1
|
Zhang J, Hu XG, Ji K, Zhao S, Liu D, Li B, Hou PX, Liu C, Liu L, Stranks SD, Cheng HM, Silva SRP, Zhang W. High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes. Nat Commun 2024; 15:2245. [PMID: 38472279 DOI: 10.1038/s41467-024-46620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Bifacial perovskite solar cells have shown great promise for increasing power output by capturing light from both sides. However, the suboptimal optical transmittance of back metal electrodes together with the complex fabrication process associated with front transparent conducting oxides have hindered the development of efficient bifacial PSCs. Here, we present a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes. single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. We also fabricate flexible, all-carbon-electrode-based devices with a high power-per-weight value of 73.75 W g-1 and excellent mechanical durability. Furthermore, we show that our bifacial devices have a much lower material cost than conventional monofacial PSCs. Our work demonstrates the potential of SWCNT electrodes for efficient, stable, and low-cost bifacial perovskite photovoltaics.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Xian-Gang Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, PR China
| | - Kangyu Ji
- Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Songru Zhao
- Centre for Environment and Sustainability, Thomas Telford (AA) building, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Dongtao Liu
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Bowei Li
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Lirong Liu
- Centre for Environment and Sustainability, Thomas Telford (AA) building, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Hui-Ming Cheng
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China.
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, 291 Louming Road, Shenzhen, 518107, PR China.
- Shenzhen Key Lab of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen, 518055, PR China.
| | - S Ravi P Silva
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Wei Zhang
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
Ali I, Islam MR, Yin J, Eichhorn SJ, Chen J, Karim N, Afroj S. Advances in Smart Photovoltaic Textiles. ACS NANO 2024; 18:3871-3915. [PMID: 38261716 PMCID: PMC10851667 DOI: 10.1021/acsnano.3c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Energy harvesting textiles have emerged as a promising solution to sustainably power wearable electronics. Textile-based solar cells (SCs) interconnected with on-body electronics have emerged to meet such needs. These technologies are lightweight, flexible, and easy to transport while leveraging the abundant natural sunlight in an eco-friendly way. In this Review, we comprehensively explore the working mechanisms, diverse types, and advanced fabrication strategies of photovoltaic textiles. Furthermore, we provide a detailed analysis of the recent progress made in various types of photovoltaic textiles, emphasizing their electrochemical performance. The focal point of this review centers on smart photovoltaic textiles for wearable electronic applications. Finally, we offer insights and perspectives on potential solutions to overcome the existing limitations of textile-based photovoltaics to promote their industrial commercialization.
Collapse
Affiliation(s)
- Iftikhar Ali
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Md Rashedul Islam
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Junyi Yin
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Stephen J. Eichhorn
- Bristol
Composites Institute, School of Civil, Aerospace, and Design Engineering, The University of Bristol, University Walk, Bristol BS8 1TR, U.K.
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Nazmul Karim
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
- Nottingham
School of Art and Design, Nottingham Trent
University, Shakespeare Street, Nottingham NG1 4GG, U.K.
| | - Shaila Afroj
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| |
Collapse
|
3
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
4
|
Xie RF, Zhang JB, Wu Y, Li L, Liu XY, Cui G. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. J Chem Phys 2023; 158:054108. [PMID: 36754819 DOI: 10.1063/5.0134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.
Collapse
Affiliation(s)
- Rui-Fang Xie
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing-Bin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Aetizaz M, Sarfaraz S, Ayub K. Interaction of Imidazolium based ionic liquid electrolytes with carbon nitride electrodes in supercapacitors; A step forward for understanding electrode-electrolyte interaction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Islam N, Saikia BK. An overview on atmospheric carbonaceous particulate matter into carbon nanomaterials: A new approach for air pollution mitigation. CHEMOSPHERE 2022; 303:135027. [PMID: 35623423 DOI: 10.1016/j.chemosphere.2022.135027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Air pollutants consisting of atmospheric particulate matter (PM) poses a major threat to the environment and human health. However, due to their carbonaceous nature, these atmospheric PM can also be used as a precursor for fabrication of high-valued carbon nanomaterials (CNMs) leading to waste to wealth as well as mitigation of air pollution. Over the few years, various results have been reported on different types of physical and chemical methods for the synthesis of CNMs from atmospheric particulate matter with the help of top down and bottom up methods; however, there is a lack of review on these innovative processes and outcome in order to assess their feasibility and suitability for further investigation. This review critically assesses the synthesis, identification, and characterization of different types of CNMs derived from the atmospheric PM. The fascinating fluorescence properties along with the novel multifarious applications of such PM-derived CNMs are also extensively discussed in this review work. This unique review will certainly help to make a new avenue for air pollution mitigation through conversion of PMs in to value added nanomaterials (VNMs) and will boost the research activity in the field of environmental nanotechnology for a cleaner environment.
