac Z, Gul OT, Ildiz N, Ocsoy I. Transfer of hydrophobic colloidal gold nanoparticles to aqueous phase using catecholamines. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
8
|
Huang J, Xu Y, Xiao H, Xiao Z, Guo Y, Cheng D, Shuai X. Core-Shell Distinct Nanodrug Showing On-Demand Sequential Drug Release To Act on Multiple Cell Types for Synergistic Anticancer Therapy. ACS NANO 2019; 13:7036-7049. [PMID: 31141661 DOI: 10.1021/acsnano.9b02149] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Among various inflammatory factors/mediators, autocrine and paracrine prostaglandin 2 (PGE2), which are abundant in various tumors, promote the proliferation and chemoresistance of cancer cells. Thus, eliminating the cytoprotective effect of PGE2 may strengthen the antitumor effect of chemotherapy. Chemo/anti-inflammatory combination therapy requires the programmed activities of two different kinds of drugs that critically depend on their spatiotemporal manipulation inside the tumor. Here, a micellar polymeric nanosphere, encapsulating chemotherapeutic paclitaxel (PTX) in the core and conjugating anti-inflammatory celecoxib (CXB) to the shell through a peptide linker (PLGLAG), was developed. The PLGLAG linker was cleavable by the enzyme matrix metalloproteinase-2 (MMP-2) in the tumor tissue, causing CXB release and turning the negatively charged nanosphere into a positively charged one to facilitate PTX delivery into cancer cells. The released CXB not only acted on cyclooxygenase-2 (COX-2) to suppress the production of pro-inflammatory PGE2 in multiple cell types but also suppressed the expression of the anti-apoptotic Bcl-2 gene to sensitize cancer cells to chemotherapy, thus resulting in a synergistic anticancer effect of PTX and CXB. This study represents an example of using a surface charge-switchable nanosphere with on-demand drug release properties to act on multiple cell types for highly effective chemo/anti-inflammatory combination therapy of cancer.
Collapse
Affiliation(s)
- Jinsheng Huang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
- College of Chemistry and Materials Science , Jinan University , Guangzhou 510632 , China
| | - Yongmin Xu
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Hong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
- College of Chemistry and Materials Science , Jinan University , Guangzhou 510632 , China
| | - Zecong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yu Guo
- Department of General Surgery , The First Affiliated Hospital of Sun Yat-Sen University , Guangzhou 510275 , China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
9
|
Liu Y, Yang Y, Sun Y, Song J, Rudawski NG, Chen X, Tan W. Ostwald Ripening-Mediated Grafting of Metal–Organic Frameworks on a Single Colloidal Nanocrystal to Form Uniform and Controllable MXF. J Am Chem Soc 2019; 141:7407-7413. [DOI: 10.1021/jacs.9b01563] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, P. R. China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yujia Sun
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nicholas G. Rudawski
- College of Engineering Research Service Centers, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, P. R. China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Shams SF, Ghazanfari MR, Schmitz-Antoniak C. Magnetic-Plasmonic Heterodimer Nanoparticles: Designing Contemporarily Features for Emerging Biomedical Diagnosis and Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E97. [PMID: 30642128 PMCID: PMC6358957 DOI: 10.3390/nano9010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/28/2022]
Abstract
Magnetic-plasmonic heterodimer nanostructures synergistically present excellent magnetic and plasmonic characteristics in a unique platform as a multipurpose medium for recently invented biomedical applications, such as magnetic hyperthermia, photothermal therapy, drug delivery, bioimaging, and biosensing. In this review, we briefly outline the less-known aspects of heterodimers, including electronic composition, interfacial morphology, critical properties, and present concrete examples of recent progress in synthesis and applications. With a focus on emerging features and performance of heterodimers in biomedical applications, this review provides a comprehensive perspective of novel achievements and suggests a fruitful framework for future research.
Collapse
Affiliation(s)
- S Fatemeh Shams
- Peter-Grünberg-Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Mohammad Reza Ghazanfari
- Department of Materials Science and Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | |
Collapse
|
11
|
Quarta A, Piccirillo C, Mandriota G, Di Corato R. Nanoheterostructures (NHS) and Their Applications in Nanomedicine: Focusing on In Vivo Studies. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E139. [PMID: 30609839 PMCID: PMC6337150 DOI: 10.3390/ma12010139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Inorganic nanoparticles have great potential for application in many fields, including nanomedicine. Within this class of materials, inorganic nanoheterostructures (NHS) look particularly promising as they can be formulated as the combination of different domains; this can lead to nanosystems with different functional properties, which, therefore, can perform different functions at the same time. This review reports on the latest development in the synthesis of advanced NHS for biomedicine and on the tests of their functional properties in in vivo studies. The literature discussed here focuses on the diagnostic and therapeutic applications with special emphasis on cancer. Considering the diagnostics, a description of the NHS for cancer imaging and multimodal imaging is reported; more specifically, NHS for magnetic resonance, computed tomography and luminescence imaging are considered. As for the therapeutics, NHS employed in magnetic hyperthermia or photothermal therapies are reported. Examples of NHS for cancer theranostics are also presented, emphasizing their dual usability in vivo, as imaging and therapeutic tools. Overall, NHS show a great potential for biomedicine application; further studies, however, are necessary regarding the safety associated to their use.
