1
|
Lee I, Kwon WH, Kim JY, Kim HK, Kim JE, Lim YB, Jeong WJ, Choi JS. Antioxidant Peptide-Based Nanocarriers for Delivering Wound Healing Agents. Tissue Eng Regen Med 2025:10.1007/s13770-025-00701-4. [PMID: 39928235 DOI: 10.1007/s13770-025-00701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Curcumin, a well-known wound healing agent, faces clinical limitations due to its poor water solubility, rapid degradation, and short plasma half-life. To address these challenges, we developed a self-assembling peptide incorporating an antioxidant sequence (YGDEY), which is capable of not only delivering curcumin but also exhibiting additional bioactivity to enhance wound healing. METHODS An antioxidant nanocarrier was developed via peptide self-assembly. To design an amphiphilic peptide for the nanocarrier assembly, antioxidant peptide sequence (YGDEY) as the hydrophilic segment and the hydrophobic block (WLWL) were incorporated to single peptide molecule. The peptide's self-assembly behavior and curcumin encapsulation were initially analyzed. Subsequent evaluations included cytocompatibility, cellular uptake, and antioxidant activity. RESULTS Driven by strong interactions among their hydrophobic blocks (WLWL), the peptides formed well-defined nanostructures exhibiting high thermal stability. Furthermore, the encapsulation of curcumin within the micelle significantly improved its cellular penetration efficiency. When applied to fibroblast cells, the peptide-curcumin nanocomplexes exhibited synergistically enhanced antioxidant activity, which notably outperformed free curcumin and free peptide in scavenging reactive oxygen species. CONCLUSION These findings highlight the potential of the designed peptide-based nanocarrier to overcome intrinsic limitations of curcumin and enhance its therapeutic efficacy, providing a promising strategy for advanced wound healing applications.
Collapse
Affiliation(s)
- Inseo Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Woo Hyun Kwon
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joo-Young Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ha Kyeong Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ji-Eun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 22012, Republic of Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| |
Collapse
|
2
|
Shi S, Quan S, Zhang J, Ling B, Yao L, Xiao J. Highly bioactive triple-helical nano collagens for accelerated treatment of photodamaged skin. Biomater Sci 2024; 12:4946-4956. [PMID: 39150313 DOI: 10.1039/d4bm00860j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Skin damage caused by excessive UV exposure has gradually become one of the most common skin diseases, leading to desquamation, scab formation, inflammation and even skin cancer. Animal-derived hydrolyzed collagen peptides have been developed to treat UV-damaged skin; however, they have raised severe concerns such as potential viral transmission, random sequences and the lack of a triple helix structure. Nano collagen, a novel type of short collagen, has attracted increasing attention in the mimicking of natural collagen, while its applications in UV-damaged skin treatment remains unexplored. Herein, we have created a series of nano collagens and for the first time studied their capability of accelerating UV-damaged skin healing. Nano collagens, consisting of repetitive (GPO)n triplets and a GFOGER motif, display a stable triple-helical structure, significantly promoting fibroblast adhesion, proliferation, and migration. The repair effects of nano collagens have been investigated using an acute UV-damaged skin mouse model. Combo evaluations indicate that nano collagens contribute to recovering the dermis density and erythema index of UV-damaged skin. Histological analysis further demonstrates their capability of promoting the healing of damaged skin by accelerating re-epithelialization and collagen regeneration. These highly bioactive triple-helical nano collagens present a novel strategy for the treatment of UV-damaged skin, providing promising applications in cosmetics and dermatology.
Collapse
Affiliation(s)
- Shuangni Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Biyang Ling
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- School of Life Science, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Shi S, Zhang J, Quan S, Yang Y, Yao L, Xiao J. A highly biocompatible and bioactive transdermal nano collagen for enhanced healing of UV-damaged skin. Int J Biol Macromol 2024; 272:132857. [PMID: 38834124 DOI: 10.1016/j.ijbiomac.2024.132857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin damage caused by excessive UV radiation has gradually become one of the most prevalent skin diseases. Collagen has gradually found applications in the treatment of UV-damaged skin; however, their high molecular weight greatly limits their capacity to permeate the skin barrier and repair the damaged skin. Nano collagen has garnered growing attentions in the mimicking of collagen; while the investigation of its skin permeability and wound-healing capability remains vacancies. Herein, we have for the first time created a highly biocompatible and bioactive transdermal nano collagen demonstrating remarkable transdermal capacity and repair efficacy for UV-damaged skin. The transdermal nano collagen exhibited a stable triple-helix structure, effectively promoting the adhesion and proliferation of fibroblasts. Notably, the transdermal nano collagen displayed exceptional penetration capabilities, permeating fibroblast and healthy skin. Combo evaluations revealed that the transdermal nano collagen contributed to recovering the intensity and TEWL values of UV-damaged skin to normal level. Histological analysis further indicated that transdermal nano collagen significantly accelerated the repair of damaged skin by promoting the collagen regeneration and fibroblasts activation. This highly biocompatible and bioactive transdermal nano collagen provides a novel substituted strategy for the transdermal absorption of collagen, indicating great potential applications in cosmetics and dermatology.