Collapse
Affiliation(s)
- Nazrul Islam
- Coal & Energy Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Binoy K Saikia
- Coal & Energy Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Kharlamova MV, Burdanova MG, Paukov MI, Kramberger C. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5898. [PMID: 36079282 PMCID: PMC9457432 DOI: 10.3390/ma15175898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 05/06/2023]
Abstract
The synthesis of high-quality chirality-pure single-walled carbon nanotubes (SWCNTs) is vital for their applications. It is of high importance to modernize the synthesis processes to decrease the synthesis temperature and improve the quality and yield of SWCNTs. This review is dedicated to the chirality-selective synthesis, sorting of SWCNTs, and applications of chirality-pure SWCNTs. The review begins with a description of growth mechanisms of carbon nanotubes. Then, we discuss the synthesis methods of semiconducting and metallic conductivity-type and single-chirality SWCNTs, such as the epitaxial growth method of SWCNT ("cloning") using nanocarbon seeds, the growth method using nanocarbon segments obtained by organic synthesis, and the catalyst-mediated chemical vapor deposition synthesis. Then, we discuss the separation methods of SWCNTs by conductivity type, such as electrophoresis (dielectrophoresis), density gradient ultracentrifugation (DGC), low-speed DGC, ultrahigh DGC, chromatography, two-phase separation, selective solubilization, and selective reaction methods and techniques for single-chirality separation of SWCNTs, including density gradient centrifugation, two-phase separation, and chromatography methods. Finally, the applications of separated SWCNTs, such as field-effect transistors (FETs), sensors, light emitters and photodetectors, transparent electrodes, photovoltaics (solar cells), batteries, bioimaging, and other applications, are presented.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Material Application (CEMEA), Slovak Academy of Sciences, Dubrávská cesta 5807/9, 854 11 Bratislava, Slovakia
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-BC-2, 1060 Vienna, Austria
- Laboratory of Nanobiotechnologies, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia
| | - Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9, Institutsky Lane, 141700 Dolgoprudny, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Maksim I. Paukov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9, Institutsky Lane, 141700 Dolgoprudny, Russia
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| |
Collapse
|
8
|
Kausar A. Poly(methyl methacrylate)/Fullerene nanocomposite—Factors and applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1995422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-I-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
9
|
Khan P, Jamshaid M, Tabassum S, Perveen S, Mahmood T, Ayub K, Yang J, Gilani MA. Exploring the interaction of ionic liquids with Al12N12 and Al12P12 nanocages for better electrode-electrolyte materials in super capacitors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Li F, Zhang J, Hu S, Jia Y. Possibility of Combining Carbon Dots and Liquid Exfoliated Graphene as a Carbon-Based Light Addressable Potentiometric Sensor. ACS Sens 2021; 6:1218-1227. [PMID: 33544579 DOI: 10.1021/acssensors.0c02515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A light addressable potentiometric sensor (LAPS) is a versatile sensing platform for bioassay. However, the lack of carbon-based LAPS (C-LAPS) is a bottleneck for its sustainable development in a carbon electronic era. Herein, a study of C-LAPS based on the combinations of carbon dots (CDs) and liquid exfoliated graphene (LEG) is presented. Devices of C-LAPS are first fabricated by self-assembling the hydrothermally synthesized CDs and the cosolvent ultrasonic delaminated LEG on poly(diallyldimethylammonium chloride) (PDDA)-modified indium tin oxide (ITO) glasses. According to the stacking orders of CDs and LEG, C-LAPS are named as CDs/LEG@PDDA/ITO and LEG/CDs@PDDA/ITO. Then, their electronic and photoelectronic features are measured and compared with the pure CD- and pure LEG-decorated ITO electrodes. Furthermore, working mechanisms are proposed by means of the classical theories of energy band bending and built-in electric field at the heterojunction of CDs and LEG. The resemblances of CDs/LEG@PDDA/ITO-based C-LAPS with Si-based LAPS (Si-LAPS) are confirmed from the points of view of production and separation of the photogenerated carriers, the formation of photocurrent, and the distinction with LEG/CDs@PDDA/ITO. Finally, its feasibility for biological application is justified by using the immune reaction of 5-methylcytosine (5mC) and its antibody (anti-5mC) as a proof of concept. The improved linear responses are evidenced by the comparisons with Si-LAPS' results. Conclusively, the proposed C-LAPS is believed to be a candidate for traditional semiconductor-based LAPS, with the merit of solution-processable. Meanwhile, the theoretical deductions about C-LAPS' principle can also pave the way for developing similar carbon-based sensors.
Collapse
Affiliation(s)
- Fang Li
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Jizhao Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Shihui Hu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Yunfang Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Joshua C. Byers, Deslouis C, Pailleret A, Semenikhin OA. Sustained Photovoltaic Effect from Nitrogen Rich Carbon Nitride (CNx) Prepared by Reactive Magnetron Sputtering. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
A key progress in introducing single walled carbon nanotubes to photovoltaic devices. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Yang JJ, Li ZW, Liu XY, Fang WH, Cui G. Photoinduced electron transfer from carbon nanotubes to fullerenes: C 60versus C 70. Phys Chem Chem Phys 2020; 22:19542-19548. [PMID: 32844829 DOI: 10.1039/d0cp03622f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hybrid carbon materials are found to exhibit novel optoelectronic properties at their interfaces, but the related interfacial carrier dynamics is rarely explored theoretically. In this contribution, we have employed density functional theory (DFT) and DFT-based nonadiabatic dynamics methods to explore photoinduced interfacial electron transfer processes at interfaces between a single-walled carbon nanotube with chiral index (6,5) and C60 or C70 (C60@CNT65 and C70@CNT65). We have found that with low E11 excitation, electron transfer takes place from CNT65 to C60 and C70 in both heterojunctions. This process is ultrafast and completed within about 200 fs, which is consistent with recent experiments. Differently, high E22 excitation does not induce electron injection to C60 in C60@CNT65; instead, "hot" electrons produced within CNT65 will be trapped in its higher conduction band for a while because of slow inter-band relaxation. By contrast, in C70@CNT65, high E22 excitation still can lead to ultrafast electron transfer to C70, but only a comparable amount of electrons are transferred (ca. 30%). Interestingly, electrons either remaining on CNT65 or transferred to C70 are trapped in the higher conduction band for a while, similarly, due to slow inter-band relaxation. The present results could be useful to guide the design of excellent interfaces of mixed-dimensional hybrid carbon materials for various optoelectronic applications.
Collapse
Affiliation(s)
- Jia-Jia Yang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
14
|
Roy A, Ghosh A, Bhandari S, Sundaram S, Mallick TK. Realization of Poly(methyl methacrylate)-Encapsulated Solution-Processed Carbon-Based Solar Cells: An Emerging Candidate for Buildings' Comfort. Ind Eng Chem Res 2020; 59:11063-11071. [PMID: 32565615 PMCID: PMC7304074 DOI: 10.1021/acs.iecr.9b06902] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 12/04/2022]
Abstract
![]()
The self-assembling characteristics
allow carbon nanomaterials
to be readily explored, environmentally benign, solution-processed,
low-cost, and efficient solar light-harvesting materials. An effort
has been made to replace the regular photovoltaic device’s
electrodes by different carbon allotrope-based electrodes. Sequential
fabrication of carbon solar cells (SCs) was performed under ambient
conditions, where FTO/graphene/single-walled carbon nanotubes/graphene
quantum dots-fullerene/carbon black paste layers were assembled with
poly(methyl methacrylate) (PMMA) as an encapsulating layer. The PMMA
layer provides significant improvement toward the entry of water vapor,
hence leading to stability up to 1000 h. The photoconversion efficiency
of the PMMA-encapsulated carbon SC has been increased by ∼105%
and the stability decreased by only ∼10% after 1000 h of exposure
to environmental moisture. Besides, the building integrated photovoltaic
window properties achieved using this carbon SC were also investigated
by using the color rendering index and the correlated color temperature,
which can have an impact on the buildings’ occupants’
comfort. This study leads to an extensive integration to improve carbon-based
materials because of their effective and useful but less-explored
characteristics suitable for potential photovoltaic applications.