Collapse
Affiliation(s)
- Alessandra Quarta
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Clara Piccirillo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giacomo Mandriota
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, via Arnesano, 73100 Lecce, Italy.
| | - Riccardo Di Corato
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, via Arnesano, 73100 Lecce, Italy.
| |
Collapse
|
12
|
Zhou S, Jin W, Ding Y, Shao B, Wang B, Hu X, Kong Y. In situ intercalation of Au nanoparticles and magnetic γ-Fe 2O 3 in the walls of MCM-41 with abundant void defects for highly efficient reduction of 4-nitrophenol and organic dyes. Dalton Trans 2018; 47:16862-16875. [PMID: 30289145 DOI: 10.1039/c8dt03054e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nowadays, agglomeration and leaching of metal active sites during reaction and recycle processes are considered to be a thorny problem for noble metal-based catalysts. Therefore, to make improvements, nano-gold was selected as a representative research object for many noble metals. In this study, Au nanoparticles (NPs) and magnetic γ-Fe2O3 were intercalated in situ in the walls of MCM-41 via a one-pot hydrothermal method, in which the intercalation process was preceded by co-condensation of tetraethyl orthosilicate (TEOS) with MPTS-Au complexes ((3-mercaptopropyl)-trimethoxysilane (MPTS), HAuCl4·3H2O), and a Fe3O4 sol. By the confinement of silica, Au NPs and γ-Fe2O3 were well dispersed in the walls of MCM-41, the sintering and loss of Au NPs was highly restricted, and the magnetic property of γ-Fe2O3 facilitated the recycling of Au-based catalysts. Additionally, abundant void defects appeared in MCM-41 by assembly of micelles in different sizes and shapes, greatly improving the surface area of target catalysts (>1800 m2 g-1), which provided more opportunities for contact and collision between reactors and gold active sites, effectively solving the problem of mass transportation. As expected, a series FeAu@MCM-41 catalysts showed superior catalytic activity in the reduction of 4-nitrophenol (4-NP) and organic dyes (MB, RhB, and MO), and these catalysts were recycled five times without significant loss of metal species or catalytic activity. This is attributed to the confinement effect of the silica walls and the excellent magnetic properties of γ-Fe2O3. This special structure of FeAu@MCM-41 catalysts provides more insights for designing and fabricating noble metal-based catalysts with desirable performances.
Collapse
Affiliation(s)
- Shijian Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Zhang H, Yang Z, Ju Y, Chu X, Ding Y, Huang X, Zhu K, Tang T, Su X, Hou Y. Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic-Magnetic Ag-Fe@Fe 3O 4 Heterostructures with Reduced Cytotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800271. [PMID: 30128240 PMCID: PMC6096995 DOI: 10.1002/advs.201800271] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/08/2018] [Indexed: 05/13/2023]
Abstract
The unique physicochemical properties of silver nanoparticles offer a large potential for biomedical application, however, the serious biotoxicity restricts their usage. Herein, nanogalvanic couple Ag-Fe@Fe3O4 heterostructures (AFHs) are designed to prevent Ag+ release from the cathodic Ag by sacrificial anodic Fe, which can reduce the cytotoxicity of Ag. AFHs are synthesized with modified galvanic displacement strategy in nonaqueous solution. To eliminate the restriction of lattice mismatch between Fe and Ag, amorphous Fe@Fe3O4 nanoparticles (NPs) are selected as seeds, meanwhile, reductive Fe can reduce Ag precursor directly even at as low as 20 °C without additional reductant. The thickness of the Fe3O4 shell can influence the amorphous properties of AFHs, and a series of Janus- and satellite-like AFHs are synthesized. A "cut-off thickness" effect is proposed based on the abnormal phenomenon that with the increase of reaction temperature, the diameter of Ag in AFHs decreases. Because of the interphase interaction and the coupling effect of Ag and Fe@Fe3O4, the AFHs exhibit unique optical and magnetic properties. This strategy for synthesis of monodisperse heterostructures can be extended for other metals, such as Au and Cu.
Collapse
Affiliation(s)
- Huilin Zhang
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Ziyu Yang
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
- College of Life SciencePeking UniversityBeijing100871China
| | - Xin Chu
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Ya Ding
- State Key Laboratory of Natural MedicinesDepartment of Pharmaceutical AnalysisChina Pharmaceutical UniversityNanjing210009China
| | - Xiaoxiao Huang
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Kai Zhu
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Tianyu Tang
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Xintai Su
- Department of ChemistrySchool of ScienceZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
15
|
Nguyen TT, Mammeri F, Ammar S. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E149. [PMID: 29518969 PMCID: PMC5869640 DOI: 10.3390/nano8030149] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/09/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i) their synthesis from simple "one-step" to complex "multi-step" routes, including seed-mediated and non-seed-mediated methods; and (ii) the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology-namely spherical and non-spherical, core-satellite and core-shell, and the desired applications.
Collapse
Affiliation(s)
- Thi Thuy Nguyen
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, ITODYS, UMR 7086, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean Antoine de Baïf, 75205 Paris, France.
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Fayna Mammeri
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, ITODYS, UMR 7086, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean Antoine de Baïf, 75205 Paris, France.
| | - Souad Ammar
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, ITODYS, UMR 7086, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean Antoine de Baïf, 75205 Paris, France.
| |
Collapse
|
16
|
|
17
|
Li Y, Li W, Bao W, Liu B, Li D, Jiang Y, Wei W, Ren F. Bioinspired peptosomes with programmed stimuli-responses for sequential drug release and high-performance anticancer therapy. NANOSCALE 2017; 9:9317-9324. [PMID: 28426067 DOI: 10.1039/c7nr00598a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Combination therapy with enhanced therapeutic and antimetastatic efficacy has become promising for cancer treatment. There is an urgent need to design a co-delivery system to sequentially release the drug pair at desired locations that can increase the intra-tumoral drug concentration and reduce the side effects. Inspired by virus architecture and function, herein, we developed a peptosome (PS)-based co-delivery system, PePm/PS/Curcumin (Cur), for the sequential release of the therapeutic peptide Pe and chemodrug Cur. PS was formed by the self-assembly of amphiphilic α-lactalbumin peptides obtained from enzymatic partial hydrolysis. Then, PS was self-cross-linked with disulfide bonds utilizing their endogenous thiol groups. The system is responsive to multiple tumor microenvironments and releases the drugs at specific tumor locations. First, after PS accumulation in tumor tissue via the EPR effect, the linkage peptide Pm in PS can be cleaved by matrix metalloproteinases (MMP) enzymatic hydrolysis. Pe can stay on the cell surface and antagonize the ErbB-2 receptor expression on the tumor cells. Moreover, the positively charged nature of remaining Mal-PS/Cur facilitates tumor cell internalization and induces a subsequent proton-sponge effect for lysosomal escape. Finally, Cur is released in the cytoplasm via a reduction-induced PS disassembly due to the high level of intracellular GSH. Both the in vitro and in vivo results exhibited an enhanced antitumor and antimetastatic efficacy of this system.
