1
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
2
|
Indla NR, Maruthi Y, Rawat R, Sandeep Kumar T, Ramesh Reddy N, Sharma M, Aminabhavi TM, Kakarla RR, Sainath AVS. Synthesis and biological properties of novel glucose-based fluoro segmented macromolecular architectures. Int J Biol Macromol 2024; 268:131724. [PMID: 38653427 DOI: 10.1016/j.ijbiomac.2024.131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The emergence of novel well-defined biological macromolecular architectures containing fluorine moieties displaying superior functionalities can satisfactorily address many biomedical challenges. In this research, ABA- and AB-type glucose-based biological macromolecules were synthesized using acryl-2,3,4,6-tetra-O-acetyl-D-glucopyranoside with pentafluorophenyl (FPM), pentafluorobenzyl (FBM), phenyl (PM) and benzyl (BM) methacrylate-based macro-RAFT agents following RAFT polymerization. The macro-RAFT agents and the corresponding copolymers were characterized by 19F, 1H, and 13C NMR and FTIR spectroscopic techniques to understand the chemical structure, molecular weight by size-exclusion chromatography, thermal analysis by TGA and DSC. Thermal stability (Td5%) of the FPM and FBM fluoro-based polymers was observed in the range of 219-267 °C, while the non-fluoro PM and BM polymers exhibited in the range of 216-264 °C. Among the macro-RAFT agents, PFPM (107 °C, ΔH: 0.613 J/g) and PPM (103 °C, ΔH: 0.455 J/g) showed higher Tm values, while among the block copolymers, PFBM-b-PG (123 °C, ΔH: 0.412 J/g) and PG-b-PFPM-b-PG (126 °C, ΔH: 0.525 J/g) exhibited higher Tm values. PFBMT and PPM macro-RAFT agents, PPM-b-PG and PG-b-PPM-b-PG copolymer spin-coated films showed the highest hydrophobicity (120°) among the synthesized polymers. The block copolymers exhibited self-assembled segregation by using relatively hydrophobic segments as the core and hydrophilic moieties as the corona. Synthesized biological macromolecules exhibit maximum antibacterial activity towards S. aureus than E. coli bacteria. Fluorophenyl (PFPM) and non-fluorobenzyl-based (PBMT) macro-RAFT agents exhibit low IC50 values, suggesting high cytotoxicity. All the triblock copolymers exhibit lesser cytotoxicity than the di-block polymers.
Collapse
Affiliation(s)
- Nagamalleswara Rao Indla
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yeggada Maruthi
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Reetika Rawat
- Banasthali Vidyapith, Department of Pharm, Banasthali 304022, Rajasthan, India
| | - T Sandeep Kumar
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Manu Sharma
- Banasthali Vidyapith, Department of Pharm, Banasthali 304022, Rajasthan, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; Korea University, Seoul, Republic of Korea.
| | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Annadanam V Sesha Sainath
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Su C, Lin D, Huang X, Feng J, Jin A, Wang F, Lv Q, Lei L, Pan W. Developing hydrogels for gene therapy and tissue engineering. J Nanobiotechnology 2024; 22:182. [PMID: 38622684 PMCID: PMC11017488 DOI: 10.1186/s12951-024-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrogels are a class of highly absorbent and easily modified polymer materials suitable for use as slow-release carriers for drugs. Gene therapy is highly specific and can overcome the limitations of traditional tissue engineering techniques and has significant advantages in tissue repair. However, therapeutic genes are often affected by cellular barriers and enzyme sensitivity, and carrier loading of therapeutic genes is essential. Therapeutic gene hydrogels can well overcome these difficulties. Moreover, gene-therapeutic hydrogels have made considerable progress. This review summarizes the recent research on carrier gene hydrogels for the treatment of tissue damage through a summary of the most current research frontiers. We initially introduce the classification of hydrogels and their cross-linking methods, followed by a detailed overview of the types and modifications of therapeutic genes, a detailed discussion on the loading of therapeutic genes in hydrogels and their characterization features, a summary of the design of hydrogels for therapeutic gene release, and an overview of their applications in tissue engineering. Finally, we provide comments and look forward to the shortcomings and future directions of hydrogels for gene therapy. We hope that this article will provide researchers in related fields with more comprehensive and systematic strategies for tissue engineering repair and further promote the development of the field of hydrogels for gene therapy.
Collapse
Affiliation(s)
- Chunyu Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Dini Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Wenjie Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
4
|
Jana S, Nevskyi O, Höche H, Trottenberg L, Siemes E, Enderlein J, Fürstenberg A, Wöll D. Local Water Content in Polymer Gels Measured with Super-Resolved Fluorescence Lifetime Imaging. Angew Chem Int Ed Engl 2024; 63:e202318421. [PMID: 38165135 DOI: 10.1002/anie.202318421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Water molecules play an important role in the structure, function, and dynamics of (bio-) materials. A direct access to the number of water molecules in nanoscopic volumes can thus give new molecular insights into materials and allow for fine-tuning their properties in sophisticated applications. The determination of the local water content has become possible by the finding that H2 O quenches the fluorescence of red-emitting dyes. Since deuterated water, D2 O, does not induce significant fluorescence quenching, fluorescence lifetime measurements performed in different H2 O/D2 O-ratios yield the local water concentration. We combined this effect with the recently developed fluorescence lifetime single molecule localization microscopy imaging (FL-SMLM) in order to nanoscopically determine the local water content in microgels, i.e. soft hydrogel particles consisting of a cross-linked polymer swollen in water. The change in water content of thermo-responsive microgels when changing from their swollen state at room temperature to a collapsed state at elevated temperature could be analyzed. A clear decrease in water content was found that was, to our surprise, rather uniform throughout the entire microgel volume. Only a slightly higher water content around the dye was found in the periphery with respect to the center of the swollen microgels.
Collapse
Affiliation(s)
- Sankar Jana
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Oleksii Nevskyi
- Third Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Hannah Höche
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Leon Trottenberg
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Eric Siemes
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, 37077, Göttingen, Germany
| | - Alexandre Fürstenberg
- Department of Physical Chemistry and Department of Inorganic and Analytical Chemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| |
Collapse
|
5
|
Hengsbach R, Fink G, Simon U. 1H-NMR studies on the volume phase transition of DNA-modified pNipmam microgels. SOFT MATTER 2024; 20:330-337. [PMID: 38087892 DOI: 10.1039/d3sm01124k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
DNA functionalized pNipmam microgels, which have recently been introduced, are examined at different concentrations of sodium chloride and in PBS solutions via temperature dependent 1H-NMR measurements and are compared to pure pNipmam microgels. We show that the DNA modification shifts the volume phase transition temperature towards lower temperatures and the addition of salt and PBS further supports this effect in both materials. Thermodynamic values, i.e. enthalpy, entropy and Gibbs free energy, are determined via a non-linear fit which can be applied directly to the measurement data without further linearization.
