1
|
Kessler BJO, Mansoor IF, Wozniak DI, Emge TJ, Lipke MC. Controlling Intramolecular and Intermolecular Electronic Coupling of Radical Ligands in a Series of Cobaltoviologen Complexes. J Am Chem Soc 2023; 145:15924-15935. [PMID: 37460450 DOI: 10.1021/jacs.3c03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Controlling electronic coupling between multiple redox sites is of interest for tuning the electronic properties of molecules and materials. While classic mixed-valence (MV) systems are highly tunable, e.g., via the organic bridges connecting the redox sites, metal-bridged MV systems are difficult to control because the electronics of the metal cannot usually be altered independently of redox-active moieties embedded in its ligands. Herein, this limitation was overcome by varying the donor strengths of ancillary ligands in a series of cobalt complexes without directly perturbing the electronics of viologen-like redox sites bridged by the cobalt ions. The cobaltoviologens [1X-Co]n+ feature four 4-X-pyridyl donor groups (X = CO2Me, Cl, H, Me, OMe, NMe2) that provide gradual electronic tuning of the bridging CoII centers, while a related complex [2-Co]n+ with NHC donors supports exclusively CoIII states even upon reduction of the viologen units. Electrochemistry and IVCT band analysis indicate that the MV states of these complexes have electronic structures ranging from fully localized ([2-Co]4+; Robin-Day Class I) to fully delocalized ([1CO2Me-Co]3+; Class III) descriptions, demonstrating unprecedented control over electronic coupling without changing the identity of the redox sites or bridging metal. Additionally, single-crystal XRD characterization of the homovalent complexes [1H-Co]2+ and [1H-Zn]2+ revealed radical-pairing interactions between the viologen ligands of adjacent complexes, representing a type of through-space electronic coupling commonly observed for organic viologen radicals but never before seen in metalloviologens. The extended solid-state packing of these complexes produces 3D networks of radical π-stacking interactions that impart unexpected mechanical flexibility to these crystals.
Collapse
Affiliation(s)
- Brice J O Kessler
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Derek I Wozniak
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Wang W, Wu W, Su P. Radical Pairing Interactions and Donor-Acceptor Interactions in Cyclobis(paraquat-p-phenylene) Inclusion Complexes. Molecules 2023; 28:2057. [PMID: 36903306 PMCID: PMC10004262 DOI: 10.3390/molecules28052057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding molecular interactions in mechanically interlocked molecules (MIMs) is challenging because they can be either donor-acceptor interactions or radical pairing interactions, depending on the charge states and multiplicities in the different components of the MIMs. In this work, for the first time, the interactions between cyclobis(paraquat-p-phenylene) (abbreviated as CBPQTn+ (n = 0-4)) and a series of recognition units (RUs) were investigated using the energy decomposition analysis approach (EDA). These RUs include bipyridinium radical cation (BIPY•+), naphthalene-1,8:4,5-bis(dicarboximide) radical anion (NDI•-), their oxidized states (BIPY2+ and NDI), neutral electron-rich tetrathiafulvalene (TTF) and neutral bis-dithiazolyl radical (BTA•). The results of generalized Kohn-Sham energy decomposition analysis (GKS-EDA) reveal that for the CBPQTn+···RU interactions, correlation/dispersion terms always have large contributions, while electrostatic and desolvation terms are sensitive to the variation in charge states in CBPQTn+ and RU. For all the CBPQTn+···RU interactions, desolvation terms always tend to overcome the repulsive electrostatic interactions between the CBPQT cation and RU cation. Electrostatic interaction is important when RU has the negative charge. Moreover, the different physical origins of donor-acceptor interactions and radical pairing interactions are compared and discussed. Compared to donor-acceptor interactions, in radical pairing interactions, the polarization term is always small, while the correlation/dispersion term is important. With regard to donor-acceptor interactions, in some cases, polarization terms could be quite large due to the electron transfer between the CBPQT ring and RU, which responds to the large geometrical relaxation of the whole systems.