Collapse
Affiliation(s)
- Shuangni Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Yi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Mukherjee S, Sundarapandian A, Ayyadurai N, Shanmugam G. Collagen Mimicry with a Short Collagen Model Peptide. Macromol Rapid Commun 2024; 45:e2300573. [PMID: 37924252 DOI: 10.1002/marc.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Mimicking triple helix and fibrillar network of collagen through collagen model peptide(CMP) with short GPO tripeptide repeats is a great challenge. Herein, a minimalistic CMP comprising only five GPO repeats [(GPO)5 ] is presented. This novel approach involves the fusion of ultrashort peptide with the synergetic power of π-system and β-sheet formation to short CMP (GPO)5 . Accordingly, a hydrogel-forming, fluorenylmethoxycarbonyl (Fmoc)-functionalized ultrashort peptide (NFGAIL) is fused at the N-terminus and phenylalanine at the C-terminus of (GPO)5 (Fmoc-NFGAIL-(GPO)5 -F-COOH, FmP-5GPO). At room temperature, it forms a robust triple helix in aqueous buffer solution and has a relatively high melting point of 35 °C. The fluorenyl motif stabilizes the triple helix by aromatic π-π interactions as in its absence, triple helix is not formed. NFGAIL, which forms a β-sheet, also aids in triple helix stabilization via intermolecular hydrogen bonding and hydrophobic interactions. FmP-5GPO forms highly entangled nanofibrils with a micrometer length, which have excellent cell viability. The achievement of stable triple helix and fibrils in such a short CMP(FmP-5GPO) sequence is a challenging feat, and its significance in CMP-based biomaterials is undeniable. The present strategy highlights the potential for developing new CMP sequences through intelligent tuning of fusion peptides and GPO repeats.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashokraj Sundarapandian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Niraikulam Ayyadurai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
6
|
Sun X, Quan S, Wang B, Wang Q, Li W, Xiao J. Peptide-triggered self-assembly of collagen mimetic peptides into nanospheres by electrostatic interaction and π-π stacking. J Mater Chem B 2023; 11:4677-4683. [PMID: 37161598 DOI: 10.1039/d3tb00088e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Collagen is the most abundant protein in various connective tissues, providing mechanical integrity as well as regulating cellular activities. Self-assembled peptides have been extensively explored to develop collagen mimetic materials, due to their attractive features such as easy synthesis, selective sequences and low immunogenicity. Metal ion-triggered self-assembly of collagen mimetic peptides has recently received increasing interests, since the addition of external stimuli offers programmable control of the self-assembly process. We have for the first time reported a peptide-stimulated self-assembly of collagen mimetic peptides into nanospheres by electrostatic interaction and π-π stacking. We have accidentally discovered that FAM-modified positively-charged triple helical peptide FAM-PRG was highly soluble, while the addition of a single-stranded negatively-charged peptide EOG-10 efficiently drove its self-assembly into well-ordered spherical nanomaterials. Peptide EOG-10 has been shown to mediate similar self-assembly of TPE-modified triple-helical peptide TPE-PRG into luminescent exquisite nanospheres, consistently demonstrating the robustness of this peptide-triggered strategy. Fluorescence monitoring of the interaction of EOG-10 and TPE-PRG at different ratios indicated that EOG-10 specifically binds to TPE-PRG to form a 3 : 1 complex. High salt concentration was shown to inhibit the self-assembly of TPE-PRG with EOG-10, suggesting that their self-assembly was controlled by electrostatic interaction. The self-assembly of TPE-PRG with EOG-10 has been further revealed to require the exact lengths of both peptides as well as complementary sequences without mutations, indicating a pairwise "side-by-side" binding mode. Notably, the identity of the N-terminal residues of X-PRG has been found to play a determinant role in the self-assembly, while non-aromatic residues lost the self-assembling capability, suggesting that π-π stacking and electrostatic interactions collectively modulate the self-assembly of X-PRG and EOG-10. To conclude, we have developed a highly biocompatible and programmably controlled peptide-triggered self-assembly approach to create novel collagen mimetic nanomaterials, which may have great potential in advanced functional materials.
Collapse
Affiliation(s)
- Xiuxia Sun
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Bo Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Qi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| |
Collapse
|
7
|
Liu C, Tong YW. Interfacial Polyelectrolyte Complexation-Inspired Bioprinting of Vascular Constructs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20712-20725. [PMID: 37071430 DOI: 10.1021/acsami.3c01199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bioprinting is a precise layer-by-layer manufacturing technology utilizing biomaterials, cells, and sometimes growth factors for the fabrication of customized three-dimensional (3D) biological constructs. In recent years, it has gained considerable interest in various biomedical studies. However, the translational application of bioprinting is currently impeded by the lack in efficient techniques for blood vessel fabrications. In this report, by systematically studying the previously reported phenomenon, interfacial polyelectrolyte complexation, an efficient blood vessel bioprinting technique based on the phenomenon, was proposed and subsequently investigated. In this technique, anionic hyaluronate and cationic lysine-based peptide amphiphiles were placed concentrically to bioprint with human umbilical endothelial cells for the fabrication of biological tubular constructs. These constructs demonstrated clear vascular features, which made them highly resemble blood vessels. In addition, to optimize the bioactivity of the printed constructs, this report also, for the first time, studied peptide sequencing's effect on the biocompatibility of the polyelectrolyte-peptide amphiphile complex. All these studies conducted in the report are highly relevant and interesting for research in vascular structure fabrication, which will eventually be beneficial for translational application development of bioprinting.
Collapse
Affiliation(s)
- Chixuan Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
8
|
Biopolymer-Based Wound Dressings with Biochemical Cues for Cell-Instructive Wound Repair. Polymers (Basel) 2022; 14:polym14245371. [PMID: 36559739 PMCID: PMC9783382 DOI: 10.3390/polym14245371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is an active research sphere that focuses on the repair, regeneration, and replacement of damaged tissues and organs. A plethora of innovative wound dressings and skin substitutes have been developed to treat cutaneous wounds and are aimed at reducing the length or need for a hospital stay. The inception of biomaterials with the ability to interact with cells and direct them toward desired lineages has brought about innovative designs in wound healing and tissue engineering. This cellular engagement is achieved by cell cues that can be biochemical or biophysical in nature. In effect, these cues seep into innate repair pathways, cause downstream cell behaviours and, ultimately, lead to advantageous healing. This review will focus on biomolecules with encoded biomimetic, instructive prompts that elicit desired cellular domino effects to achieve advanced wound repair. The wound healing dressings covered in this review are based on functionalized biopolymeric materials. While both biophysical and biochemical cues are vital for advanced wound healing applications, focus will be placed on biochemical cues and in vivo or clinical trial applications. The biochemical cues aforementioned will include peptide therapy, collagen matrices, cell-based therapy, decellularized matrices, platelet-rich plasma, and biometals.
Collapse
|
9
|
Evolution of conformation and thermal properties of bovine hides collagen in the sodium sulphide solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Rani A, Sindhu A, Yao TJ, Horng JC, Venkatesu P. Profiling the impact of choline chloride on the self-assembly of collagen mimetic peptide (Pro-Hyp-Gly)10. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
12
|
Malcor JD, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater 2022; 148:1-21. [PMID: 35675889 DOI: 10.1016/j.actbio.2022.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
In the growing field of tissue engineering, providing cells in biomaterials with the adequate biological cues represents an increasingly important challenge. Yet, biomaterials with excellent mechanical properties often are often biologically inert to many cell types. To address this issue, researchers resort to functionalization, i.e. the surface modification of a biomaterial with active molecules or substances. Functionalization notably aims to replicate the native cellular microenvironment provided by the extracellular matrix, and in particular by collagen, its major component. As our understanding of biological processes regulating cell behaviour increases, functionalization with biomolecules binding cell surface receptors constitutes a promising strategy. Amongst these, triple-helical peptides (THPs) that reproduce the architectural and biological properties of collagen are especially attractive. Indeed, THPs containing binding sites from the native collagen sequence have successfully been used to guide cell response by establishing cell-biomaterial interactions. Notably, the GFOGER motif recognising the collagen-binding integrins is extensively employed as a cell adhesive peptide. In biomaterials, THPs efficiently improved cell adhesion, differentiation and function on biomaterials designed for tissue repair (especially for bone, cartilage, tendon and heart), vascular graft fabrication, wound dressing, drug delivery or immunomodulation. This review describes the key characteristics of THPs, their effect on cells when combined to biomaterials and their strong potential as biomimetic tools for regenerative medicine. STATEMENT OF SIGNIFICANCE: This review article describes how triple-helical peptides constitute efficient tools to improve cell-biomaterial interactions in tissue engineering. Triple helical peptides are bioactive molecules that mimic the architectural and biological properties of collagen. They have been successfully used to specifically recognize cell-surface receptors and provide cells seeded on biomaterials with controlled biological cues. Functionalization with triple-helical peptides has enabled researchers to improve cell function for regenerative medicine applications, such as tissue repair. However, despite encouraging results, this approach remains limited and under-exploited, and most functionalization strategies reported in the literature rely on biomolecules that are unable to address collagen-binding receptors. This review will assist researchers in selecting the correct tools to functionalize biomaterials in efforts to guide cellular response.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France.
