1
|
Liu H, Zhou Y, Chang W, Zhao X, Hu X, Koh K, Chen H. Construction of a sensitive SWCNTs integrated SPR biosensor for detecting PD-L1 + exosomes based on Fe 3O 4@TiO 2 specific enrichment and signal amplification. Biosens Bioelectron 2024; 262:116527. [PMID: 38941687 DOI: 10.1016/j.bios.2024.116527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Programmed cell death-ligand 1 positive (PD-L1+) exosomes play a crucial role in the realm of cancer diagnosis and treatment. Nevertheless, due to the intricate nature of biological specimens, coupled with the heterogeneity, low refractive index (RI), and scant surface coverage density of exosomes, traditional surface plasmon resonance (SPR) sensors still do not meet clinical detection requirements. This study utilizes the exceptional electrical and optical attributes of single-walled carbon nanotubes (SWCNTs) as the substrate for SPR sensing, thereby markedly enhancing sensitivity. Furthermore, sp2 hybridized SWCNTs have the ability to load specific recognition elements. Additionally, through the coordination interaction of Ti with phosphate groups and the ferromagnetism of Fe3O4, efficient exosomes isolation and enrichment in complex samples are achievable with the aid of an external magnetic field. Owing to the high-quality and high-RI of Fe3O4@TiO2, the response signal experiences amplification, thus further improving the performance of the SPR biosensor. The linear range of the SPR biosensor constructed by this method is 1.0 × 103 to 1.0 × 107 particles/mL, with a limit of detection (LOD) of 31.9 particles/mL. In the analysis of clinical serum samples, cancer patients can be differentiated from healthy individuals with an Area Under Curve (AUC) of 0.9835. This study not only establishes a novel platform for exosomes direct detection but also offers new perspectives for the sensitive detection of other biomarkers.
Collapse
Affiliation(s)
- Hezhen Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Weiwei Chang
- Department of Physics, Shanghai University, Shanghai, 200444, PR China
| | - Xinluo Zhao
- Department of Physics, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea.
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
2
|
Li W, Ren N, Shi Y, Wang R, Li G. The magnetic layered double hydroxide/zeolitic imidazolate framework-8 nanocomposite coupled with HPLC-MS/MS for the detection of heterocyclic aromatic amines in thermally processed meat. J Chromatogr A 2024; 1727:464988. [PMID: 38749348 DOI: 10.1016/j.chroma.2024.464988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
In this research, a novel magnetic nanocomposite (Fe3O4@Zn/Al-LABSA-LDH/ZIF-8) was synthesized using Fe3O4 as the magnetic core, layered double hydroxide (LDH) with linear alkylbenzene sulfonic acid (LABSA) intercalation and zeolitic imidazolate framework-8 (ZIF-8) as the shell. Benefiting from the intercalation of LABSA into LDH combined with ZIF-8, the multiple interactions, including π-π stacking, hydrogen bonding, and electrostatic interactions, conferred high selectivity and good extraction capability to the material towards heterocyclic aromatic amines (HAAs). Fe3O4@Zn/Al-LABSA-LDH@ZIF-8 was used as an adsorbent for magnetic solid-phase extraction (MSPE) to enrich HAAs in thermally processed meat samples, followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection. The method exhibited a low detection limit (0.021-0.221 ng/g), good linearity (R2 ≥ 0.9999), high precision (RSD < 7.2 %), and satisfactory sample recovery (89.7 % -107.5 %). This research provides a promising approach for developing novel adsorbents in sample preparation and improving analytical performance.
Collapse
Affiliation(s)
- Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nanjiang Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ruihong Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
3
|
Wen H, Li M, Zhao CY, Xu T, Fu S, Sui H, Han C. Magnetic Titanium Dioxide Nanocomposites as a Recyclable SERRS Substrate for the Ultrasensitive Detection of Histidine. Molecules 2024; 29:2906. [PMID: 38930970 PMCID: PMC11206314 DOI: 10.3390/molecules29122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
A highly sensitive, selective and recyclable histidine detection method based on magnetic Fe3O4@mTiO2 (M-TiO2) nanocomposites with SERRS was developed. Mesoporous M-TiO2 nanoparticles were functionalized with 4-aminothiophenol and then coupled with histidine through an azo coupling reaction in 5 min, producing the corresponding azo compound. The strong and specific SERRS response of the azo product allowed for ultrasensitive and selective detection for histidine with an M-TiO2 device loaded with Ag NPs due to the molecular resonance effect and plasmonic effect of Ag NPs under a 532 nm excitation laser. The sensitivity was further enhanced with the magnetic enrichment of M-TiO2. The limit of detection (LOD) was as low as 8.00 × 10-12 mol/L. The M-TiO2 demonstrated applicability towards histidine determination in human urine without any sample pretreatment. Additionally, the M-TiO2 device can be recycled for 3 cycles with the photodegradation of the azo product under UV irradiation due to TiO2-assisted and plasmon-enhanced photocatalysis. In summary, a multifunctional and recyclable M-TiO2 device was synthesized based on azo coupling and SERRS spectroscopy for ultra-sensitive and specific histidine sensing. In addition, the proposed system demonstrated the potential for the multiplex determination of toxic compounds in the fields of food safety, industrial production and environmental protection, which benefit from the fingerprint property and universality of SERRS.
Collapse
Affiliation(s)
| | | | | | | | | | - Huimin Sui
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161000, China (C.-Y.Z.); (T.X.)
| | - Cuiyan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161000, China (C.-Y.Z.); (T.X.)
| |
Collapse
|
4
|
Wang X, Guo Q, Guo J, Wang C. Magnetic composite microspheres with a controlled mesoporous shell for highly efficient DNA extraction and fragment screening. J Mater Chem B 2024; 12:4899-4908. [PMID: 38682549 DOI: 10.1039/d4tb00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Rapid extraction and screening of high-purity DNA fragments is an indispensable technology in advanced molecular biology. In this article, mesoporous magnetic composite microspheres (MSP@mTiO2) with tunable pore sizes were successfully fabricated for high-purity DNA extraction and fragment screening. Owing to the strong complexation ability of Ti ions with DNA phosphate groups and the high specific surface area of mesoporous microspheres, the MSP@mTiO2 microspheres possess excellent adsorption performance, where the saturated loading capacity of MSP@mTiO2 with a specific surface area of 122 m2 g-1 is as high as 575 μg mg-1 for a salmon sperm specimen. ITC experiments demonstrated that DNA adsorption on MSP@mTiO2 microspheres is mainly driven by entropy, which gives us more potential ways to regulate the balance of adsorption and desorption. Meanwhile, the mesoporous MSP@mTiO2 microspheres exhibit a much higher extraction efficiency compared with non-porous MSP@TiO2 for whole genome DNA from Arabidopsis thaliana plants. Interestingly, DNA fragments with different lengths could be screened by simply regulating the pore size of MSP@mTiO2 or the concentration of Na3PO4 in the eluent. A small pore size and low phosphate concentration are advantageous for the extraction of short-stranded DNA fragments, and DNA fragments (≤1000 bp) can be efficiently extracted when the mesopore size of MSP@mTiO2 is lower than 7.6 nm. The extraction results from the mesoporous composite microspheres provide new promising insights into the purification and screening of DNA from complex biological samples.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
He Y, Wang C, Wu Q, Zhang G. Magnetic targeting and pH-microwave dual responsive Janus mesoporous silica nanoparticles for drug encapsulation and delivery. NANOTECHNOLOGY 2024; 35:315701. [PMID: 38657569 DOI: 10.1088/1361-6528/ad42a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
In this paper, a new Janus-structured nano drug delivery carrier Fe3O4@TiO2&mSiO2was designed and synthesized, which consisted of a spherical head and a closely connected rod. The head was a nanocomposite of core/shell structure with magnetic spinel ferric tetraoxide core and anatase titanium dioxide shell (Fe3O4@TiO2), and the rod was ordered mesoporous silica (mSiO2). The nanocarriers showed excellent magnetic targeting capability (saturation magnetization, 25.18 emu g-1). The core/shell heads endowed the carriers with fine microwave responsiveness. The pore volume of mesoporous nanocarriers was 0.101 cm3g-1, and the specific surface area was 489.0 m2g-1. Anticancer drug doxorubicin could be loaded in the mesoporous of the carriers to form Fe3O4@TiO2&mSiO2-DOX. The drug loading capacity was 10.4%. Fe3O4@TiO2&mSiO2-DOX exhibited acid-sensitive and microwave-sensitive release properties along with good bio-compatibility. Fe3O4@TiO2&mSiO2Janus nanoparticles are expected to be ideal drug carriers.