Collapse
Affiliation(s)
- Rebecca Hengsbach
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, D-52074 Aachen, Germany.
| | - Gerhard Fink
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, D-52074 Aachen, Germany.
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, D-52074 Aachen, Germany.
| |
Collapse
|
6
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Jabbari A, Sameiyan E, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aptamer-based targeted delivery systems for cancer treatment using DNA origami and DNA nanostructures. Int J Pharm 2023; 646:123448. [PMID: 37757957 DOI: 10.1016/j.ijpharm.2023.123448] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Due to the limitations of conventional cancer treatment methods, nanomedicine has appeared as a promising alternative, allowing improved drug targeting and decreased drug toxicity. In the development of cancer nanomedicines, among various nanoparticles (NPs), DNA nanostructures are more attractive because of their precisely controllable size, shape, excellent biocompatibility, programmability, biodegradability, and facile functionalization. Aptamers are introduced as single-stranded RNA or DNA molecules with recognize their corresponding targets. So, incorporating aptamers into DNA nanostructures led to influential vehicles for bioimaging and biosensing as well as targeted cancer therapy. In this review, the recent developments in the application of aptamer-based DNA origami and DNA nanostructures in advanced cancer treatment have been highlighted. Some of the main methods of cancer treatment are classified as chemo-, gene-, photodynamic- and combined therapy. Finally, the opportunities and problems for targeted DNA aptamer-based nanocarriers for medicinal applications have also been discussed.
Collapse
Affiliation(s)
- Atena Jabbari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Sameiyan
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Kusmus DNM, van Veldhuisen TW, Khan A, Cornelissen JJLM, Paulusse JMJ. Uniquely sized nanogels via crosslinking polymerization. RSC Adv 2022; 12:29423-29432. [PMID: 36320766 PMCID: PMC9562763 DOI: 10.1039/d2ra04123e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Nanogels are very promising carriers for nanomedicine, as they can be prepared in the favorable nanometer size regime, can be functionalized with targeting agents and are responsive to stimuli, i.e. temperature and pH. This induces shrinking or swelling, resulting in controlled release of a therapeutic cargo. Our interest lies in the controlled synthesis of functional nanogels, such as those containing epoxide moieties, that can be subsequently functionalized. Co-polymerization of glycidyl methacrylate and a bifunctional methacrylate crosslinker under dilute conditions gives rise to well-defined epoxide-functional nanogels, of which the sizes are controlled by the degree of polymerization. Nanogels with well-defined sizes (polydispersity of 0.2) ranging from 38 nm to 95 nm were prepared by means of controlled radical polymerization. The nanogels were characterized in detail by FT-IR, DLS, size exclusion chromatography, NMR spectroscopy, AFM and TEM. Nucleophilic attack with functional thiols or amines on the least hindered carbon of the epoxide provides water-soluble nanogels, without altering the backbone structure, while reaction with sodium azide provides handles for further functionalization via click chemistry.
Collapse
Affiliation(s)
- Disraëli N. M. Kusmus
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Thijs W. van Veldhuisen
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Anzar Khan
- Korea University145 Anam-ro, Anam-dongSeoulSeongbuk-guKorea
| | - Jeroen J. L. M. Cornelissen
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| | - Jos M. J. Paulusse
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Department of Biomolecular Nanotechnology, University of TwenteDrienerlolaan 57522EnschedeNBNetherlands
| |
Collapse
|
9
|
psma-targeted NIR probes for image-guided detection of prostate cancer. Colloids Surf B Biointerfaces 2022; 218:112734. [DOI: 10.1016/j.colsurfb.2022.112734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
|
10
|
Barz M, Nuhn L, Hörpel G, Zentel R. From Self-Organization to Tumor-Immune Therapy: How Things Started and How They Evolved. Macromol Rapid Commun 2022; 43:e2100829. [PMID: 35729069 DOI: 10.1002/marc.202100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Gerhard Hörpel
- GBH Gesellschaft für Batterie Know-how mbH, Lerchenhain 84, 48301, Nottuln, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
11
|
Stickdorn J, Stein L, Arnold-Schild D, Hahlbrock J, Medina-Montano C, Bartneck J, Ziß T, Montermann E, Kappel C, Hobernik D, Haist M, Yurugi H, Raabe M, Best A, Rajalingam K, Radsak MP, David SA, Koynov K, Bros M, Grabbe S, Schild H, Nuhn L. Systemically Administered TLR7/8 Agonist and Antigen-Conjugated Nanogels Govern Immune Responses against Tumors. ACS NANO 2022; 16:4426-4443. [PMID: 35103463 PMCID: PMC8945363 DOI: 10.1021/acsnano.1c10709] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.
Collapse
Affiliation(s)
- Judith Stickdorn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lara Stein
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Danielle Arnold-Schild
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jennifer Hahlbrock
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Carolina Medina-Montano
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Joschka Bartneck
- III Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstraße
1, 55131 Mainz, Germany
| | - Tanja Ziß
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Evelyn Montermann
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Cinja Kappel
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Maximilian Haist
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hajime Yurugi
- Cell
Biology Unit, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Marco Raabe
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Andreas Best
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell
Biology Unit, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Markus P. Radsak
- III Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstraße
1, 55131 Mainz, Germany
| | - Sunil A. David
- ViroVax,
LLC, 2029 Becker Drive
Suite 100E, Lawrence 66047-1620, Kansas. United States
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hansjörg Schild
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
12
|
Schmitt S, Huppertsberg A, Klefenz A, Kaps L, Mailänder V, Schuppan D, Butt HJ, Nuhn L, Koynov K. Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules 2022; 23:1065-1074. [PMID: 35061359 PMCID: PMC8924869 DOI: 10.1021/acs.biomac.1c01407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The use of nanoparticles as carriers to deliver pharmacologically active compounds to specific parts of the body via the bloodstream is a promising therapeutic approach for the effective treatment of various diseases. To reach their target sites, nanocarriers (NCs) need to circulate in the bloodstream for prolonged periods without aggregation, degradation, or cargo loss. However, it is very difficult to identify and monitor small-sized NCs and their cargo in the dense and highly complex blood environment. Here, we present a new fluorescence correlation spectroscopy-based method that allows the precise characterization of fluorescently labeled NCs in samples of less than 50 μL of whole blood. The NC size, concentration, and loading efficiency can be measured to evaluate circulation times, stability, or premature drug release. We apply the new method to follow the fate of pH-degradable fluorescent cargo-loaded nanogels in the blood of live mice for periods of up to 72 h.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anne Huppertsberg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Adrian Klefenz
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
| | - Leonard Kaps
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
- Department
of Internal Medicine I, University Medical Center, Johannes Gutenberg-University, 55122 Mainz, Germany
| | - Volker Mailänder
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University, 55122 Mainz, Germany
| | - Detlef Schuppan
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
- Division
of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02115 Boston, Massachusetts, United States
| | - Hans-Jürgen Butt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Schmitt S, Nuhn L, Barz M, Butt HJ, Koynov K. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromol Rapid Commun 2022; 43:e2100892. [PMID: 35174569 DOI: 10.1002/marc.202100892] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Indexed: 11/07/2022]
Abstract
The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This Feature Article highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Matthias Barz
- Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
14
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Yuan P, Xu X, Xiao B, Shi X, Zhang W, Xu H, Piao Y, Shen Y, Slater NKH, Tang J. A dual-channel fluorescent ratio probe with hypoxia targeting and hypoxia activation capacity for tumour imaging. Polym Chem 2022. [DOI: 10.1039/d2py00313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient hypoxia diagnosis is a great challenge for nearly all solid tumours due to the operability, permeability and specificity. Although some inspiring approaches have been explored to date, it is...