Collapse
Affiliation(s)
- Anurag Roy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Aritra Ghosh
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Shubhranshu Bhandari
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Tapas Kumar Mallick
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| |
Collapse
|
15
|
Activation in the Presence of Gold Nanoparticles: A Possible Approach to Fabricate Graphene Nanofibers. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01225-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Bobrowska DM, Zubyk H, Regulska E, Romero E, Echegoyen L, Plonska-Brzezinska ME. Carbon nanoonion-ferrocene conjugates as acceptors in organic photovoltaic devices. NANOSCALE ADVANCES 2019; 1:3164-3176. [PMID: 36133599 PMCID: PMC9417719 DOI: 10.1039/c9na00135b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/03/2019] [Indexed: 05/10/2023]
Abstract
Many macromolecular systems, including carbon nanostructures (CNs), have been synthesized and investigated as acceptors in photovoltaic devices. Some CNs have shown interesting electrochemical, photophysical and electrocatalytic properties and have been used in energy and sustainability applications. This study focuses on the covalent functionalization of carbon nanoonion (CNO) surfaces with ferrocene moieties to obtain donor-acceptor systems involving CNOs as acceptors. The systems were synthesized and characterized by infrared, Raman, UV-vis and fluorescence spectroscopies, thermogravimetric analysis, scanning electron microscopy, nitrogen adsorption and electrochemical measurements. The HOMO-LUMO levels were calculated to evaluate the possibility of using these systems in photoactive devices. In this study, for the first time, the CNO-based derivatives were applied as acceptors in the active layer of photovoltaic devices. This study is the first to use large CNO-based derivatives as acceptors in organic photovoltaic devices, and a power conversion efficiency as high as 1.89% was achieved.
Collapse
Affiliation(s)
- Diana M Bobrowska
- Institute of Chemistry, University of Bialystok Ciolkowskiego 1K 15-245 Bialystok Poland
| | - Halyna Zubyk
- Institute of Chemistry, University of Bialystok Ciolkowskiego 1K 15-245 Bialystok Poland
| | - Elzbieta Regulska
- Institute of Chemistry, University of Bialystok Ciolkowskiego 1K 15-245 Bialystok Poland
| | - Elkin Romero
- University of Texas at El Paso 500 W University Ave., Chemistry and Computer Science Bldg. #2.0304 El Paso TX 79968-8807 USA
| | - Luis Echegoyen
- University of Texas at El Paso 500 W University Ave., Chemistry and Computer Science Bldg. #2.0304 El Paso TX 79968-8807 USA
| | - Marta E Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok Mickiewicza 2A 15-222 Bialystok Poland +48 85 748 5683
| |
Collapse
|
17
|
Preparation, Characterization, and Performance Control of Nanographitic Films. NANOMATERIALS 2019; 9:nano9040628. [PMID: 30999677 PMCID: PMC6523781 DOI: 10.3390/nano9040628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/19/2022]
Abstract
Using methane as a carbon source, low-dimensional carbon nanomaterials were obtained in this work. The films were deposited directly on glass substrates by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The configuration and compositions of this nanographite films were identified by X-ray photoelectron spectroscopy (XPS) as carbon in sp2 bonding form. Raman spectral characterization verified the configuration of the films to be hexatomic ring of carbon atoms. As a result, they were found to be nanographite films (NGFs). Also, the atomic force microscopy (AFM) topography and Raman spectra of different areas demonstrated the diversity of the films at the nano scale. The high light-transmitting and electron mobility indicated that the NGFs possessed excellent optic-electronic properties and could be used as good photoelectrical function materials. Furthermore, the physical and chemical growth mechanism of NGFs were analyzed by PECVD. NGFs could be obtained in a controlled process by modulating the growth conditions. In this work, the complicated transfer process commonly used for optoelectronic devices could be avoided. Also, by growing the films directly on a glass substrate, the quality degradation of the film was not a problem. This work can further promote the development of next-generation electronic or optoelectronic function materials, especially for their application in transparent conductive electrode fields.
Collapse
|
18
|
Kubie L, Watkins KJ, Ihly R, Wladkowski HV, Blackburn JL, Rice WD, Parkinson BA. Optically Generated Free-Carrier Collection from an All Single-Walled Carbon Nanotube Active Layer. J Phys Chem Lett 2018; 9:4841-4847. [PMID: 30085684 DOI: 10.1021/acs.jpclett.8b01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Semiconducting single-walled carbon nanotubes' (SWCNTs) broad absorption range and all-carbon composition make them attractive materials for light harvesting. We report photoinduced charge transfer from both multichiral and single-chirality SWCNT films into atomically flat SnO2 and TiO2 crystals. Higher-energy second excitonic SWCNT transitions produce more photocurrent, demonstrating carrier injection rates are competitive with fast hot-exciton relaxation processes. A logarithmic relationship exists between photoinduced electron-transfer driving force and photocarrier collection efficiency, becoming more efficient with smaller diameter SWCNTs. Photocurrents are generated from both conventional sensitization and in the opposite direction with the semiconductor under accumulation and acting as an ohmic contact with only the p-type nanotubes. Finally, we demonstrate that SWCNT surfactant choice and concentration play a large role in photon conversion efficiency and present methods of maximizing photocurrent yields.