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France
| |
Collapse
|
13
|
Li Z, Zhu Y, Matson JB. pH-Responsive Self-Assembling Peptide-Based Biomaterials: Designs and Applications. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00188. [PMID: 35505454 PMCID: PMC9630172 DOI: 10.1021/acsabm.2c00188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stimuli-responsive peptide-based biomaterials are increasingly gaining interest for various specific and targeted treatments, including drug delivery and tissue engineering. Among all stimuli, pH can be especially useful because endogenous pH changes are often associated with abnormal microenvironments. pH-Responsive amino acids and organic linkers can be easily incorporated into peptides that self-assemble into various nanostructures. Thus, these largely biocompatible and easily tunable platforms are ideal candidates for drug release and as fibrous materials capable of mimicking the native extracellular matrix. In this review, we highlight common design motifs and mechanisms of pH-responsiveness in self-assembling peptide-based biomaterials, focusing on recent advances of these biomaterials applied in drug delivery and tissue engineering. Finally, we suggest future challenges and areas for potential development in pH-responsive self-assembling peptide-based biomaterials.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Peterson CM, Helterbrand MR, Hartgerink JD. Covalent Capture of a Collagen Mimetic Peptide with an Integrin-Binding Motif. Biomacromolecules 2022; 23:2396-2403. [PMID: 35446536 DOI: 10.1021/acs.biomac.2c00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Collagen mimetic peptides (CMPs) are an excellent model to study the structural and biological properties of the extracellular matrix (ECM) due to ease of synthesis and variability in sequence. To ensure that synthetic materials accurately mimic the structure and function of natural collagen in the ECM, it is necessary to conserve the triple helix. However, CMP folding is subject to equilibrium, and frequently peptides exist in solution as both monomer and triple helix. Additionally, the stability of CMPs is highly dependent on peptide length and amino acid composition, leading to suboptimal performance. Here, we report the utility of covalent capture, a method to (a) direct the folding of a supramolecular triple helix and (b) form isopeptide bonds between the helix strands, in the design of an integrin-binding peptide with a GFOGER motif. Covalent capture effectively locked the triple helix and yielded a peptide with high thermal stability and a rapid folding rate. Compared to supramolecular triple helices bearing the same GFOGER-binding site, cell adhesion was substantially increased. In vitro assays using EDTA/Mg2+ and an anti-α2β1 antibody demonstrated the preservation of the high specificity of the binding event. This covalently captured integrin-binding peptide provides a template for the future design of bioactive ECM mimics, which can overcome limitations of supramolecular approaches for potential drug and biomaterial designs.
Collapse
Affiliation(s)
- Caroline M Peterson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Maia R Helterbrand
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
16
|
Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021; 177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Photomedicine has long been used for treating cancerous diseases. With advances in chemical and material sciences, various types of light-activated photosensitizers (PSs) have been developed for effective photodynamic therapy (PDT) and photothermal therapy (PTT). However, conventional organic/inorganic materials-based PSs lack disease recognition capability and show limited therapeutic effects in addition to side effects. Recently, intelligent dynamic nanoassemblies that are activated in a tumor environment have been extensively researched to target diseased tissues more effectively, for increasing therapeutic effectiveness while minimizing side effects. This paper presents the latest dynamic nanoassemblies for effective PDT or PTT and combination phototherapies, including immunotherapy and image-guided therapy. Dynamic self-assembly exhibits great potential for clinical translation in diagnosis and treatment through its integrated versatility. Nanoassemblies based on multidisciplinary technology are a promising technique for treating incurable cancerous diseases in the future.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL 60208, USA; Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea.
| |
Collapse
|
17
|
Safonova LA, Bobrova MM, Efimov AE, Agapova OI, Agapov II, Gautier SV. Surface Modification of Alginate Microcarriers for Improvement of Their Biological Properties. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 499:97-98. [PMID: 34462834 DOI: 10.1134/s0012496621040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
The obtaining of microcarriers for the cell culture and delivery is an urgent task of tissue engineering and regenerative medicine. The novel method of surface modification of alginate microcarriers in the form of microspheres with a diameter of 200-300 μm was developed. The described method consists in covalent crosslinking between collagen and surface of alginate microcarriers. It was shown that the method makes it possible to completely modify the surface of the alginate microcarrier, which can be used to improve the biological properties of the microcarrier. Such microcarriers with improved biological properties can be considered as effective systems for cell delivery and culture.
Collapse
Affiliation(s)
- L A Safonova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - M M Bobrova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - A E Efimov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - O I Agapova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - I I Agapov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.
| | - S V Gautier
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.,Sechenov University, Moscow, Russia
| |
Collapse
|
18
|
A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering. Gels 2021; 7:gels7020073. [PMID: 34203914 PMCID: PMC8293055 DOI: 10.3390/gels7020073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
Promising strategies for cartilage regeneration rely on the encapsulation of mesenchymal stromal cells (MSCs) in a hydrogel followed by an injection into the injured joint. Preclinical and clinical data using MSCs embedded in a collagen gel have demonstrated improvements in patients with focal lesions and osteoarthritis. However, an improvement is often observed in the short or medium term due to the loss of the chondrocyte capacity to produce the correct extracellular matrix and to respond to mechanical stimulation. Developing novel biomimetic materials with better chondroconductive and mechanical properties is still a challenge for cartilage engineering. Herein, we have designed a biomimetic chemical hydrogel based on silylated collagen-mimetic synthetic peptides having the ability to encapsulate MSCs using a biorthogonal sol-gel cross-linking reaction. By tuning the hydrogel composition using both mono- and bi-functional peptides, we succeeded in improving its mechanical properties, yielding a more elastic scaffold and achieving the survival of embedded MSCs for 21 days as well as the up-regulation of chondrocyte markers. This biomimetic long-standing hybrid hydrogel is of interest as a synthetic and modular scaffold for cartilage tissue engineering.