Collapse
|
16
|
Huppertsberg A, Kaps L, Zhong Z, Schmitt S, Stickdorn J, Deswarte K, Combes F, Czysch C, De Vrieze J, Kasmi S, Choteschovsky N, Klefenz A, Medina-Montano C, Winterwerber P, Chen C, Bros M, Lienenklaus S, Sanders NN, Koynov K, Schuppan D, Lambrecht BN, David SA, De Geest BG, Nuhn L. Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. J Am Chem Soc 2021; 143:9872-9883. [PMID: 34166595 PMCID: PMC8267846 DOI: 10.1021/jacs.1c03772] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.
Collapse
Affiliation(s)
| | - Leonard Kaps
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
- Department
of Internal Medicine I, University Medical
Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Zifu Zhong
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Sascha Schmitt
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Kim Deswarte
- Department
of Internal Medicine and Pediatrics, Ghent
University, VIB Center for Inflammation Research, Ghent 9052, Belgium
| | - Francis Combes
- Laboratory
of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke 9820, Belgium
| | | | - Jana De Vrieze
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Sabah Kasmi
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Niklas Choteschovsky
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
| | - Adrian Klefenz
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
| | - Carolina Medina-Montano
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | | | - Chaojian Chen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Stefan Lienenklaus
- Institute
for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Niek N. Sanders
- Laboratory
of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke 9820, Belgium
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Detlef Schuppan
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Bart N. Lambrecht
- Department
of Internal Medicine and Pediatrics, Ghent
University, VIB Center for Inflammation Research, Ghent 9052, Belgium
- Department
of Pulmonary Medicine, Erasmus University
Medical Center, Rotterdam 3015, Netherlands
| | | | - Bruno G. De Geest
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
17
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
18
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Loading of doxorubicin into surface-attached stimuli-responsive microgels and its subsequent release under different conditions. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123227] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels. Cells 2020; 9:cells9102222. [PMID: 33019594 PMCID: PMC7600184 DOI: 10.3390/cells9102222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with naïve or MMR-expressing Chinese hamster ovary (CHO) cells, a nanobody mediated targeting and uptake could be confirmed for the nanobody-modified nanocarriers. Thereby, the intact nanogels that display nanobodies on their surface in a multivalent way showed a much stronger binding and uptake compared to the soluble polymers. Based on their acidic pH-responsive degradation potential, ketal crosslinked nanogels are capable of mediating a transient targeting that gets diminished upon unfolding into single polymer chains after endosomal acidification. Such control over particle integrity and targeting performance can be considered as highly attractive for safe and controllable immunodrug delivery purposes.
Collapse
|
21
|
Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells 2020; 9:cells9092027. [PMID: 32899119 PMCID: PMC7563527 DOI: 10.3390/cells9092027] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, pancreatic and subtypes of hepatocellular cancer (HCC), both CAF and certain ECM components are also present in cancers without an overt intra-tumoral desmoplastic reaction. They support cancer development, growth, metastasis and resistance to chemo- or checkpoint inhibitor therapy by a multitude of mechanisms, including angiogenesis, ECM remodeling and active immunosuppression by secretion of tumor promoting and immune suppressive cytokines, chemokines and growth factors. CAF resemble activated hepatic stellate cells (HSC)/myofibroblasts, expressing α-smooth muscle actin and especially fibroblast activation protein (FAP). Apart from FAP, CAF also upregulate other functional cell surface proteins like platelet-derived growth factor receptor β (PDGFRβ) or the insulin-like growth factor receptor II (IGFRII). Notably, if formulated with adequate size and zeta potential, injected nanoparticles home preferentially to the liver. Several nanoparticular formulations were tested successfully to deliver dugs to activated HSC/myofibroblasts. Thus, surface modified nanocarriers with a cyclic peptide binding to the PDGFRβ or with mannose-6-phosphate binding to the IGFRII, effectively directed drug delivery to activated HSC/CAF in vivo. Even unguided nanohydrogel particles and lipoplexes loaded with siRNA demonstrated a high in vivo uptake and functional siRNA delivery in activated HSC, indicating that liver CAF/HSC are also addressed specifically by well-devised nanocarriers with optimized physicochemical properties. Therefore, CAF have become an attractive target for the development of stroma-based cancer therapies, especially in the liver.
Collapse
|
22
|
In Vivo siRNA Delivery to Immunosuppressive Liver Macrophages by α-Mannosyl-Functionalized Cationic Nanohydrogel Particles. Cells 2020; 9:cells9081905. [PMID: 32824208 PMCID: PMC7465192 DOI: 10.3390/cells9081905] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophages are the front soldiers of the innate immune system and are vital for immune defense, tumor surveillance, and tissue homeostasis. In chronic diseases, including cancer and liver fibrosis, macrophages can be forced into an immunosuppressive and profibrotic M2 phenotype. M2-type macrophages overexpress the mannose receptor CD206. Targeting these cells via CD206 and macrophage repolarization towards an immune stimulating and antifibrotic M1 phenotype through RNA interference represents an appealing therapeutic approach. We designed nanohydrogel particles equipped with mannose residues on the surface (ManNP) that delivered siRNA more efficiently to M2 polarized macrophages compared to their untargeted counterparts (NonNP) in vitro. The ManNP were then assessed for their in vivo targeting potential in mice with experimental liver fibrosis that is characterized by increased profibrotic (and immunosuppressive) M2-type macrophages. Double-labelled siRNA-loaded ManNP carrying two different near infrared labels for siRNA and ManNP showed good biocompatibility and robust uptake in fibrotic livers as assessed by in vivo near infrared imaging. siRNA–ManNP were highly colocalized with CD206+ M2-type macrophages on a cellular level, while untargeted NP (NonNP) showed little colocalization and were non-specifically taken up by other liver cells. ManNP did not induce hepatic inflammation or kidney dysfunction, as demonstrated by serological analysis. In conclusion, α-mannosyl-functionalized ManNP direct NP towards M2-type macrophages in diseased livers and prevent unspecific uptake in non-target cells. ManNP are promising vehicles for siRNA and other drugs for immunomodulatory treatment of liver fibrosis and liver cancer.