Collapse
Affiliation(s)
- Lenore Kubie
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Kevin J Watkins
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Rachelle Ihly
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Henry V Wladkowski
- Department of Physics and Astronomy , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Jeffrey L Blackburn
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - William D Rice
- Department of Physics and Astronomy , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Bruce A Parkinson
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| |
Collapse
|
19
|
Murakami N, Miyake H, Tajima T, Nishikawa K, Hirayama R, Takaguchi Y. Enhanced Photosensitized Hydrogen Production by Encapsulation of Ferrocenyl Dyes into Single-Walled Carbon Nanotubes. J Am Chem Soc 2018; 140:3821-3824. [DOI: 10.1021/jacs.7b12845] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Noritake Murakami
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideaki Miyake
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Tomoyuki Tajima
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kakeru Nishikawa
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ryutaro Hirayama
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yutaka Takaguchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
20
|
|
21
|
Jeon I, Matsuo Y, Maruyama S. Single-Walled Carbon Nanotubes in Solar Cells. Top Curr Chem (Cham) 2018; 376:4. [DOI: 10.1007/s41061-017-0181-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
|
22
|
Kawamoto M, He P, Ito Y. Green Processing of Carbon Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602423. [PMID: 27859655 DOI: 10.1002/adma.201602423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/11/2016] [Indexed: 05/19/2023]
Abstract
Carbon nanomaterials (CNMs) from fullerenes, carbon nanotubes, and graphene are promising carbon allotropes for various applications such as energy-conversion devices and biosensors. Because pristine CNMs show substantial van der Waals interactions and a hydrophobic nature, precipitation is observed immediately in most organic solvents and water. This inevitable aggregation leads to poor processability and diminishes the intrinsic properties of the CNMs. Highly toxic and hazardous chemicals are used for chemical and physical modification of CNMs, even though efficient dispersed solutions are obtained. The development of an environmentally friendly dispersion method for both safe and practical processing is a great challenge. Recent green processing approaches for the manipulation of CNMs using chemical and physical modification are highlighted. A summary of the current research progress on: i) energy-efficient and less-toxic chemical modification of CNMs using covalent-bonding functionality and ii) non-covalent-bonding methodologies through physical modification using green solvents and dispersants, and chemical-free mechanical stimuli is provided. Based on these experimental studies, recent advances and challenges for the potential application of green-processable energy-conversion and biological devices are provided. Finally, a conclusion section is provided summarizing the insights from the present studies as well as some future perspectives.
Collapse
Affiliation(s)
- Masuki Kawamoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Pan He
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
23
|
Park Y, Shim J, Jeong S, Yi GR, Chae H, Bae JW, Kim SO, Pang C. Microtopography-Guided Conductive Patterns of Liquid-Driven Graphene Nanoplatelet Networks for Stretchable and Skin-Conformal Sensor Array. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606453. [PMID: 28370499 DOI: 10.1002/adma.201606453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/15/2017] [Indexed: 06/07/2023]
Abstract
Flexible thin-film sensors have been developed for practical uses in invasive or noninvasive cost-effective healthcare devices, which requires high sensitivity, stretchability, biocompatibility, skin/organ-conformity, and often transparency. Graphene nanoplatelets can be spontaneously assembled into transparent and conductive ultrathin coatings on micropatterned surfaces or planar substrates via a convective Marangoni force in a highly controlled manner. Based on this versatile graphene assembled film preparation, a thin, stretchable and skin-conformal sensor array (144 pixels) is fabricated having microtopography-guided, graphene-based, conductive patterns embedded without any complicated processes. The electrically controlled sensor array for mapping spatial distributions (144 pixels) shows high sensitivity (maximum gauge factor ≈1697), skin-like stretchability (<48%), high cyclic stability or durability (over 105 cycles), and the signal amplification (≈5.25 times) via structure-assisted intimate-contacts between the device and rough skin. Furthermore, given the thin-film programmable architecture and mechanical deformability of the sensor, a human skin-conformal sensor is demonstrated with a wireless transmitter for expeditious diagnosis of cardiovascular and cardiac illnesses, which is capable of monitoring various amplified pulse-waveforms and evolved into a mechanical/thermal-sensitive electric rubber-balloon and an electronic blood-vessel. The microtopography-guided and self-assembled conductive patterns offer highly promising methodology and tool for next-generation biomedical devices and various flexible/stretchable (wearable) devices.
Collapse
Affiliation(s)
- Youngjin Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Jongwon Shim
- Department of Applied Chemistry, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Suyeon Jeong
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Gi-Ra Yi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Jong Wook Bae
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KI for the Nanocentury, KAIST, Daejeon, 34141, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- Samsung Advanced Institute of Health Science & Technology, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| |
Collapse
|
24
|
Derenskyi V, Gomulya W, Talsma W, Salazar-Rios JM, Fritsch M, Nirmalraj P, Riel H, Allard S, Scherf U, Loi MA. On-Chip Chemical Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes (SWNTs): Toward Robust and Scale Invariant SWNTs Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606757. [PMID: 28378326 DOI: 10.1002/adma.201606757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/21/2017] [Indexed: 06/07/2023]
Abstract
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s-SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s-SWNT purity. Field-effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self-assembly of the SWNTs/thiolated-polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm2 V-1 s-1 ), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents.
Collapse
Affiliation(s)
- Vladimir Derenskyi
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747, AG, The Netherlands
| | - Widianta Gomulya
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747, AG, The Netherlands
| | - Wytse Talsma
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747, AG, The Netherlands
| | - Jorge Mario Salazar-Rios
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747, AG, The Netherlands
| | - Martin Fritsch
- Chemistry Department and Institute for Polymer Technology, Wuppertal University, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Peter Nirmalraj
- IBM Research - Zürich, Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland
| | - Heike Riel
- IBM Research - Zürich, Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland
| | - Sybille Allard
- Chemistry Department and Institute for Polymer Technology, Wuppertal University, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Ullrich Scherf
- Chemistry Department and Institute for Polymer Technology, Wuppertal University, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Maria A Loi
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747, AG, The Netherlands
| |
Collapse
|
25
|
Reis WG, Tomović Ž, Weitz RT, Krupke R, Mikhael J. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation. Sci Rep 2017; 7:44812. [PMID: 28317942 PMCID: PMC5357843 DOI: 10.1038/srep44812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/15/2017] [Indexed: 11/09/2022] Open
Abstract
The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.
Collapse
Affiliation(s)
- Wieland G. Reis
- Carbon Materials Innovation Center (CMIC), BASF SE, 67056 Ludwigshafen, Germany
| | - Željko Tomović
- Carbon Materials Innovation Center (CMIC), BASF SE, 67056 Ludwigshafen, Germany
| | - R. Thomas Weitz
- Physics of Nanosystems, Physics Department, NanoSystems Initiative Munich and Center for NanoScience (CeNS) Ludwig Maximilians Universität München, Amalienstrasse 54, 80799 Munich (Germany)
| | - Ralph Krupke
- Department of Materials and Earth Sciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Jules Mikhael
- Material Physics Research, BASF SE, 67056 Ludwigshafen, Germany
| |
Collapse
|
26
|
Faisal SN, Haque E, Noorbehesht N, Zhang W, Harris AT, Church T, Minett AI. Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv 2017. [DOI: 10.1039/c7ra01355h] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile synthesis of nitrogen-doped graphene with high atomic percentages of pyridinic N and graphitic N is reported. The synthesized materials show superior capacitance performance and metal-free bifunctional electrocatalysis of ORR and OER.
