1
|
Tsang CY, Zhang Y. Nanomaterials for light-mediated therapeutics in deep tissue. Chem Soc Rev 2024; 53:2898-2931. [PMID: 38265834 DOI: 10.1039/d3cs00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Shrivastava N, Guffie J, Moore TL, Guzelturk B, Kumbhar AS, Wen J, Luo Z. Surface-Doped Zinc Gallate Colloidal Nanoparticles Exhibit pH-Dependent Radioluminescence with Enhancement in Acidic Media. NANO LETTERS 2023. [PMID: 37399282 PMCID: PMC10375584 DOI: 10.1021/acs.nanolett.3c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
As abnormal acidic pH symbolizes dysfunctions of cells, it is highly desirable to develop pH-sensitive luminescent materials for diagnosing disease and imaging-guided therapy using high-energy radiation. Herein, we explored near-infrared-emitting Cr-doped zinc gallate ZnGa2O4 nanoparticles (NPs) in colloidal solutions with different pH levels under X-ray excitation. Ultrasmall NPs were synthesized via a facile hydrothermal method by controlling the addition of ammonium hydroxide precursor and reaction time, and structural characterization revealed Cr dopants on the surface of NPs. The synthesized NPs exhibited different photoluminescence and radioluminescence mechanisms, confirming the surface distribution of activators. It was observed that the colloidal NPs emit pH-dependent radioluminescence in a linear relationship, and the enhancement reached 4.6-fold when pH = 4 compared with the colloidal NPs in the neutral solution. This observation provides a strategy for developing new biomaterials by engineering activators on the nanoparticle surfaces for potential pH-sensitive imaging and imaging-guided therapy using high-energy radiation.
Collapse
Affiliation(s)
- Navadeep Shrivastava
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | - Jessa Guffie
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | - Tamela L Moore
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | - Burak Guzelturk
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Amar S Kumbhar
- Chapel Hill Analytical and Nanofabrication Laboratory, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhiping Luo
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| |
Collapse
|
3
|
Hong Z, Chen Z, Chen Q, Yang H. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics. Acc Chem Res 2023; 56:37-51. [PMID: 36533853 DOI: 10.1021/acs.accounts.2c00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
X-ray luminescence is an optical phenomenon in which chemical compounds known as scintillators can emit short-wavelength light upon the excitation of X-ray photons. Since X-rays exhibit well-recognized advantages of deep penetration toward tissues and a minimal autofluorescence background in biological samples, X-ray luminescence has been increasingly becoming a promising optical tool for tackling the challenges in the fields of imaging, biosensing, and theragnostics. In recent years, the emergence of nanocrystal scintillators have further expanded the application scenarios of X-ray luminescence, such as high-resolution X-ray imaging, autofluorescence-free detection of biomarkers, and noninvasive phototherapy in deep tissues. Meanwhile, X-ray luminescence holds great promise in breaking the depth dependency of deep-seated lesion treatment and achieving synergistic radiotherapy with phototherapy.In this Account, we provide an overview of recent advances in developing advanced X-ray luminescence for applications in imaging, biosensing, theragnostics, and optogenetics neuromodulation. We first introduce solution-processed lead halide all-inorganic perovskite nanocrystal scintillators that are able to convert X-ray photons to multicolor X-ray luminescence. We have developed a perovskite nanoscintillator-based X-ray detector for high-resolution X-ray imaging of the internal structure of electronic circuits and biological samples. We further advanced the development of flexible X-ray luminescence imaging using solution-processable lanthanide-doped nanoscintillators featuring long-lived X-ray luminescence to image three-dimensional irregularly shaped objects. We also outline the general principles of high-contrast in vivo X-ray luminescence imaging which combines nanoscintillators with functional biomolecules such as aptamers, peptides, and antibodies. High-quality X-ray luminescence nanoprobes were engineered to achieve the high-sensitivity detection of various biomarkers, which enabled the avoidance of interference from the biological matrix autofluorescence and photon scattering. By marrying X-ray luminescence probes with stimuli-responsive materials, multifunctional theragnostic nanosystems were constructed for on-demand synergistic gas radiotherapy with excellent therapeutic effects. By taking advantage of the capability of X-rays to penetrate the skull, we also demonstrated the development of controllable, wireless optogenetic neuromodulation using X-ray luminescence probes while obviating damage from traditional optical fibers. Furthermore, we discussed in detail some challenges and future development of X-ray luminescence in terms of scintillator synthesis and surface modification, mechanism studies, and their other potential applications to provide useful guidance for further advancing the development of X-ray luminescence.
Collapse
Affiliation(s)
- Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
4
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
5
|
Hageraats S, Keune K, Stanescu S, Laurent JM, Fresquet W, Thoury M. Combining X-ray excited optical luminescence and X-ray absorption spectroscopy for correlative imaging on the nanoscale. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1858-1864. [PMID: 34738940 PMCID: PMC8570211 DOI: 10.1107/s1600577521009450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
X-ray absorption and optical luminescence can both provide valuable but very different information on the chemical and physical properties of materials. Although it is known that the spectral characteristics of many materials are highly heterogeneous on the micro- and/or nanoscale, no methodology has so far been shown to be capable of spatially resolving both full X-ray absorption and X-ray excited optical luminescence (XEOL) spectra on the nanoscale in a correlative manner. For this purpose, the scanning transmission X-ray microscope at the HERMES beamline of the SOLEIL synchrotron was equipped with an optical detection system capable of recording high-resolution XEOL spectra using a 40 nm soft X-ray probe. The functionality of the system was demonstrated by analyzing ZnO powder dispersions - showing simultaneously the X-ray linear dichroism and XEOL behavior of individual submicrometric ZnO crystallites.
Collapse
Affiliation(s)
- Selwin Hageraats
- Conservation and Science, Rijksmuseum Amsterdam, PO Box 74888, 1070 DN Amsterdam, The Netherlands
- IPANEMA, CNRS, Ministère de la Culture et de la Communication, Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
- Van ’t Hoff Institute for Molecular Science, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Katrien Keune
- Conservation and Science, Rijksmuseum Amsterdam, PO Box 74888, 1070 DN Amsterdam, The Netherlands
- Van ’t Hoff Institute for Molecular Science, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | | | - Jean-Michel Laurent
- Andor Technology, Springvale Business Park, 7 Millennium Way, Belfast BT12 7AL, United Kingdom
| | - William Fresquet
- Andor Technology, Springvale Business Park, 7 Millennium Way, Belfast BT12 7AL, United Kingdom
| | - Mathieu Thoury
- IPANEMA, CNRS, Ministère de la Culture et de la Communication, Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Ranasinghe M, Arifuzzaman M, Rajamanthrilage AC, Willoughby WR, Dickey A, McMillen C, Kolis JW, Bolding M, Anker JN. X-ray excited luminescence spectroscopy and imaging with NaGdF 4:Eu and Tb. RSC Adv 2021; 11:31717-31726. [PMID: 35496840 PMCID: PMC9041542 DOI: 10.1039/d1ra05451a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
X-ray excited optical luminescence from nanophosphors can be used to selectively generate light in tissue for imaging and stimulating light-responsive materials and cells. Herein, we synthesized X-ray scintillating NaGdF4:Eu and Tb nanophosphors via co-precipitate and hydrothermal methods, encapsulated with silica, functionalized with biotin, and characterized by X-ray excited optical luminescence spectroscopy and imaging. The nanophosphors synthesized by co-precipitate method were ∼90 and ∼106 nm in diameter, respectively, with hydrothermally synthesized particles showing the highest luminescence intensity. More importantly, we investigated the effect of thermal annealing/calcination on the X-ray excited luminescence spectra and intensity. At above 1000 °C, the luminescence intensity increased, but particles fused together. Coating with a 15 nm thick silica shell prevented particle fusion and enabled silane-based chemical functionalization, although luminescence decreased largely due to the increased mass of non-luminescent material. We observed an increase in luminesce intensity with temperature until at 400 °C. At above 600 °C, NaGdF4:Eu@SiO2 converts to NaGd9Si6O26:Eu, an X-ray scintillator brighter than annealed NPs at 400 °C and dimmer than NPs synthesized using the hydrothermal method. The particles generate light through tissue and can be selectively excited using a focused X-ray source for imaging and light generation applications. The particles also act as MRI contrast agents for multi-modal localization.
Collapse
Affiliation(s)
- Meenakshi Ranasinghe
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Md Arifuzzaman
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Apeksha C Rajamanthrilage
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - W R Willoughby
- Department of Radiology, University of Alabama at Birmingham School of Medicine Birmingham AL USA
| | - Ashley Dickey
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Colin McMillen
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Joseph W Kolis
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham School of Medicine Birmingham AL USA
| | - Jeffrey N Anker
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| |
Collapse
|
7
|
An Overview of Gadolinium-Based Oxide and Oxysulfide Particles: Synthesis, Properties, and Biomedical Applications. CRYSTALS 2021. [DOI: 10.3390/cryst11091094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade, the publications presenting novel physical and chemical aspects of gadolinium-based oxide (Gd2O3) and oxysulfide (Gd2O2S) particles in the micro- or nano-scale have increased, mainly stimulated by the exciting applications of these materials in the biomedical field. Their optical properties, related to down and upconversion phenomena and the ability to functionalize their surface, make them attractive for developing new probes for selective targeting and emergent bioimaging techniques, either for biomolecule labeling or theranostics. Moreover, recent reports have shown interesting optical behavior of these systems influenced by the synthesis methods, dopant amount and type, particle shape and size, and surface functionality. Hence, this review presents a compilation of the latest works focused on evaluating the optical properties of Gd2O3 and Gd2O2S particles as a function of their physicochemical and morphological properties; and also on their novel applications as MRI contrast agents and drug delivery nanovehicles, discussed along with their administration routes, biodistribution, cytotoxicity, and clearance mechanisms. Perspectives for this field are also identified and discussed.