Collapse
Affiliation(s)
- Yuhai He
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, People's Republic of China
| | - Chen Wang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Qiuhua Wu
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Guolin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| |
Collapse
|
6
|
Yue H, Zhao D, Tegafaw T, Ahmad MY, Saidi AKAA, Liu Y, Cha H, Yang BW, Chae KS, Nam SW, Chang Y, Lee GH. Core-Shell Fe 3O 4@C Nanoparticles as Highly Effective T 2 Magnetic Resonance Imaging Contrast Agents: In Vitro and In Vivo Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:177. [PMID: 38251140 PMCID: PMC10819740 DOI: 10.3390/nano14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Magnetite nanoparticles (Fe3O4 NPs) have been intensively investigated because of their potential biomedical applications due to their high saturation magnetization. In this study, core-shell Fe3O4@C NPs (core = Fe3O4 NPs and shell = amorphous carbons, davg = 35.1 nm) were synthesized in an aqueous solution. Carbon coating terminated with hydrophilic -OH and -COOH groups imparted excellent biocompatibility and hydrophilicity to the NPs, making them suitable for biomedical applications. The Fe3O4@C NPs exhibited ideal relaxometric properties for T2 magnetic resonance imaging (MRI) contrast agents (i.e., high transverse and negligible longitudinal water proton spin relaxivities), making them exclusively induce only T2 relaxation. Their T2 MRI performance as contrast agents was confirmed in vivo by measuring T2 MR images in mice before and after intravenous injection.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Hyunsil Cha
- Division of Biomedical Science, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Byeong Woo Yang
- Theranocure, Medlifescience Bldg. 1, Chilgok, Bukgu, Taegu 41405, Republic of Korea;
| | - Kwon Seok Chae
- Department of Biology Education, Teachers’ College, Kyungpook National University, Taegu 41566, Republic of Korea;
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| |
Collapse
|
7
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y. In-situ SERS detection of quinolone antibiotic residues in aquaculture water by multifunctional Fe 3O 4@mTiO 2@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123056. [PMID: 37385202 DOI: 10.1016/j.saa.2023.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Antibiotic residues in aquaculture environments disrupt the ecosystem balance and pose a potential hazard to human health when entering the food chain. Therefore, ultra-sensitive detection of antibiotics is necessary. In this study, a multifunctional Fe3O4@mTiO2@Ag core-shell nanoparticle (NP), synthesized using a layer-by-layer method, was demonstrated to be useful as an enhanced substrate for in-situ surface-enhanced Raman spectroscopy (SERS) detection of various quinolone antibiotics in aqueous environments. The results showed that the minimum detectable concentrations of the six investigated antibiotics were 1 × 10-9 mol/L (ciprofloxacin, danofloxacin, enoxacin, enrofloxacin, and norfloxacin) and 1 × 10-8 mol/L (difloxacin hydrochloride) under the enrichment and enhancement of Fe3O4@mTiO2@Ag NPs. Additionally, there was a good quantitative relationship between the antibiotics concentrations and SERS peak intensities within a certain detection range. The results of the spiked assay of actual aquaculture water samples showed that the recoveries of the six antibiotics ranged from 82.9% to 113.5%, with relative standard deviations ranging from 1.71% to 7.24%. In addition, Fe3O4@mTiO2@Ag NPs achieved satisfactory results in assisting the photocatalytic degradation of antibiotics in aqueous environments. This provides a multifunctional solution for low concentration detection and efficient degradation of antibiotics in aquaculture water.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
8
|
Zhang S, Ghalandari B, Wang A, Li S, Chen Y, Wang Q, Jiang L, Ding X. Superparamagnetic Composite Nanobeads Anchored with Molecular Glues for Ultrasensitive Label-free Proteomics. Angew Chem Int Ed Engl 2023; 62:e202309806. [PMID: 37653561 DOI: 10.1002/anie.202309806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Mass spectrometry has emerged as a mainstream technique for label-free proteomics. However, proteomic coverage for trace samples is constrained by adsorption loss during repeated elution at sample pretreatment. Here, we demonstrated superparamagnetic composite nanoparticles functionalized with molecular glues (MGs) to enrich proteins in trace human biofluid. We showed high protein binding (>95 %) and recovery (≈90 %) rates by anchor-nanoparticles. We further proposed a Streamlined Workflow based on Anchor-nanoparticles for Proteomics (SWAP) method that enabled unbiased protein capture, protein digestion and pure peptides elution in one single tube. We demonstrated SWAP to quantify over 2500 protein groups with 100 HEK 293T cells. We adopted SWAP to profile proteomics with trace aqueous humor samples from cataract (n=15) and wet age-related macular degeneration (n=8) patients, and quantified ≈1400 proteins from 5 μL aqueous humor. SWAP simplifies sample preparation steps, minimizes adsorption loss and improves protein coverage for label-free proteomics with previous trace samples.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Behafarid Ghalandari
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Sijie Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Youming Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Qingwen Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
9
|
Li J, Xu X, Zhang F, Guo W, Wang X, Xie Y, Zhang F. Urea-based magnetic porous organic frameworks as novel adsorbent for the enrichment of phenylurea herbicides in foods. Food Chem 2023; 425:136436. [PMID: 37267786 DOI: 10.1016/j.foodchem.2023.136436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
A novel urea-based magnetic porous organic frameworks Fe3O4@UPOFs (ETTA-PPDI) was synthesized by a simple polymerization reaction under mild conditions. The adsorbent displayed desirable adsorption performance for phenylurea herbicides (PUHs) with optimized adsorption time of only 4 min. The adsorption capacities of the adsorbent for PUHs ranged from 47.30 to 111.93 mg g-1. A magnetic solid-phase extraction based on Fe3O4@UPOFs combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established for the efficient determination of six PUHs in food samples (wheat, edible oil and cucumber), with determination coefficient (R2) ≥ 0.9972. The LODs of the method were in the range of 0.003-0.07 μg kg-1 and recoveries ranged from 82.00 to 112.53%. The relative standard deviations were lower than 6.7%. The newly prepared adsorbent displayed great application prospects for the efficient enrichment of trace phenylurea herbicides in complex food matrices.