Collapse
|
19
|
Jorgensen MD, Chmielewski J. Reversible crosslinked assembly of a trimeric coiled-coil peptide into a three-dimensional matrix for cell encapsulation and release. J Pept Sci 2021; 28:e3302. [PMID: 33506586 DOI: 10.1002/psc.3302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Mimicking the extracellular matrix (ECM) continues to be a goal in the field of regenerative medicine. Herein, we report a modified trimeric GCN4 coiled-coil sequence containing three ligands for metal ions specifically positioned for crosslinked assembly (TriCross). In the presence of metal ions, TriCross assembles into a three-dimensional (3D) matrix with significant cavities to accommodate cells. The matrix was found to be stable in media with serum, and mild removal of the metal leads to disassembly. By assembling TriCross with a suspension of cells in media, the matrix encapsulates cells during the assembly process leading to high cell viability. Further disassembly under mild conditions allows for the release of cells from the scaffold. As such, this peptide-based material displays many of the characteristics necessary for successful 3D cell culture.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
20
|
Sun X, Li W, Yu J, Luo L, Wang J, Xiao J. Ln 3+-Triggered self-assembly of a heterotrimer collagen mimetic peptide into luminescent nanofibers. Chem Commun (Camb) 2020; 56:15141-15144. [PMID: 33174875 DOI: 10.1039/d0cc06185a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type I collagen, the most abundant and arguably the most complex molecule in the human body, is an ABB heterotrimer that self-assembles to form well-defined nanofibers. We herein for the first time report the construction of peptides that could simultaneously mimic the heterotrimer composition and the self-assembly features of Type I collagen.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Ghosh S, Tripathi A, Gayen P, Sinha Roy R. Peptide-based topical agents and intravenous hemostat for rapid hemostasis. RSC Med Chem 2020; 11:1100-1111. [PMID: 33479616 PMCID: PMC7651999 DOI: 10.1039/d0md00204f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/14/2020] [Indexed: 01/25/2023] Open
Abstract
Traumatic coagulopathy due to severe external injury and internal hemorrhage is life-threatening to accident victims and soldiers on the battlefield, causing considerable number of deaths worldwide. Patients with inherited bleeding disorders (such as haemophilia, von Willebrand disease, inherited qualitative platelet defects, and afibrinogenemia) also contribute to the vast number of deaths due to abnormal bleeding, and these patients are difficult to handle during surgery. Platelets and different plasma proteins play an essential role in blood coagulation and in the maintenance of the body's hemostatic balance. The improper function or deficiency of these factors cause abnormal bleeding. To address such bleeding disorders, external clotting agents (such as extracellular protein-inspired natural and synthetic peptide-based sealants and peptide-functionalized polymer/liposome-based sealants) have been developed by different groups of researchers. The primary focus of this review is to provide molecular insights into the existing biologically inspired peptide-based sealants, highlighting the advantages and limitations of such reported designed sealants to handle blood clotting, and also provide insights into the design of improved next-generation surgical sealants.
Collapse
Affiliation(s)
- Snehasish Ghosh
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur - 741246 , India
| | - Archana Tripathi
- Department of Biological Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur - 741246 , India .
| | - Paramita Gayen
- Department of Biological Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur - 741246 , India .
| | - Rituparna Sinha Roy
- Department of Biological Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur - 741246 , India .
- Centre for Advanced Functional Materials , Indian Institute of Science Education and Research Kolkata , Mohanpur - 741246 , India
- Centre for Climate and Environmental Studies , Indian Institute of Science Education and Research Kolkata , Mohanpur - 741246 , India
| |
Collapse
|
22
|
Qin J, Sloppy JD, Kiick KL. Fine structural tuning of the assembly of ECM peptide conjugates via slight sequence modifications. SCIENCE ADVANCES 2020; 6:eabd3033. [PMID: 33028534 PMCID: PMC7541060 DOI: 10.1126/sciadv.abd3033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/26/2020] [Indexed: 05/07/2023]
Abstract
The self-assembly of nanostructures from conjugates of elastin-like peptides and collagen-like peptides (ELP-CLP) has been studied as means to produce thermoresponsive, collagen-binding drug delivery vehicles. Motivated by our previous work in which ELP-CLP conjugates successfully self-assembled into vesicles and platelet-like nanostructures, here, we extend our library of ELP-CLP bioconjugates to a series of tryptophan/phenylalanine-containing ELPs and GPO-based CLPs [W2F x -b-(GPO) y ] with various domain lengths to determine the impact of these modifications on the thermoresponsiveness and morphology. The lower transition temperature of the conjugates with longer ELP or CLP domains enables the formation of well-defined nanoparticles near physiological temperature. Moreover, the morphological transition from vesicles to platelet-like nanostructures occurred when the ratio of the lengths of ELP/CLP decreased. Given the previously demonstrated ability of many ELP-CLP bioconjugates to bind to both hydrophobic drugs and collagen-containing materials, our results suggest new opportunities for designing specific thermoresponsive nanostructures for targeted biological applications.
Collapse
Affiliation(s)
- Jingya Qin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jennifer D Sloppy
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Delaware Biotechnology Institute, Newark, DE 19711, USA
| |
Collapse
|
23
|
Ma SKY, Chan ASF, Rubab A, Chan WCW, Chan D. Extracellular Matrix and Cellular Plasticity in Musculoskeletal Development. Front Cell Dev Biol 2020; 8:781. [PMID: 32984311 PMCID: PMC7477050 DOI: 10.3389/fcell.2020.00781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular plasticity refers to the ability of cell fates to be reprogrammed given the proper signals, allowing for dedifferentiation or transdifferentiation into different cell fates. In vitro, this can be induced through direct activation of gene expression, however this process does not naturally occur in vivo. Instead, the microenvironment consisting of the extracellular matrix (ECM) and signaling factors, directs the signals presented to cells. Often the ECM is involved in regulating both biochemical and mechanical signals. In stem cell populations, this niche is necessary for maintenance and proper function of the stem cell pool. However, recent studies have demonstrated that differentiated or lineage restricted cells can exit their current state and transform into another state under different situations during development and regeneration. This may be achieved through (1) cells responding to a changing niche; (2) cells migrating and encountering a new niche; and (3) formation of a transitional niche followed by restoration of the homeostatic niche to sequentially guide cells along the regenerative process. This review focuses on examples in musculoskeletal biology, with the concept of ECM regulating cells and stem cells in development and regeneration, extending beyond the conventional concept of small population of progenitor cells, but under the right circumstances even “lineage-restricted” or differentiated cells can be reprogrammed to enter into a different fate.