Collapse
Affiliation(s)
- Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Costa LSD, Zanchet D. Pretreatment impact on the morphology and the catalytic performance of hybrid heterodimers nanoparticles applied to CO oxidation. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.06.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Kaur M, Pramanik S, Kumar M, Bhalla V. Polythiophene-Encapsulated Bimetallic Au-Fe3O4 Nano-Hybrid Materials: A Potential Tandem Photocatalytic System for Nondirected C(sp2)–H Activation for the Synthesis of Quinoline Carboxylates. ACS Catal 2017. [DOI: 10.1021/acscatal.6b02681] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mandeep Kaur
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Subhamay Pramanik
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
20
|
Toropova YG, Golovkin AS, Malashicheva AB, Korolev DV, Gorshkov AN, Gareev KG, Afonin MV, Galagudza MM. In vitro toxicity of Fe mO n, Fe mO n-SiO 2 composite, and SiO 2-Fe mO n core-shell magnetic nanoparticles. Int J Nanomedicine 2017; 12:593-603. [PMID: 28144141 PMCID: PMC5245979 DOI: 10.2147/ijn.s122580] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the last decade, magnetic iron oxide nanoparticles (IONPs) have drawn much attention for their potential biomedical applications. However, serious in vitro and in vivo safety concerns continue to exist. In this study, the effects of uncoated, FemOn-SiO2 composite flake-like, and SiO2-FemOn core-shell IONPs on cell viability, function, and morphology were tested 48 h postincubation in human umbilical vein endothelial cell culture. Cell viability and apoptosis/necrosis rate were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin V-phycoerythrin kit, respectively. Cell morphology was evaluated using bright-field microscopy and forward and lateral light scattering profiles obtained with flow cytometry analysis. All tested IONP types were used at three different doses, that is, 0.7, 7.0, and 70.0 μg. Dose-dependent changes in cell morphology, viability, and apoptosis rate were shown. At higher doses, all types of IONPs caused formation of binucleated cells suggesting impaired cytokinesis. FemOn-SiO2 composite flake-like and SiO2-FemOn core-shell IONPs were characterized by similar profile of cytotoxicity, whereas bare IONPs were shown to be less toxic. The presence of either silica core or silica nanoflakes in composite IONPs can promote cytotoxic effects.
Collapse
Affiliation(s)
- Yana G Toropova
- Laboratory of Cardioprotection, Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, Saint Petersburg, Russian Federation
| | - Alexey S Golovkin
- Gene and Cell Engineering Group, Institute of Molecular Biology and Genetics, Federal Almazov North-West Medical Research Centre, Saint Petersburg, Russian Federation
| | - Anna B Malashicheva
- Laboratory of Molecular Cardiology, Institute of Molecular Biology and Genetics, Federal Almazov North-West Medical Research Centre, Saint Petersburg, Russian Federation
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Dmitry V Korolev
- Laboratory of Nanotechnology, Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, Saint Petersburg, Russian Federation
- Department of Photonics and Optical Information Technology ITMO University, Saint Petersburg, Russian Federation
| | - Andrey N Gorshkov
- Laboratory of Intracellular Signaling and Transport Research Institute of Influenza, Saint Petersburg, Russian Federation
| | - Kamil G Gareev
- Department of Micro and Nanoelectronics, Faculty of Electronics, Saint Petersburg Electrotechnical University LETI, Saint Petersburg, Russian Federation
| | - Michael V Afonin
- Department of Inorganic Chemistry Saint Petersburg State Technological Institute (Technical University), Saint Petersburg, Russian Federation
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, Saint Petersburg, Russian Federation
- Departament of Pathophysiology, First Pavlov State Medical University of Saint Petersburg, Saint Petersburg, Russian Federation
| |
Collapse
|
21
|
Zhu T, Ma X, Chen R, Ge Z, Xu J, Shen X, Jia L, Zhou T, Luo Y, Ma T. Using fluorescently-labeled magnetic nanocomposites as a dual contrast agent for optical and magnetic resonance imaging. Biomater Sci 2017; 5:1090-1100. [PMID: 28425537 DOI: 10.1039/c7bm00031f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intravenous administration of atta@Fe3O4@Ru nanocomposites to a rabbit model resulted in a marked and negatively enhanced T2-weighted MRI.
Collapse
Affiliation(s)
- Taofeng Zhu
- The Affiliated Yixing Hospital of Jiangsu University
- Yixing
- China
| | - Xiuqin Ma
- The Affiliated Yixing Hospital of Jiangsu University
- Yixing
- China
| | - Ruhua Chen
- The Affiliated Yixing Hospital of Jiangsu University
- Yixing
- China
| | - Zhijun Ge
- The Affiliated Yixing Hospital of Jiangsu University
- Yixing
- China
| | - Jun Xu
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Xiaoke Shen
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Lei Jia
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Tao Zhou
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Yifeng Luo
- The Affiliated Yixing Hospital of Jiangsu University
- Yixing
- China
| | - Tieliang Ma
- The Affiliated Yixing Hospital of Jiangsu University
- Yixing
- China
| |
Collapse
|
22
|
Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 2016; 12:73-87. [PMID: 27876448 DOI: 10.2217/nnm-2016-0316] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent advances in the development of magnetic nanoparticles (MNPs) have shown promise in the development of new personalized therapeutic approaches for clinical management of cancer patients. The unique physicochemical properties of MNPs endow them with novel multifunctional capabilities for imaging, drug delivery and therapy, which are referred to as theranostics. To facilitate the translation of those theranostic MNPs into clinical applications, extensive efforts have been made on designing and improving biocompatibility, stability, safety, drug-loading ability, targeted delivery, imaging signal and thermal- or photodynamic response. In this review, we provide an overview of the physicochemical properties, toxicity and theranostic applications of MNPs with a focus on magnetic iron oxide nanoparticles.