Collapse
Affiliation(s)
- Jinhua Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China.
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Feifang Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
10
|
Muhammad M, Ma R, Du A, Fan Y, Zhao X, Cao X. Preparation and Modification of Polydopamine Boron Nitride-Titanium Dioxide Nanohybrid Particles Incorporated into Zinc Phosphating Bath to Enhance Corrosion Performance of Zinc Phosphate-Silane Coated Q235 Steel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103835. [PMID: 37241462 DOI: 10.3390/ma16103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
In this work, PDA@BN-TiO2 nanohybrid particles were incorporated chemically into a zinc-phosphating solution to form a robust, low-temperature phosphate-silane coating on Q235 steel specimens. The morphology and surface modification of the coating was characterized by X-Ray Diffraction (XRD), X-ray Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), and Scanning electron microscopy (SEM). Results demonstrate that the incorporation of PDA@BN-TiO2 nanohybrids produced a higher number of nucleation sites and reduced grain size with a denser, more robust, and more corrosion-resistant phosphate coating compared to pure coating. The coating weight results showed that the PBT-0.3 sample achieved the densest and most uniform coating (38.2 g/m2). The potentiodynamic polarization results showed that the PDA@BN-TiO2 nanohybrid particles increased phosphate-silane films' homogeneity and anti-corrosive capabilities. The 0.3 g/L sample exhibits the best performance with an electric current density of 1.95 × 10-5 A/cm2, an order of magnitude lower than that of the pure coatings. Electrochemical impedance spectroscopy revealed that PDA@BN-TiO2 nanohybrids provided the greatest corrosion resistance compared to pure coatings. The corrosion time for copper sulfate in samples containing PDA@BN/TiO2 prolonged to 285 s, a significantly higher amount of time than the corrosion time found in pure samples.
Collapse
Affiliation(s)
- Mustafa Muhammad
- Key Laboratory for New Type of Functional Materials in Hebei Province, Tianjin Key Laboratory Material Laminating Fabrication and Interface, Tianjin Engineering and Technology Center for Environmental-Friendly Coating on Pipeline, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Ruina Ma
- Key Laboratory for New Type of Functional Materials in Hebei Province, Tianjin Key Laboratory Material Laminating Fabrication and Interface, Tianjin Engineering and Technology Center for Environmental-Friendly Coating on Pipeline, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - An Du
- Key Laboratory for New Type of Functional Materials in Hebei Province, Tianjin Key Laboratory Material Laminating Fabrication and Interface, Tianjin Engineering and Technology Center for Environmental-Friendly Coating on Pipeline, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Yongzhe Fan
- Key Laboratory for New Type of Functional Materials in Hebei Province, Tianjin Key Laboratory Material Laminating Fabrication and Interface, Tianjin Engineering and Technology Center for Environmental-Friendly Coating on Pipeline, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Xue Zhao
- Key Laboratory for New Type of Functional Materials in Hebei Province, Tianjin Key Laboratory Material Laminating Fabrication and Interface, Tianjin Engineering and Technology Center for Environmental-Friendly Coating on Pipeline, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Xiaoming Cao
- Key Laboratory for New Type of Functional Materials in Hebei Province, Tianjin Key Laboratory Material Laminating Fabrication and Interface, Tianjin Engineering and Technology Center for Environmental-Friendly Coating on Pipeline, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| |
Collapse
|
11
|
Liao W, Zheng L, Hao J, Huang L, Wang Q, Yin Z, Qi T, Jia L, Liu K. Eco-friendly fabrication of multifunctional magnetic plasmonic photocatalyst for adsorption, SERS monitoring and photodegradation of residual fluoroquinolone antibiotics in water. CHEMOSPHERE 2023; 331:138842. [PMID: 37142102 DOI: 10.1016/j.chemosphere.2023.138842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
In this work, a kind of multifunctional magnetic plasmonic photocatalyst was prepared by a green and efficient process. Magnetic mesoporous anatase titanium dioxide (Fe3O4@mTiO2) was synthesized by microwave-assisted hydrothermal, and Ag NPs were simultaneously in-situ grown on Fe3O4@mTiO2 (Fe3O4@mTiO2@Ag), graphene oxide (GO) was then wrapped on Fe3O4@mTiO2@Ag (Fe3O4@mTiO2@Ag@GO) to increase its adsorption capacity for fluoroquinolone antibiotics (FQs). Owing to the localized surface plasmon resonance (LSPR) effect of Ag, as well as the photocatalytic capacity of TiO2, a multifunctional platform based on Fe3O4@mTiO2@Ag@GO was constructed for adsorption, surface-enhanced Raman spectroscopy (SERS) monitoring and photodegradation of FQs in water. The quantitative SERS detection of norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR) was demonstrated with LOD of 0.1 μg mL-1, and the qualitative analysis was confirmed by density functional theory (DFT) calculation. The photocatalytic degradation rate of NOR over Fe3O4@mTiO2@Ag@GO was about 4.6 and 1.4 times faster than that of Fe3O4@mTiO2 and Fe3O4@mTiO2@Ag, indicating the synergetic effects of Ag NPs and GO, the used Fe3O4@mTiO2@Ag@GO can be easily recovered and recycled for at least 5 times. Thus, the eco-friendly magnetic plasmonic photocatalyst provided a potential solution for the removal and monitoring of residual FQs in environmental water.
