1
|
Yang J, Pan T, Liu T, Mao C, Ho HP, Yuan W. Angular-Inertia Regulated Stable and Nanoscale Sensing of Single Molecules Using Nanopore-In-A-Tube. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2400018. [PMID: 39246121 DOI: 10.1002/adma.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/26/2024] [Indexed: 09/10/2024]
Abstract
Nanopore is commonly used for high-resolution, label-free sensing, and analysis of single molecules. However, controlling the speed and trajectory of molecular translocation in nanopores remains challenging, hampering sensing accuracy. Here, the study proposes a nanopore-in-a-tube (NIAT) device that enables decoupling of the current signal detection from molecular translocation and provides precise angular inertia-kinetic translocation of single molecules through a nanopore, thus ensuring stable signal readout with high signal-to-noise ratio (SNR). Specifically, the funnel-shaped silicon nanopore, fabricated at a 10-nm resolution, is placed into a centrifugal tube. A light-induced photovoltaic effect is utilized to achieve a counter-balanced state of electrokinetic effects in the nanopore. By controlling the inertial angle and centrifugation speed, the angular inertial force is harnessed effectively for regulating the translocation process with high precision. Consequently, the speed and trajectory of the molecules are able to be adjusted in and around the nanopore, enabling controllable and high SNR current signals. Numerical simulation reveals the decisive role of inertial angle in achieving uniform translocation trajectories and enhancing analyte-nanopore interactions. The performance of the device is validated by discriminating rigid Au nanoparticles with a 1.6-nm size difference and differentiating a 1.3-nm size difference and subtle stiffness variations in flexible polyethylene glycol molecules.
Collapse
Grants
- ECS24211020,GRF14207218,GRF14207419,GRF14207920,GRF14204621,GRF14203821,GRF14216222 Research Grant Council (RGC) of Hong Kong SAR
- GHX-004-18SZ,ITS/137/20,ITS/240/21,ITS/252/23 Innovation and Technology Commission (ITC) of Hong Kong SAR
- SGDX20220530111005039 Science, Technology and Innovation Commission (STIC) of Shenzhen Municipality
- BrainPoolFellowship2021H1D3A2A01099337 National Research Foundation of the Korean Government
Collapse
Affiliation(s)
- Jianxin Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Tianle Pan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Tong Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
2
|
Ma C, Zheng F, Xu W, Liu W, Xu C, Chen Y, Sha J. Surface Roughness Effects on Confined Nanoscale Transport of Ions and Biomolecules. SMALL METHODS 2024; 8:e2301485. [PMID: 38150654 DOI: 10.1002/smtd.202301485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Biological channels, especially membrane proteins, play a crucial role in metabolism, facilitating the transport of nutrients and other materials across cell membranes in a bio-electrolyte environment. Artificial nanopores are employed to study ion and biomolecule transport behavior inside. While the non-specific interaction between the nanopore surface and transport targets has garnered significant attention, the impact of surface roughness is overlooked. In this study, Nanopores with different levels of inner surface roughness is created by adjusting the FIB (Focus Ion Beam) fabrication parameters. Experiments and molecular dynamics (MD) simulations are employed to demonstrate that greater roughness results from larger FIB beam currents and shorter processing times. Lower roughness increases the capture rate of biomolecules, while greater roughness enhances the normalized blockade current (ΔI/I0). The phenomenon of rougher nanopores are attributed to a barrier-dominated capture mechanism and more likely to induce DNA folding. This transport barrier exists in rough nanopores by utilizing steer molecular dynamics (SMD) simulations to investigate the force profile of a dA10 DNA molecule during translocation is demonstrated. This work illustrates how surface roughness influences the ionic current features and the translocation of biomolecules, paving a new way for tunning the molecule transport in nanopores.
Collapse
Affiliation(s)
- Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Changhui Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
3
|
Kumawat RL, Jena MK, Mittal S, Pathak B. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401112. [PMID: 38716623 DOI: 10.1002/smll.202401112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
4
|
Mehrafrooz B, Yu L, Pandey L, Siwy ZS, Wanunu M, Aksimentiev A. Electro-osmotic Flow Generation via a Sticky Ion Action. ACS NANO 2024; 18:17521-17533. [PMID: 38832758 PMCID: PMC11233251 DOI: 10.1021/acsnano.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Laxmi Pandey
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S Siwy
- Department of Physics, University of California at Irvine, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Yang J, Pan T, Xie Z, Yuan W, Ho HP. In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules. Nat Commun 2024; 15:5132. [PMID: 38879544 PMCID: PMC11180207 DOI: 10.1038/s41467-024-48630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/06/2024] [Indexed: 06/19/2024] Open
Abstract
Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.