Collapse
Affiliation(s)
- Lei Zhu
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhiyang Zhou
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Hui Mao
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lily Yang
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Phan MH, Alonso J, Khurshid H, Lampen-Kelley P, Chandra S, Stojak Repa K, Nemati Z, Das R, Iglesias Ó, Srikanth H. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems. NANOMATERIALS 2016; 6:nano6110221. [PMID: 28335349 PMCID: PMC5245749 DOI: 10.3390/nano6110221] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022]
Abstract
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.
Collapse
Affiliation(s)
- Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Javier Alonso
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
- BCMaterials Building 500, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Hafsa Khurshid
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | | | - Sayan Chandra
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | | | - Zohreh Nemati
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Raja Das
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Óscar Iglesias
- Department of Fundamental Physics and Institute of Nanoscience and Nanotechnology (In2UB), University of Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain.
| | - Hariharan Srikanth
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
24
|
Chen W, Zhang S, Yu Y, Zhang H, He Q. Structural-Engineering Rationales of Gold Nanoparticles for Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8567-8585. [PMID: 27461909 DOI: 10.1002/adma.201602080] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Personalized theranostics of cancer is increasingly desired, and can be realized by virtue of multifunctional nanomaterials with possible high performances. Gold nanoparticles (GNPs) are a type of especially promising candidate for cancer theranostics, because their synthesis and modification are facile, their structures and physicochemical properties are flexibly controlled, and they are also biocompatible. Especially, the localized surface plasmon resonance and multivalent coordination effects on the surface endow them with NIR light-triggered photothermal imaging and therapy, controlled drug release, and targeted drug delivery. Although the structure, properties, and theranostic application of GNPs are considerably plentiful, no expert review systematically explains the relationships among their structure, property. and application and induces the engineering rationales of GNPs for cancer theranostics. Hence, there are no clear rules to guide the facile construction of optimal GNP structures aiming at a specific theranostic application. A series of structural-engineering rationales of GNPs for cancer theranostics is proposed through digging out the deep relationships between the structure and properties of GNPs. These rationales will be inspiring for guiding the engineering of specific and advanced GNPs for personalized cancer theranostics.
Collapse
Affiliation(s)
- Wenwen Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Shaohua Zhang
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, No. 8 Dongdajie, Beijing, 100071, P. R. China
| | - Yangyang Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Huisheng Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Qianjun He
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
25
|
Anani T, Panizzi P, David AE. Nanoparticle-based probes to enable noninvasive imaging of proteolytic activity for cancer diagnosis. Nanomedicine (Lond) 2016; 11:2007-22. [PMID: 27465386 PMCID: PMC5941711 DOI: 10.2217/nnm-2016-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Proteases play a key role in tumor biology, with high expression levels often correlating with poor prognosis for cancer patients - making them excellent disease markers for tumor diagnosis. Despite their significance, quantifying proteolytic activity in vivo remains a challenge. Nanoparticles, with their ability to serve as scaffolds having unique chemical, optical and magnetic properties, offer the promise of merging diagnostic medicine with material engineering. Such nanoparticles can interact preferentially with proteases enriched in tumors, providing the ability to assess disease state in a noninvasive and spatiotemporal manner. We review recent advances in the development of nanoparticles for imaging and quantification of proteolytic activity in tumor models, and prognosticate future advancements.
Collapse
Affiliation(s)
- Tareq Anani
- Department of Chemical Engineering, Samuel Ginn College of Engineering, 212 Ross Hall, Auburn University, Auburn, AL 36849, USA
| | - Peter Panizzi
- Department of Drug Discovery & Development, Harrison School of Pharmacy, 4306 Walker Building, Auburn University, Auburn, AL 36849, USA
| | - Allan E. David
- Department of Chemical Engineering, Samuel Ginn College of Engineering, 212 Ross Hall, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
26
|
Lee H, Kim YP. Fluorescent and Bioluminescent Nanoprobes for In Vitro and In Vivo Detection of Matrix Metalloproteinase Activity. BMB Rep 2016; 48:313-8. [PMID: 25817215 PMCID: PMC4578616 DOI: 10.5483/bmbrep.2015.48.6.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. [BMB Reports 2015; 48(6): 313-318]
Collapse
Affiliation(s)
- Hawon Lee
- Department of Life Scienc; Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 133-791, Korea
| | - Young-Pil Kim
- Department of Life Scienc; Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
27
|
Abstract
In the preparation of nanoparticles for drug delivery, it is well known that their size as well as their surface decorations can play a major role in interaction with living media. It is less known that their shape and internal structure can interplay with cellular and in vivo fate. The scientific literature is full of a large variety of surprising terms referring to their shape and structure. The aim of this review is to present some examples of the most often encountered surprising nanoparticles prepared and usable in the pharmaceutical technology domain. They are presented in two main groups related to their physical aspects: 1) smooth surface particles, such as Janus particles, "snowmen", "dumbbells", "rattles", and "onions" and 2) branched particles, such as "flowers", "stars" and "urchins". The mode of preparation and potential applications are briefly presented. The topic has a serious, wider importance, namely in opportunity these structures have to allow exploration of the role of shape and structure on the utility (and perhaps toxicity) of these nanostructures.