Collapse
Affiliation(s)
- Wenlong Liao
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China; Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Li Zheng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Juan Hao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Lijuan Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qinghui Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhihang Yin
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Ting Qi
- Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Lingpu Jia
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China; Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Kunping Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
12
|
Recent advances in metal oxide affinity chromatography materials for phosphoproteomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Exploration of the Simple and Green Synthetic Route of Hollow Titanium Dioxide Microspheres for In-Depth Analysis of Phosphopeptides in the Serum of Nasopharyngeal Carcinoma Patients. Chromatographia 2022. [DOI: 10.1007/s10337-022-04211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Zhou L, Wen X, Min Y, He J, You L, Li J. Surface enhanced Raman spectroscopy based on Ag@mZrO2@Ag nanocomposites: Sensing and photocatalytic reduction of chromium(VI). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Wang H, Tang R, Jia S, Ma S, Gong B, Ou J. Monodisperse Ti 4+-immobilized macroporous adsorbent resins with polymer brush for improved multi-phosphopeptides enrichment in milk. Mikrochim Acta 2022; 189:405. [PMID: 36197509 DOI: 10.1007/s00604-022-05500-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 10/10/2022]
Abstract
Enrichment of phosphopeptides before mass spectrometry (MS) analysis is essential due to the limitations of low abundance and poor ionization efficiency in complex biological samples. Immobilized metal affinity chromatography (IMAC), especially titanium ion (Ti4+)-IMAC, has become a popular strategy for enrichment of phosphopeptides due to high selectivity and sensitivity. Conventional Ti4+-immobilized macroporous adsorption resin (MAR) fabricated by monolayer modification can preferentially capture mono-phosphopeptide over multi-phosphopeptides, which takes on more functions in the regulation of cell behaviors of organism. In this paper, a kind of monodisperse MAR microsphere with functional polymer brush (Ti4+-Brush@MAR) was prepared and modified via surface-initiated atom transfer radical polymerization (SI-ATRP). Compared with common Ti4+-MAR without polymer brush, Ti4+-Brush@MAR exhibited high enrichment specificity not only for mono-phosphopeptides but also for multi-phosphopeptides in β-casein or milk digest samples. As a result, a total of 93 unique phosphopeptides mapped to 18 phosphoproteins were identified from 5 μL milk, and the limit of detection is 10 fmol. It is expected that Ti4+-Brush@MAR would be utilized to enrich both multi-phosphopeptides and mono-phosphopeptides in additional biological or food samples.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shicong Jia
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Wang Q, Wu Y, Guo W, Zhang F, Zhang F. A magnetic covalent organic framework as selective adsorbent for preconcentration of multi strobilurin fungicides in foods. Food Chem 2022; 392:133190. [DOI: 10.1016/j.foodchem.2022.133190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
|
17
|
Qiao M, Tian Y, Wang J, Li X, He X, Lei X, Zhang Q, Ma M, Meng X. Magnetic-Field-Induced Vapor-Phase Polymerization to Achieve PEDOT-Decorated Porous Fe 3O 4 Particles as Excellent Microwave Absorbers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingtao Qiao
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Yurui Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Jiani Wang
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiang Li
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiaowei He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, P. R. China
| | - Xiaorong Meng
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| |
Collapse
|
18
|
Synthesis of a magnetic covalent organic framework as sorbents for solid-phase extraction of aflatoxins in food prior to quantification by liquid chromatography-mass spectrometry. Food Chem 2022; 387:132821. [DOI: 10.1016/j.foodchem.2022.132821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
|
19
|
Li J, He X, Jiang H, Xing Y, Fu B, Hu C. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36027-36037. [PMID: 35916408 DOI: 10.1021/acsami.2c08464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advances in the versatile design and synthesis of nanomaterials have imparted diverse functionalities to Janus micromotors as autonomous vehicles. However, a significant challenge remains in maneuvering Janus micromotors by following desired trajectories for on-demand motility and intelligent control due to the inherent rotational Brownian motion. Here, we present the enhanced and robust directional propulsion of light-activated Fe3O4@TiO2/Pt Janus micromotors by magnetic spinning and the Magnus effect. Once exposed to a low-intensity rotating magnetic field, the micromotors become physically actuated, and their rotational Brownian diffusion is quenched by the magnetic rotation. Photocatalytic propulsion can be triggered by unidirectional irradiation based on a self-electrophoretic mechanism. Thus, a transverse Magnus force can be generated due to the rotational motion and ballistic motion (photocatalytic propulsion) of the micromotors. Both the self-electrophoretic propulsion and the Magnus force are periodically changed due to the magnetic rotation, which results in an overall directed motion moving toward a trajectory with a deflection angle from the direction of incident light with enhanced speed, maneuverability, and steering robustness. Our study illustrates the admirable directional motion capabilities of light-driven Janus micromotors based on magnetic spinning and the Magnus effect, which unfolds a new paradigm for addressing the limitations of directionality control in the current asymmetric micromotors.
Collapse
Affiliation(s)
- Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Xing
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Cheng R, Wang Y, Men R, Lei Z, Song J, Li Y, Guo M. High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage. iScience 2022; 25:104837. [PMID: 35996580 PMCID: PMC9391588 DOI: 10.1016/j.isci.2022.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dielectric capacitors with higher working voltage and power density are favorable candidates for renewable energy systems and pulsed power applications. A polymer with high breakdown strength, low dielectric loss, great scalability, and reliability is a preferred dielectric material for dielectric capacitors. However, their low dielectric constant limits the polymer to achieve satisfying energy density. Therefore, great efforts have been made to get high-energy-density polymer dielectrics. By compositional and structural tailoring, the synergic integrations of the multiple components and optimized structural design effectively improved the energy storage properties. This review presents an overview of recent advancements in the field of high-energy-density polymer dielectrics via compositional and structural tailoring. The surface/interfacial engineering conducted on both microscale and macroscale for polymer dielectrics is the focus of this review. Challenges and the promising opportunities for the development of polymer dielectrics for capacitive energy storage applications are presented at the end of this review. A detailed summary of the state-of-the-art polymer dielectrics The comparison of polymer nanocomposites with 0D, 1D, and 2D nanofillers Analyzing high Ue polymer dielectrics via compositional and structural tailoring Summary of micro- or macro-surface and interface engineering
Collapse
|
21
|
Jin S, Park E, Guo S, Park Y, Park J, Yoo HS, Park JH, Chen L, Jung YM. Process monitoring of photocatalytic degradation of 2,4-dinitrotoluene by Au-decorated Fe 3O 4@TiO 2 nanoparticles: surface-enhanced Raman scattering method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121155. [PMID: 35313176 DOI: 10.1016/j.saa.2022.121155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Recently, the degradation and detection of 2,4-dinitrotoluene (2,4-DNT) capable of producing 2,4,6-trinitrotoluene (TNT) for environmental and human health risks have been developed. We prepared photoresponsive Au-decorated Fe3O4@TiO2 nanoparticles (Fe3O4@TiO2-Au NPs) under sunlight simulated Xe lamp irradiation. The photodegradation process of 2,4-DNT by Fe3O4@TiO2-Au NPs was successfully monitored by surface-enhanced Raman scattering (SERS). Since SERS monitoring shows intrinsic information about the molecular structure, it was possible to predict the photodegradation of 2,4-DNT. The 2,4-DNT photodegradation mechanism based on two-dimensional correlation spectroscopy (2D-COS), which provides very beneficial information for a deeper understanding of systems, has been identified. We confirmed that Fe3O4@TiO2-Au NPs can be widely used in organic pollutant degradation under sunlight. Furthermore, the combination of SERS based process monitoring and 2D-COS can be a convincing analytical technique for photodegradation studies of organic pollutants.