Collapse
|
8
|
Zhuang Y, Zhao Y, Wang B, Wang Q, Cai T, Cai Y. Strategies for Preparing Different Types of Lipid Polymer Hybrid Nanoparticles in Targeted Tumor Therapy. Curr Pharm Des 2021; 27:2274-2288. [PMID: 33222665 DOI: 10.2174/1381612826666201120155558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/27/2020] [Indexed: 11/22/2022]
Abstract
At present, cancer is one of the most common diseases in the world, causing a large number of deaths and seriously affecting people's health. The traditional treatment of cancer is mainly surgery, radiotherapy or chemotherapy. Conventional chemotherapy is still an important treatment, but it has some shortcomings, such as poor cell selectivity, serious side effects, drug resistance and so on. Nanoparticle administration can improve drug stability, reduce toxicity, prolong drug release time, prolong system half-life, and bring broad prospects for tumor therapy. Lipid polymer hybrid nanoparticles (LPNs), which combine the advantages of polymer core and phospholipid shell to form a single platform, have become multi-functional drug delivery platforms. This review introduces the basic characteristics, structure and preparation methods of LPNs, and discusses targeting strategies of LPNs in tumor therapy in order to overcome the defects of traditional drug therapy.
Collapse
Affiliation(s)
- Yong Zhuang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yiye Zhao
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Bingyue Wang
- Guangzhou Jiayuan Medical and Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Qi Wang
- Guangzhou Jiayuan Medical and Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Tiange Cai
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Jiang M, Deng Z, Zeng S, Hao J. Recent progress on lanthanide scintillators for soft X‐ray‐triggered bioimaging and deep‐tissue theranostics. VIEW 2021. [DOI: 10.1002/viw.20200122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mingyang Jiang
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Zhiming Deng
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Jianhua Hao
- Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong P. R. China
| |
Collapse
|
10
|
Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Chen Z, Tsytsarev V, Finfrock YZ, Antipova OA, Cai Z, Arakawa H, Lischka FW, Hooks BM, Wilton R, Wang D, Liu Y, Gaitan B, Tao Y, Chen Y, Erzurumlu RS, Yang H, Rozhkova EA. Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles. ACS NANO 2021; 15:5201-5208. [PMID: 33625219 DOI: 10.1021/acsnano.0c10436] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
While offering high-precision control of neural circuits, optogenetics is hampered by the necessity to implant fiber-optic waveguides in order to deliver photons to genetically engineered light-gated neurons in the brain. Unlike laser light, X-rays freely pass biological barriers. Here we show that radioluminescent Gd2(WO4)3:Eu nanoparticles, which absorb external X-rays energy and then downconvert it into optical photons with wavelengths of ∼610 nm, can be used for the transcranial stimulation of cortical neurons expressing red-shifted, ∼590-630 nm, channelrhodopsin ReaChR, thereby promoting optogenetic neural control to the practical implementation of minimally invasive wireless deep brain stimulation.
Collapse
Affiliation(s)
- Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Institute of Food Safety and Environment Monitoring, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Vassiliy Tsytsarev
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Y Zou Finfrock
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Olga A Antipova
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Zhonghou Cai
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Fritz W Lischka
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799, United States
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh, 3500 Terrace Street, Suite W1458, Pittsburgh, Pennsylvania 15213-2500, United States
| | - Rosemarie Wilton
- Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Dongyi Wang
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Brandon Gaitan
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Yang Tao
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Huanghao Yang
- Institute of Food Safety and Environment Monitoring, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
12
|
Kitayama Y, Harada A. Interfacial Photo-Cross-Linking: Simple but Powerful Approach for Fabricating Capsule Polymer Particles with Tunable pH-Responsive Controlled Release Capability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10359-10375. [PMID: 33616405 DOI: 10.1021/acsami.0c20152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we describe capsule polymer particles with precisely controlled pH-responsive release properties prepared directly via the interfacial photo-cross-linking of spherical poly(2-diethylaminoethyl methacrylate-co-2-cinnamoylethyl methacrylate) (P(DEAEMA-CEMA)) particles. In the interfacial photo-cross-linking, photoreactive cinnamoyl groups in the polymer particles were cross-linked via [2π + 2π] cycloaddition reactions at the polymer/water interface, showing that the shell-cross-linked hollow polymer particles can be directly prepared from spherical polymer particles. The approach has fascinating advantages such as using minimal components, simplicity, and not requiring sacrificial template particles and toxic solvents. The following important observations are made: (I) encapsulated materials were stably retained in the capsule particles under neutral pH conditions; (II) encapsulated materials were released from the capsule particles under acidic pH conditions; (III) the release kinetics of encapsulated materials were controlled by the pH conditions; i.e., immediate and sustained release was achieved by varying the acidity of the aqueous media; (IV) the photoirradiation time did not significantly affect the release kinetics under different pH conditions; and (V) the pH-responsive release properties were regulated by changing the polymer composition in P(DEAEMA-CEMA). Furthermore, by exploiting the pH-responsiveness, capsule particles are successfully obtained via an all-aqueous process from spherical polymer particles. The advantages of the all-aqueous encapsulation process allowed the water-soluble biomacromolecules such as DNA and saccharides to be successfully encapsulated in the P(DEAEMA-CEMA) hollow particles. With this simple interfacial photo-cross-linking strategy, we envision the ready synthesis of sophisticated particulate materials for broad application in advanced research fields.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
13
|
Zhang E, Bandera Y, Dickey A, Foulger I, Kolis JW, Foulger SH. Development of dispersible radioluminescent silicate nanoparticles through a sacrificial layer approach. J Colloid Interface Sci 2021; 582:1128-1135. [PMID: 32947096 DOI: 10.1016/j.jcis.2020.07.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 01/10/2023]
Abstract
X-rays offer low tissue attenuation with high penetration depth when used in medical applications and when coupled with radioluminescent nanoparticles, offer novel theranostic opportunities. In this role, the ideal scintillator requires a high degree of crystallinity for an application relevant radioluminescence, yet a key challenge is the irreversible aggregation of the particles at most crystallization temperatures. In this communication, a high temperature multi-composite reactor (HTMcR) process was successfully developed to recrystallize monodisperse scintillating particulates by employing a core-multishell architecture. The core-shell morphology of the particles consisted of a silica core over-coated with a rare earth (Re = Y3+, Lu3+, Ce3+) oxide shell. This core-shell assembly was then encapsulated within a poly(divinylbenzene) shell which was converted to glassy carbon during the annealing & crystallization of the silica/rare earth oxide core-shell particle. This glassy carbon acted as a delamination layer and prevented the irreversible aggregation of the particles during the high temperature crystallization step. A subsequent low temperature annealing step in an air environment removed the glassy carbon and resulted in radioluminescent nanoparticles. Two monodisperse nanoparticle systems were synthesized using the HTMcR process including cerium doped Y2Si2O7 and Lu2Si2O7 with radioluminescence peaks at 427 and 399 nm, respectively. These particles may be employed as an in vivo light source for a noninvasive X-ray excited optogenetics.
Collapse
Affiliation(s)
- Eric Zhang
- Center for Optical Materials Science and Engineering Technologies, Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634-0971, USA
| | - Yuriy Bandera
- Center for Optical Materials Science and Engineering Technologies, Department of Chemistry, Clemson University, Clemson, SC 29634-0971, USA
| | - Ashley Dickey
- Center for Optical Materials Science and Engineering Technologies, Department of Chemistry, Clemson University, Clemson, SC 29634-0971, USA
| | - Isabell Foulger
- Center for Optical Materials Science and Engineering Technologies, Department of Bioengineering, Clemson University, Clemson, SC 29634-0971, USA
| | - Joseph W Kolis
- Center for Optical Materials Science and Engineering Technologies, Department of Chemistry, Clemson University, Clemson, SC 29634-0971, USA
| | - Stephen H Foulger
- Center for Optical Materials Science and Engineering Technologies, Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634-0971, USA; Center for Optical Materials Science and Engineering Technologies, Department of Bioengineering, Clemson University, Clemson, SC 29634-0971, USA.
| |
Collapse
|
14
|
Pogue BW, Zhang R, Cao X, Jia JM, Petusseau A, Bruza P, Vinogradov SA. Review of in vivo optical molecular imaging and sensing from x-ray excitation. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200308VR. [PMID: 33386709 PMCID: PMC7778455 DOI: 10.1117/1.jbo.26.1.010902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE Deep-tissue penetration by x-rays to induce optical responses of specific molecular reporters is a new way to sense and image features of tissue function in vivo. Advances in this field are emerging, as biocompatible probes are invented along with innovations in how to optimally utilize x-ray sources. AIM A comprehensive review is provided of the many tools and techniques developed for x-ray-induced optical molecular sensing, covering topics ranging from foundations of x-ray fluorescence imaging and x-ray tomography to the adaptation of these methods for sensing and imaging in vivo. APPROACH The ways in which x-rays can interact with molecules and lead to their optical luminescence are reviewed, including temporal methods based on gated acquisition and multipoint scanning for improved lateral or axial resolution. RESULTS While some known probes can generate light upon x-ray scintillation, there has been an emergent recognition that excitation of molecular probes by x-ray-induced Cherenkov light is also possible. Emission of Cherenkov radiation requires a threshold energy of x-rays in the high kV or MV range, but has the advantage of being able to excite a broad range of optical molecular probes. In comparison, most scintillating agents are more readily activated by lower keV x-ray energies but are composed of crystalline inorganic constituents, although some organic biocompatible agents have been designed as well. Methods to create high-resolution structured x-ray-optical images are now available, based upon unique scanning approaches and/or a priori knowledge of the scanned x-ray beam geometry. Further improvements in spatial resolution can be achieved by careful system design and algorithm optimization. Current applications of these hybrid x-ray-optical approaches include imaging of tissue oxygenation and pH as well as of certain fluorescent proteins. CONCLUSIONS Discovery of x-ray-excited reporters combined with optimized x-ray scan sequences can improve imaging resolution and sensitivity.