Collapse
|
28
|
Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 2015; 44:8576-607. [PMID: 26390044 PMCID: PMC4648695 DOI: 10.1039/c5cs00541h] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been extensively used during the last two decades, either as effective bio-imaging contrast agents or as carriers of biomolecules such as drugs, nucleic acids and peptides for controlled delivery to specific organs and tissues. Most of these novel applications require elaborate tuning of the physiochemical and surface properties of the IONPs. As new IONPs designs are envisioned, synergistic consideration of the body's innate biological barriers against the administered nanoparticles and the short and long-term side effects of the IONPs become even more essential. There are several important criteria (e.g. size and size-distribution, charge, coating molecules, and plasma protein adsorption) that can be effectively tuned to control the in vivo pharmacokinetics and biodistribution of the IONPs. This paper reviews these crucial parameters, in light of biological barriers in the body, and the latest IONPs design strategies used to overcome them. A careful review of the long-term biodistribution and side effects of the IONPs in relation to nanoparticle design is also given. While the discussions presented in this review are specific to IONPs, some of the information can be readily applied to other nanoparticle systems, such as gold, silver, silica, calcium phosphates and various polymers.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| | - Amit Khandhar
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington, 98195
| | - Kannan M. Krishnan
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
29
|
Giannousi K, Menelaou M, Arvanitidis J, Angelakeris M, Pantazaki A, Dendrinou-Samara C. Hetero-nanocomposites of magnetic and antifungal nanoparticles as a platform for magnetomechanical stress induction in Saccharomyces cerevisiae. J Mater Chem B 2015; 3:5341-5351. [PMID: 32262610 DOI: 10.1039/c5tb00734h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Copper(i) oxide (Cu2O) nanoparticles (NPs) of 30 nm with antifungal properties have been functionalized with 9 nm nickel ferrite (NiFe2O4) magnetic nanoparticles (MNPs) to construct hetero-nanocomposites (NCs) of a submicron hydrodynamic size for magnetomechanical stress induction in the yeast, Saccharomyces cerevisiae. A post-synthetic approach involving the assembly through hydrophobic interactions of the preformed NPs of non-uniform sizes, albeit coated with the same surfactant (oleylamine), is reported. Solvents of different polarity were implemented during the synthetic procedure resulting in NCs of similar composition consisting mainly of MNPs randomly decorated onto the bigger Cu2O NPs. The antifungal properties of the building NPs and the NCs were studied in terms of fungistatic and fungicidal activity, whereas the ionic leaching was found to be negligible, highlighting the nanosize effect. Although S. cerevisiae cells were found to be resistant to individual NiFe2O4 MNPs because of their small size, their sensitivity to NCs significantly increased upon short-time exposure to a rotating low-frequency magnetic field (10 min, 30 Hz, 35 G) and this arises from the collective properties. The magnetomechanical cell stress induction was accompanied by alteration of cellular membrane integrity and programmed cell death signaling.
Collapse
Affiliation(s)
- K Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
30
|
Xia T, Xu X, Wang J, Xu C, Meng F, Shi Z, Lian J, Bassat JM. Facile complex-coprecipitation synthesis of mesoporous Fe3O4 nanocages and their high lithium storage capacity as anode material for lithium-ion batteries. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
He Q, Huang S, Wang C, Qiao Q, Liang N, Xu M, Chen W, Zai J, Qian X. The role of Mott-Schottky heterojunctions in Ag-Ag8SnS6 as counter electrodes in dye-sensitized solar cells. CHEMSUSCHEM 2015; 8:817-20. [PMID: 25619568 DOI: 10.1002/cssc.201403343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Indexed: 05/19/2023]
Abstract
Well-defined uniform pyramidal Ag-Ag8SnS6 heterodimers are prepared via a one-pot method. A plausible formation mechanism for the unique structures based on a seed-growth process and an etching effect due to oleylamine is proposed. The formed metal-semiconductor Mott-Schottky heterojunction promotes electron transfer from semiconducting Ag8 SnS6 to metallic Ag, which catalyzes the reduction of I3 (-) to I(-). When used as counter electrode in dye-sensitized solar cells, the heterodimers show comparable performance to platinum.
Collapse
Affiliation(s)
- Qingquan He
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 (PR China)
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen D, Liu H, Cui P, Li C, Ye F, Yang J. Formation of composite dimers consisting of Ag2S and hollow structured Pd nanoparticles. CrystEngComm 2015. [DOI: 10.1039/c5ce00775e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Sharma SK, Vargas JM, Vargas NM, Castillo-Sepúlveda S, Altbir D, Pirota KR, Zboril R, Zoppellaro G, Knobel M. Unusual magnetic damping effect in a silver–cobalt ferrite hetero nano-system. RSC Adv 2015. [DOI: 10.1039/c4ra14960b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The analysis of static and dynamic magnetic response of CoFe2O4–Ag hetero nano-system revealed, with the aid of micromagnetic simulations, a severe alteration of the magnetic relaxation behaviour of CoFe2O4 upon interaction with non-magnetic Ag.
Collapse
Affiliation(s)
- Surender K. Sharma
- Instituto de Fisica Gleb Wataghin
- Universidade Estadual de Campinas (UNICAMP) Campinas
- SP
- Brazil
- Laboratoire Interfaces Traitements Organisation et Dynamique des Systemes (ITODYS)
| | | | - Nicolás Manuel Vargas
- Physics Department
- Universidad de Santiago de Chile and CEDENNA
- USACH
- Santiago 917-0124
- Chile
| | | | - Dora Altbir
- Physics Department
- Universidad de Santiago de Chile and CEDENNA
- USACH
- Santiago 917-0124
- Chile
| | - Kleber Roberto Pirota
- Instituto de Fisica Gleb Wataghin
- Universidade Estadual de Campinas (UNICAMP) Campinas
- SP
- Brazil
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
- Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
- Czech Republic
| | - Marcelo Knobel
- Instituto de Fisica Gleb Wataghin
- Universidade Estadual de Campinas (UNICAMP) Campinas
- SP
- Brazil
| |
Collapse
|
34
|
Schick I, Lorenz S, Gehrig D, Tenzer S, Storck W, Fischer K, Strand D, Laquai F, Tremel W. Inorganic Janus particles for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2346-62. [PMID: 25551063 PMCID: PMC4273258 DOI: 10.3762/bjnano.5.244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/13/2014] [Indexed: 05/26/2023]
Abstract
Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic-inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum.