Collapse
|
23
|
Liu M, Miao D, Wang X, Wang C, Deng W. Precise synthesis of heterogeneous glycopolymers with well‐defined saccharide motifs in the side chain via post‐polymerization modification and recognition with lectin. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meina Liu
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
- Key laboratory of Synthetic and Self‐Assembly Chemistry for Organic Function Molecules, Shanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai China
- State Key laboratory of Molecular Engineering of PolymersFudan University Shanghai China
| | - Dengyun Miao
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Xingyou Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Caiyun Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Wei Deng
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| |
Collapse
|
24
|
Switacz VK, Wypysek SK, Degen R, Crassous JJ, Spehr M, Richtering W. Influence of Size and Cross-Linking Density of Microgels on Cellular Uptake and Uptake Kinetics. Biomacromolecules 2020; 21:4532-4544. [DOI: 10.1021/acs.biomac.0c00478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Victoria K. Switacz
- Department of Chemosensation, Institute of Biology II, RWTH Aachen University, 52056 Aachen, Germany
| | - Sarah K. Wypysek
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Rudolf Degen
- Department of Chemosensation, Institute of Biology II, RWTH Aachen University, 52056 Aachen, Germany
| | - Jérôme J. Crassous
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute of Biology II, RWTH Aachen University, 52056 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
25
|
Kockelmann J, Stickdorn J, Kasmi S, De Vrieze J, Pieszka M, Ng DYW, David SA, De Geest BG, Nuhn L. Control over Imidazoquinoline Immune Stimulation by pH-Degradable Poly(norbornene) Nanogels. Biomacromolecules 2020; 21:2246-2257. [PMID: 32255626 PMCID: PMC7304817 DOI: 10.1021/acs.biomac.0c00205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
reactivation of the innate immune system by toll-like receptor
(TLR) agonists holds promise for anticancer immunotherapy. Severe
side effects caused by unspecific and systemic activation of the immune
system upon intravenous injection prevent the use of small-molecule
TLR agonists for such purposes. However, a covalent attachment of
small-molecule imidazoquinoline (IMDQ) TLR7/8 agonists to pH-degradable
polymeric nanogels could be shown to drastically reduce the systemic
inflammation but retain the activity to tumoral tissues and their
draining lymph nodes. Here, we introduce the synthesis of poly(norbornene)-based,
acid-degradable nanogels for the covalent ligation of IMDQs. While
the intact nanogels trigger sufficient TLR7/8 receptor stimulation,
their degraded version of soluble, IMDQ-conjugated poly(norbornene)
chains hardly activates TLR7/8. This renders their clinical safety
profile, as degradation products are obtained, which would not only
circumvent nanoparticle accumulation in the body but also provide
nonactive, polymer-bound IMDQ species. Their immunologically silent
behavior guarantees both spatial and temporal control over immune
activity and, thus, holds promise for improved clinical applications.
Collapse
Affiliation(s)
- Johannes Kockelmann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Judith Stickdorn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sabah Kasmi
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jana De Vrieze
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Michaela Pieszka
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David Yuen W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sunil A David
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
26
|
|
27
|
Zhou L, Jiao X, Liu S, Hao M, Cheng S, Zhang P, Wen Y. Functional DNA-based hydrogel intelligent materials for biomedical applications. J Mater Chem B 2020; 8:1991-2009. [DOI: 10.1039/c9tb02716e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional intelligent DNA hydrogels have been reviewed for many biomedical applications.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Songyang Liu
- Department of Orthopaedics and Trauma
- Peking University People's Hospital
- Beijing
- China
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Siyang Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Peixun Zhang
- Department of Orthopaedics and Trauma
- Peking University People's Hospital
- Beijing
- China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| |
Collapse
|
28
|
Tanaka R, Arai K, Matsuno J, Soejima M, Lee JH, Takahashi R, Sakurai K, Fujii S. Furry nanoparticles: synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles and their robust stability in vivo. Polym Chem 2020. [DOI: 10.1039/d0py00610f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Core crosslinked nanoparticles were prepared via nanoemulsion stabilized by a poly(ethylene glycol)-bearing surfactant, which show high structural stability in vivo.
Collapse
Affiliation(s)
- Rena Tanaka
- Department of Chemistry and Biochemistry
- University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Koichi Arai
- Department of Chemistry and Biochemistry
- University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Jun Matsuno
- Department of Chemistry and Biochemistry
- University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Miyo Soejima
- Department of Chemistry and Biochemistry
- University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Ji Ha Lee
- Department of Chemistry and Biochemistry
- University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Rintaro Takahashi
- Department of Chemistry and Biochemistry
- University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry
- University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry
- University of Kitakyushu
- Fukuoka 808-0135
- Japan
| |
Collapse
|
29
|
Leber N, Zentel R. Improved SiRNA Loading of Cationic Nanohydrogel Particles by Variation of Crosslinking Density. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nadine Leber
- Institute of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| |
Collapse
|
30
|
Tabujew I, Willig M, Leber N, Freidel C, Negwer I, Koynov K, Helm M, Landfester K, Zentel R, Peneva K, Mailänder V. Overcoming the barrier of CD8 +T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomater 2019; 100:338-351. [PMID: 31586726 DOI: 10.1016/j.actbio.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Abstract
Bioengineering immune cells via gene therapy offers treatment opportunities for currently fatal viral infections. Also cell therapeutics offer most recently a breakthrough technology to combat cancer. These primary human cells, however, are sensitive to toxic influences, which make the utilization of optimized physical transfection techniques necessary. The otherwise commonly applied delivery agents such as LipofectamineⓇ or strongly cationic polymer structures are not only unsuitable for in vivo experiments, but are also highly toxic to immune cells. This study aimed to improve the design of polymeric carrier systems for small interfering RNA, which would allow efficient internalization into CD8+T-cells without affecting their viability and thereby removing the current limitations in the field. Here, two new carrier systems for small interfering RNA were tested. One is a cationic diblock copolymer, in which less than 10% of the monomers were modified with triphenylphosphonium cations. This moiety is lipophilic, promotes uptake and it is mostly known for its mitotropic properties. Furthermore, cationic nanohydrogel particles were synthesized in exceedingly small sizes (Rh < 14 nm). After full physicochemical characterization of the two carriers, extensive cytotoxicity studies were performed and the concentration dependent uptake into CD8+T-cells was tested in correlation to incubation time and protein content of the surrounding medium. Both carriers facilitated efficient complexation of siRNA as well as significant internalization into primary human cells in less than three hours of incubation. In addition, neither of the delivery systems reduced cell viability making them good candidates to transport siRNA into CD8+T-cells efficiently. STATEMENT OF SIGNIFICANCE: This study provides insights into the design of polymeric delivery agents as the method of choice for overcoming the limitations of cell manipulation. Until now, CD8+T-cells, which have become a treatment tool for currently fatal diseases, have not yet been made accessible for gene silencing by polymeric siRNA carrier systems. Choosing appropriate modification approaches for two chemically different polymer structures, we were, in both cases, able to achieve significant uptake in these cells even at low concentrations and without inducing cytotoxicity. These results remove current limitations and pave the way for bioengineering via gene therapy.