Collapse
Affiliation(s)
| | | | - Peifeng Su
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Penty S, Zwijnenburg MA, Orton GRF, Stachelek P, Pal R, Xie Y, Griffin SL, Barendt TA. The Pink Box: Exclusive Homochiral Aromatic Stacking in a Bis-perylene Diimide Macrocycle. J Am Chem Soc 2022; 144:12290-12298. [PMID: 35763425 PMCID: PMC9348826 DOI: 10.1021/jacs.2c03531] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work showcases chiral complementarity in aromatic stacking interactions as an effective tool to optimize the chiroptical and electrochemical properties of perylene diimides (PDIs). PDIs are a notable class of robust dye molecules and their rich photo- and electrochemistry and potential chirality make them ideal organic building blocks for chiral optoelectronic materials. By exploiting the new bay connectivity of twisted PDIs, a dynamic bis-PDI macrocycle (the "Pink Box") is realized in which homochiral PDI-PDI π-π stacking interactions are switched on exclusively. Using a range of experimental and computational techniques, we uncover three important implications of the macrocycle's chiral complementarity for PDI optoelectronics. First, the homochiral intramolecular π-π interactions anchor the twisted PDI units, yielding enantiomers with half-lives extended over 400-fold, from minutes to days (in solution) or years (in the solid state). Second, homochiral H-type aggregation affords the macrocycle red-shifted circularly polarized luminescence and one of the highest dissymmetry factors of any small organic molecule in solution (glum = 10-2 at 675 nm). Finally, excellent through-space PDI-PDI π-orbital overlap stabilizes PDI reduced states, akin to covalent functionalization with electron-withdrawing groups.
Collapse
Affiliation(s)
- Samuel
E. Penty
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Georgia R. F. Orton
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Patrycja Stachelek
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, United
Kingdom
| | - Robert Pal
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, United
Kingdom
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sarah L. Griffin
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy A. Barendt
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Jiang H, Ye J, Hu P, Zhu S, Liang Y, Cui Z, Kloc C, Hu W. Growth direction dependent separate-channel charge transport in the organic weak charge-transfer co-crystal of anthracene-DTTCNQ. MATERIALS HORIZONS 2022; 9:1057-1067. [PMID: 35048097 DOI: 10.1039/d1mh01767e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b']-dithiophene (DTTCNQ) single crystals as a template to study the crystal growth direction dependent charge transport properties and attempted to elucidate the mechanism by proposing a separate-channel charge transport model. Single-crystal anthracene-DTTCNQ field-effect transistors showed that ambipolar transport properties could be observed in all crystal growth directions. Furthermore, upon changing the measured crystal directions, the electronic properties experienced a weak change from n-type dominated ambipolar, balanced ambipolar, to p-type dominated ambipolar properties. The theoretical calculations at density functional theory (DFT) and higher theory levels suggested that the anthracene-DTTCNQ co-crystal motif was a weak charge-transfer complex, in line with the experiment. Furthermore, the detailed theoretical analysis also indicated that electron or hole transport properties originated from separated channels formed by DTTCNQ or anthracene molecules. We thus proposed a novel separate-channel transport mechanism to support additional theoretical analysis and calculations. The joint experimental and theoretical efforts in this work suggest that the engineering of co-crystallization of weak charge-transfer complexes can be a practical approach for achieving tuneable ambipolar charge transport properties by the rational choice of co-crystal formers.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jun Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Christian Kloc
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
5
|
Chi X, Tian J, Luo D, Gong HY, Huang F, Sessler JL. "Texas-Sized" Molecular Boxes: From Chemistry to Applications. Molecules 2021; 26:molecules26092426. [PMID: 33919472 PMCID: PMC8122447 DOI: 10.3390/molecules26092426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The design and synthesis of novel macrocyclic host molecules continues to attract attention because such species play important roles in supramolecular chemistry. However, the discovery of new classes of macrocycles presents a considerable challenge due to the need to embody by design effective molecular recognition features, as well as ideally the development of synthetic routes that permit further functionalization. In 2010, we reported a new class of macrocyclic hosts: a set of tetracationic imidazolium macrocycles, which we termed “Texas-sized” molecular boxes (TxSBs) in homage to Stoddart’s classic “blue box” (CBPQT4+). Compared with the rigid blue box, the first generation TxSB displayed considerably greater conformational flexibility and a relatively large central cavity, making it a good host for a variety of electron-rich guests. In this review, we provide a comprehensive summary of TxSB chemistry, detailing our recent progress in the area of anion-responsive supramolecular self-assembly and applications of the underlying chemistry to water purification, information storage, and controlled drug release. Our objective is to provide not only a review of the fundamental findings, but also to outline future research directions where TxSBs and their constructs may have a role to play.