Collapse
Affiliation(s)
- Shaikh Nayeem Faisal
- Laboratory of Sustainable Technology
- School of Chemical & Biomolecular Engineering
- University of Sydney
- Australia
| | - Enamul Haque
- Laboratory of Sustainable Technology
- School of Chemical & Biomolecular Engineering
- University of Sydney
- Australia
| | - Nikan Noorbehesht
- Laboratory of Sustainable Technology
- School of Chemical & Biomolecular Engineering
- University of Sydney
- Australia
| | - Weimin Zhang
- Laboratory of Sustainable Technology
- School of Chemical & Biomolecular Engineering
- University of Sydney
- Australia
| | - Andrew T. Harris
- Laboratory of Sustainable Technology
- School of Chemical & Biomolecular Engineering
- University of Sydney
- Australia
| | - Tamara L. Church
- Laboratory of Sustainable Technology
- School of Chemical & Biomolecular Engineering
- University of Sydney
- Australia
| | - Andrew I. Minett
- Laboratory of Sustainable Technology
- School of Chemical & Biomolecular Engineering
- University of Sydney
- Australia
| |
Collapse
|
27
|
Koleilat GI, Vosgueritchian M, Lei T, Zhou Y, Lin DW, Lissel F, Lin P, To JWF, Xie T, England K, Zhang Y, Bao Z. Surpassing the Exciton Diffusion Limit in Single-Walled Carbon Nanotube Sensitized Solar Cells. ACS NANO 2016; 10:11258-11265. [PMID: 28024326 DOI: 10.1021/acsnano.6b06358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semiconducting single-walled carbon nanotube (s-SWNT) light sensitized devices, such as infrared photodetectors and solar cells, have recently been widely reported. Despite their excellent individual electrical properties, efficient carrier transport from one carbon nanotube to another remains a fundamental challenge. Specifically, photovoltaic devices with active layers made from s-SWNTs have suffered from low efficiencies caused by three main challenges: the overwhelming presence of high-bandgap polymers in the films, the weak bandgap offset between the LUMO of the s-SWNTs and the acceptor C60, and the limited exciton diffusion length from one SWNT to another of around 5 nm that limits the carrier extraction efficiency. Herein, we employ a combination of processing and device architecture design strategies to address each of these transport challenges and fabricate photovoltaic devices with s-SWNT films well beyond the exciton diffusion limit of 5 nm. While our solution processing method minimizes the presence of undesired polymers in our active films, our interfacial designs led to a significant increase in current generation with the addition of a highly doped C60 layer (n-doped C60), resulting in increased carrier separation efficiency from the s-SWNTs films. We create a dense interconnected nanoporous mesh of s-SWNTs using solution shearing and infiltrate it with the acceptor C60. Thus, our final engineered bulk heterojunction allows carriers from deep within to be extracted by the C60 registering a 10-fold improvement in performance from our preliminary structures.
Collapse
Affiliation(s)
- Ghada I Koleilat
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Michael Vosgueritchian
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Ting Lei
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Yan Zhou
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Debora W Lin
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Franziska Lissel
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Pei Lin
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, People's Republic of China
| | - John W F To
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Tian Xie
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Kemar England
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | - Yue Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, People's Republic of China
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
28
|
Fluorimetric evaluation of glutathione reductase activity and its inhibitors using carbon quantum dots. Talanta 2016; 161:769-774. [DOI: 10.1016/j.talanta.2016.09.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 01/04/2023]
|
29
|
Barrejón M, Gobeze HB, Gómez-Escalonilla MJ, Fierro JLG, Zhang M, Yudasaka M, Iijima S, D'Souza F, Langa F. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers. NANOSCALE 2016; 8:14716-14724. [PMID: 27305145 DOI: 10.1039/c6nr02829b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.
Collapse
Affiliation(s)
- Myriam Barrejón
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), 45071-Toledo, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rauwel P, Galeckas A, Salumaa M, Ducroquet F, Rauwel E. Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1075-85. [PMID: 27547626 PMCID: PMC4979767 DOI: 10.3762/bjnano.7.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
A hybrid material consisting of nonfunctionalized multiwall carbon nanotubes (MWCNTs) and cubic-phase HfO2 nanoparticles (NPs) with an average diameter of 2.6 nm has been synthesized. Free standing HfO2 NPs present unusual optical properties and a strong photoluminescence emission in the visible region, originating from surface defects. Transmission electron microscopy studies show that these NPs decorate the MWCNTs on topological defect sites. The electronic structure of the C K-edge in the nanocomposites was probed by electron energy loss spectroscopy, highlighting the key role of the MWCNT growth defects in anchoring HfO2 NPs. A combined optical emission and absorption spectroscopy approach illustrated that, in contrast to HfO2 NPs, the metallic MWCNTs do not emit light but instead expose their discrete electronic structure in the absorption spectra. The hybrid material manifests characteristic absorption features with a gradual merger of the MWCNT π-plasmon resonance band with the intrinsic defect band and fundamental edge of HfO2. The photoluminescence of the nanocomposites indicates features attributed to combined effects of charge desaturation of HfO2 surface states and charge transfer to the MWCNTs with an overall reduction of radiative recombination. Finally, photocurrent generation under UV-vis illumination suggests that a HfO2 NP/MWCNT hybrid system can be used as a flexible nanodevice for light harvesting applications.