Collapse
Affiliation(s)
- Jianxin Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tianle Pan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenming Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Mehrafrooz B, Yu L, Siwy Z, Wanunu M, Aksimentiev A. Electro-Osmotic Flow Generation via a Sticky Ion Action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571673. [PMID: 38168277 PMCID: PMC10760089 DOI: 10.1101/2023.12.14.571673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Remarkably, guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Zuzanna Siwy
- Department of Physics, University of California at Irvine, Irvine, CA 92697, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
7
|
Yanagi I, Akahori R, Takeda KI. Dwell Time Prolongation and Identification of Single Nucleotides Passing through a Solid-State Nanopore by Using Ammonium Sulfate Aqueous Solution. ACS OMEGA 2023; 8:21285-21292. [PMID: 37332803 PMCID: PMC10268630 DOI: 10.1021/acsomega.3c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
The ionic current blockades when poly(dT)60 or dNTPs passed through SiN nanopores in an aqueous solution containing (NH4)2SO4 were investigated. The dwell time of poly(dT)60 in the nanopores in an aqueous solution containing (NH4)2SO4 was significantly longer compared to that in an aqueous solution that did not contain (NH4)2SO4. This dwell time prolongation effect due to the aqueous solution containing (NH4)2SO4 was also confirmed when dCTP passed through the nanopores. In addition, when the nanopores were fabricated via dielectric breakdown in the aqueous solution containing (NH4)2SO4, the dwell time prolongation effect for dCTP still occurred even after the aqueous solution was displaced with the aqueous solution without (NH4)2SO4. Furthermore, we measured the ionic current blockades when the four types of dNTPs passed through the same nanopore, and the four types of dNTPs could be statistically identified according to their current blockade values.
Collapse
Affiliation(s)
- Itaru Yanagi
- Center
for Exploratory Research, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185-8603, Japan
| | - Rena Akahori
- Center
for Technology Innovation - Healthcare, Research & Development
Group, Hitachi, Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185-8603, Japan
| | - Ken-ichi Takeda
- Center
for Technology Innovation - Healthcare, Research & Development
Group, Hitachi, Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185-8603, Japan
| |
Collapse
|
8
|
Singh SL, Chauhan K, Bharadwaj AS, Kishore V, Laux P, Luch A, Singh AV. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int J Mol Sci 2023; 24:6153. [PMID: 37047125 PMCID: PMC10094227 DOI: 10.3390/ijms24076153] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
Collapse
Affiliation(s)
- Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
| | - Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
9
|
Huang C, Li Z, Zhu X, Ma X, Li N, Fan J. Two Detection Modes of Nanoslit Sensing Based on Planar Heterostructure of Graphene/Hexagonal Boron Nitride. ACS NANO 2023; 17:3301-3312. [PMID: 36638059 DOI: 10.1021/acsnano.2c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid-state nanopore sequencing is now confronted with problems of stochastic pore clogging and too fast speed during the DNA permeation through a nanopore, although this technique is revolutionary with long readability and high efficiency. These two problems are related to controlling molecular transportation during sequencing. To control the DNA motion and identify the four bases, we propose nanoslit sensing based on the planar heterostructure of two-dimensional graphene and hexagonal boron nitride. Molecular dynamics simulations are performed on investigating the motion of DNA molecules on the heterostructure with a nanoslit sensor. Results show that the DNA molecules are confined within the hexagonal boron nitride (HBN) domain of the heterostructure. And the confinement effects of the heterostructure can be optimized by tailoring the stripe length. Besides, there are two ways of DNA permeation through nanoslits: the DNA can cross or translocate the nanoslit under applied voltages along the y and z directions. The two detection modes are named cross-slit and trans-slit, respectively. In both modes, the ionic current drops can be observed when the nanoslit is occupied by the DNA. And the ionic currents and dwell times can be simultaneously detected to identify the four different DNA bases. This study can shed light on the sensing mechanism based on the nanoslit sensor of a planar heterostructure and provide theoretical guidance on designing devices controlling molecular transportation during nanopore sequencing.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Na Li
- School of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan030000, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
10
|
MA BO, KIM JINWOO, TUNG STEVE. Single DNA Translocation and Electrical Characterization Based on Atomic Force Microscopy and Nanoelectrodes. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2022; 3:124-130. [PMID: 37284032 PMCID: PMC10241429 DOI: 10.1109/ojnano.2022.3217108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Precision DNA translocation control is critical for achieving high accuracy in single molecule-based DNA sequencing. In this report, we describe an atomic force microscopy (AFM) based method to linearize a double-stranded DNA strand during the translocation process and characterize the electrical properties of the moving DNA using a platinum (Pt) nanoelectrode gap. In this method, λDNAs were first deposited on a charged mica substrate surface and topographically scanned. A single DNA suitable for translocation was then identified and electrostatically attached to an AFM probe by pressing the probe tip down onto one end of the DNA strand without chemical functionalizations. Next, the DNA strand was lifted off the mica surface by the probe tip. The pulling force required to completely lift off the DNA agreed well with the theoretical DNA adhesion force to a charged mica surface. After liftoff, the captured DNA was translocated at varied speeds across the substrate and ultimately across the Pt nanoelectrode gap for electrical characterizations. Finally, finite element analysis of the effect of the translocating DNA on the conductivity of the nanoelectrode gap was conducted, validating the range of the gap current measured experimentally during the DNA translocation process.
