1
|
Liang Y, Tsai DP, Kivshar Y. From Local to Nonlocal High-Q Plasmonic Metasurfaces. PHYSICAL REVIEW LETTERS 2024; 133:053801. [PMID: 39159090 DOI: 10.1103/physrevlett.133.053801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
The physics of bound states in the continuum (BICs) allows the design and demonstration of optical resonant structures with large values of the quality factor (Q factor) by employing dielectric structures with low losses. However, BIC is a general wave phenomenon that should be observed in many systems, including the metal-dielectric structures supporting surface plasmon polaritons where optical resonances are hindered by losses. Here we suggest and develop a comprehensive strategy to achieve high-Q resonances in plasmonic metasurfaces by effectively tailoring the resonant modes from local to nonlocal regimes, thus transitioning from quasi-isolated localized resonances to extended resonant modes involving strong interaction among neighboring structure metaunits.
Collapse
Affiliation(s)
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | |
Collapse
|
2
|
Karimi V, Babicheva VE. MXene-antenna electrode with collective multipole resonances. NANOSCALE 2024; 16:4656-4667. [PMID: 38314841 DOI: 10.1039/d3nr03828a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Two-dimensional transition metal carbides and nitrides (MXene-s) are the focus of extensive research due to their exceptional potential for practical applications. We study nanostructured MXene layers to design photodetector electrodes and increase their response through hot-electron generation. We demonstrate that the lattice arrangement plays a crucial role in exciting strong optical resonances in the nanostructured MXene, specifically Ti3C2Tx, despite its high loss and weak optical resonances in an isolated antenna. We use numerical simulations and analytical calculations with coupled dipole-quadrupole lattice sums for designing photodetector electrodes. We also provide proof-of-concept experimental demonstration of the enhanced resonances even for the case of lossy materials. We report on the excitation of strong lattice resonances of the MXene antenna array with enhanced absorption, resulting in a more efficient generation of hot electrons. Our findings reveal that a multi-period array of MXene antennas can improve narrowband and broadband photodetector functionality. We propose highly efficient absorbers based on MXene metasurfaces and transforming electrodes into hybrid photodetectors using MXene antennas to enhance their performance.
Collapse
Affiliation(s)
- Vahid Karimi
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Viktoriia E Babicheva
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| |
Collapse
|
3
|
Kim D, Yu J, Boehm G, Belkin MA, Lee J. Efficient Second-Harmonic Generation from Dielectric Inter-subband Polaritonic Metasurfaces Coupled to Lattice Resonance. NANO LETTERS 2023; 23:9003-9010. [PMID: 37756214 DOI: 10.1021/acs.nanolett.3c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Nonlinear optical metasurfaces offer a possibility to perform frequency mixing without the phase-matching constraints of bulk nonlinear crystals and with control of the local nonlinear response at a sub-wavelength scale. Nonlinear inter-subband polaritonic metasurfaces created by combining the semiconductor heterostructures with quantum-engineered inter-subband nonlinear response and electromagnetically engineered metal-clad nanoresonators offer by far the largest second-order nonlinear response of all condensed matter systems reported to date. However, the nonlinear optical response of these metasurfaces is limited by optical intensity saturation in the nanoresonator hot spots that prevented the achievement of power conversion efficiencies over 0.2% in three-wave mixing experiments. In this study, we propose and experimentally demonstrate dielectric inter-subband polaritonic metasurfaces for second-harmonic generation that achieve 0.37% power conversion efficiency. Our structure is created by a new design approach that combines dielectric resonators inducing Mie resonant modes with a lattice resonance to achieve a uniform and high field enhancement throughout the meta-atom volume.