Collapse
Affiliation(s)
- Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.T.); (D.L.)
- Correspondence: (X.C.); (H.-Y.G.); (F.H.); (J.L.S.)
| | - Jinya Tian
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.T.); (D.L.)
| | - Dan Luo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.T.); (D.L.)
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xinwai Street, Beijing 100875, China
- Correspondence: (X.C.); (H.-Y.G.); (F.H.); (J.L.S.)
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Correspondence: (X.C.); (H.-Y.G.); (F.H.); (J.L.S.)
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
- Correspondence: (X.C.); (H.-Y.G.); (F.H.); (J.L.S.)
| |
Collapse
|
6
|
Cai K, Cui B, Song B, Wang H, Qiu Y, Jones LO, Liu W, Shi Y, Vemuri S, Shen D, Jiao T, Zhang L, Wu H, Chen H, Jiao Y, Wang Y, Stern CL, Li H, Schatz GC, Li X, Stoddart JF. Radical Cyclic [3]Daisy Chains. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Anamimoghadam O, Jones LO, Cooper JA, Beldjoudi Y, Nguyen MT, Liu W, Krzyaniak MD, Pezzato C, Stern CL, Patel HA, Wasielewski MR, Schatz GC, Stoddart JF. Discrete Open-Shell Tris(bipyridinium radical cationic) Inclusion Complexes in the Solid State. J Am Chem Soc 2020; 143:163-175. [DOI: 10.1021/jacs.0c07148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ommid Anamimoghadam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James A. Cooper
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Minh T. Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cristian Pezzato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hasmukh A. Patel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Grommet AB, Feller M, Klajn R. Chemical reactivity under nanoconfinement. NATURE NANOTECHNOLOGY 2020; 15:256-271. [PMID: 32303705 DOI: 10.1038/s41565-020-0652-2] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Confining molecules can fundamentally change their chemical and physical properties. Confinement effects are considered instrumental at various stages of the origins of life, and life continues to rely on layers of compartmentalization to maintain an out-of-equilibrium state and efficiently synthesize complex biomolecules under mild conditions. As interest in synthetic confined systems grows, we are realizing that the principles governing reactivity under confinement are the same in abiological systems as they are in nature. In this Review, we categorize the ways in which nanoconfinement effects impact chemical reactivity in synthetic systems. Under nanoconfinement, chemical properties can be modulated to increase reaction rates, enhance selectivity and stabilize reactive species. Confinement effects also lead to changes in physical properties. The fluorescence of light emitters, the colours of dyes and electronic communication between electroactive species can all be tuned under confinement. Within each of these categories, we elucidate design principles and strategies that are widely applicable across a range of confined systems, specifically highlighting examples of different nanocompartments that influence reactivity in similar ways.