Collapse
|
31
|
Li L, He S, Yu L, Elshazly EH, Wang H, Chen K, Zhang S, Ke L, Gong R. Codelivery of DOX and siRNA by folate-biotin-quaternized starch nanoparticles for promoting synergistic suppression of human lung cancer cells. Drug Deliv 2019; 26:499-508. [PMID: 31033359 PMCID: PMC6493220 DOI: 10.1080/10717544.2019.1606363] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/17/2022] Open
Abstract
In this paper, the self-assembled folate-biotin-quaternized starch nanoparticles (FBqS NPs) were used as carrier system of doxorubicin (DOX) and siRNAIGF1R for the codelivery of both into human lung adenocarcinoma cell lines (A549 cells) in vitro. The cytotoxicity, targeted ligand competition, cell proliferation inhibition, cellular uptake, endocytosis mechanism and target protein suppression of drug-loaded FBqS NPs were evaluated in detail. Compared with several other drug formulations under same condition, siRNAIGF1R/DOX/FBqS NPs exhibited the greatest cytotoxicity to A549 cells and the cytotoxicity was competitively inhibited by free folate in dose-dependent manner. The A549 cells treated by siRNAIGF1R/DOX/FBqS NPs showed the lowest cell proliferation capacity. The energy-dependent clathrin- and caveolae-mediated endocytosis might be the primary cellular uptake mechanism of drug-loaded FBqS NPs. The expression of IGF1R protein in A549 cells treated by siRNAIGF1R/FBqS NPs declined dramatically. So the FBqS NPs were expected as the co-carrier system of chemotherapeutants and siRNAs for future clinical application.
Collapse
Affiliation(s)
- Liangping Li
- College of Life Science, Anhui Normal University, Wuhu, P R China
- Department of Physical Education, Anhui College of Traditional Chinese Medicine, Wuhu, P R China
| | - Suoju He
- College of Life Science, Anhui Normal University, Wuhu, P R China
| | - Lizhen Yu
- College of Life Science, Anhui Normal University, Wuhu, P R China
- School of Pharmacy, Wannan Medical College, Wuhu, P R China
| | - Ezzat H Elshazly
- College of Life Science, Anhui Normal University, Wuhu, P R China
- Department of Botany and Microbiology, Faculty of Science, Al Azhar University, Assiut, Egypt
| | - Hui Wang
- College of Life Science, Anhui Normal University, Wuhu, P R China
| | - Kuanmin Chen
- College of Life Science, Anhui Normal University, Wuhu, P R China
| | - Song Zhang
- College of Life Science, Anhui Normal University, Wuhu, P R China
| | - Lixia Ke
- College of Life Science, Anhui Normal University, Wuhu, P R China
| | - Renmin Gong
- College of Life Science, Anhui Normal University, Wuhu, P R China
| |
Collapse
|
32
|
Zentel R. From LC‐polymers to Nanomedicines: Different Aspects of Polymer Science from a Materials Viewpoint. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rudolf Zentel
- Chemistry University of Mainz Duesbergweg 10‐14 D‐55128 Mainz Germany
| |
Collapse
|
33
|
Kargaard A, Sluijter JPG, Klumperman B. Polymeric siRNA gene delivery - transfection efficiency versus cytotoxicity. J Control Release 2019; 316:263-291. [PMID: 31689462 DOI: 10.1016/j.jconrel.2019.10.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Within the field of gene therapy, there is a considerable need for the development of non-viral vectors that are able to compete with the efficiency obtained by viral vectors, while maintaining a good toxicity profile and not inducing an immune response within the body. While there have been many reports of possible polymeric delivery systems, few of these systems have been successful in the clinical setting due to toxicity, systemic instability or gene regulation inefficiency, predominantly due to poor endosomal escape and cytoplasmic release. The objective of this review is to provide an overview of previously published polymeric non-coding RNA and, to a lesser degree, oligo-DNA delivery systems with emphasis on their positive and negative attributes, in order to provide insight in the numerous hurdles that still limit the success of gene therapy.
Collapse
Affiliation(s)
- Anna Kargaard
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa; University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands
| | - Joost P G Sluijter
- University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; Utrecht University, the Netherlands
| | - Bert Klumperman
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
34
|
Di Silvio D, Martínez-Moro M, Salvador C, de Los Angeles Ramirez M, Caceres-Velez PR, Ortore MG, Dupin D, Andreozzi P, Moya SE. Self-assembly of poly(allylamine)/siRNA nanoparticles, their intracellular fate and siRNA delivery. J Colloid Interface Sci 2019; 557:757-766. [PMID: 31569055 DOI: 10.1016/j.jcis.2019.09.082] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 12/18/2022]
Abstract
Silencing RNA (siRNA) technologies attract significant interest as a therapeutic tool for a large number of diseases. However, the medical translation of this technology is hampered by the lack of effective delivery vehicles for siRNAs in cytosol that prevent their degradation in the bloodstream. The use of molecular complexes based on polyamines have great potential for siRNA delivery as polyamines can protect the siRNA during circulation and at the same time favor siRNA translocation in cytosol. Here, nanoparticles are prepared by complexation of poly(allylamine hydrochloride) (PAH) and siRNA varying the ratio of nitrogen groups from PAH to phosphate groups from siRNA (N/P ratio). Nanoparticles are characterized by transmission electron microscopy and dynamic light scattering. The stability of complexes of green rhodamine labelled PAH (G-PAH) and Cy5 labelled siRNA (R-siRNA) at different pHs and in cell media is studied by fluorescence cross-correlation spectroscopy (FCCS). FCCS studies show that the nanoparticles are stable at physiological pH and in cell media but they disassemble at acidic pH. An optimal N/P ratio of 2 is identified in terms of stability in media, degradation at endosomal pH and toxicity. The intracellular fate of the complexes is studied following uptake in A549 cells. The cross-correlation between G-PAH and R-siRNA decreases substantially 24 h after uptake, while diffusion times of siRNA decrease indicating that the complexes disassemble, liberating the siRNAs. The release of siRNAs into the cytosol is confirmed with parallel confocal laser scanning microscopy. Flow cytometry studies show that PAH/siRNA nanoparticles are effective at silencing green fluorescent protein expression at low N/P ratios at which polyethylenimine/siRNA shows no significant silencing.