Collapse
Affiliation(s)
- Brian W. Pogue
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Rongxiao Zhang
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Xu Cao
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Jeremy Mengyu Jia
- Stanford University School of Medicine, Department of Radiation Oncology, Palo Alto, California, United States
| | - Arthur Petusseau
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts of Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| |
Collapse
|
15
|
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020; 10:26777-26791. [PMID: 35515778 PMCID: PMC9055574 DOI: 10.1039/d0ra03491f] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Drug delivery technology has a wide spectrum, which is continuously being upgraded at a stupendous speed. Different fabricated nanoparticles and drugs possessing low solubility and poor pharmacokinetic profiles are the two major substances extensively delivered to target sites. Among the colloidal carriers, nanolipid dispersions (liposomes, deformable liposomes, virosomes, ethosomes, and solid lipid nanoparticles) are ideal delivery systems with the advantages of biodegradation and nontoxicity. Among them, nano-structured lipid carriers and solid lipid nanoparticles (SLNs) are dominant, which can be modified to exhibit various advantages, compared to liposomes and polymeric nanoparticles. Nano-structured lipid carriers and SLNs are non-biotoxic since they are biodegradable. Besides, they are highly stable. Their (nano-structured lipid carriers and SLNs) morphology, structural characteristics, ingredients used for preparation, techniques for their production, and characterization using various methods are discussed in this review. Also, although nano-structured lipid carriers and SLNs are based on lipids and surfactants, the effect of these two matrixes to build excipients is also discussed together with their pharmacological significance with novel theranostic approaches, stability and storage.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University Henan 450018 China
| | - Abhishek Dhar
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Chetan Patel
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Mehul Khimani
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Swarnali Neogi
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Prolay Sharma
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia
| | - Rohit L Vekariya
- Department for Management of Science and Technology Development, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
16
|
Multimodal gadolinium oxysulfide nanoparticles for bioimaging: A comprehensive biodistribution, elimination and toxicological study. Acta Biomater 2020; 108:261-272. [PMID: 32165191 DOI: 10.1016/j.actbio.2020.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
Abstract
For some years now, gadolinium oxysulfide nanoparticles (NPs) appear as strong candidates for very efficient multimodal in vivo imaging by: 1) Magnetic Resonance (MRI), 2) X-ray Computed Tomography (CT) and 3) photoluminescence imaging. In this paper, we present a selection of results centered on the evaluation of physico-chemical stability, toxicity, bio-distribution and excretion mechanisms of Gd2O2S:Ln3+ nanoparticles intravenously injected in rats. Two formulations are here tested with a common matrix and different dopants: Gd2O2S:Eu3+5% and Gd2O2S:Yb3+4%/Tm3+0.1%. The NPs appear to be almost insoluble in pure water and human plasma but corrosion/degradation phenomenon appears in acidic conditions classically encountered in cell lysosomes. Whole body in vivo distribution, excretion and toxicity evaluation revealed a high tolerance of nanoparticles with a long-lasting imaging signal associated with a slow hepatobiliary clearance and very weak urinary excretion. The results show that the majority of the injected product (>60%) has been excreted through the feces after five months. Experiments have evidenced that the NPs mainly accumulate in macrophage-rich organs, that is mainly liver and spleen and to a lesser extent lungs and bones (mainly marrow). No significant amounts have been detected in other organs such as heart, kidneys, brain, intestine and skin. Gd2O2S:Ln3+ NPs appeared to be very well tolerated up to 400 mg/kg when administered intravenously. STATEMENT OF SIGNIFICANCE: Since 2011, we have focused our work on Gd2O2S nanoparticles (NPs) for multimodal bioimaging using fluorescence, Magnetic Resonance Imaging (MRI) and Computed Tomography with very efficient results already published. However, since the European Medicines Agency has concluded its review of gadolinium contrast agents, confirming recommendations to restrict the use of some linear gadolinium agents used in MRI, a particular attention must be paid to any new contrast media containing gadolinium. Therefore, we present in this paper a compilation of studies about toxicity, bio-distribution and excretion mechanisms of Gd2O2S:Ln3+ NPs intravenously injected into rats. We also present an in vitro kinetic study of NPs degradation in aqueous and biological media to provide some information on chemical and biological stability.
Collapse
|
17
|
Larquet C, Carenco S. Metal Oxysulfides: From Bulk Compounds to Nanomaterials. Front Chem 2020; 8:179. [PMID: 32296676 PMCID: PMC7136583 DOI: 10.3389/fchem.2020.00179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/26/2020] [Indexed: 11/30/2022] Open
Abstract
This review summarizes the syntheses and applications of metal oxysulfides. Bulk compounds of rare earth and transition metals are discussed in the section Introduction. After a presentation of their main properties and applications, their structures are presented and their syntheses are discussed. The section Bulk Materials and Their Main Applications is dedicated to the growing field of nanoscaled metal oxysulfides. Synthesis and applications of lanthanide-based nanoparticles are more mature and are discussed first. Then, works on transition-metal based nanoparticles are presented and discussed. Altogether, this review highlights the opportunities offered by metal oxysulfides for application in a range of technological fields, in relation with the most advanced synthetic routes and characterization techniques.
Collapse
Affiliation(s)
- Clément Larquet
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Paris, France
- Sorbonne Université, CNRS, IRD, MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmologie, IMPMC, Paris, France
| | - Sophie Carenco
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Paris, France
| |
Collapse
|
18
|
Sharma V, Sundaramurthy A. Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:508-532. [PMID: 32274289 PMCID: PMC7113543 DOI: 10.3762/bjnano.11.41] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Multilayer capsules have been of great interest for scientists and medical communities in multidisciplinary fields of research, such as drug delivery, sensing, biomedicine, theranostics and gene therapy. The most essential attributes of a drug delivery system are considered to be multi-functionality and stimuli responsiveness against a range of external and internal stimuli. Apart from the highly explored strong polyelectrolytes, weak polyelectrolytes offer great versatility with a highly controllable architecture, unique stimuli responsiveness and easy tuning of the properties for intracellular delivery of cargo. This review describes the progress in the preparation, functionalization and applications of capsules made of weak polyelectrolytes or their combination with biopolymers. The selection of a sacrificial template for capsule formation, the driving forces involved, the encapsulation of a variety of cargo and release based on different internal and external stimuli have also been addressed. We describe recent perspectives and obstacles of weak polyelectrolyte/biopolymer systems in applications such as therapeutics, biosensing, bioimaging, bioreactors, vaccination, tissue engineering and gene delivery. This review gives an emerging outlook on the advantages and unique responsiveness of weak polyelectrolyte based systems that can enable their widespread use in potential applications.
Collapse
Affiliation(s)
- Varsha Sharma
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
19
|
Pu H, Gao P, Liu Y, Rong J, Shi F, Lu H. Principal Component Analysis Based Dynamic Cone Beam X-Ray Luminescence Computed Tomography: A Feasibility Study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2891-2902. [PMID: 31095480 DOI: 10.1109/tmi.2019.2917026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cone beam X-ray luminescence computed tomography (CB-XLCT) is a promising imaging technique in studying the physiological and pathological processes in small animals. However, the dynamic bio-distributions of probes in small animal, especially in adjacent targets are still hard to be captured directly from dynamic CB-XLCT. In this paper, a 4D temporal-spatial reconstruction method based on principal component analysis (PCA) in the projection space is proposed for dynamic CB-XLCT. First, projections of angles in each 3D frame are compressed to reduce the noises initially. Then a temporal PCA is performed on the projection data to decorrelate the 4D problem into separate 3D problems in the PCA domain. In the PCA domain, the difference between dynamic behaviors of multiple targets can be reflected by the first several principal components which can be further used for fast and improved reconstruction by a restarted Tikhonov regularization method. At last, by discarding the principal components mainly reflecting noise, the concentration series of targets are recovered from the first few reconstruction results with a mask as the constraint. The numerical simulation and phantom experiment demonstrate that the proposed method can resolve multiple targets and recover the dynamic distributions with high computation efficiency. The proposed method provides new feasibility for imaging dynamic bio-distributions of probes in vivo.