Collapse
Affiliation(s)
- Sophia Ka Yan Ma
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,Department of Orthopedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
24
|
Li Z, Mei S, Dong Y, She F, Li Y, Li P, Kong L. Functional Nanofibrous Biomaterials of Tailored Structures for Drug Delivery-A Critical Review. Pharmaceutics 2020; 12:pharmaceutics12060522. [PMID: 32521627 PMCID: PMC7355603 DOI: 10.3390/pharmaceutics12060522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Nanofibrous biomaterials have huge potential for drug delivery, due to their structural features and functions that are similar to the native extracellular matrix (ECM). A wide range of natural and polymeric materials can be employed to produce nanofibrous biomaterials. This review introduces the major natural and synthetic biomaterials for production of nanofibers that are biocompatible and biodegradable. Different technologies and their corresponding advantages and disadvantages for manufacturing nanofibrous biomaterials for drug delivery were also reported. The morphologies and structures of nanofibers can be tailor-designed and processed by carefully selecting suitable biomaterials and fabrication methods, while the functionality of nanofibrous biomaterials can be improved by modifying the surface. The loading and releasing of drug molecules, which play a significant role in the effectiveness of drug delivery, are also surveyed. This review provides insight into the fabrication of functional polymeric nanofibers for drug delivery.
Collapse
Affiliation(s)
- Zhen Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
| | - Shunqi Mei
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
- Correspondence: (S.M.); (L.K.)
| | - Yajie Dong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
| | - Fenghua She
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
| | - Yongzhen Li
- Key laboratory of Tropical Crop Products Processing, Ministry of Agriculture and Rural Affairs, Agriculture Products Processing Research Institute, CATAS, Zhanjiang 524001, China; (Y.L.); (P.L.)
| | - Puwang Li
- Key laboratory of Tropical Crop Products Processing, Ministry of Agriculture and Rural Affairs, Agriculture Products Processing Research Institute, CATAS, Zhanjiang 524001, China; (Y.L.); (P.L.)
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- Correspondence: (S.M.); (L.K.)
| |
Collapse
|
25
|
Mai B, Jia M, Liu S, Sheng Z, Li M, Gao Y, Wang X, Liu Q, Wang P. Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10156-10169. [PMID: 32027477 DOI: 10.1021/acsami.0c00298] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Burn infection is one of the commonest causes of death in severely burned patients. Developing multifunctional biological nanomaterials has a great significance for the comprehensive treatment of burn infection. In this paper, we developed a hydrogel-based nanodelivery system with antibacterial activity and skin regeneration function, which was used for photodynamic antimicrobial chemotherapy (PACT) in the treatment of burns. The treatment system is mainly composed of porphyrin photosensitizer sinoporphyrin sodium (DVDMS) and poly(lactic-co-glycolic acid) (PLGA)-encapsulated basic fibroblast growth factor (bFGF) nanospheres that are embedded in carboxymethyl chitosan (CMCS)-sodium alginate to form CSDP hybrid hydrogel. We systematically evaluated the inherent antibacterial performance, rheological properties, fluorescence imaging, and biocompatibility of the CSDP nanosystem. Under mild photoirradiation (30 J/cm2, 5 min), 10 μg/mL CSDP showed excellent antibacterial and anti-biofilm activities, which eradicated almost 99.99% of Staphylococcus aureus and multidrug-resistant (MDR) S. aureus in vitro. KEGG analysis identified that multiple signaling pathways were changed in MDR S. aureus after PACT. In the burn-infection model, CSDP-PACT successfully inhibited bacteria growth and concurrently promoted wound healing. Moreover, several regenerative factors were increased and some proinflammatory factors were reduced in the burn wounds of CSDP hydrogel treatment. These results suggest that the multifunctional CSDP hydrogel is a portable, light-triggered, antibacterial theranostic-platform and CSDP-PACT provides a promising strategy or the mechanically based synergistic treatment of burn infections.
Collapse
Affiliation(s)
- Bingjie Mai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mengqi Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Shupei Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Min Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yiru Gao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| |
Collapse
|
26
|
Pal VK, Jain R, Roy S. Tuning the Supramolecular Structure and Function of Collagen Mimetic Ionic Complementary Peptides via Electrostatic Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1003-1013. [PMID: 31865708 DOI: 10.1021/acs.langmuir.9b02941] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collagen, the most abundant component of natural ECM, has attracted interest of scientific communities to replicate its multihierarchical self-assembling structure. Recent developments in collagen mimetic peptides were inclined toward the production of self-assembling short peptides capable of mimicking complex higher order structures with tunable mechanical properties. Here, we report for the first time, the crucial molecular design of oppositely charged collagen mimetic shortest bioactive pentapeptide sequences, as a minimalistic building block for development of next-generation biomaterials. Our rational design involves synthesis of two pentapeptides, where the fundamental molecular motif of collagen, that is, Gly-X-Y has been mutated at the central position with positively charged, lysine, and negatively charged, aspartate, residues. Depending on their overall surface charge, these peptides showed high propensity to form self-supporting hydrogel either at acidic or basic pH, which limits their biomedical applications. Interestingly, simple mixing of the two peptides was found to induce the coassembly of these designed peptides, which drives the formation of self-supporting hydrogel at physiological pH and thus enhanced the potential of exploring these peptides for biomedical purposes. This coassembly of ionic peptides was accompanied by the enhancement in the mechanical stiffness of the gels and reduction in overall zeta potential of the combined hydrogel, which provides the evidence for additional electrostatic interactions. Furthermore, the thixotropic nature of these gels offers an additional advantage of exploration of designer biomaterials as injectable gels. The nanofibers of coassembled hydrogel were found to be highly biocompatible to the fibroblast cells compared to the individual peptides, which was evident from their cytotoxicity studies. We anticipate that our rational design of ECM protein mimics in the form of short bioactive peptides will contribute significantly to the development of novel biomaterials and play a crucial role in the field of tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Vijay Kumar Pal
- Institute of Nano Science and Technology , Habitat Centre, Sector 64, Phase 10 , Mohali , Punjab 160062 , India
| | - Rashmi Jain
- Institute of Nano Science and Technology , Habitat Centre, Sector 64, Phase 10 , Mohali , Punjab 160062 , India
| | - Sangita Roy
- Institute of Nano Science and Technology , Habitat Centre, Sector 64, Phase 10 , Mohali , Punjab 160062 , India
| |
Collapse
|
27
|
Song S, Wang J, Song N, Di H, Liu D, Yu Z. Peptide interdigitation-induced twisted nanoribbons as chiral scaffolds for supramolecular nanozymes. NANOSCALE 2020; 12:2422-2433. [PMID: 31916547 DOI: 10.1039/c9nr09492j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Establishing reliable strategies for rationally manipulating the organization of peptide building blocks and thereby precisely creating chiral nanostructures is challenging, while meaningful toward development of advanced functional materials. Here we report on a peptide-interdigitating mechanism for the reliable self-assembly of lipid-inspired amphiphiles (LIPIAs) into robust twisted nanoribbons by grafting domains to one alkyl tail of lipids as an extended element. Peptide interdigitation promoted the self-assembly of LIPIAs into twisted or flat nanoribbons driven by antiparallel or parallel β-sheet hydrogen bonds, respectively, strongly associated with the connecting direction of the incorporated domains. We found that the LIPIAs containing N-terminus-connected domains with either bulky or small side chain groups formed twisted nanoribbons in a broad pH range, thus implying a sequence- and pH-independent strategy for creation of robust chiral nanostructures. Integrating the resulting twisted nanoribbons with gold nanoparticles led to supramolecular nanozymes exhibiting the excellent catalytic activity and enantioselectivity of asymmetric oxidation of 3,4-dihyroxy-phenylalanine molecules. Our finding demonstrates that the peptide-interdigitating mechanism is a reliable strategy for precise creation of chiral nanostructures serving as chiral matrices for supramolecular nanozymes with improved catalytic performance, thus potentially paving the way towards advanced biomimetic systems resembling natural systems.