Collapse
Affiliation(s)
- BO MA
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 USA
| | - JIN-WOO KIM
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701 USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701 USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701 USA
| | - STEVE TUNG
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|
11
|
Qiu H, Zhou W, Guo W. Nanopores in Graphene and Other 2D Materials: A Decade's Journey toward Sequencing. ACS NANO 2021; 15:18848-18864. [PMID: 34841865 DOI: 10.1021/acsnano.1c07960] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopore techniques offer a low-cost, label-free, and high-throughput platform that could be used in single-molecule biosensing and in particular DNA sequencing. Since 2010, graphene and other two-dimensional (2D) materials have attracted considerable attention as membranes for producing nanopore devices, owing to their subnanometer thickness that can in theory provide the highest possible spatial resolution of detection. Moreover, 2D materials can be electrically conductive, which potentially enables alternative measurement schemes relying on the transverse current across the membrane material itself and thereby extends the technical capability of traditional ionic current-based nanopore devices. In this review, we discuss key advances in experimental and computational research into DNA sensing with nanopores built from 2D materials, focusing on both the ionic current and transverse current measurement schemes. Challenges associated with the development of 2D material nanopores toward DNA sequencing are further analyzed, concentrating on lowering the noise levels, slowing down DNA translocation, and inhibiting DNA fluctuations inside the pores. Finally, we overview future directions of research that may expedite the emergence of proof-of-concept DNA sequencing with 2D material nanopores.
Collapse
Affiliation(s)
- Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
12
|
Zhang Y, Ma D, Gu Z, Zhan L, Sha J. Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis. NANOMATERIALS 2021; 11:nano11092450. [PMID: 34578767 PMCID: PMC8468320 DOI: 10.3390/nano11092450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023]
Abstract
Solid-state nanopores have been developed as a prominent tool for single molecule analysis in versatile applications. Although controlled dielectric breakdown (CDB) is the most accessible method for a single nanopore fabrication, it is still necessary to improve the fabrication efficiency and avoid the generation of multiple nanopores. In this work, we treated the SiNx membranes in the air–plasma before the CDB process, which shortened the time-to-pore-formation by orders of magnitude. λ-DNA translocation experiments validated the functionality of the pore and substantiated the presence of only a single pore on the membrane. Our fabricated pore could also be successfully used to detect short single-stranded DNA (ssDNA) fragments. Using to ionic current signals, ssDNA fragments with different lengths could be clearly distinguished. These results will provide a valuable reference for the nanopore fabrication and DNA analysis.
Collapse
Affiliation(s)
- Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
- Correspondence: (Y.Z.); (J.S.)
| | - Dexian Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
- China Aerospace Science & Industry Nanjing Chenguang Group, Nanjing 210006, China
| | - Zengdao Gu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
| | - Lijian Zhan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (D.M.); (Z.G.); (L.Z.)
- Correspondence: (Y.Z.); (J.S.)
| |
Collapse
|
13
|
Huo W, Ling W, Wang Z, Li Y, Zhou M, Ren M, Li X, Li J, Xia Z, Liu X, Huang X. Miniaturized DNA Sequencers for Personal Use: Unreachable Dreams or Achievable Goals. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.628861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The appearance of next generation sequencing technology that features short read length with high measurement throughput and low cost has revolutionized the field of life science, medicine, and even computer science. The subsequent development of the third-generation sequencing technologies represented by nanopore and zero-mode waveguide techniques offers even higher speed and long read length with promising applications in portable and rapid genomic tests in field. Especially under the current circumstances, issues such as public health emergencies and global pandemics impose soaring demand on quick identification of origins and species of analytes through DNA sequences. In addition, future development of disease diagnosis, treatment, and tracking techniques may also require frequent DNA testing. As a result, DNA sequencers with miniaturized size and highly integrated components for personal and portable use to tackle increasing needs for disease prevention, personal medicine, and biohazard protection may become future trends. Just like many other biological and medical analytical systems that were originally bulky in sizes, collaborative work from various subjects in engineering and science eventually leads to the miniaturization of these systems. DNA sequencers that involve nanoprobes, detectors, microfluidics, microelectronics, and circuits as well as complex functional materials and structures are extremely complicated but may be miniaturized with technical advancement. This paper reviews the state-of-the-art technology in developing essential components in DNA sequencers and analyzes the feasibility to achieve miniaturized DNA sequencers for personal use. Future perspectives on the opportunities and associated challenges for compact DNA sequencers are also identified.