Collapse
Affiliation(s)
- Isabel Schick
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Steffen Lorenz
- Medizinische Klinik und Polyklinik, Universitätsmedizin der Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Dominik Gehrig
- Max-Planck-Institut für Polymerforschung, Max-Planck-Forschungsgruppe für Organische Optoelektronik, Ackermannweg 10, 55128 Mainz, Germany
| | - Stefan Tenzer
- Medizinische Klinik und Polyklinik, Universitätsmedizin der Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Wiebke Storck
- Medizinische Klinik und Polyklinik, Universitätsmedizin der Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Karl Fischer
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| | - Dennis Strand
- Medizinische Klinik und Polyklinik, Universitätsmedizin der Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frédéric Laquai
- Max-Planck-Institut für Polymerforschung, Max-Planck-Forschungsgruppe für Organische Optoelektronik, Ackermannweg 10, 55128 Mainz, Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10–14, 55128 Mainz, Germany
| |
Collapse
|
35
|
Yan L, Zhang J, Lee CS, Chen X. Micro- and nanotechnologies for intracellular delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4487-504. [PMID: 25168360 DOI: 10.1002/smll.201401532] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/18/2014] [Indexed: 05/24/2023]
Abstract
The majority of drugs and biomolecules need to be delivered into cells to be effective. However, the cell membranes, a biological barrier, strictly resist drugs or biomolecules entering cells, resulting in significantly reduced intracellular delivery efficiency. To overcome this barrier, a variety of intracellular delivery approaches including chemical and physical ways have been developed in recent years. In this review, the focus is on summarizing the nanomaterial routes involved in making use of a collection of receptors for the targeted delivery of drugs and biomolecules and the physical ways of applying micro- and nanotechnologies for high-throughput intracellular delivery.
Collapse
Affiliation(s)
- Li Yan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|
36
|
Yue X, Wang Z, Zhu L, Wang Y, Qian C, Ma Y, Kiesewetter DO, Niu G, Chen X. Novel 19F activatable probe for the detection of matrix metalloprotease-2 activity by MRI/MRS. Mol Pharm 2014; 11:4208-17. [PMID: 25271556 PMCID: PMC4224523 DOI: 10.1021/mp500443x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Matrix metalloproteases (MMPs) have
been found to be highly expressed
in a variety of malignant tumor tissues. Noninvasive visualization
of MMP activity may play an important role in the diagnosis of MMP
associated diseases. Here we report the design and synthesis of a
set of fluorine-19 dendron-based magnetic resonance imaging (MRI)
probes for real-time imaging of MMP-2 activity. The probes have the
following features: (a) symmetrical fluorine atoms; (b) the number
of fluorine atoms can be increased through facile chemical modification;
(c) readily accessible peptide sequence as the MMP-2 substrate; (d)
activatable 19F signal (off/on mode) via paramagnetic metal
ion incorporation. Following optimization for water solubility, one
of the probes was selected to evaluate MMP-2 activity by 19F magnetic resonance spectroscopy (MRS). Our results showed that
the fluorine signal increased by 8.5-fold in the presence of MMP-2.
The specific cleavage site was verified by mass spectrometry. The
selected probe was further applied to detect secreted MMP-2 activity
of living SCC7 squamous cell carcinoma cells. The fluorine signal
was increased by 4.8-fold by MRS analysis after 24 h incubation with
SCC7 cells. This type of fluorine probe can be applied to evaluate
other enzyme activities by simply tuning the substrate structures.
This symmetrical fluorine dendron-based probe design extends the scope
of the existing 19F MRI agents and provides a simple but
robust method for real-time 19F MRI application.
Collapse
Affiliation(s)
- Xuyi Yue
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ye X, Reifsnyder Hickey D, Fei J, Diroll BT, Paik T, Chen J, Murray CB. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. J Am Chem Soc 2014; 136:5106-15. [PMID: 24628516 DOI: 10.1021/ja500871j] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have developed a generalized seeded-growth methodology for the synthesis of monodisperse metal-doped plasmonic oxide heterodimer nanocrystals (NCs) with a near-unity morphological yield. Using indium-doped cadmium oxide (ICO) as an example, we show that a wide variety of preformed metal NCs (Au, Pt, Pd, FePt, etc.) can serve as the seeds for the tailored synthesis of metal-ICO heterodimers with exquisite size, shape, and composition control, facilitated by the delayed nucleation mechanism of the CdO phase. The metal-ICO heterodimers exhibit broadly tunable near-infrared localized surface plasmon resonances, and dual plasmonic bands are observed for Au-ICO heterodimers. We further demonstrate that the oxide domain of the Au-ICO heterodimers can be selectively and controllably transformed into a series of partially and completely hollow cadmium chalcogenide nanoarchitectures with unprecedented structural complexity, leaving the metal domain intact. Our work not only represents an exciting addition to the rapidly expanding library of chemical reactions that produce colloidal hybrid NCs, but it also provides a general route for the bottom-up chemical design of multicomponent metal-oxide-semiconductor NCs in a rational and sequential manner.
Collapse
Affiliation(s)
- Xingchen Ye
- Department of Chemistry and ‡Department of Materials Science and Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Characterization of interfacially electronic structures of gold–magnetite heterostructures using X-ray absorption spectroscopy. J Colloid Interface Sci 2014; 417:325-32. [DOI: 10.1016/j.jcis.2013.11.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022]
|
39
|
Chandra S, Huls NAF, Phan MH, Srinath S, Garcia MA, Lee Y, Wang C, Sun S, Iglesias Ò, Srikanth H. Exchange bias effect in Au-Fe3O4 nanocomposites. NANOTECHNOLOGY 2014; 25:055702. [PMID: 24406347 DOI: 10.1088/0957-4484/25/5/055702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report exchange bias (EB) effect in the Au-Fe3O4 composite nanoparticle system, where one or more Fe3O4 nanoparticles are attached to an Au seed particle forming 'dimer' and 'cluster' morphologies, with the clusters showing much stronger EB in comparison with the dimers. The EB effect develops due to the presence of stress at the Au-Fe3O4 interface which leads to the generation of highly disordered, anisotropic surface spins in the Fe3O4 particle. The EB effect is lost with the removal of the interfacial stress. Our atomistic Monte Carlo studies are in excellent agreement with the experimental results. These results show a new path towards tuning EB in nanostructures, namely controllably creating interfacial stress, and opens up the possibility of tuning the anisotropic properties of biocompatible nanoparticles via a controllable exchange coupling mechanism.