Collapse
Affiliation(s)
- Shuxin Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Huixia Di
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
28
|
Higashi N, Yoshikawa R, Koga T. Photo-responsive azobenzene interactions promote hierarchical self-assembly of collagen triple-helical peptides to various higher-order structures. RSC Adv 2020; 10:15947-15954. [PMID: 35493640 PMCID: PMC9052399 DOI: 10.1039/d0ra02906h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/02/2020] [Indexed: 01/20/2023] Open
Abstract
Collagen is an essential structural protein in animal tissues and plays key roles in cellular modulation. We investigated methods to discover collagen model peptides (CMPs) that would self-assemble into triple helices and then grow into supramolecular organizations with diverse morphological features, which would be valuable as biomaterials. This challenging undertaking was achieved by placing azobenzene groups on the ends of the CMPs, (GPO)n (n = 3–10), Azo-(GPO)n. In a dilute aqueous solution (80 μM), CD spectra indicated that the Azo-(GPO)n (n > 4) formed triple helices due to strong hydrophobic azobenzene interactions, and that helix stability was increased with the peptide segment length. The resulting triple helices induced a specific azobenzene orientation through turned and twisted configurations as shown by CD spectra. TEM observations for the same solutions disclosed the morphologies for the Azo-CMPs. Azo-(GPO)3, having the shortest peptide segment, showed no nanostructure, both Azo-(GPO)4 and Azo-(GPO)5 provided consistent well-developed nanofiber structures resembling the natural collagen fibers, and Azo-(GPO)ns (n = 6–10) grew into flexible rod-like micelle fibers. In addition, alkyl chain-attached CmAzo-(GPO)5 displayed a toroidal morphology, and Azp-deg-(GPO)5 having a hydrophilic spacer assembled into a bilayer vesicle structure. These diverse morphological features are considered to be due to the characteristics of the pre-organized triple helix units. Photo-isomerization of the azobenzene moiety brought about the disappearance of such characteristic nano-architectures. When the solution concentration was increased up to 1 wt%, only Azo-(GPO)4 and Azo-(GPO)5 spontaneously formed hydrogels exhibiting a satisfactory gel-to-sol transition upon UV irradiation. Collagen is an essential structural protein in animal tissues and plays key roles in cellular modulation.![]()
Collapse
Affiliation(s)
- Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Ryo Yoshikawa
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| |
Collapse
|
29
|
Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020; 11:184-219. [DOI: 10.1039/c9py01021a] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
30
|
Dunshee LC, Sullivan MO, Kiick KL. Manipulation of the dually thermoresponsive behavior of peptide-based vesicles through modification of collagen-like peptide domains. Bioeng Transl Med 2020; 5:e10145. [PMID: 31989034 PMCID: PMC6971430 DOI: 10.1002/btm2.10145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Materials that respond to temporally defined exogenous cues continue to be an active pursuit of research toward on-demand nanoparticle drug delivery applications, and using one or more exogenous temperature stimuli could significantly expand the application of nanoparticle-based drug delivery formulations under both hyperthermal and hypothermal conditions. Previously we have reported the development of a biocompatible and thermoresponsive elastin-b-collagen-like polypeptide (ELP-CLP) conjugate that is capable of self-assembling into vesicles and encapsulating small molecule therapeutics that can be delivered at different rates via a single temperature stimulus. Herein we report the evaluation of multiple ELP-CLP conjugates, demonstrating that the inverse transition temperature (T t) of the ELP-CLPs can be manipulated by modifying the melting temperature (T m) of the CLP domain, and that the overall hydrophilicity of the ELP-CLP conjugate also may alter the T t. Based on these design parameters, we demonstrate that the ELP-CLP sequence (VPGFG)6-(GPO)7GG can self-assemble into stable vesicles at 25°C and dissociate at elevated temperatures by means of the unfolding of the CLP domain above its T m. We also demonstrate here for the first time the ability of this ELP-CLP vesicle to dissociate via a hypothermic temperature stimulus by means of exploiting the inverse transition temperature (T t) phenomena found in ELPs. The development of design rules for manipulating the thermal properties of these bioconjugates will enable future modifications to either the ELP or CLP sequences to more finely tune the transitions of the conjugates for specific biomedical applications.