Collapse
Affiliation(s)
- Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Jongmin Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea
| | - Hyuk Sang Yoo
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea; Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea
| | - Lei Chen
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
22
|
Improved enrichment and analysis of heterocyclic aromatic amines in thermally processed foods by magnetic solid phase extraction combined with HPLC-MS/MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Saleh MR, Thabet SM, El-Gendy RA, Saleh M, El-Bery HM. MIL−53 (Fe) for constructing hydrogenated Fe3O4@C@TiO2 double core-shell nanocrystals as superior bifunctional photocatalyst. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Alhendal A, Rashad M, Husain A, Mouffuok F, Bumajdad A. A chromia-based sorbent for the enrichment of phosphotyrosine. J Chromatogr A 2022; 1671:462991. [DOI: 10.1016/j.chroma.2022.462991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
|
25
|
Yang X, Zhang X, Li Y, Li X, Liang X, Tian Y, Jiang L. TiO 2 with Confined Water Boosts Ultrahigh Selective Enrichment of Phosphorylated Proteins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19067-19075. [PMID: 35420410 DOI: 10.1021/acsami.2c03158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the selective enrichment of phosphorylated proteins (PPs) from biological samples, the non-phosphorylated proteins (NPPs) adhered onto enrichment adsorbents due to the hydrophobic interaction, resulting in poor selectivity and low recovery of target PPs. Herein, superhydrophilic TiO2-coated porous SiO2 microspheres are prepared and boost remarkable selectivity toward standard PP spiked with 2000 mass-fold NPP interference. The outstanding performance of the superhydrophilic microspheres is attributed to the coordination interaction between TiO2 and PPs, and the confined water layer generated from superhydrophilicity avoids the irreversible adsorption of NPPs by keeping NPP inner hydrophobic regions in a compact structure, which is verified by single molecule force spectroscopy, circular dichroism, and quartz crystal microbalance. This strategy for enrichment is expected to solve the challenge in proteomics and sheds light on the interactions between biomolecules and superwettability.
Collapse
Affiliation(s)
- Xiaotao Yang
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Yulong Li
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Li J, Xu X, Wang X, Li C, Feng X, Zhang Y, Zhang F. Construction of a magnetic covalent organic framework for magnetic solid-phase extraction of AFM1 and AFM2 in milk prior to quantification by LC-MS/MS. Mikrochim Acta 2022; 189:149. [PMID: 35303752 DOI: 10.1007/s00604-021-05090-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
A magnetic covalent organic framework (M-COF) was designed and selected as sorbent for magnetic solid-phase extraction (MSPE) of AFM1 and AFM2 in milk, followed by LC-MS/MS analysis. The application of 2,5-Dihydroxy-1,4-benzenedicarboxaldehyde (Dt) and 4',5'-bis(4-aminophenyl)-[1,1':2',1″-terphenyl]-4,4″-diamine (BAPTPDA) as monomers endows M-COF excellent properties for adsorbing AFM1 and AFM2. The morphology, structure, stability, and magnetism of the Fe3O4@COF(BAPTPDA-Dt) were characterized by various techniques including scanning electron microscopy, transmission electron microscopy, FTIR, thermogravimetric analysis, and vibrating sample magnetometer. The Fe3O4 microspheres were covered by COF shells. Fe3O4@COF exhibited excellent magnetism and stability. Some parameters that may influence the adsorption efficiency of MSPE were also optimized, making the extraction process more effective, time-saving (about 3 min), and less organic-reagent-consuming (only 4 mL of acetonitrile required). It is noteworthy that the Fe3O4@COF(BAPTPDA-Dt) can be reutilized more than 8 times. The AFM1 and AFM2 were determined by LC-MS/MS. The LODs for AFM1 and AFM2 were in the range 0.0069 to 0.0078 μg kg-1. A wide linearity range (0.01-100 μg kg-1) with coefficients of determination (R2) ranging from 0.9998 to 0.9999 was obtained. The recoveries at four spiked concentrations (0.05, 0.5, 5, and 50 μg kg-1) in the milk matrix ranged from 85.2 to 106.5%. The intraday RSDs and the interday RSDs were in the range 1.74-4.58% and 2.65-6.69%, respectively. The matrix effect (9.3% for AFM1 and 6.7% for AFM2) was also significantly lower than that observed in other work . Overall, the established method has provided a powerful tool for rapid pretreatment and sensitive determination of AFM1 and AFM2 in milk with negligible matrix effect, presenting important value in toxicant determination.
Collapse
Affiliation(s)
- Jie Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,School of Pharmacy, China Medical University, ShenyangLiaoning, 110122, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chen Li
- Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, ShenyangLiaoning, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, ShenyangLiaoning, 110122, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
27
|
A novel graphene oxide/chitosan foam incorporated with metal–organic framework stationary phase for simultaneous enrichment of glycopeptide and phosphopeptide with high efficiency. Anal Bioanal Chem 2022; 414:2251-2263. [DOI: 10.1007/s00216-021-03861-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 01/07/2023]
|
28
|
Silver@mesoporous Anatase TiO2 Core-Shell Nanoparticles and Their Application in Photocatalysis and SERS Sensing. COATINGS 2022. [DOI: 10.3390/coatings12010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nanostructured noble metal-semiconductor materials have been attracting increasing attention because of their broad application in the field of environmental remediation, sensing and photocatalysis. In this study, a facile approach for fabricating silver@mesoporousanataseTiO2 (Ag@mTiO2) core-shell nanoparticles employing sol-gel and hydrothermal reaction is demonstrated. The Ag@mTiO2nanoparticles display excellent surface-enhanced Raman scattering (SERS) sensitivity and they can detect the methylene blue (MB) molecules with the concentration of as low as 10−8 M. They also exhibit outstanding photocatalytic activity compared with mTiO2, due to the efficient separation and recombination restrain of electron–hole pairs under ultraviolet light. The Ag@mTiO2nanoparticles also present good stability and they can achieve recyclable photocatalytic degradation experiments for five times without loss of activity. Subsequently, the nanoparticles with dual functions were successfully used to in situ monitor the photodegradation process of MB aqueous solution. These results, demonstrating the multifunctional Ag@mTiO2 nanoparticles, hold promising applications for simultaneous SERS analysis and the removal of dye pollutants in environmental field.
Collapse
|
29
|
Photocatalytic Hydrogen Evolution from Water Splitting Using Core-Shell Structured Cu/ZnS/COF Composites. NANOMATERIALS 2021; 11:nano11123380. [PMID: 34947731 PMCID: PMC8706802 DOI: 10.3390/nano11123380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Hydrogen is considered to be a very efficient and clean fuel since it is a renewable and non-polluting gas with a high energy density; thus, it has drawn much attention as an alternative fuel, in order to alleviate the issue of global warming caused by the excess use of fossil fuels. In this work, a novel Cu/ZnS/COF composite photocatalyst with a core–shell structure was synthesized for photocatalytic hydrogen production via water splitting. The Cu/ZnS/COF microspheres formed by Cu/ZnS crystal aggregation were covered by a microporous thin-film COF with a porous network structure, where COF was also modified by the dual-effective redox sites of C=O and N=N. The photocatalytic hydrogen production results showed that the hydrogen production rate reached 278.4 µmol g−1 h−1, which may be attributed to its special structure, which has a large number of active sites, a more negative conduction band than the reduction of H+ to H2, and the ability to inhibit the recombination of electron–hole pairs. Finally, a possible mechanism was proposed to effectively explain the improved photocatalytic performance of the photocatalytic system. The present work provides a new concept, in order to construct a highly efficient hydrogen production catalyst and broaden the applications of ZnS-based materials.