Collapse
Affiliation(s)
- Angela B Grommet
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Haynes CL, Schatz GC, Weiss PS. Virtual Issue in Honor of Prof. Richard Van Duyne (1945-2019). Anal Chem 2020; 92:4165-4166. [PMID: 32105059 DOI: 10.1021/acs.analchem.0c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhang D, Hou LK, Zhang Q, He JW, Feng HJ, Würthner F, Yang XJ, Wu B. Anion-Coordination-Assisted Assembly of Supramolecular Charge-Transfer Complexes Based on Tris(urea) Ligands. Chemistry 2020; 26:1414-1421. [PMID: 31762095 DOI: 10.1002/chem.201905021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Indexed: 01/04/2023]
Abstract
Charge-transfer (CT) complexes, formed by noncovalent bonding between electron-rich (donor, D) and electron-deficient (acceptor, A) molecules (or moieties) have attracted considerable attention due to their fascinating structures and potential applications. Herein, we demonstrate that anion coordination is a promising strategy to promote CT complex formation between anion-binding, electron-rich tris(urea) donor ligands (D) and electron-deficient viologen cation acceptors (A), which form co-crystals featuring infinite ⋅⋅⋅DADA⋅⋅⋅ or discrete (circular DADA or three-decker DAD) π-stacking interactions. These CT complexes were studied by X-ray diffraction, UV/Vis spectroscopy, electric conductivity measurements, charge displacement curve (CDC) calculations, and DFT computations.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le-Kai Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Qiang Zhang
- School of Physics, Northwest University, Xi'an, 710127, P. R. China
| | - Jia-Wei He
- School of Physics, Northwest University, Xi'an, 710127, P. R. China
| | - Hong-Jian Feng
- School of Physics, Northwest University, Xi'an, 710127, P. R. China
| | - Frank Würthner
- Center for Nanosystems Chemistry & Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
11
|
Madhu V, Kanakati AK, Das SK. Serendipitous isolation of a triazinone-based air stable organic radical: synthesis, crystal structure, and computation. NEW J CHEM 2020. [DOI: 10.1039/d0nj02028a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here we report the synthesis, isolation, and characterization of a dication salt, namely 4,6-bis(4,4′-bipyridinium)-1,3,5-triazin-2-one {12+(PF6)22−·2H2O1(PF6)2·2H2O}, and its radical cation salt, namely 4,6-bis(4,4′-bipyridinium)-1,3,5-triazin-2-one (1+˙PF6−1˙PF6).
Collapse
Affiliation(s)
- Vedichi Madhu
- Department of Applied Chemistry
- Karunya Institute of Technology and Sciences
- Coimbatore 641 114
- India
- School of Chemistry
| | - Arun Kumar Kanakati
- School of Chemistry
- University of Hyderabad
- Central University P.O
- Hyderabad 500 046
- India
| | - Samar K. Das
- School of Chemistry
- University of Hyderabad
- Central University P.O
- Hyderabad 500 046
- India
| |
Collapse
|
12
|
Jiang H, Hu W. The Emergence of Organic Single-Crystal Electronics. Angew Chem Int Ed Engl 2019; 59:1408-1428. [PMID: 30927312 DOI: 10.1002/anie.201814439] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Organic semiconducting single crystals are perfect for both fundamental and application-oriented research due to the advantages of free grain boundaries, few defects, and minimal traps and impurities, as well as their low-temperature processability, high flexibility, and low cost. Carrier mobilities of greater than 10 cm2 V-1 s-1 in some organic single crystals indicate a promising application in electronic devices. The progress made, including the molecular structures and fabrication technologies of organic single crystals, is introduced and organic single-crystal electronic devices, including field-effect transistors, phototransistors, p-n heterojunctions, and circuits, are summarized. Organic two-dimensional single crystals, cocrystals, and large single crystals, together with some potential applications, are introduced. A state-of-the-art overview of organic single-crystal electronics, with their challenges and prospects, is also provided.
Collapse
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- School of Materials Science and Engineering Nanyang Technological University 639798 Singapore Singapur
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
14
|
Chen L, Lim KJC, Babra TS, Taylor JO, PiŽl M, Evans R, Chippindale AM, Hartl F, Colquhoun HM, Greenland BW. A macrocyclic receptor containing two viologen species connected by conjugated terphenyl groups. Org Biomol Chem 2018; 16:5006-5015. [PMID: 29946600 DOI: 10.1039/c8ob00919h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A macrocyclic receptor molecule containing two viologen species connected by conjugated terphenyl groups has been designed and synthesised. The single-crystal X-ray structure shows that the two viologen residues have a transannular NN separation of ca. 7.4 Å. Thus, the internal cavity dimensions are suitable for the inclusion of π-electron-rich species. The macrocycle is redox active, and can accept electrons from suitable donor species including triethylamine, resulting in a dramatic colour change from pale yellow to dark green as a consequence of the formation of a paramagnetic bis(radical cationic) species. Cyclic voltammetry shows that the macrocycle can undergo two sequential and reversible reduction processes (E1/2 = -0.65 and -0.97 V vs. Fc/Fc+). DFT and TD-DFT studies accurately replicate the structure of the tetracationic macrocycle and the electronic absorption spectra of the three major redox states of the system. These calculations also showed that during electrochemical reduction, the unpaired electron density of the radical cations remained relatively localised within the heterocyclic rings. The ability of the macrocycle to form supramolecular complexes was confirmed by the formation of a pseudorotaxane with a guest molecule containing a π-electron-rich 1,5-dihydroxynaphthalene derivative. Threading and dethreading of the pseudorotaxane was fast on the NMR timescale, and the complex exhibited an association constant of 150 M-1 (±30 M-1) as calculated from 1H NMR titration studies.