Collapse
|
14
|
Takahashi S, Oshige M, Katsura S. DNA Manipulation and Single-Molecule Imaging. Molecules 2021; 26:1050. [PMID: 33671359 PMCID: PMC7922115 DOI: 10.3390/molecules26041050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/22/2022] Open
Abstract
DNA replication, repair, and recombination in the cell play a significant role in the regulation of the inheritance, maintenance, and transfer of genetic information. To elucidate the biomolecular mechanism in the cell, some molecular models of DNA replication, repair, and recombination have been proposed. These biological studies have been conducted using bulk assays, such as gel electrophoresis. Because in bulk assays, several millions of biomolecules are subjected to analysis, the results of the biological analysis only reveal the average behavior of a large number of biomolecules. Therefore, revealing the elementary biological processes of a protein acting on DNA (e.g., the binding of protein to DNA, DNA synthesis, the pause of DNA synthesis, and the release of protein from DNA) is difficult. Single-molecule imaging allows the analysis of the dynamic behaviors of individual biomolecules that are hidden during bulk experiments. Thus, the methods for single-molecule imaging have provided new insights into almost all of the aspects of the elementary processes of DNA replication, repair, and recombination. However, in an aqueous solution, DNA molecules are in a randomly coiled state. Thus, the manipulation of the physical form of the single DNA molecules is important. In this review, we provide an overview of the unique studies on DNA manipulation and single-molecule imaging to analyze the dynamic interaction between DNA and protein.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Hatoyama-cho, Hiki-gun, Saitama 350-0394, Japan;
| | - Masahiko Oshige
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| | - Shinji Katsura
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
15
|
Huang C, Zhu X, Li N, Ma X, Li Z, Fan J. Simultaneous Sensing of Force and Current Signals to Recognize Proteinogenic Amino Acids at a Single-Molecule Level. J Phys Chem Lett 2021; 12:793-799. [PMID: 33411544 DOI: 10.1021/acs.jpclett.0c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification ability of nanopore sequencing is severely hindered by the diversity of amino acids in a protein. To tackle this problem, a graphene nanoslit sensor is adopted to collect force and current signals to distinguish 20 residues. Extensive molecular dynamics simulations are performed on sequencing peptides under pulling force and applied electric field. Results show that the signals of force and current can be simultaneously collected. Tailoring the geometry of the nanoslit sensor optimizes signal differences between tyrosine and alanine residues. Using the tailored geometry, the characteristic signals of 20 types of residues are detected, enabling excellent distinguishability so that the residues are well-grouped by their properties and signals. The signals reveal a trend in which the larger amino acids have larger pulling forces and lower ionic currents. Generally, the graphene nanoslit sensor can be employed to simultaneously sense two signals, thereby enhancing the identification ability and providing an effective mode of nanopore protein sequencing.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
16
|
Shepherd BA, Tanjil MRE, Jeong Y, Baloğlu B, Liao J, Wang MC. Ångström- and Nano-scale Pore-Based Nucleic Acid Sequencing of Current and Emergent Pathogens. MRS ADVANCES 2020; 5:2889-2906. [PMID: 33437534 PMCID: PMC7790041 DOI: 10.1557/adv.2020.402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions.
Collapse
Affiliation(s)
- Britney A. Shepherd
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Md Rubayat-E Tanjil
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Yunjo Jeong
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Bilgenur Baloğlu
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Jingqiu Liao
- Department of Systems Biology, Columbia University, 1130 St. Nicholas Avenue, New York, New York 10032 USA
| | - Michael Cai Wang
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| |
Collapse
|
17
|
Si W, Yu M, Wu G, Chen C, Sha J, Zhang Y, Chen Y. A Nanoparticle-DNA Assembled Nanorobot Powered by Charge-Tunable Quad-Nanopore System. ACS NANO 2020; 14:15349-15360. [PMID: 33151055 DOI: 10.1021/acsnano.0c05779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Molecular machines hold keys to performing intrinsic functions in living cells so that the organisms can work properly, and unveiling the mechanism of functional molecule machines as well as elucidating the dynamic process of interaction with their surrounding environment is an attractive pharmaceutical target for human health. Due to the limitations of searching and exploring all possible motors in human bodies, designing and constructing functional nanorobots is vital for meeting the fast-rising demand of revealing life science and related diagnostics. Here, we theoretically designed a nanoparticle-DNA assembled nanorobot that can move along a solid-state membrane surface. The nanorobot is composed of a nanoparticle and four single-stranded DNAs. Our molecular dynamics simulations show that electroosmosis could be the main power driving the movement of a nanorobot. After the DNA strands were one-to-one captured by the nanopores in the membrane, by tuning the surface charge density of each nanopore, we have theoretically shown that the electroosmosis coupled with electrophoresis can be used to drive the movement of the nanorobot in desired directions along the graphene membrane surface. It is believed that the well-controlled nanorobot will lead to many exciting applications, such as cargo delivery, nanomanipulation, and so on, if it is implemented in the near future.
Collapse
Affiliation(s)
- Wei Si
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Meng Yu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chang Chen
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yin Zhang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
18
|
Yuan Z, Liu Y, Dai M, Yi X, Wang C. Controlling DNA Translocation Through Solid-state Nanopores. NANOSCALE RESEARCH LETTERS 2020; 15:80. [PMID: 32297032 PMCID: PMC7158975 DOI: 10.1186/s11671-020-03308-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/24/2020] [Indexed: 05/14/2023]
Abstract
Compared with the status of bio-nanopores, there are still several challenges that need to be overcome before solid-state nanopores can be applied in commercial DNA sequencing. Low spatial and low temporal resolution are the two major challenges. Owing to restrictions on nanopore length and the solid-state nanopores' surface properties, there is still room for improving the spatial resolution. Meanwhile, DNA translocation is too fast under an electrical force, which results in the acquisition of few valid data points. The temporal resolution of solid-state nanopores could thus be enhanced if the DNA translocation speed is well controlled. In this mini-review, we briefly summarize the methods of improving spatial resolution and concentrate on controllable methods to promote the resolution of nanopore detection. In addition, we provide a perspective on the development of DNA sequencing by nanopores.