Collapse
Affiliation(s)
- Daeik Kim
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeyeon Yu
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gerhard Boehm
- Walter Schottky Institute, Technical University of Munich, Am Coulombwall 4, Garching 85748, Germany
| | - Mikhail A Belkin
- Walter Schottky Institute, Technical University of Munich, Am Coulombwall 4, Garching 85748, Germany
| | - Jongwon Lee
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Liu B, Liu S, Devaraj V, Yin Y, Zhang Y, Ai J, Han Y, Feng J. Metal 3D nanoprinting with coupled fields. Nat Commun 2023; 14:4920. [PMID: 37582962 PMCID: PMC10427678 DOI: 10.1038/s41467-023-40577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Metallized arrays of three-dimensional (3D) nanoarchitectures offer new and exciting prospects in nanophotonics and nanoelectronics. Engineering these repeating nanoarchitectures, which have dimensions smaller than the wavelength of the light source, enables in-depth investigation of unprecedented light-matter interactions. Conventional metal nanomanufacturing relies largely on lithographic methods that are limited regarding the choice of materials and machine write time and are restricted to flat patterns and rigid structures. Herein, we present a 3D nanoprinter devised to fabricate flexible arrays of 3D metallic nanoarchitectures over areas up to 4 × 4 mm2 within 20 min. By suitably adjusting the electric and flow fields, metal lines as narrow as 14 nm were printed. We also demonstrate the key ability to print a wide variety of materials ranging from single metals, alloys to multimaterials. In addition, the optical properties of the as-printed 3D nanoarchitectures can be tailored by varying the material, geometry, feature size, and periodic arrangement. The custom-designed and custom-built 3D nanoprinter not only combines metal 3D printing with nanoscale precision but also decouples the materials from the printing process, thereby yielding opportunities to advance future nanophotonics and semiconductor devices.
Collapse
Affiliation(s)
- Bingyan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shirong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yuxiang Yin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yueqi Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingui Ai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yaochen Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jicheng Feng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Karimi V, Babicheva VE. Dipole-lattice nanoparticle resonances in finite arrays. OPTICS EXPRESS 2023; 31:16857-16871. [PMID: 37157755 DOI: 10.1364/oe.491334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We investigate how the periodic lattices define the collective optical characteristics of the silicon and titanium nanoparticle arrays. We examine the effects of dipole lattice on the resonances of optical nanostructures, including those made of lossy materials, such as titanium. Our approach involves employing coupled-electric-magnetic-dipole calculations for finite-size arrays, as well as lattice sums for effectively infinite arrays. Our model shows that the convergence to the infinite-lattice limit is faster when the resonance is broad, requiring fewer array particles. Our approach differs from previous works by altering the lattice resonance through modifications in the array period. We observed that a higher number of nanoparticles is necessary to achieve convergence to the infinite-array limit. Additionally, we observe that the lattice resonances excited next to higher diffraction orders (such as second order) converge more quickly toward the ideal case of an infinite array than the lattice resonances related to the first diffraction order. This work reports on the significant advantages of using a periodic arrangement of lossy nanoparticles and the role of collective excitation in enhancing response from transition metals, such as titanium, nickel, tungsten, and so on. The periodic arrangement of nanoscatterers allows for the excitation of strong dipoles, boosting the performance of nanophotonic devices and sensors by improving the strength of localized resonances.
Collapse
|
6
|
Zong S, Zeng D, Liu G, Wang Y, Liu Z, Chen J. Multiple resonant modes coupling enabled strong CD response in a chiral metasurface. OPTICS EXPRESS 2022; 30:40470-40481. [PMID: 36298979 DOI: 10.1364/oe.475060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The chiral structures with strong circular dichroism (CD) response and narrow linewidth are desirable in chiral sensing, circularly-polarized light detection, and polarization imaging. Here, we theoretically proposed a hybrid chiral metasurface for differential absorption of circularly polarized light. Based on the multiple resonant modes coupling effect in a two-dimensional dielectric slab, it is realizable then to achieve a nearly perfect absorption for right circularly polarized light and simultaneously reflects 90% of left circularly polarized light, suggesting the generation of strong CD of 0.886 within a narrowly spectral linewidth of 4.53 nm. The multipole analysis reveals that the electric dipole, the magnetic dipole, and the electric quadrupole make dominant contributions to chiral absorption and the high CD response in this metsurface. The excitation of guided mode resonance enhances the ability of this metasurface to absorb electric field. Moreover, the optical chirality response can be further manipulated through the geometry features. These findings pave a powerful way to realize the narrowing and strong CD platform for single-band and multiband chirality behaviors.