Collapse
Affiliation(s)
- Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware
- Department of Biomedical Engineering University of Delaware Newark Delaware
| | - Kristi L Kiick
- Department of Materials Science and Engineering University of Delaware Newark Delaware
| |
Collapse
|
31
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
32
|
Affiliation(s)
- Aleksei Solomonov
- Department of Materials and Interfaces Weizmann Institute of Science 7610001 Rehovot Israel
| | - Ulyana Shimanovich
- Department of Materials and Interfaces Weizmann Institute of Science 7610001 Rehovot Israel
| |
Collapse
|
33
|
Sun X, He M, Wang L, Luo L, Wang J, Xiao J. Luminescent Biofunctional Collagen Mimetic Nanofibers. ACS OMEGA 2019; 4:16270-16279. [PMID: 31616804 PMCID: PMC6787889 DOI: 10.1021/acsomega.9b00740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Collagen has long been one of the top targets for biomimetic design due to its superior structural and functional properties. Significant progress has been achieved to construct self-assembling peptides to mimic the fibrous nanostructure of native collagen, while it is still very demanding to fabricate peptide assemblies that can recapitulate both structural and biofunctional features of collagen. Herein, collagen-like peptides have been synthesized to contain negatively charged amino acids as the binding groups of lanthanide ions and the integrin-binding motif GFOGER. The simultaneous inclusion of negatively charged amino acids in the middle as well as at both terminals drives the peptides to self-assemble to form well-ordered nanofibers with distinct periodic banding patterns specifically mediated by lanthanide ions. The aggregation tendency and the morphology of the final assembled materials for the peptides are modulated in a pH-cooperative manner, which well mimics the pH-dependent fibrillogenesis of Type I collagen. The utilization of lanthanide ions in the system not only offers a convenient external stimulus but also functionalizes assembled materials with excellent luminescent features. Most notably, the lanthanide-triggered peptide assembled nanomaterials possess good cell adhesion properties, which resemble the biological function of collagen. This peptide-Ln3+ system provides a facile and potent strategy to generate nanofibers that mimic both the structural and functional properties of natural collagen. These novel pH-responsive, luminescent, and biofunctional collagen mimetic nanofibers open fascinating opportunities in the development of improved functional biomaterials in tissue engineering, drug delivery, and medical diagnostics.
Collapse
Affiliation(s)
- Xiuxia Sun
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, P. R. China
| | - Manman He
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, P. R. China
| | - Lang Wang
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, P. R. China
| | - Liting Luo
- Key
laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Jie Wang
- Key
laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Jianxi Xiao
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, P. R. China
| |
Collapse
|
34
|
Kubyshkin V. Stabilization of the triple helix in collagen mimicking peptides. Org Biomol Chem 2019; 17:8031-8047. [PMID: 31464337 DOI: 10.1039/c9ob01646e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Collagen mimics are peptides designed to reproduce structural features of natural collagen. A triple helix is the first element in the hierarchy of collagen folding. It is an assembly of three parallel peptide chains stabilized by packing and interchain hydrogen bonds. In this review we summarize the existing chemical approaches towards stabilization of this structure including the most recent developments. Currently proposed methods include manipulation of the amino acid composition, application of unnatural amino acid analogues, stimuli-responsive modifications, chain tethering approaches, peptide amphiphiles, modifications that target interchain interactions and more. This ability to manipulate the triple helix as a supramolecular self-assembly contributes to our understanding of the collagen folding. It also provides essential information needed to design collagen-based biomaterials of the future.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, University of Manitoba, Dysart Rd. 144, R3T 2N2, Winnipeg, Manitoba, Canada.
| |
Collapse
|
35
|
Pena-Francesch A, Demirel MC. Squid-Inspired Tandem Repeat Proteins: Functional Fibers and Films. Front Chem 2019; 7:69. [PMID: 30847338 PMCID: PMC6393770 DOI: 10.3389/fchem.2019.00069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/25/2019] [Indexed: 02/05/2023] Open
Abstract
Production of repetitive polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions have been an interest for the last couple of decades. Their molecular structure provides a rich architecture that can micro-phase-separate to form periodic nanostructures (e.g., lamellar and cylindrical repeating phases) with enhanced physicochemical properties via directed or natural evolution that often exceed those of conventional synthetic polymers. Here, we review programmable design, structure, and properties of functional fibers and films from squid-inspired tandem repeat proteins, with applications in soft photonics and advanced textiles among others.
Collapse
Affiliation(s)
- Abdon Pena-Francesch
- Center for Research on Advanced Fiber Technologies, Materials Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| | - Melik C. Demirel
- Center for Research on Advanced Fiber Technologies, Materials Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
36
|
Qin J, Luo T, Kiick KL. Self-Assembly of Stable Nanoscale Platelets from Designed Elastin-like Peptide–Collagen-like Peptide Bioconjugates. Biomacromolecules 2019; 20:1514-1521. [DOI: 10.1021/acs.biomac.8b01681] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingya Qin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology
Institute, Newark, Delaware 19711, United States
| |
Collapse
|
37
|
Jain R, Roy S. Designing a bioactive scaffold from coassembled collagen–laminin short peptide hydrogels for controlling cell behaviour. RSC Adv 2019; 9:38745-38759. [PMID: 35540202 PMCID: PMC9075944 DOI: 10.1039/c9ra07454f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023] Open
Abstract
Exploring the potential of bifunctional collagen–laminin mimetic peptide based co-assembling gels for cell culture applications.
Collapse
Affiliation(s)
- Rashmi Jain
- Institute of Nano Science and Technology
- Mohali
- India
| | - Sangita Roy
- Institute of Nano Science and Technology
- Mohali
- India
| |
Collapse
|
38
|
Yao L, Hu Y, Liu Z, Ding X, Tian J, Xiao J. Luminescent Lanthanide–Collagen Peptide Framework for pH-Controlled Drug Delivery. Mol Pharm 2018; 16:846-855. [DOI: 10.1021/acs.molpharmaceut.8b01160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yue Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zhao Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Tian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
39
|
Bourdon L, Maurin JC, Gritsch K, Brioude A, Salles V. Improvements in Resolution of Additive Manufacturing: Advances in Two-Photon Polymerization and Direct-Writing Electrospinning Techniques. ACS Biomater Sci Eng 2018; 4:3927-3938. [DOI: 10.1021/acsbiomaterials.8b00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laura Bourdon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Jean-Christophe Maurin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Kerstin Gritsch
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Arnaud Brioude
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Vincent Salles
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| |
Collapse
|
40
|
Programmable Fabrication of Multilayer Collagen Nanosheets of Defined Composition. Methods Mol Biol 2018. [PMID: 29744838 DOI: 10.1007/978-1-4939-7811-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Two-dimensional nanostructures offer significant promise as components for the construction of functional biomaterials. However, the controllable fabrication of these structures remains a challenge. Ideally, one desires to control the composition, structure, and surface functionality of the resultant materials with precision, in order to tailor properties for a particular application and minimize the unintended side effects. We recently reported the synthesis of triple-layer nanosheets from template-driven assembly of a negatively charged collagen-mimetic peptide CP - on a preassembled nanosheet of a positively charged collagen-mimetic peptide CP + [1]. This process enabled the fabrication of nanosheets of defined composition, internal structure, and surface chemistry using a modified layer-by-layer approach. Herein, we describe the synthesis and purification procedures for these two 45-mer peptides, CP + and CP - , and guidelines for the directed assembly of triple-layer structures, along with routine methods of structural analysis.
Collapse
|
41
|
Zhang W, Yu X, Li Y, Su Z, Jandt KD, Wei G. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.12.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Ni Y, Tang Z, Yang J, Gao Y, Lin H, Guo L, Zhang K, Zhang X. Collagen structure regulates MSCs behavior by MMPs involved cell–matrix interactions. J Mater Chem B 2018; 6:312-326. [DOI: 10.1039/c7tb02377d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various scaffolds have been studied in the formation of cell niches and regulation of mesenchymal stem cells (MSCs) behaviors.