Collapse
Affiliation(s)
- Zhishan Yuan
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Youming Liu
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Min Dai
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Xin Yi
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Chengyong Wang
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| |
Collapse
|
19
|
Goto Y, Akahori R, Yanagi I, Takeda KI. Solid-state nanopores towards single-molecule DNA sequencing. J Hum Genet 2019. [PMID: 31420594 DOI: 10.1038/s10038-019-0655-8]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanopore DNA sequencing offers a new paradigm owing to its extensive potential for long-read, high-throughput detection of nucleotide modification and direct RNA sequencing. Given the remarkable advances in protein nanopore sequencing technology, there is still a strong enthusiasm in exploring alternative nanopore-sequencing techniques, particularly those based on a solid-state nanopore using a semiconductor material. Since solid-state nanopores provide superior material robustness and large-scale integrability with on-chip electronics, they have the potential to surpass the limitations of their biological counterparts. However, there are key technical challenges to be addressed: the creation of an ultrasmall nanopore, fabrication of an ultrathin membrane, control of the ultrafast DNA speed and detection of four nucleotides. Extensive research efforts have been devoted to resolving these issues over the past two decades. In this review, we briefly introduce recent updates regarding solid-state nanopore technologies towards DNA sequencing. It can be envisioned that emerging technologies will offer a brand new future in DNA-sequencing technology.
Collapse
Affiliation(s)
- Yusuke Goto
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan.
| | - Rena Akahori
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Itaru Yanagi
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Ken-Ichi Takeda
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| |
Collapse
|
20
|
Goto Y, Akahori R, Yanagi I, Takeda KI. Solid-state nanopores towards single-molecule DNA sequencing. J Hum Genet 2019; 65:69-77. [PMID: 31420594 DOI: 10.1038/s10038-019-0655-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
Nanopore DNA sequencing offers a new paradigm owing to its extensive potential for long-read, high-throughput detection of nucleotide modification and direct RNA sequencing. Given the remarkable advances in protein nanopore sequencing technology, there is still a strong enthusiasm in exploring alternative nanopore-sequencing techniques, particularly those based on a solid-state nanopore using a semiconductor material. Since solid-state nanopores provide superior material robustness and large-scale integrability with on-chip electronics, they have the potential to surpass the limitations of their biological counterparts. However, there are key technical challenges to be addressed: the creation of an ultrasmall nanopore, fabrication of an ultrathin membrane, control of the ultrafast DNA speed and detection of four nucleotides. Extensive research efforts have been devoted to resolving these issues over the past two decades. In this review, we briefly introduce recent updates regarding solid-state nanopore technologies towards DNA sequencing. It can be envisioned that emerging technologies will offer a brand new future in DNA-sequencing technology.
Collapse
Affiliation(s)
- Yusuke Goto
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan.
| | - Rena Akahori
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Itaru Yanagi
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Ken-Ichi Takeda
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| |
Collapse
|
21
|
Si W, Zhang Y, Wu G, Kan Y, Zhang Y, Sha J, Chen Y. Discrimination of Protein Amino Acid or Its Protonated State at Single-Residue Resolution by Graphene Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900036. [PMID: 30848871 DOI: 10.1002/smll.201900036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/24/2019] [Indexed: 05/03/2023]
Abstract
The function of a protein is determined by the composition of amino acids and is essential to proteomics. However, protein sequencing remains challenging due to the protein's irregular charge state and its high-order structure. Here, a proof of principle study on the capability of protein sequencing by graphene nanopores integrated with atomic force microscopy is performed using molecular dynamics simulations. It is found that nanopores can discriminate a protein sequence and even its protonation state at single-residue resolution. Both the pulling forces and current blockades induced by the permeation of protein residues are found to be highly correlated with the type of amino acids, which makes the residues identifiable. It is also found that aside from the dimension, both the conformation and charge state of the residue can significantly influence the force and current signal during its permeation through the nanopore. In particular, due to the electro-osmotic flow effect, the blockade current for the double-protonated histidine is slightly smaller than that for single-protonated histidine, which makes it possible for discrimination of different protonation states of amino acids. The results reported here present a novel protein sequencing scheme using graphene nanopores combined with nanomanipulation technology.