Collapse
|
7
|
Multi-octave metasurface-based refractory superabsorber enhanced by a tapered unit-cell structure. Sci Rep 2022; 12:17066. [PMID: 36224251 PMCID: PMC9556832 DOI: 10.1038/s41598-022-21740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
An ultra-broadband metasurface-based perfect absorber is proposed based on a periodic array of truncated cone-shaped \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {TiO}_2$$\end{document}TiO2 surrounded by TiN/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {TiO}_2$$\end{document}TiO2 conical rings. Due to the refractory materials involved in the metasurface, the given structure can keep its structural stability at high temperatures. The proposed structure can achieve a broadband spectrum of 4.3 µm at normal incidence spanning in the range of 0.2–4.5 µm with the absorption higher than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$90\%$$\end{document}90% and the average absorption around \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$94.71\%$$\end{document}94.71%. The absorption can be tuned through the angle of the cone. By optimizing geometrical parameters, a super absorption is triggered in the range of 0.2–3.25 µm with the absorption higher than 97.40\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% and substantially average absorption over 99\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}%. In this regard, the proposed structure can gather more than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$99\%$$\end{document}99% of the full spectrum of solar radiation. Furthermore, the absorption of the designed structure is almost insensitive to the launching angle up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$50^\circ $$\end{document}50∘ for TE polarization, while it has a weak dependence on the incident angle for TM polarization. The proposed structure can be a promising candidate for thermal energy harvesting and solar absorption applications.
Collapse
|
8
|
Nugroho FAA, Bai P, Darmadi I, Castellanos GW, Fritzsche J, Langhammer C, Gómez Rivas J, Baldi A. Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nat Commun 2022; 13:5737. [PMID: 36180437 PMCID: PMC9525276 DOI: 10.1038/s41467-022-33466-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmonic sensors rely on optical resonances in metal nanoparticles and are typically limited by their broad spectral features. This constraint is particularly taxing for optical hydrogen sensors, in which hydrogen is absorbed inside optically-lossy Pd nanostructures and for which state-of-the-art detection limits are only at the low parts-per-million (ppm) range. Here, we overcome this limitation by inversely designing a plasmonic metasurface based on a periodic array of Pd nanoparticles. Guided by a particle swarm optimization algorithm, we numerically identify and experimentally demonstrate a sensor with an optimal balance between a narrow spectral linewidth and a large field enhancement inside the nanoparticles, enabling a measured hydrogen detection limit of 250 parts-per-billion (ppb). Our work significantly improves current plasmonic hydrogen sensor capabilities and, in a broader context, highlights the power of inverse design of plasmonic metasurfaces for ultrasensitive optical (gas) detection. Plasmonic hydrogen sensors have limited sensitivity due to broad spectral features. Here, the authors use a particle swarm optimization algorithm to inversely design a plasmonic metasurface based on a periodic array of Pd nanoparticles, and demonstrate hydrogen detection limit of 250 ppb.
Collapse
Affiliation(s)
- Ferry Anggoro Ardy Nugroho
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands. .,Department of Physics, Universitas Indonesia, 16424, Depok, Indonesia.
| | - Ping Bai
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Iwan Darmadi
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Gabriel W Castellanos
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| | - Jaime Gómez Rivas
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Andrea Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Wu J, Sun Y, Wu F, Wu B, Wu X. Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:675-681. [PMID: 35957671 PMCID: PMC9344540 DOI: 10.3762/bjnano.13.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
A tunable graphene absorber, composed of a graphene monolayer and a substrate spaced by a subwavelength dielectric grating, is proposed and investigated. Strong light absorption in the graphene monolayer is achieved due to the formation of embedded optical quasi-bound states in the continuum in the subwavelength dielectric grating. The physical origin of the absorption with high quality factor is examined by investigating the electromagnetic field distributions. Interestingly, we found that the proposed absorber possesses high spatial directivity and performs similar to an antenna, which can also be utilized as a thermal emitter. Besides, the spectral position of the absorption peak can not only be adjusted by changing the geometrical parameters of dielectric grating, but it is also tunable by a small change in the Fermi level of the graphene sheet. This novel scheme to tune the absorption of graphene may find potential applications for the realization of ultrasensitive biosensors, photodetectors, and narrow-band filters.