Collapse
|
30
|
Yu L, Luo B, Zhou X, Liu Y, Lan F, Wu Y. In Situ Controllable Fabrication of Two-Dimensional Magnetic Fe 3O 4/TiO 2@Ti 3C 2T x Composites for Highly Efficient Phosphopeptides Enrichment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54665-54676. [PMID: 34762403 DOI: 10.1021/acsami.1c13936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Highly efficient enrichment of phosphopeptides is of great significance for phosphoproteomics-related biological and pathological processes research, but it remains challenging due to the lack of affinity materials which hold high enrichment efficiency and capacity. Ti3C2Tx MXene, a novel two-dimensional material with outstanding physicochemical properties, has attracted wide research interests for application in various fields. However, there are few reports on the use of MXene-derived materials for phosphopeptides separation in the biomedical field. In this work, we proposed a facile one-pot method that in situ oxidation and modification of Ti3C2Tx MXene, to prepare two-dimensional (2D) magnetic Fe3O4/TiO2@Ti3C2Tx composites for potential application in phosphopeptides enrichment. Benefiting from the outstanding magnetic responsiveness and multiaffinity sites (Ti-O, Fe-O, and NH2 groups), the Fe3O4/TiO2@Ti3C2Tx composites possessed excellent enrichment performance with high sensitivity (0.1 fmol μL-1), excellent selectivity (β-casein: bovine serum albumin = 1:5000, molar ratio), good repeatability (5 times), and high enrichment capacity (200 mg g-1). Moreover, the results of selective enrichment of phosphopeptides from nonfat milk, human saliva, human serum, and rat brain lysates indicated the great potential of Fe3O4/TiO2@Ti3C2Tx composites in low-abundance phosphopeptides enrichment from complex biological samples. This work has put forward a versatile method to prepare magnetic MXene composites and promoted the use of MXene composites in phosphoproteome in biomedicine.
Collapse
Affiliation(s)
- Lingzhu Yu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Bin Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Xiaoxi Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Yicheng Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| |
Collapse
|
31
|
Kumar S, Kulkarni VV, Jangir R. Covalent‐Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect 2021. [DOI: 10.1002/slct.202102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shubham Kumar
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat INDIA
| | - Vihangraj V. Kulkarni
- Faculty of Environmental Engineering Department of Civil Engineering National Institute of Technology Silchar Silchar 788010 Assam INDIA
| | - Ritambhara Jangir
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat, INDIA
| |
Collapse
|
32
|
Preparation of magnetic chitosan-supported palladium-5-amino-1H-tetrazole complex as a magnetically recyclable catalyst for Suzuki-Miyaura coupling reaction in green media. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Deng M, Chi M, Wei M, Zhu A, Zhong L, Zhang Q, Liu Q. A facile route of mesoporous TiO2 shell for enhanced arsenic removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Qiao M, Guo PF, Zhang CY, Sun XY, Chen ML, Wang JH. Titanium dioxide-functionalized dendritic mesoporous silica nanoparticles for highly selective isolation of phosphoproteins. J Sep Sci 2021; 44:3618-3625. [PMID: 34365723 DOI: 10.1002/jssc.202100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023]
Abstract
Selective isolation of phosphoproteins is of great significance in biological applications. Herein, titanium dioxide-functionalized dendritic mesoporous silica nanoparticles are prepared via a post-grafting method for selective capture of phosphoproteins. The fabricated nanoparticles possess a unique central-radial pore structure with a surface area of 666.66 m2 /g and a pore size of 22.2 nm. The high-binding affinity of TiO2 with the phosphate groups facilitates the selective adsorption of phosphoproteins. Moreover, the open central-radial pore structure endows the dendritic mesoporous nanoparticles with better adsorption performance toward phosphoproteins with respect to the commercial titanium dioxide nanoparticles and titanium dioxide-functionalized conventional mesoporous silica nanoparticles by providing more accessible affinity sites. At pH 2, an adsorption capacity of 157.2 mg/g is derived for β-casein. The feasibility of the as-prepared dendritic material in real biological sample assay is demonstrated by the selective isolation of phosphoproteins from defatted milk, as illustrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay.
Collapse
Affiliation(s)
- Min Qiao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Chun-Yu Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Xiao-Yan Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
35
|
Li H, Wang Y, He X, Chen J, Xu F, Liu Z, Zhou Y. A green deep eutectic solvent modified magnetic titanium dioxide nanoparticles for the solid-phase extraction of chymotrypsin. Talanta 2021; 230:122341. [PMID: 33934791 DOI: 10.1016/j.talanta.2021.122341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023]
Abstract
Magnetic titanium dioxide nanoparticles modified with green deep eutectic solvent (DES) composed of choline chloride (ChCl) and xylitol (Xyl) (Fe3O4@TiO2@[ChCl][Xyl]) were synthesized and applied to the solid-phase extraction(MSPE) of chymotrypsin (Chy). The physicochemical properties and morphology of Fe3O4@TiO2@[ChCl][Xyl] was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Zeta potential, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and transmission electron microscope (TEM). The experiment parameters such as initial concentration of Chy, extraction time, pH value, ionic strength, extraction temperature and sample matrix were effectively optimized. Under the optimal experimental conditions, the extraction capacity of Fe3O4@TiO2@[ChCl][Xyl] obtained a significantly improvement after the modification of Fe3O4@TiO2 nanoparticles by [ChCl][Xyl], and reached up to 347.8 mg g-1. In the elution experiment, 10% sodium dodecyl sulfate-acetic acid (SDS-HAc) was used as eluent, achieving an elution rate of 85.9% for the Chy on Fe3O4@TiO2@[ChCl][Xyl]. And the Fe3O4@TiO2@[ChCl][Xyl] still maintained a good extraction capacity for Chy after six times of reuse. The application result in the extraction of Chy from porcine pancreas crude extract showed a good practical application ability for Chy extraction. All the results indicated that the synthesized Fe3O4@TiO2@[ChCl][Xyl] has good application potential in the extraction of biomolecular molecules such as protein.