Collapse
Affiliation(s)
- Desirè Di Silvio
- CICbiomaGUNE - Soft Matter Nanotechnology Group, Paseo Miramón n° 182, Edificio C, 20014 Donostia-San Sebastián, Spain
| | - Marta Martínez-Moro
- CICbiomaGUNE - Soft Matter Nanotechnology Group, Paseo Miramón n° 182, Edificio C, 20014 Donostia-San Sebastián, Spain
| | - Cristian Salvador
- CICbiomaGUNE - Soft Matter Nanotechnology Group, Paseo Miramón n° 182, Edificio C, 20014 Donostia-San Sebastián, Spain; CIDETEC Nanomedicine, Paseo Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Maria de Los Angeles Ramirez
- CICbiomaGUNE - Soft Matter Nanotechnology Group, Paseo Miramón n° 182, Edificio C, 20014 Donostia-San Sebastián, Spain; Instituto de Nanosistemas, Universidad Nacional de San Martín (INS-UNSAM), Av. 25 de Mayo 1021, San Martín, Buenos Aires, Argentina
| | - Paolin Rocio Caceres-Velez
- CICbiomaGUNE - Soft Matter Nanotechnology Group, Paseo Miramón n° 182, Edificio C, 20014 Donostia-San Sebastián, Spain
| | - Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Damien Dupin
- CIDETEC Nanomedicine, Paseo Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Patrizia Andreozzi
- CICbiomaGUNE - Soft Matter Nanotechnology Group, Paseo Miramón n° 182, Edificio C, 20014 Donostia-San Sebastián, Spain.
| | - Sergio E Moya
- CICbiomaGUNE - Soft Matter Nanotechnology Group, Paseo Miramón n° 182, Edificio C, 20014 Donostia-San Sebastián, Spain.
| |
Collapse
|
35
|
Koide H, Fukuta T, Okishim A, Ariizumi S, Kiyokawa C, Tsuchida H, Nakamoto M, Yoshimatsu K, Ando H, Dewa T, Asai T, Oku N, Hoshino Y, Shea KJ. Engineering the Binding Kinetics of Synthetic Polymer Nanoparticles for siRNA Delivery. Biomacromolecules 2019; 20:3648-3657. [DOI: 10.1021/acs.biomac.9b00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tatsuya Fukuta
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Anna Okishim
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Saki Ariizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Chiaki Kiyokawa
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroki Tsuchida
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, University of California Irvine, Irvine, California 92697 United States
| | - Hidenori Ando
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kenneth J. Shea
- Department of Chemistry, University of California Irvine, Irvine, California 92697 United States
| |
Collapse
|
36
|
Leber N, Kaps L, Yang A, Aslam M, Giardino M, Klefenz A, Choteschovsky N, Rosigkeit S, Mostafa A, Nuhn L, Schuppan D, Zentel R. α‐Mannosyl‐Functionalized Cationic Nanohydrogel Particles for Targeted Gene Knockdown in Immunosuppressive Macrophages. Macromol Biosci 2019; 19:e1900162. [DOI: 10.1002/mabi.201900162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Nadine Leber
- Institutes of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| | - Leonard Kaps
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Aiting Yang
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Misbah Aslam
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
- Department of MicrobiologyShaheed Benazir Bhutto Women University LARAMA, Charsadda Road, Peshawar, Pakistan
| | - Mariacristina Giardino
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Adrian Klefenz
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Niklas Choteschovsky
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Asmaa Mostafa
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Lutz Nuhn
- Max‐Planck‐Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
- Division of GastroenterologyBeth Israel Deaconess Medical Center, Harvard Medical School 330 Brookline Avenue Boston MA 02215 USA
| | - Rudolf Zentel
- Institutes of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| |
Collapse
|
37
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
38
|
Xu W, Rudov AA, Schroeder R, Portnov IV, Richtering W, Potemkin II, Pich A. Distribution of Ionizable Groups in Polyampholyte Microgels Controls Interactions with Captured Proteins: From Blockade and "Levitation" to Accelerated Release. Biomacromolecules 2019; 20:1578-1591. [PMID: 30822384 DOI: 10.1021/acs.biomac.8b01775] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A striking discovery in our work is that the distribution of ionizable groups in polyampholyte microgels (random and core-shell) controls the interactions with the captured proteins. Polyampholyte microgels are capable to switch reversibly their charges from positive to negative depending on pH. In this work, we synthesized differently structured polyampholyte microgels with controlled amounts and different distribution of acidic and basic moieties as colloidal carriers to study the loading and release of the model protein cytochrome c (cyt-c). Polyampholyte microgels were first loaded with cyt-c using the electrostatic attraction under pH 8 when the microgels were oppositely charged with respect to the protein. Then the protein release was investigated under different pH (3, 6, and 8) both with experimental methods and molecular dynamics simulations. For microgels with a random distribution of ionizable groups complete and accelerated (compared to polyelectrolyte counterpart) release of cyt-c was observed due to electrostatic repulsive interactions. For core-shell structured microgels with defined ionizable groups, it was possible to entrap the protein inside the neutral core through the formation of a positively charged shell, which acts as an electrostatic potential barrier. We postulate that this discovery allows the design of functional colloidal carriers with programmed release kinetics for applications in drug delivery, catalysis, and biomaterials.
Collapse
Affiliation(s)
- Wenjing Xu
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50 , 52074 Aachen , Germany
| | - Andrey A Rudov
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Physics Department , Lomonosov Moscow State University , GSP-1, 1-2 Leninskiye Gory 119991 Moscow , Russian Federation
| | - Ricarda Schroeder
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50 , 52074 Aachen , Germany
| | - Ivan V Portnov
- Physics Department , Lomonosov Moscow State University , GSP-1, 1-2 Leninskiye Gory 119991 Moscow , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University , Landoltweg 2 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Physics Department , Lomonosov Moscow State University , GSP-1, 1-2 Leninskiye Gory 119991 Moscow , Russian Federation.,National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V. , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50 , 52074 Aachen , Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University , Brightlands Chemelot Campus, Urmonderbaan22 , 6167 RD Geleen , The Netherlands
| |
Collapse
|
39
|
De Coen R, Nuhn L, De Geest BG. Engineering mannosylated nanogels with membrane-disrupting properties. Polym Chem 2019. [DOI: 10.1039/c9py00492k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, mannosylated core-cross-linked nanogels are designed that contain cationic moieties in their core.
Collapse
Affiliation(s)
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research
- Mainz
- Germany
| | | |
Collapse
|
40
|
Yang WJ, Liang L, Wang X, Cao Y, Xu W, Chang D, Gao Y, Wang L. Versatile functionalization of surface-tailorable polymer nanohydrogels for drug delivery systems. Biomater Sci 2019; 7:247-261. [DOI: 10.1039/c8bm01093e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-tailorable nanohydrogels with catechol groups as a universal anchor were developed for versatile functionalization in drug delivery applications.