Collapse
Affiliation(s)
- Jun Wu
- College of Electrical Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yasong Sun
- Basic Research Center, School of Power and Energy, Northwestern Polytechnical University, Xi’an 710064, Shaanxi, China
- Center of Computational Physics and Energy Science, Yangtze River Delta Research Institute of NPU, Northwestern Polytechnical University, Taicang 215400, Jiangsu, China
| | - Feng Wu
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Biyuan Wu
- Basic Research Center, School of Power and Energy, Northwestern Polytechnical University, Xi’an 710064, Shaanxi, China
- Shandong Institute of Advanced Technology, Jinan 250100, China
| | - Xiaohu Wu
- Shandong Institute of Advanced Technology, Jinan 250100, China
| |
Collapse
|
10
|
Liu G, Liu M, Fu G, Liu X, Liu Z. Kerr nonlinear medium assisted double-face absorbers for differential manipulation via an all-optical operation. OPTICS EXPRESS 2022; 30:26597-26608. [PMID: 36236847 DOI: 10.1364/oe.464878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Recently, light absorbers have attracted great attentions due to their promising in applications in functional optoelectronic devices. Herein, we theoretically propose and numerically demonstrate a new absorber platform, which consists of a 280-nm-thick photonic nonlinear waveguide film covering on the metal grating structure. Strong reflection inhibition and absorption enhancement is achieved in both the forward and backward directions, which indicates potential novel performances since the previous reports only achieved absorption in one side due to the using of opaque metal film substrate or the reflective mirror. The anti-reflection bands or the absorption peaks at the shorter and longer wavelength ranges are related to the excitation of the propagating surface plasmon resonance by the slit-assisted grating and the cavity mode by the slit in the metal film. Strong differential manipulation is realized for the double-face absorbers via the all-optical operation. Moreover, the operation wavelengths for the double-face light absorber can be modified strongly via using an asymmetric dielectric medium for the coating films. These new findings pave approaches for subtractive lightwave modulation technology, selective filtering, multiplex sensing and detection, etc.
Collapse
|
11
|
Zeng Y, Ling ZX, Liu GD, Wang LL, Lin Q. Tunable plasmonically induced transparency with giant group delay in gain-assisted graphene metamaterials. OPTICS EXPRESS 2022; 30:14103-14111. [PMID: 35473161 DOI: 10.1364/oe.455954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
We propose a graphene metamaterial consisting of several layers of longitudinally separated graphene nanoribbon array embedded into gain-assisted medium, demonstrating electromagnetically induced transparency-like spectra. Combined with finite-difference time-domain simulations, the transfer matrix method and temporal coupled-mode theory are adopted to quantitatively describe its transmission characteristics. These transmission characteristics can be tuned by altering the gain level in medium layer and the Fermi energy level in graphene. Additionally, it is the incorporation between gain medium and graphene nanoribbons with optimized geometrical parameters and Fermi energy level that the destructive interference between high order graphene plasmonic modes can be obtained, suggesting drastic phase transition with giant group delay and ultra-high group index up to 180 ps and 104, respectively. Our results can achieve efficient slow light effects for better optical buffers and other nonlinear applications.
Collapse
|
12
|
Ultra-Narrowband Anisotropic Perfect Absorber Based on α-MoO 3 Metamaterials in the Visible Light Region. NANOMATERIALS 2022; 12:nano12081375. [PMID: 35458082 PMCID: PMC9025360 DOI: 10.3390/nano12081375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023]
Abstract
Optically anisotropic materials show important advantages in constructing polarization-dependent optical devices. Very recently, a new type of two-dimensional van der Waals (vdW) material, known as α-phase molybdenum trioxide (α-MoO3), has sparked considerable interest owing to its highly anisotropic characteristics. In this work, we theoretically present an anisotropic metamaterial absorber composed of α-MoO3 rings and dielectric layer stacking on a metallic mirror. The designed absorber can exhibit ultra-narrowband perfect absorption for polarizations along [100] and [001] crystalline directions in the visible light region. Plus, the influences of some geometric parameters on the optical absorption spectra are discussed. Meanwhile, the proposed ultra-narrowband anisotropic perfect absorber has an excellent angular tolerance for the case of oblique incidence. Interestingly, the single-band perfect absorption in our proposed metamaterials can be arbitrarily extended to multi-band perfect absorption by adjusting the thickness of dielectric layer. The physical mechanism can be explained by the interference theory in Fabry–Pérot cavity, which is consistent with the numerical simulation. Our research results have some potential applications in designs of anisotropic optical devices with tunable spectrum and selective polarization in the visible light region.