Collapse
Affiliation(s)
- Protima Rauwel
- Institute of Physics, University of Tartu, Ravila 14c, 51014 Tartu, Estonia
- Department of Physics, University of Oslo. P.O. Box 1048 Blindern, 0316 Oslo, Norway
| | - Augustinas Galeckas
- Department of Physics, University of Oslo. P.O. Box 1048 Blindern, 0316 Oslo, Norway
| | - Martin Salumaa
- Tartu College, Tallinn University of Technology, Puiestee 78, 51008 Tartu, Estonia
| | - Frédérique Ducroquet
- IMEP-LAHC, CNRS, Université de Grenoble-Alpes, Minatec campus, 38016 Grenoble, France
| | - Erwan Rauwel
- Tartu College, Tallinn University of Technology, Puiestee 78, 51008 Tartu, Estonia
| |
Collapse
|
31
|
Abstract
Luminescent films have received great interest for chemo-/bio-sensing applications due to their distinct advantages over solution-based probes, such as good stability and portability, tunable shape and size, non-invasion, real-time detection, extensive suitability in gas/vapor sensing, and recycling. On the other hand, they can achieve selective and sensitive detection of chemical/biological species using special luminophores with a recognition moiety or the assembly of common luminophores and functional materials. Nowadays, the extensively used assembly techniques include drop-casting/spin-coating, Langmuir-Blodgett (LB), self-assembled monolayers (SAMs), layer-by-layer (LBL), and electrospinning. Therefore, this review summarizes the recent advances in luminescent films with these assembly techniques and their applications in chemo-/bio-sensing. We mainly focused on the discussion of the relationship between the sensing properties of the films and their architecture. Furthermore, we discussed some critical challenges existing in this field and possible solutions that have been or are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | |
Collapse
|
32
|
Mehlenbacher RD, Wang J, Kearns NM, Shea MJ, Flach JT, McDonough TJ, Wu MY, Arnold MS, Zanni MT. Ultrafast Exciton Hopping Observed in Bare Semiconducting Carbon Nanotube Thin Films with Two-Dimensional White-Light Spectroscopy. J Phys Chem Lett 2016; 7:2024-2031. [PMID: 27182690 DOI: 10.1021/acs.jpclett.6b00650] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We observe ultrafast energy transfer between bare carbon nanotubes in a thin film using two-dimensional (2D) white-light spectroscopy. Using aqueous two-phase separation, semiconducting carbon nanotubes are purified from their metallic counterparts and condensed into a 10 nm thin film with no residual surfactant. Cross peak intensities put the time scale for energy transfer at <60 fs, and 2D anisotropy measurements determine that energy transfer is most efficient between parallel nanotubes, thus favoring directional energy flow. Lifetimes are about 300 fs. Thus, these results are in sharp contrast to thin films prepared from nanotubes that are wrapped by polymers, which exhibit picosecond energy transfer and randomize the direction of energy flow. Ultrafast energy flow and directionality are exciting properties for next-generation photovoltaics, photodetectors, and other devices.
Collapse
Affiliation(s)
- Randy D Mehlenbacher
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53703, United States
| | - Jialiang Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison , 1509 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas M Kearns
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53703, United States
| | - Matthew J Shea
- Department of Materials Science and Engineering, University of Wisconsin-Madison , 1509 University Avenue, Madison, Wisconsin 53706, United States
| | - Jessica T Flach
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53703, United States
| | - Thomas J McDonough
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53703, United States
| | - Meng-Yin Wu
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison , 1509 University Avenue, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53703, United States
| |
Collapse
|
33
|
Gupta P, Rajput M, Singla N, Kumar V, Lahiri D. Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Sygellou L, Kakogianni S, Andreopoulou AK, Theodosiou K, Leftheriotis G, Kallitsis JK, Siokou A. Evaluation of the electronic properties of perfluorophenyl functionalized quinolines and their hybrids with carbon nanostructures. Phys Chem Chem Phys 2016; 18:4154-65. [PMID: 26781962 DOI: 10.1039/c5cp06016h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid materials based on perfluorophenyl functionalized quinolines directly attached onto the sp(2) hybridized surface of carbon nanostructures have been prepared and studied herein along with their precursor semiconducting small molecules. Tails of different polarities have been used so that the molecules would present improved solubility and controllable affinity for the selected substrates. These materials were evaluated for their electronic and electrochemical properties for potential application in organic photovoltaic solar cells (OPVs), using UPS, XPS and CV measurements after deposition onto oxygen plasma cleaned Si wafers or solvent treated ITO coated glass. A weak interaction between the fluorine atoms and both the Si and the ITO substrates was observed by XPS. The extent of this interfacial interaction was found to be related to the orientation of the quinoline moieties on the organic layer. Moreover, the combination of XPS and UPS analyses showed that the absolute energy value of the HOMO level increased as the amount of surface fluorine atoms increased. CV measurements revealed that hybridisation of the small molecules with carbon nanostructures decreases the materials' energy gap and increases the absolute energy value of the LUMO level. These features prove the efficiency of the proposed method to produce materials with controlled energy levels for solar cell devices.
Collapse
Affiliation(s)
- Lambrini Sygellou
- Foundation for Research and Technology Hellas/Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., P.O. Box 1414, GR - 26504, Rio-Patras, Greece.
| | - Sofia Kakogianni
- Department of Chemistry, University of Patras, GR - 26504, Patras, Greece.
| | | | | | | | - Joannis K Kallitsis
- Foundation for Research and Technology Hellas/Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., P.O. Box 1414, GR - 26504, Rio-Patras, Greece. and Department of Chemistry, University of Patras, GR - 26504, Patras, Greece.
| | - Angeliki Siokou
- Foundation for Research and Technology Hellas/Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., P.O. Box 1414, GR - 26504, Rio-Patras, Greece.
| |
Collapse
|
35
|
Notarianni M, Liu J, Vernon K, Motta N. Synthesis and applications of carbon nanomaterials for energy generation and storage. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:149-196. [PMID: 26925363 PMCID: PMC4734431 DOI: 10.3762/bjnano.7.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/22/2015] [Indexed: 05/29/2023]
Abstract
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future.
Collapse
Affiliation(s)
- Marco Notarianni
- Institute of Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
- Plasma-Therm LLC, 10050 16th St. North, St. Petersburg, FL 33716, USA
| | - Jinzhang Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Kristy Vernon
- Institute of Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Nunzio Motta
- Institute of Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
| |
Collapse
|
36
|
Liu Z, You P, Liu S, Yan F. Neutral-Color Semitransparent Organic Solar Cells with All-Graphene Electrodes. ACS NANO 2015; 9:12026-12034. [PMID: 26512418 DOI: 10.1021/acsnano.5b04858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Graphene has been considered as a promising material for transparent electrodes due to its advantages including ultrahigh carrier mobilities, high optical transmittance, excellent mechanical flexibility, and good stability. Solar cells with all-graphene electrodes are potentially low-cost, high-performance, and environmental friendly, which however have not been realized until now. Here, we report the fabrication of semitransparent organic photovoltaics (OPVs) with graphene transparent electrodes as both cathode and anode, which can absorb light from both sides with the power conversion efficiency up to 3.4%. Meanwhile, the OPVs have a neutral color and show the transmittance of ∼40% in the visible region, making them suitable for some special applications, such as power-generating windows and building integrated photovoltaics. This work demonstrates the great potential of graphene for the applications in carbon-based optoelectronic devices.