Collapse
Affiliation(s)
- Heqiong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Xiyan He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fangting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ziwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yigang Zhou
- Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083, PR China
| |
Collapse
|
36
|
Wang YF, Mu GD, Wang XJ, Zhang F, Li YL, Lu DJ, Chen FM, Yang ML, He MY, Liu T. Fast construction of core-shell structured magnetic covalent organic framework as sorbent for solid-phase extraction of zearalenone and its derivatives prior to their determination by UHPLC-MS/MS. Mikrochim Acta 2021; 188:246. [PMID: 34235593 DOI: 10.1007/s00604-021-04893-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
Magnetic covalent organic framework nanocomposite denoted as Fe3O4@TAPB-Tp with core-shell structure was fabricated via a simple template-mediated precipitation polymerization method at mild conditions. The polyimine network shell was created through the polymerization of 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and 1,3,5-triformyl-phloroglucinol (Tp) in tetrahydrofuran (THF) by the Schiff-base reaction. Featuring with large specific surface area (163.19 m2 g-1), good solution dispersibility, and high stability, the obtained Fe3O4@TAPB-Tp exhibited high adsorption capacities and fast adsorption for zearalenone and its derivatives (ZEAs). The adsorption isotherms showed multilayer adsorption dominated at low concentration and monolayer adsorption at high concentration between the interface of ZEAs and Fe3O4@TAPB-Tp. With the Fe3O4@TAPB-Tp as sorbent, a magnetic solid-phase extraction-ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for simultaneous adsorption and detection of five ZEAs in complex samples. The proposed method displayed favorable linearity, low limits of detection (0.003 ~ 0.018 μg kg-1), and good repeatability (2.37~10.4%). The developed method has been applied for real sample analysis, with recoveries of 81.27~90.26%. These results showed that Fe3O4@TAPB-Tp has a good application potential for the adsorption of ZEAs in food samples. Magnetic covalent organic framework nanocomposite (Fe3O4@TAPB-Tp) were quickly fabricated at mild conditions and used as effective adsorbent for magnetic solid-phase extraction of zearalenone and its derivatives (ZEAs) from food samples prior to ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis.
Collapse
Affiliation(s)
- You-Fa Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,School of Light Work and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Guo-Dong Mu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.,School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiu-Juan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Yin-Long Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Deng-Jun Lu
- School of Light Work and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Feng-Ming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Min-Li Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Mu-Yi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
37
|
Magnetic Solid-Phase Extraction Followed by HPLC–DAD for Highly Sensitive Determination of Phthalate Esters in Edible Vegetable Oils. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02041-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Mahmoudi V, Mojaverian Kermani A, Ghahramaninezhad M, Ahmadpour A. Oxidative desulfurization of dibenzothiophene by magnetically recoverable polyoxometalate-based nanocatalyst: Optimization by response surface methodology. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Fang X, Wang Z, Sun N, Deng C. Magnetic metal oxide affinity chromatography-based molecularly imprinted approach for effective separation of serous and urinary phosphoprotein biomarker. Talanta 2021; 226:122143. [DOI: 10.1016/j.talanta.2021.122143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
|
40
|
Zhao Y, Zhang L, Cao L, Zhang L, Zhang W. A metal oxide affinity probe derived from MIL-125 for selective enrichment of endogenous phosphopeptides. Analyst 2021; 146:2255-2263. [PMID: 33599631 DOI: 10.1039/d0an02174a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Highly effective enrichment of endogenous phosphopeptides from complex biological samples is an essential and crucial theme in the analysis of phosphopeptidomics. Herein, an ordered mesoporous TiO2/C composite (denoted as Ti-MCM) was prepared by the pyrolysis of MIL-125 under a N2 atmosphere. The obtained Ti-MCM possesses a high specific surface area (165 m2 g-1), a uniform pore size (3.75 nm), and a large amount of Ti (46%). By utilizing the selective chelation between Ti-MCM and phosphopeptides, 25 phosphopeptides were detected in α-casein digest after enrichment. The material shows good selectivity even in the presence of 2000-fold excess of interference peptides. It was also used to enrich endogenous phosphopeptides from the complex samples of human serum and saliva and showed a good performance.
Collapse
Affiliation(s)
- Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
Zhang Y, Fang C, Bao H, Yuan W, Lu H. Discover the
Post‐Translational
Modification Proteome Using Mass Spectrometry. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University Shanghai 200032 China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University Shanghai 200032 China
| | - Caiyun Fang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University Shanghai 200032 China
| | - Huimin Bao
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University Shanghai 200032 China
| | - Wenjuan Yuan
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University Shanghai 200032 China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University Shanghai 200032 China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University Shanghai 200032 China
| |
Collapse
|
42
|
Liu B, Wang B, Yan Y, Tang K, Ding CF. Efficient separation of phosphopeptides employing a Ti/Nb-functionalized core-shell structure solid-phase extraction nanosphere. Mikrochim Acta 2021; 188:32. [PMID: 33415462 DOI: 10.1007/s00604-020-04652-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023]
Abstract
A strategy for effectively enriching global phosphopeptides was successfully developed by using ammonia methyl phosphate (APA) as a novel chelating ligand and Ti4+ and Nb5+ as double functional ions (referred to as Fe3O4@mSiO2@APA@Ti4+/Nb5+). With the advantage of large specific surface area (151.1 m2/g), preeminent immobilized ability for metal ions (about 8% of total atoms), and unbiased enrichment towards phosphopeptides, Fe3O4@mSiO2@APA@Ti4+/Nb5+ displays high selectivity (maximum mass ratio β-casein to BSA is 1:1500), low limit of detection (LOD, as low as 0.05 fmol), good relative standard deviation (RSD, lower than 7%), recovery rate of 87% (18O isotope labeling method), outstanding phosphopeptide loading capacity (330 μg/mg), and at least five times re-use abilities. In the examination of the actual sample, 24 phosphopeptides were successfully detected in saliva and 4 phosphopeptides were also selectively extracted from human serum. All experiments have shown that Fe3O4@mSiO2@APA@Ti4+/Nb5+ exhibits exciting potential in view of the challenge of low abundance of phosphopeptides. Graphical abstract.
Collapse
Affiliation(s)
- Bin Liu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Baichun Wang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yinghua Yan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
43
|
Jin S, Park E, Guo S, Park Y, Chen L, Jung YM. In situ SERS monitoring of photocatalysts by Au-decorated Fe 3O 4@TiO 2 nanocomposites: novel perspectives and insights. CrystEngComm 2021. [DOI: 10.1039/d1ce01224j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design and preparation of multifunctional nanomaterials are very important for photocatalytic research.