Collapse
|
13
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
14
|
Wang BX, Xu C, Duan G, Jiang J, Xu W, Yang Z, Wu Y. Miniaturized and Actively Tunable Triple-Band Terahertz Metamaterial Absorber Using an Analogy I-Typed Resonator. NANOSCALE RESEARCH LETTERS 2022; 17:35. [PMID: 35291018 PMCID: PMC8924347 DOI: 10.1186/s11671-022-03677-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/08/2022] [Indexed: 05/28/2023]
Abstract
Triple-band terahertz metamaterial absorber with design of miniaturization and compactness is presented in this work. The unit cell of the terahertz absorber is formed by an analogy I-typed resonator (a rectangular patch with two small notches) deposited on top of dielectric sheet and metallic mirror. The miniaturized structure design exhibits three discrete frequency points with near-perfect absorption at terahertz regime. The three absorption peaks could be ascribed to localized resonances of analogy I-typed resonator, while the response positions of these absorption peaks at the analogy I-typed resonator are different by analyzing the near-field patterns of these resonance peaks. Changes in structure parameters of the analogy I-typed resonator are also investigated. Simulation results revealed that the notch sizes of the rectangular patch are the key factor to form the triple-band near-perfect absorption. Further structure optimization is given to demonstrate triple-band polarization insensitive performance. Moreover, actively tunable absorption properties are realized by inserting or introducing vanadium dioxide with adjustable conductivity into the metamaterial structure. It is revealed that the insulator-metal phase transition of vanadium dioxide is the main reason for the modulation of absorption performance. Compared with previous multiple-band absorbers, the device given here has excellent features of high degrees of simplification, miniaturization, and active modulation, these are important in practical applications.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jieying Jiang
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
15
|
Yang G, Dev SU, Allen MS, Allen JW, Harutyunyan H. Optical Bound States in the Continuum Enabled by Magnetic Resonances Coupled to a Mirror. NANO LETTERS 2022; 22:2001-2008. [PMID: 35175777 DOI: 10.1021/acs.nanolett.1c04764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dielectric metasurfaces made of high refractive index and low optical loss materials have emerged as promising platforms to achieve high-quality factor modes enabling strong light-matter interaction. Bound states in the continuum have shown potential to demonstrate narrow spectral resonances but often require asymmetric geometry and typically feature strong polarization dependence, complicating fabrication and limiting practical applications. We introduce a novel approach for designing high-quality bound states in the continuum using magnetic dipole resonances coupled to a mirror. The resulting metasurface has simple geometric parameters requiring no broken symmetry. To demonstrate the unique features of our photonic platform we show a record-breaking third harmonic generation efficiency from the metasurface benefiting from the strongly enhanced electric field at high-quality resonances. Our approach mitigates the shortcomings of previous platforms with simple geometry enabling facile and large-area fabrication of metasurfaces paving the way for applications in optical sensing, detection, quantum photonics, and nonlinear devices.