Collapse
Affiliation(s)
- Wen Jing Yang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing
| | - Lijun Liang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing
| | - Xiaodong Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing
| | - Yanpeng Cao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing
| | - Wenya Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing
| | - Dongqing Chang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing
| | - Yu Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing
| |
Collapse
|
41
|
Negwer I, Best A, Schinnerer M, Schäfer O, Capeloa L, Wagner M, Schmidt M, Mailänder V, Helm M, Barz M, Butt HJ, Koynov K. Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nat Commun 2018; 9:5306. [PMID: 30546066 PMCID: PMC6294246 DOI: 10.1038/s41467-018-07755-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Nanocarrier-based drug delivery is a promising therapeutic approach that offers unique possibilities for the treatment of various diseases. However, inside the blood stream, nanocarriers' properties may change significantly due to interactions with proteins, aggregation, decomposition or premature loss of cargo. Thus, a method for precise, in situ characterization of drug nanocarriers in blood is needed. Here we show how the fluorescence correlation spectroscopy that is a well-established method for measuring the size, loading efficiency and stability of drug nanocarriers in aqueous solutions can be used to directly characterize drug nanocarriers in flowing blood. As the blood is not transparent for visible light and densely crowded with cells, we label the nanocarriers or their cargo with near-infrared fluorescent dyes and fit the experimental autocorrelation functions with an analytical model accounting for the presence of blood cells. The developed methodology contributes towards quantitative understanding of the in vivo behavior of nanocarrier-based therapeutics.
Collapse
Affiliation(s)
- Inka Negwer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Andreas Best
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Meike Schinnerer
- Institute of Physical Chemistry, Johannes Gutenberg University, Jakob Welder Weg 11, 55128, Mainz, Germany
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Olga Schäfer
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Leon Capeloa
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Schmidt
- Institute of Physical Chemistry, Johannes Gutenberg University, Jakob Welder Weg 11, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Mark Helm
- Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan.
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
42
|
Nuhn L, De Koker S, Van Lint S, Zhong Z, Catani JP, Combes F, Deswarte K, Li Y, Lambrecht BN, Lienenklaus S, Sanders NN, David SA, Tavernier J, De Geest BG. Nanoparticle-Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803397. [PMID: 30276880 DOI: 10.1002/adma.201803397] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/20/2018] [Indexed: 05/17/2023]
Abstract
Localized therapeutic modalities that subvert the tumor microenvironment from immune-suppressive to pro-immunogenic can elicit systemic antitumor immune responses that induce regression of directly treated as well as nontreated distal tumors. A key toward generating robust antitumor T cell responses is the activation of dendritic cells (DCs) in the tumor microenvironment. Treatment with agonists triggering various pattern recognition receptors is very efficient to activate DCs, yet suffers from the induction of serious immune-related adverse effects, which is closely linked to their unfavorable PK/PD profile causing systemic immune activation and cytokine release. Here, it is reported that nanoparticle conjugation of a highly potent TLR7/8 agonist restricts immune activation to the tumor bed and its sentinel lymph nodes without hampering therapeutic antitumor efficacy. On a mechanistic level, it is confirmed that localized treatment with a nanoparticle-conjugated TLR7/8 agonist leads to potent activation of DCs in the sentinel lymph nodes and promotes proliferation of tumor antigen-specific CD8 T cells. Furthermore, therapeutic improvement upon combination with anti-PDL1 checkpoint inhibition and Flt3L, a growth factor that expands and mobilizes DCs from the bone marrow, is demonstrated. The findings provide a rational base for localized tumor engineering by nanomedicine strategies that provide spatial control over immune-activation.
Collapse
Affiliation(s)
- Lutz Nuhn
- Department of Pharmaceutics, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Stefaan De Koker
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB-UGent Center for Medical Biotechnology, Faculty of Medicine and Health Sciences, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Sandra Van Lint
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB-UGent Center for Medical Biotechnology, Faculty of Medicine and Health Sciences, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Zifu Zhong
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory of Gene Therapy, Cancer Research Institute (CRIG), Ghent University, 9820, Merelbeke, Belgium
| | - João Portela Catani
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory of Gene Therapy, Cancer Research Institute (CRIG), Ghent University, 9820, Merelbeke, Belgium
| | - Francis Combes
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory of Gene Therapy, Cancer Research Institute (CRIG), Ghent University, 9820, Merelbeke, Belgium
| | - Kim Deswarte
- VIB Center for Inflammation Research, Department of Respiratory Medicine, Ghent University, 9052, Ghent, Belgium
| | - Yupeng Li
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bart N Lambrecht
- VIB Center for Inflammation Research, Department of Respiratory Medicine, Ghent University, 9052, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, 3015, GD, Rotterdam, The Netherlands
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hanover Medical School, Hanover, Germany
- Institute of Immunology, Hanover Medical School, Hanover, Germany
| | - Niek N Sanders
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory of Gene Therapy, Cancer Research Institute (CRIG), Ghent University, 9820, Merelbeke, Belgium
| | - Sunil A David
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB-UGent Center for Medical Biotechnology, Faculty of Medicine and Health Sciences, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
43
|
Paisley NR, Tonge CM, Sauvé ER, Halldorson SV, Hudson ZM. Synthesis of polymeric organic semiconductors using semifluorinated polymer precursors. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nathan R. Paisley
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Christopher M. Tonge
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Ethan R. Sauvé
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Sarah V. Halldorson
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Zachary M. Hudson
- Department of ChemistryThe University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
44
|
Battistella C, Yang Y, Chen J, Klok HA. Synthesis and Postpolymerization Modification of Fluorine-End-Labeled Poly(Pentafluorophenyl Methacrylate) Obtained via RAFT Polymerization. ACS OMEGA 2018; 3:9710-9721. [PMID: 31459100 PMCID: PMC6644891 DOI: 10.1021/acsomega.8b01654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Chain-end-labeled polymers are interesting for a range of applications. In polymer nanomedicine, chain-end-labeled polymers are useful to study and help understand cellular internalization and intracellular trafficking processes. The recent advent of fluorescent label-free techniques, such as nanoscale secondary ion mass spectrometry (NanoSIMS), provides access to high-resolution intracellular mapping that can complement information obtained using fluorescent-labeled materials and confocal microscopy and flow cytometry. Using poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) as a prototypical polymer nanomedicine, this paper presents a synthetic strategy to polymers that contain trace element labels, such as fluorine, which can be used for NanoSIMS analysis. The strategy presented in this paper is based on reversible addition fragmentation chain transfer (RAFT) polymerization of pentafluorophenyl methacrylate (PFMA) mediated by two novel chain-transfer agents (CTAs), which contain either one (α) or two (α,ω) fluorine labels. In the first part of this study, via a number of polymerization experiments, the polymerization properties of the fluorinated RAFT CTAs were established. 19F NMR spectroscopy revealed that these fluorinated RAFT agents possess unique spectral signatures, which allow to directly monitor RAFT agent conversion and measure end-group fidelity. Comparison with 4-cyanopentanoic acid dithiobenzoate, which is a standard CTA for the RAFT polymerization of PFMA, revealed that the introduction of one or two fluorine labels does not significantly affect the polymerization properties of the CTA. In the last part of this paper, a proof-of-concept study is presented that demonstrates the feasibility of the fluorine-labeled poly(pentafluorophenyl methacrylate) polymers as platforms for the postpolymerization modification to generate PHPMA-based polymer nanomedicines.