Collapse
Affiliation(s)
- Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P.R. China
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
44
|
Xie E, Zheng L, Ding A, Zhang D. Mechanisms and pathways of ethidium bromide Fenton-like degradation by reusable magnetic nanocatalysts. CHEMOSPHERE 2021; 262:127852. [PMID: 32768757 DOI: 10.1016/j.chemosphere.2020.127852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Ethidium bromide (3,8-diamino-6-phenyl-5-ethylphenanthridinium bromide, EtBr) is a carcinogenic compound widely used for staining nucleic acids that is difficult to treat. In this study, magnetic nanocatalysts (MNCs) were synthesized for the heterogeneous Fenton-like degradation of EtBr. The initial pH, MNC content, and H2O2 concentration were the key factors affecting the EtBr degradation performance and dynamics. An EtBr removal efficiency of 98.97% was achieved within 4 h under optimal conditions (initial pH, 3.0; MNC content, 1 g/L; H2O2 concentration, 50 mM), and the degradation followed the ring-open pathway with (2E,4Z,8E)-3-amino-N-ethyl-7,9-dihydroxynona-2,4,8-trienamide as an intermediate, as determined by liquid chromatography and mass spectrometry (LC/MS). Unexpected and satisfactory Fenton-like oxidation of EtBr occurred under basic conditions, which was explained by a novel denitration pathway with 2-[nitro(phenyl)methyl]-(1,1'-biphenyl)-4,4'-diamine as an intermediate. The MNCs retained 62.17% of their degradation efficiency after five consecutive reaction and harvest cycles. Our work elucidated the mechanisms and pathways of EtBr removal in a Fenton-like reaction using MNCs, and comprehensively discussed the optimal reaction conditions and its potential for re-use.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
45
|
Chen J, Li N, Liu J, Zheng F. Facile preparation of novel COFs functionalized magnetic core-shell structured nanocomposites and used for rapid detection of trace polycyclic aromatic hydrocarbons in food. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Wu P, Xue Q, Liu J, Wang T, Feng C, Liu B, Hu H, Xue G. In Situ Depositing Ag NPs on PDA/SiW
11
V Co‐encapsulated Fe
3
O
4
@TiO
2
Magnetic Microspheres as Highly Efficient and Durable Visible‐light‐driven Photocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Panfeng Wu
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Yanta District Xi'an 710065 P. R. China
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Qi Xue
- Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China
| | - Jiquan Liu
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Tianyu Wang
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Caiting Feng
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Bin Liu
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Huaiming Hu
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Ganglin Xue
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| |
Collapse
|
47
|
Jarju JJ, Lavender AM, Espiña B, Romero V, Salonen LM. Covalent Organic Framework Composites: Synthesis and Analytical Applications. Molecules 2020; 25:E5404. [PMID: 33218211 PMCID: PMC7699276 DOI: 10.3390/molecules25225404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/25/2023] Open
Abstract
In the recent years, composite materials containing covalent organic frameworks (COFs) have raised increasing interest for analytical applications. To date, various synthesis techniques have emerged that allow for the preparation of crystalline and porous COF composites with various materials. Herein, we summarize the most common methods used to gain access to crystalline COF composites with magnetic nanoparticles, other oxide materials, graphene and graphene oxide, and metal nanoparticles. Additionally, some examples of stainless steel, polymer, and metal-organic framework composites are presented. Thereafter, we discuss the use of these composites for chromatographic separation, environmental remediation, and sensing.
Collapse
Affiliation(s)
- Jenni J. Jarju
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Ana M. Lavender
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Vanesa Romero
- Department of Food and Analytical Chemistry, Marine Research Center (CIM), University of Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| |
Collapse
|
48
|
Guo J, Fang G, Wang S, Wang J. Quartz crystal microbalance sensor based on 11-mercaptoundecanoic acid self-assembly and amidated nano-titanium film for selective and ultrafast detection of phosphoproteins in food. Food Chem 2020; 344:128656. [PMID: 33234435 DOI: 10.1016/j.foodchem.2020.128656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/27/2022]
Abstract
A novel quartz crystal microbalance (QCM) sensor for trace-phosphoprotein ultrafast detection was constructed based on the bridge interactions between the NH2-TiO2 sites enriched on Au-electrode and phosphate groups. Herein, 11-mercaptoundecanoic acid (MUA) modified by Au-S bond acted as carrier for immobilizing NH2-TiO2. Functionalized NH2-TiO2 to absorb phosphoproteins. Under the optimal conditions, the proposed sensor showed a linear frequency shift to the concentration of α-casein ranging from 1.0 × 10-3 to 1.0 mg mL-1 with a low detection limit of 5.3 × 10-6 mg mL-1 (S/N = 3), and the limit of quantitation was 0.001 mg mL-1. Compared with traditional Ti4+-IMAC/MOAC-system, the analysis process of NH2-TiO2/MUA/AuE-QCM sensor was simpler and faster which could complete within 5 min. Additionally, the constructed biosensor was successfully used for the non-fat milk and chicken egg white. This proposed sensor presents a great prospective strategy for the evaluation of the nutrition in different foods.
Collapse
Affiliation(s)
- Jianping Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China
| | - Guozhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China
| | - Shuo Wang
- Medical College, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China.
| |
Collapse
|
49
|
Guo J, Li S, Wang S, Wang J. Determination of Trace Phosphoprotein in Food Based on Fluorescent Probe-Triggered Target-Induced Quench by Electrochemiluminescence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12738-12748. [PMID: 33107726 DOI: 10.1021/acs.jafc.0c05308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Evaluation of the nutrition and determination of phosphoproteins is of great importance in different foods as aberrant phosphorylation changes many biological processes and can relate to health conditions. In this study, an ultrafast (5 min) and sensitive electrochemiluminescence (ECL) sensor was innovatively fabricated for the determination of phosphoproteins in foods on the basis of fluorescent probe NH2-TiO2/upconversion nanomaterials (UCNPs). Impressively, the ECL intensity of NH2-TiO2/UCNPs-rGO/GCE was remarkably enhanced by 29 times. Furthermore, the photoactive NH2-TiO2 layer provided not only specific selectivity but also a large surface area as well as an unprecedented photocatalytic activity for the NH2-TiO2/UCNPs-rGO/GCE ECL sensor (TIECLS), which could serve as an identification element for trace phosphoproteins. Under optimal conditions, the TIECLS achieved a relatively low detection limit of 9.2 × 10-5 mg/mL (S/N = 3). Practical application of this TIECLS was carried out in different food samples with satisfying results, which were validated by laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS).
Collapse
Affiliation(s)
- Jianping Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, P.R. China
| | - Shijie Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, P.R. China
| | - Shuo Wang
- Medical college, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, P.R. China
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, P.R. China
| |
Collapse
|
50
|
Zhen Y, Zhang Q, Zhang X, Zhang G, Chen X, Zhao C. A novel tubular up-flow magnetic film photocatalytic system optimized by main factors control for efficient removal of chlorophenols wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122963. [PMID: 32512454 DOI: 10.1016/j.jhazmat.2020.122963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Chlorophenols (CPs) are still used as raw material or intermediate in some industries. Photocatalytic oxidation is free from secondary pollution, but the efficiency is restricted by some main factors. In this study, a novel high efficiency tubular up-flow magnetic film (TUMF) photocatalytic system was investigated based on the magnetic lanthanum doping core-shell Fe3O4@SiO2@TiO2 (La-FST) nanoparticles. When the dosage of La-FST was 0.4 g/L, the flow velocity was 94.2 mL/min, and the circulated irradiation of 15 W maintained 40 min, the average removal rate of 2,4-dichlorophenol (2,4-DCP) was reduced significantly from 10 mg/L to 0.0803 mg/L by TUMF system, meeting the limits of the particular items (0.093 mg/L) from national environmental quality standards for surface water, avoiding the problem of photocatalyst separation and loss. The photoinduced holes (h+) was the key active radical to oxidize 2,4-DCP, and the main factors of TUMF system could be well controlled to achieve satisfactory effluent quality. A prediction method of photocatalytic reaction time in a multistage series TUMF system was established to remove 2,4-DCP from 100 mg/L to 0.5 mg/L, saving 86 min. The novel high-efficiency TUMF system provides a technical selection for the photocatalytic degradation of CPs and other refractory organics.
Collapse
Affiliation(s)
- Yichen Zhen
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Qiang Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Xiaoyan Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Guanteng Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Xiaoxin Chen
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Chunxia Zhao
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| |
Collapse
|