Collapse
Affiliation(s)
- Guoce Yang
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Sukrith U Dev
- Air Force Research Laboratory, Munitions Directorate, Eglin AFB, Florida 32542, United States
| | - Monica S Allen
- Air Force Research Laboratory, Munitions Directorate, Eglin AFB, Florida 32542, United States
| | - Jeffery W Allen
- Air Force Research Laboratory, Munitions Directorate, Eglin AFB, Florida 32542, United States
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Wang BX, Xu W, Wu Y, Yang Z, Lai S, Lu L. Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch. NANOSCALE ADVANCES 2022; 4:1359-1367. [PMID: 36133689 PMCID: PMC9418374 DOI: 10.1039/d1na00789k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/14/2022] [Indexed: 05/09/2023]
Abstract
A multi-band metamaterial absorber in the terahertz regime using a periodically arranged surface structure placed on an ultra-thin insulating dielectric slab backed by a metallic ground plane is demonstrated in this paper. Its surface structure consists of two identical split rings having opposite opening directions connected by a rectangular patch. The surface structure can have a strong electromagnetic interaction with incident terahertz waves, thereby generating two localized resonance absorption peaks with different frequencies, and the superposition effect of these two absorption peaks gives rise to dual-band absorption. With the aid of the near-field distributions of the two absorption peaks, the physical mechanism of the dual-band absorption is revealed. The dimension changes of the surface structure, including the split rings and the rectangular patch, play a key role in controlling and adjusting the resonance performance of dual-band absorption. Further optimization of the surface structure without increasing the number of sub-resonators provides the ability to increase the number of absorption peaks, which is different from prior multi-band absorption devices that typically require more sub-resonators in their surface structures. Multi-band metamaterial absorbers designed in this paper should have great application prospects in the field of terahertz absorption.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University Wuxi 214122 China
| | - Wei Xu
- School of Science, Jiangnan University Wuxi 214122 China
| | - Yangkuan Wu
- School of Science, Jiangnan University Wuxi 214122 China
| | - Zhuchuang Yang
- School of Science, Jiangnan University Wuxi 214122 China
| | - Shengxiong Lai
- School of Science, Jiangnan University Wuxi 214122 China
| | - Liming Lu
- School of Science, Jiangnan University Wuxi 214122 China
| |
Collapse
|
17
|
Yu L, Liang Y, Gao H, Kuang K, Wang Q, Peng W. Multi-resonant absorptions in asymmetric step-shaped plasmonic metamaterials for versatile sensing application scenarios. OPTICS EXPRESS 2022; 30:2006-2017. [PMID: 35209350 DOI: 10.1364/oe.446195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Plasmonic nanostructures have attracted remarkable attention in label-free biosensing detection due to their unprecedented potential of high-sensitivity, miniaturization, multi-parameter, and high throughput screening. In this paper, we propose a plasmonic metamaterial absorber consisting of an asymmetrical step-shaped slit-groove array layer and an opaque gold film, separated by a silica dielectric layer, which demonstrates three-resonant perfect absorption peaks at near-infrared frequencies in an air environment.This is equivalent to three reflection dips due to the opaque gold membrane underneath the structure. Originating from the coupling and hybridization of different plasmonic modes, these three absorption peaks show different linewidths and distinctive excellent sensing performance. The surface lattice resonance (SLR) at the short wavelength range enables an ultra-narrow absorption peak of merely 2 nm and a high bulk refractive index sensitivity of 1605 nm/RIU, but occurring with comparatively low surface sensitivity. Compared to the above-mentioned narrowband SLR mode, the other two absorption peaks, respectively stemming from the coupling between slit-cavity mode and the plasmon resonance of different orders, possess relatively broad linewidths and low bulk refractive index sensitivities, yet outstanding surface sensitivities. The complementary sensing performance among these absorption peaks presents opportunities for using the designed plasmonic metamaterial absorber for multi-parameter detection and various complex application scenarios.
Collapse
|
18
|
Chou Chao CT, Chou Chau YF, Chiang HP. Biosensing on a Plasmonic Dual-Band Perfect Absorber Using Intersection Nanostructure. ACS OMEGA 2022; 7:1139-1149. [PMID: 35036777 PMCID: PMC8757453 DOI: 10.1021/acsomega.1c05714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 05/10/2023]
Abstract
Optical absorbers with multiple absorption channels are required in integrated optical circuits and have always been a challenge in visible and near-infrared (NIR) region. This paper proposes a perfect plasmonic absorber (PPA) that consists of a closed loop and a linked intersection in a unit cell for sensitive biosensing applications. We elucidate the physical nature of finite element method simulations through the absorptance spectrum, electric field intensity, magnetic flux density, and surface charge distribution. The designed PPA achieves triple channels, and the recorded dual-band absorptance reaches 99.64 and 99.00% nm, respectively. Besides, the sensitivity can get 1000.00 and 650 nm/RIU for mode 1 and mode 2, respectively. Our design has a strong electric and magnetic field coupling arising from the mutual inductance and the capacitive coupling in the proposed plasmonic system. Therefore, the designed structure can serve as a promising option for biosensors and other optical devices. Here, we illustrated two examples, i.e., detecting cancerous cells and diabetes cells.