Collapse
Affiliation(s)
- Wei Si
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yin Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yajing Kan
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yan Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yunfei Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
22
|
Yan H, Zhou D, Shi B, Zhang Z, Tian H, Yu L, Wang Y, Guan X, Wang Z, Wang D. Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:261-266. [DOI: 10.1007/s00249-019-01350-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
23
|
Si W, Yang H, Sha J, Zhang Y, Chen Y. Discrimination of single-stranded DNA homopolymers by sieving out G-quadruplex using tiny solid-state nanopores. Electrophoresis 2019; 40:2117-2124. [PMID: 30779188 DOI: 10.1002/elps.201800537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
Nanopore sensor has been developed as a promising technology for DNA sequencing at the single-base resolution. However, the discrimination of homopolymers composed of guanines from other nucleotides has not been clearly revealed due to the easily formed G-quadruplex in aqueous buffers. In this work, we report that a tiny silicon nitride nanopore was used to sieve out G tetramers to make sure only homopolymers composed of guanines could translocate through the nanopore, then the 20-nucleotide long ssDNA homopolymers could be identified and differentiated. It is found that the size of the nucleotide plays a major role in affecting the current blockade as well as the dwell time while DNA is translocating through the nanopore. By the comparison of translocation behavior of ssDNA homopolymers composed of nucleotides with different volumes, it is found that smaller nucleotides can lead to higher translocation speed and lower current blockage, which is also found and validated for the 105-nucleotide long homopolymers. The studies performed in this work will improve our understanding of nanopore-based DNA sequencing at single-base level.
Collapse
Affiliation(s)
- Wei Si
- School of Mechanical Engineering, Southeast University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Haojie Yang
- School of Mechanical Engineering, Southeast University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Yin Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing, P. R. China.,Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
24
|
Challenges of Single-Molecule DNA Sequencing with Solid-State Nanopores. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1129:131-142. [DOI: 10.1007/978-981-13-6037-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Si W, Zhang Y, Sha J, Chen Y. Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore. NANOSCALE 2018; 10:19450-19458. [PMID: 30311618 DOI: 10.1039/c8nr05830j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A challenge that remains to be solved in the high-throughput and low-cost nanopore DNA sequencing is that DNA translocates through the nanopore too quickly to be sequenced with enough accuracy. Here, we present a proof of principle study of slowing down DNA translocation across the molybdenum disulfide nanopore and even reversing its translocation direction by adjusting the proportion of molybdenum atoms to sulfur atoms at the nanopore boundary. When the proportion is smaller than 0.17, the electro-osmotic flow moves in the opposite direction to the electric force exerted on the DNA molecule and the more sulfur atoms at the nanopore boundary, the stronger the electro-osmotic flow is. For the nanopore with the proportion equal to 0.17, the electro-osmotic force exerted on DNA is smaller than the electrophoretic force, DNA can be captured and its translocation speed was found to be almost three times smaller than the speed through nanopores with the proportion larger than 0.27. However, for nanopores with the proportion smaller than 0.08, DNA would even be pushed away and prevented from entering the nanopore so that its translocation direction would be reversed. The theoretical study performed here provides a new means for controlling DNA transport dynamics in both translocation velocity and direction, which would facilitate better and cheaper nanopore DNA sequencing in the future.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210096, China.
| | | | | | | |
Collapse
|
26
|
Yang H, Li Z, Si W, Lin K, Ma J, Li K, Sun L, Sha J, Chen Y. Identification of Single Nucleotides by a Tiny Charged Solid-State Nanopore. J Phys Chem B 2018; 122:7929-7935. [PMID: 30047733 DOI: 10.1021/acs.jpcb.8b06056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discrimination of single nucleotides by a nanopore remains a challenge because of the minor difference among the four types of single nucleotides. Here, the blockade currents induced by the translocation of single nucleotides through a 1.8 nm diameter silicon nitride nanopore have been measured. It is found that the single nucleotides are driven through the nanopore by an electroosmotic flow instead of electrophoretic force when a bias voltage is applied. The blockade currents for the four types of single nucleotides are unique and differentiable, following the order of the nucleotide volume. Also, the dwell time for each single nucleotide can last for several hundred microseconds with the advantage of the electroosmotic flow, which is helpful for single nucleotide identification. The dwell-time distributions are found to obey the first-passage time distribution from the 1D Fokker-Planck equation, from which the velocity and diffusion constant of each nucleotide can be deduced. Interestingly, the larger nucleotide is found to translocate faster than the smaller one inside the nanopore because the larger nucleotide has a larger surface area, which may produce larger drag force induced by the electroosmotic flow, which is validated by molecular dynamics simulations.
Collapse
|
27
|
Dunlop A, Bowman K, Aarstad O, Skjåk-Bræk G, Stokke BT, Round AN. Polymer sequencing by molecular machines: a framework for predicting the resolving power of a sliding contact force spectroscopy sequencing method. NANOSCALE 2017; 9:15089-15097. [PMID: 28967943 DOI: 10.1039/c7nr03358c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We evaluate an AFM-based single molecule force spectroscopy method for mapping sequences in otherwise difficult to sequence heteropolymers, including glycosylated proteins and glycans. The sliding contact force spectroscopy (SCFS) method exploits a sliding contact made between a nanopore threaded over a polymer axle and an AFM probe. We find that for sliding α- and β-cyclodextrin nanopores over a wide range of hydrophilic monomers, the free energy of sliding is proportional to the sum of two dimensionless, easily calculable parameters representing the relative partitioning of the monomer inside the nanopore or in the aqueous phase, and the friction arising from sliding the nanopore over the monomer. Using this relationship we calculate sliding energies for nucleic acids, amino acids, glycan and synthetic monomers and predict on the basis of these calculations that SCFS will detect N- and O-glycosylation of proteins and patterns of sidechains in glycans. For these applications, SCFS offers an alternative to sequence mapping by mass spectrometry or newly-emerging nanopore technologies that may be easily implemented using a standard AFM.