Collapse
Affiliation(s)
- Long Chen
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Walters CM, Pao C, Gagnon BP, Zamecnik CR, Walker GC. Bright Surface-Enhanced Raman Scattering with Fluorescence Quenching from Silica Encapsulated J-Aggregate Coated Gold Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705381. [PMID: 29266419 DOI: 10.1002/adma.201705381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Plexitonic nanoparticles offer variable optical properties through tunable excitations, in addition to electric field enhancements that far exceed molecular resonators. This study demonstrates a way to design an ultrabright surface-enhanced Raman spectroscopy (SERS) signal while simultaneously quenching the fluorescence background through silica encapsulation of the semiconductor-metal composite nanoparticles. Using a multistep approach, a J-aggregate-forming organic dye is assembled on the surface of gold nanoparticles using a cationic linker. Excitonic resonance of the J-aggregate-metal system shows an enhanced SERS signal at an appropriate excitation wavelength. Further encapsulation of the decorated particles in silica shows a significant reduction in the fluorescence signal of the Raman spectra (5× reduction) and an increase in Raman scattering (7× enhancement) when compared to phospholipid encapsulation. This reduction in fluorescence is important for maximizing the useful SERS enhancement from the particle, which shows a signal increase on the order of 104 times greater than J-aggregated dye in solution and 24 times greater than Oxonica S421 SERS tag. The silica layer also serves to promote colloidal stability. The combination of reduced fluorescence background, enhanced SERS intensity, and temporal stability makes these particles highly distinguishable with potential to enable high-throughput applications such as SERS flow cytometry.
Collapse
Affiliation(s)
| | - Caroline Pao
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S3H6, Canada
| | - Brandon P Gagnon
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S3H6, Canada
| | - Colin R Zamecnik
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S3H6, Canada
| | - Gilbert C Walker
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S3H6, Canada
| |
Collapse
|
16
|
Wang Y, Frasconi M, Stoddart JF. Introducing Stable Radicals into Molecular Machines. ACS CENTRAL SCIENCE 2017; 3:927-935. [PMID: 28979933 PMCID: PMC5620985 DOI: 10.1021/acscentsci.7b00219] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Ever since their discovery, stable organic radicals have received considerable attention from chemists because of their unique optical, electronic, and magnetic properties. Currently, one of the most appealing challenges for the chemical community is to develop sophisticated artificial molecular machines that can do work by consuming external energy, after the manner of motor proteins. In this context, radical-pairing interactions are important in addressing the challenge: they not only provide supramolecular assistance in the synthesis of molecular machines but also open the door to developing multifunctional systems relying on the various properties of the radical species. In this Outlook, by taking the radical cationic state of 1,1'-dialkyl-4,4'-bipyridinium (BIPY•+) as an example, we highlight our research on the art and science of introducing radical-pairing interactions into functional systems, from prototypical molecular switches to complex molecular machines, followed by a discussion of the (i) limitations of the current systems and (ii) future research directions for designing BIPY•+-based molecular machines with useful functions.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Zhang JY, Su LJ, Guo QJ, Tao J. Semiconducting spin-crossover cobalt (II) compound with non-integer charge distribution among TCNQ radicals. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Nguyen MT, Krzyaniak MD, Owczarek M, Ferris DP, Wasielewski MR, Stoddart JF. A Boat‐Shaped Tetracationic Macrocycle with a Semiconducting Organic Framework. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Minh T. Nguyen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew D. Krzyaniak
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Magdalena Owczarek
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Daniel P. Ferris
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Michael R. Wasielewski
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
19
|
Nguyen MT, Krzyaniak MD, Owczarek M, Ferris DP, Wasielewski MR, Stoddart JF. A Boat‐Shaped Tetracationic Macrocycle with a Semiconducting Organic Framework. Angew Chem Int Ed Engl 2017; 56:5795-5800. [DOI: 10.1002/anie.201702019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Minh T. Nguyen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew D. Krzyaniak