Collapse
Affiliation(s)
- Chung-Ting Chou Chao
- Department
of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yuan-Fong Chou Chau
- Centre
for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Hai-Pang Chiang
- Department
of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
19
|
Ultrahigh-Q Tunable Terahertz Absorber Based on Bulk Dirac Semimetal with Surface Lattice Resonance. PHOTONICS 2021. [DOI: 10.3390/photonics9010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this paper, we present an easy-to-implement metamaterial absorber based on bulk Dirac semimetal (BDS). The proposed device not only obtains an ultrahigh quality factor (Q-factor) of 4133 and dynamic adjustability at high absorption, but also exhibits an excellent sensing performance with a figure of merit (FOM) of 4125. These outstanding properties are explained by the surface lattice resonance, which allows us to improve the quality factor significantly and control resonance wavelength precisely by tuning the unit cell periods, Fermi energy of the BDS, and structural parameters. Our findings can provide high-performance applications in terahertz filtering, detection, and biochemical sensing.
Collapse
|
20
|
Liu B, Wu P, Zhu H, Lv L. Ultra Narrow Dual-Band Perfect Absorber Based on a Dielectric-Dielectric-Metal Three-Layer Film Material. MICROMACHINES 2021; 12:1552. [PMID: 34945402 PMCID: PMC8708341 DOI: 10.3390/mi12121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
This paper proposes a perfect metamaterial absorber based on a dielectric-dielectric-metal structure, which realizes ultra-narrowband dual-band absorption in the near-infrared band. The maximum Q factor is 484. The physical mechanism that causes resonance is hybrid coupling between magnetic polaritons resonance and plasmon resonance. At the same time, the research results show that the intensity of magnetic polaritons resonance is much greater than the intensity of the plasmon resonance. By changing the structural parameters and the incident angle of the light source, it is proven that the absorber is tunable, and the working angle tolerance is 15°. In addition, the sensitivity and figure of merit when used as a refractive index sensor are also analyzed. This design provides a new idea for the design of high-Q optical devices, which can be applied to photon detection, spectral sensing, and other high-Q multispectral fields.
Collapse
Affiliation(s)
- Bin Liu
- Rural Revitalization Institute, Linyi University, Linyi 276000, China;
- Center for International Education, Philippine Christian University, Manila 1004, Philippines
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China;
| | - Hongyang Zhu
- School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China
| | - Li Lv
- School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
21
|
Chen C, Hu Q, Yin K. Visible transparency tuning and corresponding sensing application of opal photonic crystals. OPTICS EXPRESS 2021; 29:40419-40427. [PMID: 34809383 DOI: 10.1364/oe.445680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The development of optical refractive index sensors for label-free sensing is beneficial for both chemical and biochemical applications. Lots of efforts have been devoted to narrow the resonance peaks of periodic nanostructures and, therefore, improve the figures of merit. The substrates with high-quality factor resonances always come at the expense of not only complicated fabrication processes but also the requirement of sophisticated optical measuring systems. It is demonstrated in this work that Fabry-Perot resonance based broadband sensing with figure of merit of 83 can be achieved using low-cost self-assembled opal photonic crystals. It is seen by the naked eye that the transparency of photonic crystal dots can be gradually improved by increasing the refractive index of the filling liquid. The loop-mediated isothermal amplification induced refractive index variation of biological samples has also been recognized using the prepared photonic crystal dots, which are capable of fluorescence enhancement as well.