Collapse
Affiliation(s)
- Yilu Ni
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhurong Tang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jirong Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yongli Gao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hai Lin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
43
|
Yao L, He M, Li D, Liu H, Wu J, Xiao J. Self-assembling bolaamphiphile-like collagen mimetic peptides. NEW J CHEM 2018. [DOI: 10.1039/c8nj00119g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bolaamphiphile-like collagen mimetic peptides with charged aspartic acids at both terminals may provide a facile peptide-based approach to construct well-defined nanostructures.
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Manman He
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Dongfang Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
44
|
Zhu S, Yuan Q, Yin T, You J, Gu Z, Xiong S, Hu Y. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J Mater Chem B 2018; 6:2650-2676. [DOI: 10.1039/c7tb02999c] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By combining regulatory parameters with characterization methods, researchers can selectively fabricate collagenous biomaterials with various functional responses for biomedical applications.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Qijuan Yuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Tao Yin
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Juan You
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| |
Collapse
|
45
|
Yao L, He M, Li D, Tian J, Liu H, Xiao J. Terminal aspartic acids promote the self-assembly of collagen mimic peptides into nanospheres. RSC Adv 2018; 8:2404-2409. [PMID: 35541475 PMCID: PMC9077330 DOI: 10.1039/c7ra11855d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
The development of novel strategies to construct collagen mimetic peptides capable of self-assembling into higher-order structures plays a critical role in the discovery of functional biomaterials. We herein report the construction of a novel type of amphiphile-like peptide conjugating the repetitive triple helical (GPO)m sequences characteristic of collagen with terminal hydrophilic aspartic acids. The amphiphile-like collagen mimic peptides containing a variable length of (Gly-Pro-Hyp)m sequences consistently generate well-ordered nanospherical supramolecular structures. The C-terminal aspartic acids have been revealed to play a determinant role in the appropriate self-assembly of amphiphile-like collagen mimic peptides. Their presence is a prerequisite for self-assembly, and their lengths could modulate the morphology of final assemblies. We have demonstrated for the first time that amphiphile-like collagen mimic peptides with terminal aspartic acids may provide a general and convenient strategy to create well-defined nanostructures in addition to amphiphile-like peptides utilizing β-sheet or α-helical coiled-coil motifs. The newly developed assembly strategy together with the ubiquitous natural function of collagen may lead to the generation of novel improved biomaterials. Amphiphile-like collagen mimic peptides with terminal aspartic acids may provide a general and convenient strategy to create well-defined nanostructures.![]()
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Manman He
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Dongfang Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jing Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
46
|
Banerjee J, Azevedo HS. Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks. Interface Focus 2017; 7:20160138. [PMID: 29147553 PMCID: PMC5665793 DOI: 10.1098/rsfs.2016.0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Material Science, Institute of Bioengineering, University of London, Queen Mary, Mile End Road, London E1 4NS, UK
| |
Collapse
|
47
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
48
|
Luo T, David MA, Dunshee LC, Scott RA, Urello MA, Price C, Kiick KL. Thermoresponsive Elastin-b-Collagen-Like Peptide Bioconjugate Nanovesicles for Targeted Drug Delivery to Collagen-Containing Matrices. Biomacromolecules 2017; 18:2539-2551. [PMID: 28719196 PMCID: PMC5815509 DOI: 10.1021/acs.biomac.7b00686] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past few decades, (poly)peptide block copolymers have been widely employed in generating well-defined nanostructures as vehicles for targeted drug delivery applications. We previously reported the assembly of thermoresponsive nanoscale vesicles from an elastin-b-collagen-like peptide (ELP-CLP). The vesicles were observed to dissociate at elevated temperatures, despite the LCST-like behavior of the tethered ELP domain, which is suggested to be triggered by the unfolding of the CLP domain. Here, the potential of using the vesicles as drug delivery vehicles for targeting collagen-containing matrices is evaluated. The sustained release of an encapsulated model drug was achieved over a period of 3 weeks, following which complete release could be triggered via heating. The ELP-CLP vesicles show strong retention on a collagen substrate, presumably through collagen triple helix interactions. Cell viability and proliferation studies using fibroblasts and chondrocytes suggest that the vesicles are highly cytocompatible. Additionally, essentially no activation of a macrophage-like cell line is observed, suggesting that the vesicles do not initiate an inflammatory response. Endowed with thermally controlled delivery, the ability to bind collagen, and excellent cytocompatibility, these ELP-CLP nanovesicles are suggested to have significant potential in the controlled delivery of drugs to collagen-containing matrices and tissues.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Michael A. David
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Lucas C. Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Morgan A. Urello
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| |
Collapse
|
49
|
Chang R, Subramanian K, Wang M, Webster TJ. Enhanced Antibacterial Properties of Self-Assembling Peptide Amphiphiles Functionalized with Heparin-Binding Cardin-Motifs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22350-22360. [PMID: 28628296 DOI: 10.1021/acsami.7b07506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The emergence of antibiotic resistance in bacteria has caused many healthcare problems and social burdens. In this study, a type of self-assembled peptide amphiphiles (PA) functionalized with a heparin-binding Cardin-motif peptide (sequence (AKKARK)2) has been designed to combat bacterial drug resistance. Above the critical micelle concentration (CMC) at 45 μM, these amphiphilic Cardin antimicrobial peptide (ACA-PA) can self-assemble into cylindrical supramolecular structures (7-10 nm in diameter) via hydrophobic interactions and β-sheet secondary conformation. The ACA-PA displays excellent antibacterial properties against both Gram-positive and Gram-negative bacteria. This work also demonstrates the effects of molecular self-assembly on antibacterial activity of peptide amphiphiles. The ACA-PA exhibits antibacterial activity on Gram-positive bacteria in a dose-dependent manner, but in the case of Gram-negative bacteria, the antibacterial potency of ACA-PA is remarkably enhanced at concentrations above the CMC. The ACA-PA has been shown to cause bacterial cytoplasmic leakage, causing localized membrane disruption in Gram-positive bacteria and blisters on disorganized membranes of Gram-negative bacteria. Therefore, these peptide-based nanoparticles have promising potential as antimicrobial agents without resorting to the use of antibiotics, and, thus, should be further studied for a wide range of biomaterial applications.
Collapse
Affiliation(s)
- Run Chang
- Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Keerthana Subramanian
- Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mian Wang
- Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou, China
| |
Collapse
|
50
|
Affiliation(s)
- Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Angela L. Holmberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|