Collapse
Affiliation(s)
- Alex Dunlop
- HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | | | | | | | | | | |
Collapse
|
28
|
Dwyer JR, Harb M. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection. APPLIED SPECTROSCOPY 2017; 71:2051-2075. [PMID: 28714316 DOI: 10.1177/0003702817715496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.
Collapse
Affiliation(s)
- Jason R Dwyer
- 1 Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Maher Harb
- 2 Department of Physics and Materials, Science & Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
29
|
Akahori R, Yanagi I, Goto Y, Harada K, Yokoi T, Takeda KI. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion. Sci Rep 2017; 7:9073. [PMID: 28831056 PMCID: PMC5567245 DOI: 10.1038/s41598-017-08290-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
To achieve DNA sequencing with solid-state nanopores, the speed of the DNA in the nanopore must be controlled to obtain sequence-specific signals. In this study, we fabricated a nanopore-sensing system equipped with a DNA motion controller. DNA strands were immobilized on a Si probe, and approach of this probe to the nanopore vicinity could be controlled using a piezo actuator and stepper motor. The area of the Si probe was larger than the area of the membrane, which meant that the immobilized DNA could enter the nanopore without the need for the probe to scan to determine the location of the nanopore in the membrane. We demonstrated that a single-stranded DNA could be inserted into and removed from a nanopore in our experimental system. The number of different ionic-current levels observed while DNA remained in the nanopore corresponded to the number of different types of homopolymers in the DNA.
Collapse
Affiliation(s)
- Rena Akahori
- Hitachi Ltd., Research and Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan.
| | - Itaru Yanagi
- Hitachi Ltd., Research and Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Yusuke Goto
- Hitachi Ltd., Research and Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Kunio Harada
- Hitachi Ltd., Research and Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Takahide Yokoi
- Hitachi Ltd., Research and Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Ken-Ichi Takeda
- Hitachi Ltd., Research and Development Group, Center for Technology Innovation - Healthcare, 1-280, Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| |
Collapse
|
30
|
Dong Z, Kennedy E, Hokmabadi M, Timp G. Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore. ACS NANO 2017; 11:5440-5452. [PMID: 28538092 DOI: 10.1021/acsnano.6b08452] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
It is now possible to create, in a thin inorganic membrane, a single, sub-nanometer-diameter pore (i.e., a sub-nanopore) about the size of an amino acid residue. To explore the prospects for sequencing protein with it, measurements of the force and current were performed as two denatured histones, which differed by four amino acid residue substitutions, were impelled systematically through the sub-nanopore one at a time using an atomic force microscope. The force measurements revealed that once the denatured protein, stabilized by sodium dodecyl sulfate (SDS), translocated through the sub-nanopore, a disproportionately large force was required to pull it back. This was interpreted to mean that the SDS was cleaved from the protein during the translocation. The force measurements also exposed a dichotomy in the translocation kinetics: either the molecule slid nearly frictionlessly through the pore or it slipped-and-stuck. When it slid frictionlessly, regardless of whether the molecule was pulled N-terminus or C-terminus first through the pore, regular patterns were observed intermittently in the force and blockade current fluctuations that corresponded to the distance between stretched residues. Furthermore, the amplitude of the fluctuations in the current blockade were correlated with the occluded volume associated with the amino acid residues in the pore. Finally, a comparison of the patterns in the current fluctuations associated with the two practically identical histones supported the conclusion that a sub-nanopore was sensitive enough to discriminate amino acid substitutions in the sequence of a single protein molecule by measuring volumes of 0.1 nm3 per read.
Collapse
Affiliation(s)
- Zhuxin Dong
- Department of Electrical Engineering and ‡Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Eamonn Kennedy
- Department of Electrical Engineering and ‡Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Mohammad Hokmabadi
- Department of Electrical Engineering and ‡Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Gregory Timp
- Department of Electrical Engineering and ‡Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Hyun C, Kaur H, Huang T, Li J. A tip-attached tuning fork sensor for the control of DNA translocation through a nanopore. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:025001. [PMID: 28249506 PMCID: PMC5303168 DOI: 10.1063/1.4974955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/13/2017] [Indexed: 05/27/2023]
Abstract
In this work, we demonstrate that a tuning fork can be used as a force detecting sensor for manipulating DNA molecules and for controlling the DNA translocation rate through a nanopore. One prong of a tuning fork is glued with a probe tip which DNA molecules can be attached to. To control the motion and position of the tip, the tuning fork is fixed to a nanopositioning system which has sub-nanometer position control. A fluidic chamber is designed to fulfill many requirements for the experiment: for the access of a DNA-attached tip approaching to a nanopore, for housing a nanopore chip, and for measuring ionic current through a solid-state nanopore with a pair of electrodes. The location of a nanopore is first observed by transmission electron microscopy, and then is determined inside the liquid chambers with an optical microscope combined with local scanning the probe tip on the nanopore surface. When a DNA-immobilized tip approaches a membrane surface near a nanopore, free ends of the immobilized DNA strings can be pulled and trapped into the pore by an applied voltage across the nanopore chip, resulting in an ionic current reduction through the nanopore. The trapped DNA molecules can be lifted up from the nanopore at a user controlled speed. This integrated apparatus allows manipulation of biomolecules (DNA, RNA, and proteins) attached to a probe tip with sub-nanometer precision, and simultaneously allows measurement of the biomolecules by a nanopore device.