Collapse
Affiliation(s)
- Sayan Chandra
- Physics Department, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jiang W, Lai K, Liu K, Xia R, Gao F, Wu Y, Gu Z. "Green" functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging. NANOSCALE 2014; 6:1305-1310. [PMID: 24336977 DOI: 10.1039/c3nr05003c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T₂ relaxivity, autofluorescence and large cellular uptake.
Collapse
Affiliation(s)
- Wen Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Chen Y, Dong L, Zhao M, Dong H. Ag2S-hollow Fe2O3 nanocomposites with NIR photoluminescence. Chem Commun (Camb) 2014; 50:11514-6. [DOI: 10.1039/c4cc04581e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A facile synthesis of Ag2S-hollow Fe2O3 nanocomposites with NIR photoluminescence was firstly demonstrated by the sulfidation of Ag–Fe2O3 core–shell nanoparticles.
Collapse
Affiliation(s)
- Yingjie Chen
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, China
| | - Lifeng Dong
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, China
- Department of Physics
- Astronomy
| | - Mei Zhao
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, China
| | - Hongzhou Dong
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, China
| |
Collapse
|
42
|
Chen H, Zhen Z, Tang W, Todd T, Chuang YJ, Wang L, Pan Z, Xie J. Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery. Am J Cancer Res 2013; 3:650-7. [PMID: 24052805 PMCID: PMC3776216 DOI: 10.7150/thno.6668] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/22/2013] [Indexed: 11/07/2022] Open
Abstract
We report herein a straightforward and label-free approach to prepare luminescent mesoporous silica nanoparticles. We found that calcination at 400 °C can grant mesoporous organosilica nanoparticles with strong fluorescence of great photo- and chemical stability. The luminescence is found to originate from the carbon dots generated from the calcination, rather than the defects in the silica matrix as was believed previously. The calcination does not impact the particles' abilities to load drugs and conjugate to biomolecules. In a proof-of-concept study, we demonstrated that doxorubicin (Dox) can be efficiently encapsulated into these fluorescent mesoporous silica nanoparticles. After coupled to c(RGDyK), the nanoconjugates can efficiently home to tumors through interactions with integrin αvβ3 overexpressed on the tumor vasculature. This calcination-induced luminescence is expected to find wide applications in silica-based drug delivery, nanoparticle coating, and immunofluorescence imaging.
Collapse
|
43
|
Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1533-45. [PMID: 23019129 DOI: 10.1002/smll.201201531] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Indexed: 05/22/2023]
Abstract
Owing to their unique physical and chemical properties, magnetic iron oxide nanoparticles have become a powerful platform in many diverse aspects of biomedicine, including magnetic resonance imaging, drug and gene delivery, biological sensing, and hyperthermia. However, the biomedical applications of magnetic iron oxide nanoparticles arouse serious concerns about their pharmacokinetics, metabolism, and toxicity. In this review, the updated research on the biomedical applications and potential toxicity of magnetic iron oxide nanoparticles is summarized. Much more effort is required to develop magnetic iron oxide nanoparticles with improved biocompatible surface engineering to achieve minimal toxicity, for various applications in biomedicine.
Collapse
Affiliation(s)
- Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China.
| | | | | | | |
Collapse
|
44
|
Chen H, Zhen Z, Todd T, Chu PK, Xie J. Nanoparticles for Improving Cancer Diagnosis. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2013; 74:35-69. [PMID: 24068857 PMCID: PMC3779646 DOI: 10.1016/j.mser.2013.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Despite the progress in developing new therapeutic modalities, cancer remains one of the leading diseases causing human mortality. This is mainly attributed to the inability to diagnose tumors in their early stage. By the time the tumor is confirmed, the cancer may have already metastasized, thereby making therapies challenging or even impossible. It is therefore crucial to develop new or to improve existing diagnostic tools to enable diagnosis of cancer in its early or even pre-syndrome stage. The emergence of nanotechnology has provided such a possibility. Unique physical and physiochemical properties allow nanoparticles to be utilized as tags with excellent sensitivity. When coupled with the appropriate targeting molecules, nanoparticle-based probes can interact with a biological system and sense biological changes on the molecular level with unprecedented accuracy. In the past several years, much progress has been made in applying nanotechnology to clinical imaging and diagnostics, and interdisciplinary efforts have made an impact on clinical cancer management. This article aims to review the progress in this exciting area with emphases on the preparation and engineering techniques that have been developed to assemble "smart" nanoprobes.
Collapse
Affiliation(s)
- Hongmin Chen
- Department of Chemistry and Bio-Imaging Research Center, University of Georgia, 1001 Cedar Street, Athens, GA 30602
| | - Zipeng Zhen
- Department of Chemistry and Bio-Imaging Research Center, University of Georgia, 1001 Cedar Street, Athens, GA 30602
| | - Trever Todd
- Department of Chemistry and Bio-Imaging Research Center, University of Georgia, 1001 Cedar Street, Athens, GA 30602
| | - Paul K. Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jin Xie
- Department of Chemistry and Bio-Imaging Research Center, University of Georgia, 1001 Cedar Street, Athens, GA 30602
| |
Collapse
|
45
|
Ocsoy I, Gulbakan B, Shukoor MI, Xiong X, Chen T, Powell DH, Tan W. Aptamer-conjugated multifunctional nanoflowers as a platform for targeting, capture, and detection in laser desorption ionization mass spectrometry. ACS NANO 2013; 7:417-27. [PMID: 23211039 PMCID: PMC3568519 DOI: 10.1021/nn304458m] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although many different nanomaterials have been tested as substrates for laser desorption and ionization mass spectrometry (LDI-MS), this emerging field still requires more efficient multifuncional nanomaterials for targeting, enrichment, and detection. Here, we report the use of gold manganese oxide (Au@MnO) hybrid nanoflowers as an efficient matrix for LDI-MS. The nanoflowers were also functionalized with two different aptamers to target cancer cells and capture adenosine triphosphate (ATP). These nanoflowers were successfully used for metabolite extraction from cancer cell lysates. Thus, in one system, our multifunctional nanoflowers can (1) act as an ionization substrate for mass spectrometry, (2) target cancer cells, and (3) detect and analyze metabolites from cancer cells.