Collapse
|
20
|
Chen D, Zhao F, Yang D, Fan S, Wu K. Feasibility study of three-dimensional multiple-beam x-ray luminescence tomography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:1669-1674. [PMID: 31674432 DOI: 10.1364/josaa.36.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
X-ray luminescence tomography (XLT) is a promising imaging technology based on x-ray beams, with high-resolution capability. We developed a fan-beam XLT system, where the x-ray beam scans the object at predefined directions and positions. As the scanning at one position needs to cover the object, the data acquisition time is usually long. To improve spatial resolution, we propose a three-dimensional multiple-beam x-ray luminescence imaging method, in which the x rays are modulated by an x-ray fence-modulation component. The proposed method can produce multiple x-ray beams and ensure spatial resolution along the longitudinal direction as well as the transverse plane. The proposed methods of single-source experiments can achieve 0.62 mm in location error and 0.87 in the dice coefficient while 1.32 mm in location error and 0.63 in the dice coefficient in the double-source experiment. The simulation experiments show that our proposed method can achieve better results at different depths than the traditional scanning method. It is also demonstrated that the best simulation results can be achieved with the smallest x-ray width.
Collapse
|
21
|
Zhao J, Li X, Wang X, Wang X. Fabrication of Hybrid Nanostructures Based on Fe 3O 4 Nanoclusters as Theranostic Agents for Magnetic Resonance Imaging and Drug Delivery. NANOSCALE RESEARCH LETTERS 2019; 14:200. [PMID: 31175468 PMCID: PMC6555842 DOI: 10.1186/s11671-019-3026-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 05/27/2023]
Abstract
Combining anticancer drugs with inorganic nanocrystals to construct multifunctional hybrid nanostructures has become a powerful tool for cancer treatment and tumor suppression. However, it remains a critical challenge to synthesize compact, multifunctional nanostructures with improved functionality and reproducibility. In this study, we report the fabrication of magnetite hybrid nanostructures employing Fe3O4 nanoparticles (NPs) to form multifunctional magnetite nanoclusters (NCs) by combining an oil-in-water microemulsion assembly and a layer-by-layer (LBL) method. The Fe3O4 NCs were firstly prepared via a microemulsion self-assembly technique. Then, polyelectrolyte layers composed of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) and doxorubicin hydrochloride (DOX) were capped on Fe3O4 NCs to construct the Fe3O4 NC/PAH/PSS/DOX hybrid nanostructures via LBL method. The as-prepared hybrid nanostructures loaded with DOX demonstrated the pH-responsive drug release and higher cytotoxicity towards human lung cancer (A549) cells in vitro and can serve as T2-weighted magnetic resonance imaging (MRI) contrast agents, which can significantly improve T2 relaxivity and lead to a better cellular MRI contrast effect. The loaded DOX emitting red signals under excitation with 490 nm are suitable for bioimaging applications. This work provides a novel strategy to build a Fe3O4-based multifunctional theranostic nanoplatform with T2-weighted MRI, fluorescence imaging, and drug delivery.
Collapse
Affiliation(s)
- Junwei Zhao
- Materials Science and Engineering School & Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang, 471023 People’s Republic of China
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 People’s Republic of China
| | - Xiang Li
- College of Materials Science and Engineering, Jilin University, Changchun, 130022 People’s Republic of China
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 People’s Republic of China
| | - Xin Wang
- College of Materials Science and Engineering, Jilin University, Changchun, 130022 People’s Republic of China
| | - Xin Wang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004 People’s Republic of China
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 People’s Republic of China
| |
Collapse
|
22
|
Fan W, Tang W, Lau J, Shen Z, Xie J, Shi J, Chen X. Breaking the Depth Dependence by Nanotechnology-Enhanced X-Ray-Excited Deep Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806381. [PMID: 30698854 DOI: 10.1002/adma.201806381] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Indexed: 05/12/2023]
Abstract
The advancements in nanotechnology have created multifunctional nanomaterials aimed at enhancing diagnostic accuracy and treatment efficacy for cancer. However, the ability to target deep-seated tumors remains one of the most critical challenges for certain nanomedicine applications. To this end, X-ray-excited theranostic techniques provide a means of overcoming the limits of light penetration and tissue attenuation. Herein, a comprehensive overview of the recent advances in nanotechnology-enhanced X-ray-excited imaging and therapeutic methodologies is presented, with an emphasis on the design of multifunctional nanomaterials for contrast-enhanced computed tomography (CT) imaging, X-ray-excited optical luminescence (XEOL) imaging, and X-ray-excited multimodal synchronous/synergistic therapy. The latter is based on the concurrent use of radiotherapy with chemotherapy, gas therapy, photodynamic therapy, or immunotherapy. Moreover, the featured biomedical applications of X-ray-excited deep theranostics are discussed to highlight the advantages of X-ray in high-sensitivity detection and efficient elimination of malignant tumors. Finally, key issues and technical challenges associated with this deep theranostic technology are identified, with the intention of advancing its translation into the clinic.
Collapse
Affiliation(s)
- Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Toolbox for In Vivo Imaging of Host-Parasite Interactions at Multiple Scales. Trends Parasitol 2019; 35:193-212. [PMID: 30745251 DOI: 10.1016/j.pt.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology.
Collapse
|
24
|
Abstract
The electromagnetic spectrum contains different frequency bands useful for medical imaging and therapy. Short wavelengths (ionizing radiation) are commonly used for radiological and radionuclide imaging and for cancer radiation therapy. Intermediate wavelengths (optical radiation) are useful for more localized imaging and for photodynamic therapy (PDT). Finally, longer wavelengths are the basis for magnetic resonance imaging and for hyperthermia treatments. Recently, there has been a surge of interest for new biomedical methods that synergize optical and ionizing radiation by exploiting the ability of ionizing radiation to stimulate optical emissions. These physical phenomena, together known as radioluminescence, are being used for applications as diverse as radionuclide imaging, radiation therapy monitoring, phototherapy, and nanoparticle-based molecular imaging. This review provides a comprehensive treatment of the physics of radioluminescence and includes simple analytical models to estimate the luminescence yield of scintillators and nanoscintillators, Cherenkov radiation, air fluorescence, and biologically endogenous radioluminescence. Examples of methods that use radioluminescence for diagnostic or therapeutic applications are reviewed and analyzed in light of these quantitative physical models of radioluminescence.
Collapse
Affiliation(s)
- Justin Klein
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Conroy Sun
- College of Pharmacy, Oregon State University, Portland, OR 97201
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| |
Collapse
|
25
|
Li S, Yuan C, Chen J, Chen D, Chen Z, Chen W, Yan S, Hu P, Xue J, Li R, Zheng K, Huang M. Nanoparticle Binding to Urokinase Receptor on Cancer Cell Surface Triggers Nanoparticle Disintegration and Cargo Release. Am J Cancer Res 2019; 9:884-899. [PMID: 30809315 PMCID: PMC6376475 DOI: 10.7150/thno.29445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/31/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer cell expresses abundant surface receptors. These receptors are important targets for cancer treatment and imaging applications. Our goal here is to develop nanoparticles with cargo loading and tumor targeting capability. Methods: A peptide targeting at cancer cell surface receptor (urokinase receptor, uPAR) was expressed in fusion with albumin (diameter of ~7 nm), and the fusion protein was assembled into nanoparticles with diameter of 40 nm, either in the presence or absence of cargo molecules, by a novel preparation method. An important feature of this method is that the nanoparticles were stabilized by hydrophobic interaction of the fusion protein and no covalent linking agent was used in the preparation. The stability, the cargo release, in vitro and in vivo properties of such formed nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, gel shift assay, laser scanning confocal microscopy and 3D fluorescent molecular tomography. Results: The nanoparticles were stable for more than two weeks in aqueous buffer, even in the buffer containing 10% fetal bovine serum. Interestingly, in the presence of urokinase receptor, the uPAR-targeting nanoparticle disintegrated into 7.5 nm fragments and released its cargo, but not the non-targeting nanoparticles made from albumin by the same preparation method. Such nanoparticles also showed higher uptake and cytotoxicity to the receptor-expressing cancer cells in vitro and higher tumor accumulation in xenografted tumor-bearing mice in vivo compared to the non-targeting nanoparticles. Conclusion: Our results demonstrate a new function of cell surface receptor as a responsive trigger to disassemble nanoparticles, besides its common use to enrich targeting agents. Such nanoparticles were thus named receptor-responsive nanoparticles (RRNP).
Collapse
|
26
|
Liu J, Lécuyer T, Seguin J, Mignet N, Scherman D, Viana B, Richard C. Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv Drug Deliv Rev 2019; 138:193-210. [PMID: 30414492 DOI: 10.1016/j.addr.2018.10.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
The development of probes for biomolecular imaging and diagnostics is a very active research area. Among the different imaging modalities, optics emerged since it is a noninvasive and cheap imaging technique allowing real time imaging. In vitro, this technique is very useful however in vivo, fluorescence suffers from low signal-to-noise ratio due to tissue autofluorescence under constant excitation. To address this limitation, novel types of optical nanoprobes are actually being developed and among them, persistent luminescence nanoparticles (PLNPs), with long lasting near-infrared (NIR) luminescence capability, allows doing optical imaging without constant excitation and so without autofluorescence. This review will begin by introducing the physical phenomenon associated to the long luminescence decay of such nanoprobes, from minutes to hours after ceasing the excitation. Then we will show how this property can be used to develop in vivo imaging probes and also more recently nanotheranostic agents. Finally, preliminary data on their biocompatibility will be mentioned and we will conclude by envisioning on the future applications and improvements of such nanomaterials.