Collapse
Affiliation(s)
- Zhike Liu
- Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University , Hong Kong, China
| | - Peng You
- Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University , Hong Kong, China
| | - Shenghua Liu
- Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University , Hong Kong, China
| | - Feng Yan
- Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University , Hong Kong, China
| |
Collapse
|
37
|
Vatamanu J, Ni X, Liu F, Bedrov D. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors. NANOTECHNOLOGY 2015; 26:464001. [PMID: 26511198 DOI: 10.1088/0957-4484/26/46/464001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL)capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm(−2) from that of a metallic surface.Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.
Collapse
|
38
|
Lei T, Lai YC, Hong G, Wang H, Hayoz P, Weitz RT, Chen C, Dai H, Bao Z. Diketopyrrolopyrrole (DPP)-Based Donor-Acceptor Polymers for Selective Dispersion of Large-Diameter Semiconducting Carbon Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2946-2954. [PMID: 25711378 DOI: 10.1002/smll.201403761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Low-bandgap diketopyrrolopyrrole (DPP)-based polymers are used for the selective dispersion of semiconducting single-walled carbon nanotubes (s-SWCNTs). Through rational molecular design to tune the polymer-SWCNT interactions, highly selective dispersions of s-SWCNTs with diameters mainly around 1.5 nm are achieved. The influences of the polymer alkyl side-chain substitution (i.e., branched vs linear side chains) on the dispersing yield and selectivity of s-SWCNTs are investigated. Introducing linear alkyl side chains allows increased polymer-SWCNT interactions through close π-π stacking and improved C-H-π interactions. This work demonstrates that polymer side-chain engineering is an effective method to modulate the polymer-SWCNT interactions and thereby affecting both critical parameters in dispersing yield and selectivity. Using these sorted s-SWCNTs, high-performance SWCNT network thin-film transistors are fabricated. The solution-deposited s-SWCNT transistors yield simultaneously high mobilities of 41.2 cm(2) V(-1) s(-1) and high on/off ratios of greater than 10(4) . In summary, low-bandgap DPP donor-acceptor polymers are a promising class of polymers for selective dispersion of large-diameter s-SWCNTs.
Collapse
Affiliation(s)
- Ting Lei
- Department of Chemical Engineering, Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ying-Chih Lai
- Department of Chemical Engineering, Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Guosong Hong
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Huiliang Wang
- Department of Chemical Engineering, Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Pascal Hayoz
- BASF Schweiz AG, GVE/B, Schwarzwaldallee 215, 4002, Basel, Switzerland
| | - R Thomas Weitz
- BASF SE, GVE/F, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Changxin Chen
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
39
|
Hong G, Diao S, Antaris AL, Dai H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem Rev 2015; 115:10816-906. [PMID: 25997028 DOI: 10.1021/acs.chemrev.5b00008] [Citation(s) in RCA: 826] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Guosong Hong
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Shuo Diao
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Alexander L Antaris
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Hongjie Dai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
40
|
Tait JG, De Volder MFL, Cheyns D, Heremans P, Rand BP. Absorptive carbon nanotube electrodes: consequences of optical interference loss in thin film solar cells. NANOSCALE 2015; 7:7259-7266. [PMID: 25811493 DOI: 10.1039/c5nr01119a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □(-1), comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection.
Collapse
Affiliation(s)
- Jeffrey G Tait
- Department of Electrical Engineering, KULeuven, Kasteelpark Arenberg 10, Leuven, B-3001 Belgium.
| | | | | | | | | |
Collapse
|
41
|
Guillot SL, Mistry KS, Avery AD, Richard J, Dowgiallo AM, Ndione PF, van de Lagemaat J, Reese MO, Blackburn JL. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells. NANOSCALE 2015; 7:6556-6566. [PMID: 25790468 DOI: 10.1039/c5nr00205b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWCNTs) are promising candidates as the active layer in photovoltaics (PV), particularly for niche applications where high infrared absorbance and/or semi-transparent solar cells are desirable. Most current fabrication strategies for SWCNT PV devices suffer from relatively high surface roughness and lack nanometer-scale deposition precision, both of which may hamper the reproducible production of ultrathin devices. Additionally, detailed optical models of SWCNT PV devices are lacking, due in part to a lack of well-defined optical constants for high-purity s-SWCNT thin films. Here, we present an optical model that accurately reconstructs the shape and magnitude of spectrally resolved external quantum efficiencies for ultrathin (7,5) s-SWCNT/C60 solar cells that are deposited by ultrasonic spraying. The ultrasonic spraying technique enables thickness tuning of the s-SWCNT layer with nanometer-scale precision, and consistently produces devices with low s-SWCNT film average surface roughness (Rq of <5 nm). Our optical model, based entirely on measured optical constants of each layer within the device stack, enables quantitative predictions of thickness-dependent relative photocurrent contributions of SWCNTs and C60 and enables estimates of the exciton diffusion lengths within each layer. These results establish routes towards rational performance improvements and scalable fabrication processes for ultra-thin SWCNT-based solar cells.
Collapse
|
42
|
Gong M, Shastry TA, Cui Q, Kohlmeyer RR, Luck KA, Rowberg A, Marks TJ, Durstock MF, Zhao H, Hersam MC, Ren S. Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7428-7435. [PMID: 25797180 DOI: 10.1021/acsami.5b01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiconducting single-walled carbon nanotube/fullerene bulk heterojunctions exhibit unique optoelectronic properties highly suitable for flexible, efficient, and robust photovoltaics and photodetectors. We investigate charge-transfer dynamics in inverted devices featuring a polyethylenimine-coated ZnO nanowire array infiltrated with these blends and find that trap-assisted recombination dominates transport within the blend and at the active layer/nanowire interface. We find that electrode modifiers suppress this recombination, leading to high performance.
Collapse
Affiliation(s)
| | | | | | - Ryan R Kohlmeyer
- ∥National Research Council, Washington, D.C. 20001, United States
- ⊥Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | | | | | | | - Michael F Durstock
- ⊥Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | | | | | | |
Collapse
|
43
|
Zaretski AV, Moetazedi H, Kong C, Sawyer EJ, Savagatrup S, Valle E, O'Connor TF, Printz AD, Lipomi DJ. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates. NANOTECHNOLOGY 2015; 26:045301. [PMID: 25556527 DOI: 10.1088/0957-4484/26/4/045301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.