Collapse
|
46
|
Wu Y, Zhang W, Li J, Zhang Y. Optical imaging of tumor microenvironment. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:1-15. [PMID: 23342297 PMCID: PMC3545362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/08/2012] [Indexed: 06/01/2023]
Abstract
Tumor microenvironment plays important roles in tumor development and metastasis. Features of the tumor microenvironment that are significantly different from normal tissues include acidity, hypoxia, overexpressed proteases and so on. Therefore, these features can serve as not only biomarkers for tumor diagnosis but also theraputic targets for tumor treatment. Imaging modalities such as optical, positron emission tomography (PET) and magnetic resonance imaging (MRI) have been intensively applied to investigate tumor microenvironment. Various imaging probes targeting pH, hypoxia and proteases in tumor microenvironment were thus well developed. In this review, we will focus on recent examples on fluorescent probes for optical imaging of tumor microenvironment. Construction of these fluorescent probes were based on characteristic feature of pH, hypoxia and proteases in tumor microenvironment. Strategies for development of these fluorescent probes and applications of these probes in optical imaging of tumor cells or tissues will be discussed in this review paper.
Collapse
Affiliation(s)
- Yihan Wu
- School of Chemistry and Chemical Engineering, Key Lab of Analytical Chemistry for Life Science, Ministry of Education of China, Nanjing University Nanjing, China
| | | | | | | |
Collapse
|
47
|
Yang D, Ma J, Gao M, Peng M, Luo Y, Hui W, Chen C, Wang Z, Cui Y. Suppression of composite nanoparticle aggregation through steric stabilization and ligand exchange for colorimetric protein detection. RSC Adv 2013. [DOI: 10.1039/c3ra40200b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Bao S, Liu T, Liang G, Gao H, Zhu F, Wu Q. The Synthesis of Organometallic Coordination Polymer Flowers of Prussian Blue with Ultrathin Petals by Using Crystallization-Assisted Interface Coordination Polymerization (CAICP). Chemistry 2012; 18:15272-6. [DOI: 10.1002/chem.201202395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/20/2012] [Indexed: 11/06/2022]
|
49
|
Schaak RE, Williams ME. Full disclosure: the practical side of nanoscale total synthesis. ACS NANO 2012; 6:8492-8497. [PMID: 23030512 DOI: 10.1021/nn304375v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Colloidal hybrid nanoparticles merge multiple distinct materials into single particles, producing nanostructures that often exhibit synergistic properties and multifunctionality. As the complexity of such nanostructures continues to expand and the design criteria become increasingly stringent, the synthetic pathways required to access such materials are growing in sophistication. Multistep pathways are typically needed to generate complex hybrid nanoparticles, and these synthetic protocols have important conceptual analogies to the total synthesis framework used by chemists to construct complex organic molecules. This issue of ACS Nano includes a new nanoscale total synthesis: a five-step route to Co(x)O(y)-Pt-(CdSe@CdS)-Pt-Co(x)O(y) nanorods, a material which consists of CdSe@CdS nanorods that have Pt and cobalt oxide (Co(x)O(y)) at the tips. In addition to the conceptual analogies between molecular and nanoparticle total syntheses, there are practical analogies, as well, which are important for ensuring the reproducible and high-yield production of multicomponent nanostructured products with the highest possible purities. This Perspective highlights some of the practical considerations that are important for all nanoparticle syntheses but that become magnified significantly when multiple sequential reactions are required to generate a target product. These considerations include detailed reporting of reaction setups, experimental and workup procedures, hazards, yields of all intermediates and final products, complete data analysis, and separation techniques for ensuring high purity.
Collapse
Affiliation(s)
- Raymond E Schaak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
50
|
Corem-Salkmon E, Perlstein B, Margel S. Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer. Int J Nanomedicine 2012; 7:5517-27. [PMID: 23112575 PMCID: PMC3480238 DOI: 10.2147/ijn.s33710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with the disease. Near- infrared (NIR) fluorescent nanoparticles hold great promise as contrast agents for tumor detection. NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum, ie, lower autofluorescence of biological tissues, lower absorbance, and consequently deeper penetration into biomatrices. Methods and results NIR fluorescent iron oxide nanoparticles with a narrow size distribution were prepared by nucleation, followed by controlled growth of thin iron oxide films onto cyanine NIR dye conjugated gelatin-iron oxide nuclei. For functionalization, and in order to increase the NIR fluorescence intensity, the NIR fluorescent iron oxide nanoparticles obtained were coated with human serum albumin containing cyanine NIR dye. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline solution containing 4% albumin was not detected. The work presented here is a feasibility study to test the suitability of iron oxide-human serum albumin NIR fluorescent nanoparticles for optical detection of colon cancer. It demonstrates that encapsulation of NIR fluorescent dye within these nanoparticles significantly reduces photobleaching of the dye. Tumor-targeting ligands, peanut agglutinin and anticarcinoembryonic antigen antibodies (αCEA), were covalently conjugated with the NIR fluorescent iron oxide-human serum albumin nanoparticles via a poly(ethylene glycol) spacer. Specific colon tumor detection was demonstrated in chicken embryo and mouse models for both nonconjugated and the peanut agglutinin-conjugated or αCEA-conjugated NIR fluorescent iron oxide-human serum albumin nanoparticles. Conclusion Conjugation of peanut agglutinin or αCEA to the nanoparticles significantly increased the fluorescence intensity of the tagged colon tumor tissues relative to the nonconjugated nanoparticles.
Collapse
Affiliation(s)
- Enav Corem-Salkmon
- The Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|