Collapse
|
27
|
Fan L, Yang J, Leung KCF, Song C, Li Q. Noninvasive real-time monitoring of local drug release using nano-Au-absorbed self-decomposable SiO 2 carriers. NANOSCALE 2018; 10:15332-15338. [PMID: 30070282 DOI: 10.1039/c8nr03782e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Real time monitoring of drug release at specific local sites by a non-invasive imaging method is critical in patient-specific drug administration in order to avoid insufficient or excess drug dosing. In the present work, we designed a specific carrier system for such a purpose using self-decomposable SiO2 nanoparticles (NPs) with the drug being loaded in the center and Au NPs on the SiO2 NPs as the imaging agent. We discovered a correlation between the drug release from the carrier and the morphological evolution of Au NPs, which also left the carrier and changed their aggregation states along with the drug release process. This finding enabled the real time monitoring of the drug release at local sites (e.g. tumor) in a quantitative manner by recording the CT signal evolution of the Au NPs, as demonstrated in vivo using mice bearing Colo-205 xenografts. The present work provided a promising platform for non-invasive real time tracking on the localized drug release, enabling a variety of personalized therapeutic applications.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | |
Collapse
|
28
|
Stavarache CE, Paniwnyk L. Controlled rupture of magnetic LbL polyelectrolyte capsules and subsequent release of contents employing high intensity focused ultrasound. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Adams WT, Nolan MW, Ivanisevic A. Ga Ion-Enhanced and Particle Shape-Dependent Generation of Reactive Oxygen Species in X-ray-Irradiated Composites. ACS OMEGA 2018; 3:5252-5259. [PMID: 30023912 PMCID: PMC6044904 DOI: 10.1021/acsomega.8b00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/03/2018] [Indexed: 05/21/2023]
Abstract
The reported results test the effects of the collective behavior hypothesized to contribute to the production of more reactive oxygen species (ROS) in vitro and result in an enhanced radiosensitization. The role of particle shape in composites with gallium oxyhydroxide (GaOOH) particles and Matrigel is studied. Particles of two different shapes are embedded into the gel to understand only the materials effect on the generation of ROS rather than cell penetrating variations. The paper reports materials characterization by scanning electron microscopy and X-ray diffraction. The stability of the particles within the composite is assessed by quantification of leached metal using inductively coupled plasma mass spectrometry. The amount of ROS in each construct under variable radiation conditions is quantified in the presence and absence of PC12 cells seeded on top of the composites. The viability of cells is also recorded under different in vitro conditions. The collective materials characterization and the results from the bioassays are used to explain the role of anisotropy on the radiosensitization of nanostructures containing Ga. The presence of Ga ions in composites can have a radiosensitizing effect, and the amount of the available Ga3+ determines the magnitude of the radiosensitization. The shape of the particles determines the stability in aqueous solutions and release of Ga3+ that triggers ROS production. The concentration and shape of Ga-containing materials can be combined to generate an additive effect by increasing the amount of available free metal ions in solution. The studies with GaOOH containing composites enable one to explore the role of key parameters that lead to an increased efficiency of radiation treatments.
Collapse
Affiliation(s)
- W. T. Adams
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Michael W. Nolan
- Department
of Clinical Sciences (College of Veterinary Medicine), and Comparative
Medicine Institute, North Carolina State
University, 1060 William
Moore Drive, Raleigh, North
Carolina 27606, United
States
| | - Albena Ivanisevic
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
- E-mail:
| |
Collapse
|
30
|
Zhang X, Zhu S, Li Y, Zhan Y, Chen X, Kang F, Wang J, Cao X. Gamma rays excited radioluminescence tomographic imaging. Biomed Eng Online 2018; 17:45. [PMID: 29690883 PMCID: PMC5916826 DOI: 10.1186/s12938-018-0480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/18/2018] [Indexed: 11/26/2022] Open
Abstract
Background Radionuclide-excited luminescence imaging is an optical radionuclide imaging strategy to reveal the distributions of radioluminescent nanophosphors (RLNPs) inside small animals, which uses radioluminescence emitted from RLNPs when excited by high energy rays such as gamma rays generated during the decay of radiotracers used in clinical nuclear medicine imaging. Currently, there is no report of tomographic imaging based on radioluminescence. Methods In this paper, we proposed a gamma rays excited radioluminescence tomography (GRLT) to reveal three-dimensional distributions of RLNPs inside a small animal using radioluminescence through image reconstruction from surface measurements of radioluminescent photons using an inverse algorithm. The diffusion equation was employed to model propagations of radioluminescent photons in biological tissues with highly scattering and low absorption characteristics. Results Phantom and artificial source-implanted mouse model experiments were employed to test the feasibility of GRLT, and the results demonstrated that the ability of GRLT to reveal the distribution of RLNPs such as Gd2O2S:Tb using the radioluminescent signals when excited by gamma rays produced from 99mTc. Conclusions With the emerging of targeted RLNPs, GRLT can provide new possibilities for in vivo and noninvasive examination of biological processes at cellular levels. Especially, combining with Cerenkov luminescence imaging, GRLT can achieve dual molecular information of RLNPs and nuclides using single optical imaging technology.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yang Li
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
31
|
Zhou T, Luo T, Song J, Qu J. Phasor–Fluorescence Lifetime Imaging Microscopy Analysis to Monitor Intercellular Drug Release from a pH-Sensitive Polymeric Nanocarrier. Anal Chem 2018; 90:2170-2177. [DOI: 10.1021/acs.analchem.7b04511] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ting Zhou
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Teng Luo
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
32
|
Avram D, Tiseanu C. Thermometry properties of Er, Yb-Gd 2O 2S microparticles: dependence on the excitation mode (cw versus pulsed excitation) and excitation wavelength (980 nm versus 1500 nm). Methods Appl Fluoresc 2018; 6:025004. [PMID: 29199643 DOI: 10.1088/2050-6120/aa9ef9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we present a first report on the luminescence thermometry properties of Er, Yb doped Gd2O2S microparticles under near infrared up-conversion excitation at 980 and 1500 nm measured in the 280-800 K interval. The thermometry properties are assessed using both cw and ns pulsed excitation as well as tuning the excitation wavelength across Yb and Er absorption profiles. For low cw (300 mW cm-1) and pulsed ns (400 ÷ 550 mW cm-1) excitation modes, no thermal load is observed. At room-temperature (280 K), the maximum relative sensitivity values are comparable under pulsed excitation at 980 and 1500 nm, around ∼0.01 and ∼0.008% K-1, respectively. In addition, a relative intense up-conversion emission at 980 nm under excitation at 1500 nm is measured. Our findings evidence attractive up-conversion and thermometry properties Er, Yb doped Gd2O2S under near-infrared excitation and highlight the need to explore further these properties in the nanoparticulate regime.
Collapse
Affiliation(s)
- Daniel Avram
- National Institute for Laser, Plasma and Radiation Physics, PO Box MG-36, RO 76900, Bucharest-Magurele, Romania. University of Bucharest, Faculty of Physics, 405 Atomistilor Street, 077125 Magurele-Ilfov, Romania
| | | |
Collapse
|
33
|
Guo T, Lin Y, Zhang WJ, Hong JS, Lin RH, Wu XP, Li J, Lu CH, Yang HH. High-efficiency X-ray luminescence in Eu 3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization. NANOSCALE 2018; 10:1607-1612. [PMID: 29323363 DOI: 10.1039/c7nr06405e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
X-ray luminescence optical imaging has been recognized as a powerful technique for medical diagnosis due to its deep penetration and low auto-fluorescence in tissues. However, the low luminescence efficiency of current X-ray luminescence nanoprobes remains a major hurdle for sensitive bioimaging in practical medical applications. Here we present a new kind of energy transfer-sensitized X-ray luminescence nanoprobe (PEG-NaGd(WO4)2:Eu) for highly effective optical bioimaging. Under X-ray excitation, the tungstate host absorbs the X-ray photons and then transfers the energy to the Eu3+ luminescence center, thus enhancing the luminescence efficiency of the nanoprobes for high sensitivity optical in vivo imaging. Moreover, the shortened T1 relaxation response of Gd3+ ions and X-ray attenuation capability of W atoms enable the nanoprobes to serve as efficient contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) imaging. Therefore, combined with the MRI, CT and X-ray luminescence imaging capabilities, the present PEG-NaGd(WO4)2:Eu nanoprobes could be used as promising multimodal imaging contrast agents in biological systems.