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Magdalena Owczarek
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Daniel P. Ferris
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Michael R. Wasielewski
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
20
|
Lipke MC, Cheng T, Wu Y, Arslan H, Xiao H, Wasielewski MR, Goddard WA, Stoddart JF. Size-Matched Radical Multivalency. J Am Chem Soc 2017; 139:3986-3998. [DOI: 10.1021/jacs.6b09892] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mark C. Lipke
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tao Cheng
- Materials
and Process Simulation Center, California Institute of Technology, 1200 California Boulevard, Pasadena, California 91125, United States
| | - Yilei Wu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hasan Arslan
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hai Xiao
- Materials
and Process Simulation Center, California Institute of Technology, 1200 California Boulevard, Pasadena, California 91125, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California Institute of Technology, 1200 California Boulevard, Pasadena, California 91125, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Gong W, Yang X, Zavalij PY, Isaacs L, Zhao Z, Liu S. From Packed "Sandwich" to "Russian Doll": Assembly by Charge-Transfer Interactions in Cucurbit[10]uril. Chemistry 2016; 22:17612-17618. [PMID: 27862408 DOI: 10.1002/chem.201604149] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 12/12/2022]
Abstract
As the host possessing the largest cavity in the cucurbit[n]uril (CB[n]) family, CB[10] has previously displayed unusual recognition and assembly properties with guests but much remains to be explored. Herein, we present the recognition properties of CB[10] toward a series of bipyridinium guests including the tetracationic cyclophane known as blue box along with electron-rich guests and detail the influence of encapsulation on the charge-transfer interactions between guests. For the mono-bipyridinium guest (methylviologen, MV2+ ), CB[10] not only forms 1:1 and 1:2 inclusion complexes, but also enhances the charge-transfer interactions between methylviologen and dihydroxynaphthalene (HN) by mainly forming the 1:2:1 packed "sandwich" complex (CB[10]⋅2 MV2+ ⋅HN). For guest 1 with two bipyridinium units, an interesting conformational switching from linear to "U" shape is observed by adding catechol to the solution of CB[10] and the guest. For the tetracationic cyclophane-blue box, CB[10] forms a stable 1:1 inclusion complex; the two bipyridinium units tilt inside the cavity of CB[10] according to the X-ray crystal structure. Finally, a supramolecular "Russian doll" was built up by threading a guest through the cavities of both blue box and CB[10].
Collapse
Affiliation(s)
- Wanjun Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P.R. China
| | - Xiran Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P.R. China
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Zhiyong Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P.R. China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P.R. China.,The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, P.R. China
| |
Collapse
|
22
|
Cheng C, Cheng T, Xiao H, Krzyaniak MD, Wang Y, McGonigal PR, Frasconi M, Barnes JC, Fahrenbach AC, Wasielewski MR, Goddard WA, Stoddart JF. Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes. J Am Chem Soc 2016; 138:8288-300. [DOI: 10.1021/jacs.6b04343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chuyang Cheng
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tao Cheng
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Hai Xiao
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Matthew D. Krzyaniak
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Yuping Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paul R. McGonigal
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Marco Frasconi
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Jonathan C. Barnes
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Albert C. Fahrenbach
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Howard Hughes Medical Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Earth-Life
Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - William A. Goddard
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Zhan TG, Zhou TY, Lin F, Zhang L, Zhou C, Qi QY, Li ZT, Zhao X. Supramolecular radical polymers self-assembled from the stacking of radical cations of rod-like viologen di- and trimers. Org Chem Front 2016. [DOI: 10.1039/c6qo00298f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of π-conjugated oligomeric viologens have been synthesized, from which supramolecular radical polymers were constructed through the stacking of their radical cations.