Collapse
Affiliation(s)
- Changbae Hyun
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Harpreet Kaur
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Tao Huang
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Jiali Li
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
32
|
Kennedy E, Dong Z, Tennant C, Timp G. Reading the primary structure of a protein with 0.07 nm 3 resolution using a subnanometre-diameter pore. NATURE NANOTECHNOLOGY 2016; 11:968-976. [PMID: 27454878 DOI: 10.1038/nnano.2016.120] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/06/2016] [Indexed: 05/02/2023]
Abstract
The primary structure of a protein consists of a sequence of amino acids and is a key factor in determining how a protein folds and functions. However, conventional methods for sequencing proteins, such as mass spectrometry and Edman degradation, suffer from short reads and lack sensitivity, so alternative approaches are sought. Here, we show that a subnanometre-diameter pore, sputtered through a thin silicon nitride membrane, can be used to detect the primary structure of a denatured protein molecule. When a denatured protein immersed in electrolyte is driven through the pore by an electric field, measurements of a blockade in the current reveal nearly regular fluctuations, the number of which coincides with the number of residues in the protein. Furthermore, the amplitudes of the fluctuations are highly correlated with the volumes that are occluded by quadromers (four residues) in the primary structure. Each fluctuation, therefore, represents a read of a quadromer. Scrutiny of the fluctuations reveals that the subnanometre pore is sensitive enough to read the occluded volume that is related to post-translational modifications of a single residue, measuring volume differences of ∼0.07 nm3, but it is not sensitive enough to discriminate between the volumes of all twenty amino acids.
Collapse
Affiliation(s)
- Eamonn Kennedy
- Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Zhuxin Dong
- Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Clare Tennant
- Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gregory Timp
- Electrical Engineering and Biological Science, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
33
|
Liang L, Shen JW, Zhang Z, Wang Q. DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. Biosens Bioelectron 2015; 89:280-292. [PMID: 26711358 DOI: 10.1016/j.bios.2015.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, two-dimensional (2D) materials (mainly including graphene, boron nitride, MoS2 etc.) have stimulated exploding interests in sensor applications. 2D-material based nanoscale DNA sequencing is a single-molecule technique with revolutionary potential. In this paper, we review the methodology of DNA sequencing based on the measurements of ionic current, force peak, and transverse electrical currents etc. by 2D materials. The advantages and disadvantages of DNA sequencing by 2D materials are discussed. Besides the recent development of experiments, we will focus on the theoretical calculations of DNA sequencing, which have been played a critical role in the development of this field. Special emphasis will focus on the disagreements between experiments and theoretical calculations, and the explanations for the discrepancy will be highlighted. Finally, some new plausible sequencing methods from computational studies will be discussed, which may be applied in the realistic DNA sequencing experiments in future.
Collapse
Affiliation(s)
- Lijun Liang
- Department of Chemistry and §Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jia-Wei Shen
- School of Medicine, Hangzhou Normal University, Hangzhou 310016, People's Republic of China
| | - Zhisen Zhang
- Research Institute for Soft Matter and Biomimetics, Department of Physics, Xiamen University, Xiamen 361005, People' s Republic of China
| | - Qi Wang
- Department of Chemistry and §Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
34
|
Feng Y, Zhang Y, Ying C, Wang D, Du C. Nanopore-based fourth-generation DNA sequencing technology. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:4-16. [PMID: 25743089 PMCID: PMC4411503 DOI: 10.1016/j.gpb.2015.01.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/14/2015] [Accepted: 01/23/2015] [Indexed: 12/24/2022]
Abstract
Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications.
Collapse
Affiliation(s)
- Yanxiao Feng
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuechuan Zhang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cuifeng Ying
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; MOE Key Laboratory of Weak-light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunlei Du
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Abstract
The "$1000 Genome" project has been drawing increasing attention since its launch a decade ago. Nanopore sequencing, the third-generation, is believed to be one of the most promising sequencing technologies to reach four gold standards set for the "$1000 Genome" while the second-generation sequencing technologies are bringing about a revolution in life sciences, particularly in genome sequencing-based personalized medicine. Both of protein and solid-state nanopores have been extensively investigated for a series of issues, from detection of ionic current blockage to field-effect-transistor (FET) sensors. A newly released protein nanopore sequencer has shown encouraging potential that nanopore sequencing will ultimately fulfill the gold standards. In this review, we address advances, challenges, and possible solutions of nanopore sequencing according to these standards.
Collapse
Affiliation(s)
- Yue Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Qiuping Yang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Zhimin Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|