Collapse
Affiliation(s)
- Claudia Battistella
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Yuejiao Yang
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Jie Chen
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Harm-Anton Klok
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Siemes E, Nevskyi O, Sysoiev D, Turnhoff SK, Oppermann A, Huhn T, Richtering W, Wöll D. Nanoscopic Visualization of Cross-Linking Density in Polymer Networks with Diarylethene Photoswitches. Angew Chem Int Ed Engl 2018; 57:12280-12284. [DOI: 10.1002/anie.201807741] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/27/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Eric Siemes
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Oleksii Nevskyi
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Dmytro Sysoiev
- Department of Chemistry; University of Konstanz; Universitätsstrasse 10 78464 Konstanz Germany
| | - Sarah K. Turnhoff
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Alex Oppermann
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Thomas Huhn
- Department of Chemistry; University of Konstanz; Universitätsstrasse 10 78464 Konstanz Germany
| | - Walter Richtering
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Dominik Wöll
- Institute for Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| |
Collapse
|
46
|
Siemes E, Nevskyi O, Sysoiev D, Turnhoff SK, Oppermann A, Huhn T, Richtering W, Wöll D. Nanoskopische Bildgebung der Vernetzungsdichte in Polymernetzwerken mittels Diarylethen-Photoschaltern. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eric Siemes
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Oleksii Nevskyi
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Dmytro Sysoiev
- Fachbereich Chemie; Universität Konstanz; Universitätsstraße 10 78464 Konstanz Deutschland
| | - Sarah K. Turnhoff
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Alex Oppermann
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Thomas Huhn
- Fachbereich Chemie; Universität Konstanz; Universitätsstraße 10 78464 Konstanz Deutschland
| | - Walter Richtering
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| | - Dominik Wöll
- Institut für Physikalische Chemie; RWTH Aachen; Landoltweg 2 52074 Aachen Deutschland
| |
Collapse
|
47
|
Nuhn L, Van Herck S, Best A, Deswarte K, Kokkinopoulou M, Lieberwirth I, Koynov K, Lambrecht BN, De Geest BG. FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles. Angew Chem Int Ed Engl 2018; 57:10760-10764. [DOI: 10.1002/anie.201803847] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Lutz Nuhn
- Department of PharmaceuticsGhent University Belgium
- Max-Planck-Institute for Polymer Research Mainz Germany
| | | | - Andreas Best
- Max-Planck-Institute for Polymer Research Mainz Germany
| | - Kim Deswarte
- IRC-VIB, Zwijnaarde, and Department of Respiratory MedicineGhent University Belgium
| | | | | | | | - Bart N. Lambrecht
- IRC-VIB, Zwijnaarde, and Department of Respiratory MedicineGhent University Belgium
| | | |
Collapse
|
48
|
Nuhn L, Van Herck S, Best A, Deswarte K, Kokkinopoulou M, Lieberwirth I, Koynov K, Lambrecht BN, De Geest BG. Förster‐Resonanzenergietransfer‐basierter Nachweis intrazellulärer Ketal‐Hydrolyse in synthetisch vernetzten Nanopartikeln. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lutz Nuhn
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Belgien
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Simon Van Herck
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Belgien
| | - Andreas Best
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Kim Deswarte
- IRC-VIB, Zwijnaarde, und Faculteit Geneeskunde en, GezondheidswetenschappenUniversiteit Gent Belgien
| | | | | | - Kaloian Koynov
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Bart N. Lambrecht
- IRC-VIB, Zwijnaarde, und Faculteit Geneeskunde en, GezondheidswetenschappenUniversiteit Gent Belgien
| | | |
Collapse
|
49
|
Couturaud B, Georgiou PG, Varlas S, Jones JR, Arno MC, Foster JC, O'Reilly RK. Poly(Pentafluorophenyl Methacrylate)-Based Nano-Objects Developed by Photo-PISA as Scaffolds for Post-Polymerization Functionalization. Macromol Rapid Commun 2018; 40:e1800460. [PMID: 30062711 DOI: 10.1002/marc.201800460] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/29/2018] [Indexed: 02/04/2023]
Abstract
The preparation of a functional fluorine-containing block copolymer using reversible addition-fragmentation chain-transfer dispersion polymerization in DMSO as a "platform/scaffold" is explored. The nanostructures, comprised of poly(ethyleneglycol)-b-poly(pentafluorophenyl methacrylate) or PEG-b-P(PFMA), are formulated via photo-initiated polymerization-induced self-assembly (PISA) followed by post-polymerization modification using different primary amines. A combination of light scattering and microscopy techniques are used to characterize the resulting morphologies. It is found that upon varying the degree of polymerization of the core-forming block of PFMA, only uniform spheres (with textured surfaces) are obtained. These nanostructures are subsequently modified by cross-linking using a non-responsive and a redox-responsive diamine, thus imparting stability to the particles in water. In response to intracellular glutathione (GSH) concentration, destabilization of the micelles occurs as evidenced by dynamic light scattering. The well-defined size, inherent reactivity of the nanoparticles toward nucleophiles, and GSH-responsiveness of the nanospheres make them ideal scaffolds for drug delivery to intracellular compartments with reductive environments.
Collapse
Affiliation(s)
- Benoit Couturaud
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Panagiotis G Georgiou
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.,Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Spyridon Varlas
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Joseph R Jones
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Jeffrey C Foster
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
50
|
Becher TB, Mendonça MCP, de Farias MA, Portugal RV, de Jesus MB, Ornelas C. Soft Nanohydrogels Based on Laponite Nanodiscs: A Versatile Drug Delivery Platform for Theranostics and Drug Cocktails. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21891-21900. [PMID: 29889487 DOI: 10.1021/acsami.8b06149] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new nanohydrogel drug delivery platform based on Laponite nanodiscs, polyacrylate, and sodium phosphate salts is described. The hybrid nanohydrogel is tailored to obtain soft and flexible nanohydrogels with G' around 3 kPa, which has been proposed as the ideal stiffness for drug delivery applications. In vitro studies demonstrate that the new nanohydrogels are biocompatible, biodegradable, nonswellable, pH-responsive, and noncytotoxic and are able to deliver antineoplastic drugs into cancer cells. The IC50 of nanohydrogels containing cisplatin, 4-fluorouracil, and cyclophosphamide is significantly lower than the IC50 of the free drugs. In vivo experiments suggest that the new nanomaterials are biocompatible and do not accumulate in crucial organs. The simple formulation procedure enables encapsulation of virtually any water-soluble molecule, without the need for chemical modification of the guests. These nanohydrogels are a versatile platform that enables the simultaneous encapsulation of several cancer drugs, yielding an efficient drug cocktail delivery system, which for instance presents a positive synergistic effect against MCF-7 cells.
Collapse
Affiliation(s)
| | | | - Marcelo A de Farias
- Brazilian Nanotechnology National Laboratory (LNNano) , Brazilian Center for Research in Energy and Materials (CNPEM) , 13083-970 Campinas , Sao Paulo , Brazil
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano) , Brazilian Center for Research in Energy and Materials (CNPEM) , 13083-970 Campinas , Sao Paulo , Brazil
| | | | | |
Collapse
|