Collapse
Affiliation(s)
- Tian-Guang Zhan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Tian-You Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Feng Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Liang Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Cen Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Zhan-Ting Li
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
24
|
Wang Y, Frasconi M, Liu WG, Liu Z, Sarjeant AA, Nassar MS, Botros YY, Goddard WA, Stoddart JF. Folding of Oligoviologens Induced by Radical–Radical Interactions. J Am Chem Soc 2015; 137:876-85. [DOI: 10.1021/ja5111305] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuping Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Frasconi
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei-Guang Liu
- Materials
and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Zhichang Liu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amy A. Sarjeant
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Majed S. Nassar
- Joint
Center of Excellence in Integrated Nano-Systems (JCIN), King Abdul-Aziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Youssry Y. Botros
- Joint
Center of Excellence in Integrated Nano-Systems (JCIN), King Abdul-Aziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
- University
Research Office, Intel Corporation, Building RNB-6-61, 2200 Mission
College Boulevard, Santa Clara, California 95054, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Berville M, Karmazin L, Wytko JA, Weiss J. Viologen cyclophanes: redox controlled host–guest interactions. Chem Commun (Camb) 2015; 51:15772-5. [DOI: 10.1039/c5cc06041a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(viologen) cyclophanes with alkyl linkers demonstrate redox-dependent host–guest properties, including the formation of a crystalline mixed valence species.
Collapse
Affiliation(s)
- Mathilde Berville
- CLAC
- Institut de Chimie de Strasbourg
- UMR 7177 CNRS-Université de Strasbourg
- 67000 Strasbourg
- France
| | - Lydia Karmazin
- Service de Cristallographie
- GDS 3648
- CNRS-Université de Strasbourg
- 67000 Strasbourg
- France
| | - Jennifer A. Wytko
- CLAC
- Institut de Chimie de Strasbourg
- UMR 7177 CNRS-Université de Strasbourg
- 67000 Strasbourg
- France
| | - Jean Weiss
- CLAC
- Institut de Chimie de Strasbourg
- UMR 7177 CNRS-Université de Strasbourg
- 67000 Strasbourg
- France
| |
Collapse
|
26
|
Fathalla M, Barnes JC, Young RM, Hartlieb KJ, Dyar SM, Eaton SW, Sarjeant AA, Co DT, Wasielewski MR, Stoddart JF. Photoinduced Electron Transfer within a Zinc Porphyrin-Cyclobis(paraquat-p-phenylene) Donor-Acceptor Dyad. Chemistry 2014; 20:14690-7. [DOI: 10.1002/chem.201403744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 12/12/2022]
|
27
|
Barnes JC, Frasconi M, Young RM, Khdary NH, Liu WG, Dyar SM, McGonigal PR, Gibbs-Hall IC, Diercks CS, Sarjeant AA, Stern CL, Goddard WA, Wasielewski MR, Stoddart JF. Solid-State Characterization and Photoinduced Intramolecular Electron Transfer in a Nanoconfined Octacationic Homo[2]Catenane. J Am Chem Soc 2014; 136:10569-72. [DOI: 10.1021/ja505093d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | - Nezar H. Khdary
- National
Center for Nano Technology Research, King Abdulaziz City for Science and Technology (KACST) P.O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia
| | - Wei-Guang Liu
- Materials
and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | | | | | | | | | | | | | - William A. Goddard
- Materials
and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | | | | |
Collapse
|
28
|
Bruns CJ, Frasconi M, Iehl J, Hartlieb KJ, Schneebeli ST, Cheng C, Stupp SI, Stoddart JF. Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions. J Am Chem Soc 2014; 136:4714-23. [DOI: 10.1021/ja500675y] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Carson J. Bruns
- Department
of Chemistry ‡Department of Materials Science and Engineering §Department of Medicine Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Frasconi
- Department
of Chemistry ‡Department of Materials Science and Engineering §Department of Medicine Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Julien Iehl
- Department
of Chemistry ‡Department of Materials Science and Engineering §Department of Medicine Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karel J. Hartlieb
- Department
of Chemistry ‡Department of Materials Science and Engineering §Department of Medicine Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Severin T. Schneebeli
- Department
of Chemistry ‡Department of Materials Science and Engineering §Department of Medicine Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chuyang Cheng
- Department
of Chemistry ‡Department of Materials Science and Engineering §Department of Medicine Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I. Stupp
- Department