Collapse
Affiliation(s)
- Tao Guo
- Key Laboratory for Analytical Science of Food Safety and Biology of the MOE, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang Q, Li X, Xue Z, Li Y, Jiang M, Zeng S. Short-wave near-infrared emissive GdPO4:Nd3+theranostic probe forin vivobioimaging beyond 1300 nm. RSC Adv 2018; 8:12832-12840. [PMID: 35541268 PMCID: PMC9079334 DOI: 10.1039/c7ra12864a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/28/2018] [Indexed: 11/21/2022] Open
Abstract
The optical probes working in the second near-infrared (NIR-II) window have attracted increasing research interest for their advantages of high tissue penetration depth, low autofluorescence, and unprecedentedly improved imaging sensitivity and spatial resolution. Therefore, it is of great significance to design a new nanoplatform by integration of NIR-II optical imaging and drug delivery functions. Herein, a multifunctional nanoplatform based on GdPO4:Nd3+ yolk–shell sphere was developed for dual-modal in vivo NIR-II/X-ray bioimaging and pH-responsive drug delivery. The in vivo NIR-II bioimaging and real-time tracking presented that these probes were mainly accumulated in liver and spleen. Moreover, owing to the large X-ray absorption coefficient of Gd3+, these probes are successfully used as superior X-ray imaging agents than iobitridol. The in vivo toxicity assessments demonstrate the low biotoxicity of the GdPO4:Nd3+ spheres in living animals. More importantly, apart from the excellent dual-modal bioimaging, these yolk–shell-structured probes were also used as ideal nanotransducer for pH-responsive drug delivery of doxorubicin (DOX). These findings open up the opportunity of designing theranostic nanoplatform with integration of imaging-based diagnosis and therapy. A multifunctional theranostic nanoplatform based on GdPO4:Nd3+ yolk–shell sphere was developed for dual-modal in vivo NIR-II/X-ray bioimaging and pH-responsive drug delivery.![]()
Collapse
Affiliation(s)
- Qiuhua Yang
- College of Physics and Information Science
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education
- Synergetic Innovation Center for Quantum Effects and Applications
- Hunan Normal University
- Changsha 410081
| | - Xiaolong Li
- College of Physics and Information Science
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education
- Synergetic Innovation Center for Quantum Effects and Applications
- Hunan Normal University
- Changsha 410081
| | - Zhenluan Xue
- College of Physics and Information Science
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education
- Synergetic Innovation Center for Quantum Effects and Applications
- Hunan Normal University
- Changsha 410081
| | - Youbin Li
- College of Physics and Information Science
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education
- Synergetic Innovation Center for Quantum Effects and Applications
- Hunan Normal University
- Changsha 410081
| | - Mingyang Jiang
- College of Physics and Information Science
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education
- Synergetic Innovation Center for Quantum Effects and Applications
- Hunan Normal University
- Changsha 410081
| | - Songjun Zeng
- College of Physics and Information Science
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education
- Synergetic Innovation Center for Quantum Effects and Applications
- Hunan Normal University
- Changsha 410081
| |
Collapse
|
35
|
Li X, Xue Z, Jiang M, Li Y, Zeng S, Liu H. Soft X-ray activated NaYF 4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/X-ray-induced optical bioimaging. NANOSCALE 2017; 10:342-350. [PMID: 29215103 DOI: 10.1039/c7nr02926h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lanthanide (Ln) nanocrystals using soft X-ray as an excitation source have received significant research interest due to the advantages of unlimited penetration depth of X-ray light. In this study, we demonstrated an efficient scintillator based on NaYF4:Gd nanorods (denoted as NRs) doped with different contents of terbium (Tb) ions for optical bioimaging under X-ray irradiation. The experimental results showed that the emission intensity was correlated to the doping contents of Tb3+, and the largest emission intensity was achieved by doping 15% Tb under excitation by soft X-ray light. In addition, the emission intensity of the as-prepared NRs can be significantly improved by increasing the excitation power and irradiation times of the X-ray. Owing to the efficient X-ray-induced emission, these NRs were successfully used as probes for X-ray-induced optical bioimaging with high sensitivity. In addition, the dual-modal X-ray imaging and X-ray induced optical bioimaging were performed on a mouse, which indicated that the NRs were promising dual-modal bioprobes. Therefore, the X-ray activation nature of the designed NRs makes them promising probes for biomedicine and X-ray-induced photodynamic therapy (PDT) applications owing to the unlimited penetration depth of X-ray excitation source and absence of autofluorescence.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Physics and Information Science, and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, Hunan, China.
| | | | | | | | | | | |
Collapse
|
36
|
Chen H, Sun X, Wang GD, Nagata K, Hao Z, Wang A, Li Z, Xie J, Shen B. LiGa 5O 8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. MATERIALS HORIZONS 2017; 4:1092-1101. [PMID: 31528350 PMCID: PMC6746429 DOI: 10.1039/c7mh00442g] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Using X-ray as the irradiation source, a photodynamic therapy process can be initiated from under deep tissues. This technology, referred to as X-ray induced PDT, or X-PDT, holds great potential to treat tumors at internal organs. To this end, one question is how to navigate the treatment to tumors with accuracy with external irradiation. Herein we address the issue with a novel, LiGa5O8: Cr (LGO:Cr)-based nanoscintillator, which emits persistent, near-infrared X-ray luminescence. This permits deep-tissue optical imaging that can be employed to guide irradiation. Specifically, we encapsulated LGO:Cr nanoparticles and a photosensitizer, 2,3-naphthalocyanine, into mesoporous silica nanoparticles. The nanoparticles were conjugated with cetuximab and systemically injected into H1299 orthotopic non-small cell lung cancer tumor models. The nanoconjugates can efficiently home to tumors in the lung, confirmed by monitoring X-ray luminescence from LGO:Cr. Guided by the imaging, external irradiation was applied, leading to efficient tumor suppression while minimally affecting normal tissues. To the best of our knowledge, the present study is the first to demonstrate, with systematically injected nanoparticles, that X-PDT can suppress growth of deep-seated tumors. The imaging guidance is also new to X-PDT, and is significant to the further transformation of the technology.
Collapse
Affiliation(s)
- Hongmin Chen
- Molecular Imaging Research Center (MIRC), TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150028, China
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Geoffrey D. Wang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Koichi Nagata
- College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Zhonglin Hao
- Section of Hematology and Oncology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| | - Andrew Wang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Zibo Li
- ΔDepartment of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Corresponding Author: .
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150028, China
- Corresponding Author: .
| |
Collapse
|
37
|
Abstract
As part of an ongoing study of the electronic interactions between solute and solvent molecules, a method for X-ray excited optical luminescence (XEOL) analysis of aqueous solutions was developed at the double-crystal monochromator beamline (DCM) of the Canadian Synchrotron Radiation Facility (CSRF). It was tested using a series of solutions containing lanthanide ions. The samples were contained in a sample holder for liquids with a 3 μm Mylar window separating them from the vacuum (≤3 × 10−6 torr, 1 torr = 133.3224 Pa) in the solid state absorption chamber of the DCM beamline. Terbium, samarium, and dysprosium have 4 intense and narrow luminescence peaks between 450 and 700 nm, well separated from the luminescence peak of the Mylar window between 300 and 425 nm. The intensity of the rare earth (RE3+) luminescence peaks was lower for the solutions than for solid RECl3·6H2O. In part, this was caused by the lower RE3+ concentration in the solutions than in the solid. In addition, the solvent (water) acts as a quencher. The disorder and the molecular motion in the solution increase the availability of nonradiative de-excitation pathways. A high concentration of SO42− in the solution enhanced the luminescence intensity, probably by inhibiting some nonradiative de-excitation pathways. This study has shown that it is in principle possible to investigate the luminescence of aqueous solutions with XEOL spectroscopy. Furthermore, it is possible to use this technique as a quantitative analytical tool for concentrated luminescent solutions and to study the shielding effects of anions in the solution that increase the luminescence intensity.
Collapse
Affiliation(s)
- Astrid Jürgensen
- Canadian Synchrotron Radiation Facility, Synchrotron Radiation Center, Stoughton, WI 53589-3097, USA; Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Canadian Synchrotron Radiation Facility, Synchrotron Radiation Center, Stoughton, WI 53589-3097, USA; Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
38
|
Quigley BP, Smith CD, Cheng SH, Souris JS, Pelizzari CA, Chen CT, Lo LW, Reft CS, Wiersma RD, La Riviere PJ. Sensitivity evaluation and selective plane imaging geometry for x-ray-induced luminescence imaging. Med Phys 2017; 44:5367-5377. [PMID: 28703922 DOI: 10.1002/mp.12470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE X-ray-induced luminescence (XIL) is a hybrid x-ray/optical imaging modality that employs nanophosphors that luminescence in response to x-ray irradiation. X-ray-activated phosphorescent nanoparticles have potential applications in radiation therapy as theranostics, nanodosimeters, or radiosensitizers. Extracting clinically relevant information from the luminescent signal requires the development of a robust imaging model that can determine nanophosphor distributions at depth in an optically scattering environment from surface radiance measurements. The applications of XIL in radiotherapy will be limited by the dose-dependent sensitivity at depth in tissue. We propose a novel geometry called selective plane XIL (SPXIL), and apply it to experimental measurements in optical gel phantoms and sensitivity simulations. METHODS An imaging model is presented based on the selective plane geometry which can determine the detected diffuse optical signal for a given x-ray dose and nanophosphor distribution at depth in a semi-infinite, optically homogenous material. The surface radiance in the model is calculated using an analytical solution to the extrapolated boundary condition. Y2 O3 :Eu3+ nanoparticles are synthesized and inserted into various optical phantom in order to measure the luminescent output per unit dose for a given concentration of nanophosphors and calibrate an imaging model for XIL sensitivity simulations. SPXIL imaging with a dual-source optical gel phantom is performed, and an iterative Richardson-Lucy deconvolution using a shifted Poisson noise model is applied to the measurements in order to reconstruct the nanophosphor distribution. RESULTS Nanophosphor characterizations showed a peak emission at 611 nm, a linear luminescent response to tube current and nanoparticle concentration, and a quadratic luminescent response to tube voltage. The luminescent efficiency calculation accomplished with calibrated bioluminescence mouse phantoms determines 1.06 photons were emitted per keV of x-ray radiation absorbed per g/mL of nanophosphor concentration. Sensitivity simulations determined that XIL could detect a concentration of 1 mg/mL of nanophosphors with a dose of 1 cGy at a depth ranging from 2 to 4 cm, depending on the optical parameters of the homogeneous diffuse optical environment. The deconvolution applied to the SPXIL measurements could resolve two sources 1 cm apart up to a depth of 1.75 cm in the diffuse phantom. CONCLUSIONS We present a novel imaging geometry for XIL in a homogenous, diffuse optical environment. Basic characterization of Y2 O3 :Eu3+ nanophosphors are presented along with XIL/SPXIL measurements in optical gel phantoms. The diffuse optical imaging model is validated using these measurements and then calibrated in order to execute initial sensitivity simulations for the dose-depth limitations of XIL imaging. The SPXIL imaging model is used to perform a deconvolution on a dual-source phantom, which successfully reconstructs the nanophosphor distributions.