Collapse
Affiliation(s)
- Aliaksandr V Zaretski
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, MC 0448, La Jolla, CA 92093-0448, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Park S, Kim SJ, Nam JH, Pitner G, Lee TH, Ayzner AL, Wang H, Fong SW, Vosgueritchian M, Park YJ, Brongersma ML, Bao Z. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:759-765. [PMID: 25607919 DOI: 10.1002/adma.201404544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/06/2014] [Indexed: 06/04/2023]
Abstract
A highly sensitive single-walled carbon nanotube/C60 -based infrared photo-transistor is fabricated with a responsivity of 97.5 A W(-1) and detectivity of 1.17 × 10(9) Jones at 1 kHz under a source/drain bias of -0.5 V. The much improved performance is enabled by this unique device architecture that enables a high photoconductive gain of ≈10(4) with a response time of several milliseconds.
Collapse
Affiliation(s)
- Steve Park
- Department of Materials Science and Engineering, Stanford University, Durand Building, 496 Lomita Mall, Stanford, CA, 94305-4034, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bunes BR, Xu M, Zhang Y, Gross DE, Saha A, Jacobs DL, Yang X, Moore JS, Zang L. Photodoping and enhanced visible light absorption in single-walled carbon nanotubes functionalized with a wide band gap oligomer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:162-167. [PMID: 25367178 DOI: 10.1002/adma.201404112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Carbon nanotubes feature excellent electronic properties but narrow absorption bands limit their utility in certain optoelectronic devices, including photovoltaic cells. Here, the addition of a wide-bandgap gap oligomer enhances light absorption in the visible spectrum. Furthermore, the oligomer interacts with the carbon nanotube through a peculiar charge transfer, which provides insight into Type II heterojunctions.
Collapse
Affiliation(s)
- Benjamin R Bunes
- Nano Institute of Utah and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xie Y, Lohrman J, Ren S. Phase aggregation and morphology effects on nanocarbon optoelectronics. NANOTECHNOLOGY 2014; 25:485601. [PMID: 25380280 DOI: 10.1088/0957-4484/25/48/485601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Controllable morphology and interfacial interactions within bulk heterojunction nanostructures show significant effects on optoelectronic device applications. In this study, a nanocarbon heterojunction, consisting of single-walled carbon nanotubes (s-SWCNTs) and fullerene derivatives, is reported by assembling/blending its structures through solution-based processes. A uniform and dense graphene oxide hole transport layer is used to facilitate the photoconversion at a near infrared (NIR) wavelength. Effective interfacial interaction between the s-SWCNTs and fullerene is suggested by the redshifted photoabsorption and nanoscale/micron-scale fluorescence, which is associated with self-assembled nanocarbon morphology.
Collapse
Affiliation(s)
- Yu Xie
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
47
|
Shea MJ, Mehlenbacher RD, Zanni MT, Arnold MS. Experimental Measurement of the Binding Configuration and Coverage of Chirality-Sorting Polyfluorenes on Carbon Nanotubes. J Phys Chem Lett 2014; 5:3742-9. [PMID: 26278744 DOI: 10.1021/jz5017813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) exhibits exceptional (n,m) chirality and electronic-type selectivity for near-armchair semiconducting carbon nanotubes. To better understand and control the factors governing this behavior, we experimentally determine the surface coverage and binding configuration of PFO on nanotubes in solution using photoluminescence energy transfer and anisotropy measurements. The coverage increases with PFO concentration in solution, following Langmuir-isotherm adsorption behavior with cooperativity. The equilibrium binding constant (PFO concentration in solution at half coverage), KA, depends on (n,m) and is 1.16 ± 0.30, 0.93 ± 0.12, and 1.13 ± 0.26 mg mL(-1) for the highly selected (7,5), (8,6), and (8,7) species, respectively, and the corresponding PFO wrapping angle at low coverage is 12, 17, and 14 ± 2°, respectively. In contrast, the inferred KA for metallic nanotubes is nearly an order of magnitude greater, indicating that the semiconducting selectivity increases with decreasing PFO concentration. This understanding will quantitatively guide future experimental and computational efforts on electronic type-sorting carbon nanotubes.
Collapse
|
48
|
Mallya AN, Ramamurthy PC. Investigation of selective sensing of a diamine for aldehyde by experimental and simulation studies. Analyst 2014; 139:6456-66. [DOI: 10.1039/c4an01387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Gong M, Shastry TA, Xie Y, Bernardi M, Jasion D, Luck KA, Marks TJ, Grossman JC, Ren S, Hersam MC. Polychiral semiconducting carbon nanotube-fullerene solar cells. NANO LETTERS 2014; 14:5308-14. [PMID: 25101896 DOI: 10.1021/nl5027452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.
Collapse
Affiliation(s)
- Maogang Gong
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ye Y, Bindl DJ, Jacobberger RM, Wu MY, Roy SS, Arnold MS. Semiconducting carbon nanotube aerogel bulk heterojunction solar cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3299-3306. [PMID: 24719253 DOI: 10.1002/smll.201400696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 06/03/2023]
Abstract
Using a novel two-step fabrication scheme, we create highly semiconducting-enriched single-walled carbon nanotube (sSWNT) bulk heterojunctions (BHJs) by first creating highly porous interconnected sSWNT aerogels (sSWNT-AEROs), followed by back-filling the pores with [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM). We demonstrate sSWNT-AERO structures with density as low as 2.5 mg cm(-3), porosity as high as 99.8%, and diameter of sSWNT fibers ≤ 10 nm. Upon spin coating with PC(71)BM, the resulting sSWNT-AERO-PC(71)BM nanocomposites exhibit highly quenched sSWNT photoluminescence, which is attributed to the large interfacial area between the sSWNT and PC(71)BM phases, and an appropriate sSWNT fiber diameter that matches the inter-sSWNT exciton migration length. Employing the sSWNT-AERO-PC(71)BM BHJ structure, we report optimized solar cells with a power conversion efficiency of 1.7%, which is exceptional among polymer-like solar cells in which sSWNTs are designed to replace either the polymer or fullerene component. A fairly balanced photocurrent is achieved with 36% peak external quantum efficiency (EQE) in the visible and 19% peak EQE in the near-infrared where sSWNTs serve as electron donors and photoabsorbers. Our results prove the effectiveness of this new method in controlling the sSWNT morphology in BHJ structures, suggesting a promising route towards highly efficient sSWNT photoabsorbing solar cells.
Collapse
Affiliation(s)
- Yumin Ye
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53706, USA
| | | | | | | | | | | |
Collapse
|