of Chemistry ‡Department of Materials Science and Engineering §Department of Medicine Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department
of Chemistry ‡Department of Materials Science and Engineering §Department of Medicine Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Li H, Cheng C, McGonigal PR, Fahrenbach AC, Frasconi M, Liu WG, Zhu Z, Zhao Y, Ke C, Lei J, Young RM, Dyar SM, Co DT, Yang YW, Botros YY, Goddard WA, Wasielewski MR, Astumian RD, Stoddart JF. Relative Unidirectional Translation in an Artificial Molecular Assembly Fueled by Light. J Am Chem Soc 2013; 135:18609-20. [DOI: 10.1021/ja4094204] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | - Albert C. Fahrenbach
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699
Qianjin Street, Changchun 130012, PR China
| | | | - Wei-Guang Liu
- Materials and Process
Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | | | | | | | | | | | - Ying-Wei Yang
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699
Qianjin Street, Changchun 130012, PR China
| | - Youssry Y. Botros
- National Center for Nano Technology Research, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia
- Intel Labs, Building RNB-6-61, 2200 Mission College Boulevard, Santa Clara, California 95054, United States
| | - William A. Goddard
- Materials and Process
Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
- NanoCentury KAIST Institute
and Graduate School of EEWS (WCU), Korea Advanced Institute of Science
and Technology (KAIST), 373-1 Guseong
Dong, Yuseong Gu, Daejeon 305-701, Republic of Korea
| | | | - R. Dean Astumian
- Department of Physics, The University of Maine, 5709 Bennett Hall, Orono, Maine 04469-5709, United States
| | | |
Collapse
|
30
|
Usta H, Yilmaz MD, Avestro AJ, Boudinet D, Denti M, Zhao W, Stoddart JF, Facchetti A. BODIPY-thiophene copolymers as p-channel semiconductors for organic thin-film transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4327-4334. [PMID: 23723092 DOI: 10.1002/adma.201300318] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/14/2013] [Indexed: 06/02/2023]
Abstract
The synthesis and physicochemical properties of a new class of BODIPY-based donor-acceptor π-conjugated polymers are presented. Solution-processed top-gate/bottom-contact (TG-BC) thin-film transistors on flexible plastic substrates exhibit air-stable p-channel activities with charge carrier mobilities as high as 0.17 cm(2) /V·s and current on/off ratios of 10(5) -10(6) , the highest reported to date for a BODIPY-based semiconductor. The results shown here indicate a significant charge-transport improvement (>10000×) in BODIPY-based polymeric semiconductors, demonstrating its potential in future organic optoelectronic applications.
Collapse
Affiliation(s)
- Hakan Usta
- Polyera Corporation, 8045 Lamon Avenue #140, Skokie, IL 60077, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Barin G, Frasconi M, Dyar SM, Iehl J, Buyukcakir O, Sarjeant AA, Carmieli R, Coskun A, Wasielewski MR, Stoddart JF. Redox-Controlled Selective Docking in a [2]Catenane Host. J Am Chem Soc 2013; 135:2466-9. [PMID: 23350705 DOI: 10.1021/ja3125004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gokhan Barin
- Department
of Chemistry and
Graduate School of EEWS, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | | - Ali Coskun
- Department
of Chemistry and
Graduate School of EEWS, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Republic of Korea
| | | | - J. Fraser Stoddart
- Department
of Chemistry and
Graduate School of EEWS, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Republic of Korea
| |
Collapse
|
32
|
Iordache A, Kannappan R, Métay E, Duclos MC, Pellet-Rostaing S, Lemaire M, Milet A, Saint-Aman E, Bucher C. Redox control of molecular motions in bipyridinium appended calixarenes. Org Biomol Chem 2013; 11:4383-9. [DOI: 10.1039/c3ob40356d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Li H, Zhu Z, Fahrenbach AC, Savoie BM, Ke C, Barnes JC, Lei J, Zhao YL, Lilley LM, Marks TJ, Ratner MA, Stoddart JF. Mechanical Bond-Induced Radical Stabilization. J Am Chem Soc 2012; 135:456-67. [DOI: 10.1021/ja310060n] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Zhixue Zhu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Albert C. Fahrenbach
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Brett M. Savoie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Chenfeng Ke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Jonathan C. Barnes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Juying Lei
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Yan-Li Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Laura M. Lilley
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Tobin J. Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Mark A. Ratner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| |
Collapse
|