Collapse
Affiliation(s)
- Bryan P Quigley
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Corey D Smith
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Shih-Hsun Cheng
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey S Souris
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Charles A Pelizzari
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Leu-Wei Lo
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Chester S Reft
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Rodney D Wiersma
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
39
|
Chouikrat R, Baros F, André JC, Vanderesse R, Viana B, Bulin AL, Dujardin C, Arnoux P, Verelst M, Frochot C. A Photosensitizer Lanthanide Nanoparticle Formulation that Induces Singlet Oxygen with Direct Light Excitation, But Not By Photon or X-ray Energy Transfer. Photochem Photobiol 2017; 93:1439-1448. [DOI: 10.1111/php.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rima Chouikrat
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Jean-Claude André
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS 7375; Université de Lorraine; Nancy France
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR CNRS 7375; CNRS; Nancy France
| | | | - Anne-Laure Bulin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Christophe Dujardin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Marc Verelst
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| |
Collapse
|
40
|
Xue Z, Li X, Li Y, Jiang M, Liu H, Zeng S, Hao J. X-ray-Activated Near-Infrared Persistent Luminescent Probe for Deep-Tissue and Renewable in Vivo Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22132-22142. [PMID: 28603963 DOI: 10.1021/acsami.7b03802] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) are considered as new alternative optical probes due to being free of autofluorescence, benefited from the self-sustained emission after excitation and high signal-to-noise ratio. However, the NIR-emitted PLNPs always present a short decay time and require excitation by ultraviolet or visible light with a short penetrable depth, remarkably hindering their applications for in vivo long-term tracking and imaging. Therefore, it is important to develop NIR-emitted PLNPs with in vivo activation nature by new excitation sources with deeper penetrating depths. Here, we propose a new type of X-ray-activated ZnGa2O4:Cr PLNPs (X-PLNPs) with efficient NIR persistent emission and rechargeable activation features, in which both the excitation and emission possess a high penetrable nature in vivo. These X-PLNPs exhibit long-lasting, up to 6 h, NIR emission at 700 nm after the stoppage of the X-ray excitation source. More importantly, the designed X-PLNPs can be readily reactivated by a soft X-ray excitation source with low excitation power (45 kVp, 0.5 mA) to restore in vivo bioimaging signals even at 20 mm depth. Renewable in vivo whole-body bioimaging was also successfully achieved via intravenous injection/oral administration of X-PLNPs after in situ X-ray activation. This is the first time that NIR-emitted PLNPs have been demonstrated to be recharged by X-ray light for deep-tissue in vivo bioimaging, which paves the way for in vivo renewable bioimaging using PLNPs and makes the PLNPs more competitive in bioimaging area.
Collapse
Affiliation(s)
- Zhenluan Xue
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, College of Physics and Information Science, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University , Changsha, Hunan 410081, China
| | - Xiaolong Li
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, College of Physics and Information Science, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University , Changsha, Hunan 410081, China
| | - Youbin Li
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, College of Physics and Information Science, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University , Changsha, Hunan 410081, China
| | - Mingyang Jiang
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, College of Physics and Information Science, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University , Changsha, Hunan 410081, China
| | - Hongrong Liu
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, College of Physics and Information Science, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University , Changsha, Hunan 410081, China
| | - Songjun Zeng
- Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, College of Physics and Information Science, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University , Changsha, Hunan 410081, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University , Hong Kong, China
| |
Collapse
|
41
|
Chen H, Wang F, Moore T, Qi B, Sulejmanovic D, Hwu SJ, Mefford OT, Alexis F, Anker JN. Bright X-ray and up-conversion nanophosphors annealed using encapsulated sintering agents for bioimaging applications. J Mater Chem B 2017; 5:5412-5424. [PMID: 29497532 PMCID: PMC5826634 DOI: 10.1039/c7tb01289f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanophosphors are promising contrast agents for deep tissue optical imaging applications because they can be excited by X-ray and near infrared light that penetrates deeply through tissue and generates almost no autofluorescence background in the tissue. For these bioimaging applications, the nanophosophors should ideally be small, monodispersed and brightly luminescent. However, most methods used to improve luminescence yield by annealing the particles to reduce crystal and surface defects (e.g. using flux or sintering agents) also cause particle fusion or require multiple component core-shell structures. Here, we report a novel method to prepare bright, uniformly sized X-ray nanophosphors (Gd2O2S:Eu or Tb) and upconversion nanophosphors (Y2O2S: Yb/Er, or Yb/Tm) with large crystal domain size without causing aggregation. A core-shell nanoparticle is formed, with NaF only in the core. We observe that increasing the NaF sintering agent concentration up to 7.6 mol% increases both crystal domain size and luminescence intensity (up to 40% of commercial microphosphors) without affecting the physical particticle diameter. Above 7.6 mol%, particle fusion is observed. The annealing is insensitive to the cation (Na+ or K+) but varies strongly with anion, with F->Cl->CO32->Br->I-. The luminescence depends strongly on crystal domain size. The data agree reasonably well with a simple domain surface quenching model, although the size-dependence suggests additional quenching mechanisms within small domains. The prepared bright nanophosphors were subsequently functionalized with PEG-folic acid to target MCF-7 breast cancer cells which overexpress folic acid receptors. Both X-ray and upconversion nanophosphors provided low background and bright luminescence which was imaged through 1 cm chicken breast tissue at a low dose of nanophosphors 200 µL (0.1 mg/mL). We anticipate these highly monodispersed and bright X-ray and upconversion nanophosphors will have significant potential for tumor targeted imaging.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Chemistry, Department of BioEngineering, Center for Optical Materials Science and Engineering Technologies (COMSET), and Institute of Environmental Toxicology (CU-ENTOX); Clemson University, Clemson, SC, 29634, USA. Tel:+1-864-656-1726.
| | - Fenglin Wang
- Department of Chemistry, Department of BioEngineering, Center for Optical Materials Science and Engineering Technologies (COMSET), and Institute of Environmental Toxicology (CU-ENTOX); Clemson University, Clemson, SC, 29634, USA. Tel:+1-864-656-1726.
| | - Thomas Moore
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Bin Qi
- Department of Materials Science and Engineering and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC, 29634, USA
| | - Dino Sulejmanovic
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Shiou-Jyh Hwu
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - O Thompson Mefford
- Department of Materials Science and Engineering and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC, 29634, USA
| | - Frank Alexis
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Jeffrey N Anker
- Department of Chemistry, Department of BioEngineering, Center for Optical Materials Science and Engineering Technologies (COMSET), and Institute of Environmental Toxicology (CU-ENTOX); Clemson University, Clemson, SC, 29634, USA. Tel:+1-864-656-1726.
| |
Collapse
|
42
|
Feng T, Chua HJ, Zhao Y. Reduction-Responsive Carbon Dots for Real-Time Ratiometric Monitoring of Anticancer Prodrug Activation in Living Cells. ACS Biomater Sci Eng 2017; 3:1535-1541. [PMID: 33429640 DOI: 10.1021/acsbiomaterials.7b00264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Anticancer prodrugs have been extensively investigated to lower toxic side effects of common chemotherapeutic agents in biomedical fields. To illustrate the activation mechanism of anticancer prodrugs, fluorescent dyes or single-emission intensity alteration-based approaches have been widely used. However, fluorescent dyes often suffer from poor photostability and chemical stability, and single-emission intensity alteration-based methods cannot avoid the influence from uncontrolled microenvironment changes in living samples. To overcome these obstacles, herein, a fluorescence resonance energy transfer (FRET)-based ratiometric approach was successfully developed for real-time monitoring of anticancer prodrug activation. Excitation-wavelength-dependent and full-color-emissive carbon dots (CDs) were used as drug nanocarriers and FRET donor, and a cisplatin(IV) prodrug was selected as the model drug and the linker to load the Dabsyl quencher on the surface of CDs. Owing to the FRET effect, the blue fluorescence of CDs was effectively quenched by the Dabsyl unit. Under reductive conditions in solution or in living cells for the reduction of cisplatin(IV) prodrug to Pt(II) species, the blue fluorescence of CDs increased over time, without apparent intensity change for green or red fluorescence. Thus, the gradually enhanced intensity ratio of blue-to-green or blue-to-red fluorescence could be indicative of the real-time reduction of the cisplatin(IV) prodrug to cytotoxic Pt(II) species. This ratiometric method could exclude the influence from complex biological microenvironments by using green or red fluorescence of CDs as an internal reference, which provides new insights into the activation of the cisplatin(IV) prodrug and offers a great opportunity to design safe and effective anticancer therapeutics.
Collapse
Affiliation(s)
- Tao Feng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Huoy Jing Chua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore.,School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
43
|
Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, Zhang Q. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment. Theranostics 2017; 7:538-558. [PMID: 28255348 PMCID: PMC5327631 DOI: 10.7150/thno.16684] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.
Collapse
Affiliation(s)
- Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| |
Collapse
|
44
|
Zhang G, Liu F, Liu J, Luo J, Xie Y, Bai J, Xing L. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:225-235. [PMID: 27576245 PMCID: PMC5391999 DOI: 10.1109/tmi.2016.2603843] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.
Collapse
|
45
|
Ai F, Goel S, Zhan Y, Valdovinos HF, Chen F, Barnhart TE, Cai W. Intrinsically 89Zr-labeled Gd 2O 2S:Eu nanophosphors with high in vivo stability for dual-modality imaging. Am J Transl Res 2016; 8:5591-5600. [PMID: 28078029 PMCID: PMC5209509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Radioluminescence imaging (RLI) employs high energy particles from radioisotope decay for in situ excitation of selected nanophosphors. Co-injection of radiopharmaceuticals and nanophosphors suffers from suboptimal RL efficiency owing to the large separation between the source and the emitter. In addition, vastly different pharmacokinetic profiles of the two further impede the practical applications of this approach. To overcome the above challenges, chelator-free radiolabeled nanophosphors with excellent RL efficiency and dual-modality imaging capabilities have been proposed. Abundant O2- donors on Gd2O2S:Eu could intrinsically chelate oxophilic radionuclide 89Zr with ~80 % labeling yield. Positron emission tomography demonstrated superb long-term radiostability of [89Zr]Gd2O2S:Eu@PEG nanoparticles in vivo, and a conventional optical imaging system was used to study radiouminescence properties of [89Zr]Gd2O2S:Eu@PEG nanoparticles in vitro and in vivo.
Collapse
Affiliation(s)
- Fanrong Ai
- School of Mechanical & Electrical Engineering, Nanchang UniversityJiangxi, China
- Department of Radiology, University of Wisconsin-MadisonMadison, WI
| | - Shreya Goel
- Materials Science Program, University of Wisconsin-MadisonMadison, WI
| | - Yonghua Zhan
- Department of Radiology, University of Wisconsin-MadisonMadison, WI
- Engineering Research Centre of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian UniversityXi’an, Shaanxi, China
| | | | - Feng Chen
- Department of Radiology, University of Wisconsin-MadisonMadison, WI
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-MadisonMadison, WI
- Materials Science Program, University of Wisconsin-MadisonMadison, WI
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI
- University of Wisconsin Carbone Cancer CentreMadison, WI
| |
Collapse
|
46
|
De D, Mandal Goswami M. Shape induced acid responsive heat triggered highly facilitated drug release by cube shaped magnetite nanoparticles. BIOMICROFLUIDICS 2016; 10:064112. [PMID: 27990214 PMCID: PMC5135718 DOI: 10.1063/1.4971439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
This paper reports a very simple yet better method for synthesis of cube shaped magnetite nanoparticles (MNPs) and their application in the drug delivery system (DDS). Structural analysis was done by XRD measurements to confirm the phase of the material, and morphological information was obtained through TEM analysis to confirm the shape and size of the particles. It has been shown that these particles can be decomposed in acid medium. These acid-decomposable magnetite nano-particles have been used for heat triggered, remote-controlled, on demand delivery and release of a cancer drug doxorubicin for research and therapeutic purposes. Here, we have shown that the pH stimulated and heat-triggered release of drug from our MNPs significantly enhances the release efficiency. In this case, we observe that pH induced release is far better in comparison to heat-triggered release. From these inspiring results, it may be expected that this methodology may become a significant step towards the development of a pH-sensitive heat triggered drug delivery system minimizing drug toxicity.
Collapse
Affiliation(s)
- Debarati De
- Ce ntre for Research in Nano Science and Nano technology , Block-JD-2, Sector-III, Salt Lake, Kolkata 700106, India
| | - Madhuri Mandal Goswami
- S.N. Bose National Centre for Basic Sciences , Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
47
|
Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6450124. [PMID: 27868068 PMCID: PMC5102875 DOI: 10.1155/2016/6450124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 10/05/2016] [Indexed: 11/17/2022]
Abstract
Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.
Collapse
|
48
|
Shen T, Zhang Y, Kirillov AM, Cai H, Huang K, Liu W, Tang Y. Two-photon sensitized hollow Gd2O3:Eu(3+) nanocomposites for real-time dual-mode imaging and monitoring of anticancer drug release. Chem Commun (Camb) 2016; 52:1447-50. [PMID: 26648424 DOI: 10.1039/c5cc07609a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New two-photon sensitized multifunctional nanocomposites were designed for dual-mode imaging and real-time drug release monitoring by photoluminescence (PL) and magnetic resonance imaging (MRI). By drug loading based on coordination effect, PL signals of Eu(3+) and MRI signals of Gd(3+) can be stabilized and enhanced, respectively, which then display excellent linear decreases on drug release.
Collapse
Affiliation(s)
- Tingting Shen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yu Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Alexander M Kirillov
- Centro de Quimica Estrutural, Complexo I, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Huijuan Cai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Kun Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
49
|
Yang X, He D, He X, Wang K, Tang J, Zou Z, He X, Xiong J, Li L, Shangguan J. Synthesis of Hollow Mesoporous Silica Nanorods with Controllable Aspect Ratios for Intracellular Triggered Drug Release in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20558-20569. [PMID: 27411575 DOI: 10.1021/acsami.6b05065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here, we have reported a straightforward and effective synthetic strategy for synthesis of aspect-ratios-controllable mesoporous silica nanorods with hollow structure (hMSR) and its application for transcription factor (TF)-responsive drug delivery intracellular. Templating by an acid-degradable nickel hydrazine nanorods (NHNT), we have first synthesized the hollow dense silica nanorods and then coated on a mesoporous silica layer. Subsequently, the dense silica layer was removed by the surface-protected etching method and the hollow structure of hMSR was finally formed. The aspect ratios of the hMSR can be conveniently controlled by regulating the aspect ratios of NHNT. Four different hMSR with aspect ratios of ca. 2.5, ca. 5.3, ca. 8.1, and ca. 9.0 has been obtained. It was demonstrated that the as-prepared hMSRs have good stability, high drug loading capacity, and fast cell uptake capability, which makes them to a potential nanocarrier for drug delivery. As the paradigm, hMSR with an aspect ratio of ca. 8.1 was then applied for TF-responsive intracellular anticancer drug controlled release by using a Ag(+)-stabilized molecular switch of triplex DNA (TDNA) as capping agents and probes for TFs recognition. In the presence of TF, the pores of hMSR can be unlocked by the TFs induced disassembly of TDNA, leading to the leakage of DOX. The research in vitro displayed that this system has a TFs-triggered DOX release, and the cytotoxicity in L02 normal cells was lower than that of HeLa cells. We hope that this developed hMSR-based system will promote the development of cancer therapy in related fields.
Collapse
Affiliation(s)
- Xue Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Dinggeng He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Xiaoxiao He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Kemin Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jinlu Tang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Zhen Zou
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Xing He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jun Xiong
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Liling Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jingfang Shangguan
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| |
Collapse
|
50
|
Zhan Y, Ai F, Chen F, Valdovinos HF, Orbay H, Sui H, Liang J, Barnhart TE, Tian J, Cai W. Intrinsically Zirconium-89 Labeled Gd2 O2 S:Eu Nanoprobes for In Vivo Positron Emission Tomography and Gamma-Ray-Induced Radioluminescence Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2872-6. [PMID: 27106630 PMCID: PMC4889465 DOI: 10.1002/smll.201600594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/19/2016] [Indexed: 05/22/2023]
Abstract
The engineering of a novel dual-modality imaging probe is reported here by intrinsically labeling zirconium-89 ((89) Zr, a positron emission radioisotope with a half-life of 78.4 h) to PEGylated Gd2 O2 S:Eu nanophorphors, forming [(89) Zr]Gd2 O2 S:Eu@PEG for in vivo positron emission tomography/radioluminescence lymph node mapping.
Collapse
Affiliation(s)
- Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China. Department of Radiology, University of Wisconsin–Madison, WI, USA
| | - Fanrong Ai
- School of Mechanical & Electrical Engineering, Nanchang University, Jiangxi, China. Department of Radiology, University of Wisconsin–Madison, WI, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin–Madison, WI, USA
| | | | - Hakan Orbay
- Department of Surgery, University of California-Davis, Sacramento, CA 95817, USA
| | - Haiyan Sui
- Department of Radiology, University of Wisconsin–Madison, WI, USA
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, WI, USA
| | - Jie Tian
- Institute of Automation, Chinese Academy of Sciences, Beijing, China, Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin–Madison, WI, USA, University of Wisconsin-Madison Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|