Collapse
|
22
|
Liang Y, Lin H, Lin S, Wu J, Li W, Meng F, Yang Y, Huang X, Jia B, Kivshar Y. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. NANO LETTERS 2021; 21:8917-8923. [PMID: 34459611 DOI: 10.1021/acs.nanolett.1c02751] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic metasurfaces supporting collective lattice resonances have attracted increasing interest due to their exciting properties of strong spatial coherence and enhanced light-matter interaction. Although the focusing of light by high-numerical-aperture (NA) objectives provides an essential way to boost the field intensities, it remains challenging to excite high-quality resonances by using high-NA objectives due to strong angular dispersion. Here, we address this challenge by employing the physics of bound states in the continuum (BICs). We design a novel anisotropic plasmonic metasurface combining a two-dimensional lattice of high-aspect-ratio pillars with a one-dimensional plasmonic grating, fabricated by a two-photon polymerization technique and gold sputtering. We demonstrate experimentally multiple resonances with absorption amplitudes exceeding 80% at mid-IR using an NA = 0.4 reflective objective. This is enabled by the weak angular dispersion of quasi-BIC resonances in such hybrid plasmonic metasurfaces. Our results suggest novel strategies for designing photonic devices that manipulate focused light with a strong field concentration.
Collapse
Affiliation(s)
- Yao Liang
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Central Territoty 2601, Australia
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Han Lin
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Shirong Lin
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Weibai Li
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Fei Meng
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yunyi Yang
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaodong Huang
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Baohua Jia
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Central Territoty 2601, Australia
| |
Collapse
|
23
|
Barbillon G, Ivanov A, Sarychev AK. SERS Amplification in Au/Si Asymmetric Dimer Array Coupled to Efficient Adsorption of Thiophenol Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1521. [PMID: 34201314 PMCID: PMC8227605 DOI: 10.3390/nano11061521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
Maximizing the surface-enhanced Raman scattering (SERS) is a significant effort focused on the substrate design. In this paper, we are reporting on an important enhancement in the SERS signal that has been reached with a hybrid asymmetric dimer array on gold film coupled to the efficient adsorption of thiophenol molecules on this array. Indeed, the key factor for the SERS effect is the adsorption efficiency of chemical molecules on the surface of plasmonic nanostructures, which is measured by the value of the adsorption constant usually named K. In addition, this approach can be applied to several SERS substrates allowing a prescriptive estimate of their relative performance as sensor and to probe the affinity of substrates for a target analyte. Moreover, this prescriptive estimate leads to higher predictability of SERS activity of molecules, which is also a key point for the development of sensors for a broad spectrum of analytes. We experimentally investigated the sensitivity of the Au/Si asymmetric dimer array on the gold film for SERS sensing of thiophenol molecules, which are well-known for their excellent adsorption on noble metals and serving as a proof-of-concept in our study. For this sensing, a detection limit of 10 pM was achieved as well as an adsorption constant K of 6 × 106 M-1. The enhancement factor of 5.2 × 1010 was found at the detection limit of 10 pM for thiophenol molecules.
Collapse
Affiliation(s)
| | - Andrey Ivanov
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.I.); (A.K.S.)
| | - Andrey K. Sarychev
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.I.); (A.K.S.)
| |
Collapse
|
24
|
Yue L, Wang Y, Cui Z, Zhang X, Zhu Y, Zhang X, Chen S, Wang X, Zhang K. Multi-band terahertz resonant absorption based on an all-dielectric grating metasurface for chlorpyrifos sensing. OPTICS EXPRESS 2021; 29:13563-13575. [PMID: 33985089 DOI: 10.1364/oe.423256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 05/20/2023]
Abstract
Perfect metasurface absorbers play a significant role in imaging, detecting, and manipulating terahertz radiation. We utilize all-dielectric gratings to demonstrate tunable multi-band absorption in the terahertz region. Simulation reveals quad-band and tri-band absorption from 0.2 to 2.5 THz for different grating depths. Coupled-mode theory can explain the absorption phenomenon. The absorption amplitude can be precisely controlled by changing the pump beam fluence. Furthermore, the resonant frequency is sensitive to the medium's refractive index, suggesting the absorber may be of great potential in the sensor detection field. The experimental results exhibit a high detectivity of pesticides.
Collapse
|
25
|
Chiang N, Scarabelli L, Vinnacombe-Willson GA, Pérez LA, Dore C, Mihi A, Jonas SJ, Weiss PS. Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles. ACS MATERIALS LETTERS 2021; 3:282-289. [PMID: 34337418 PMCID: PMC8323846 DOI: 10.1021/acsmaterialslett.0c00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Micro- and nanoscale patterned monolayers of plasmonic nanoparticles were fabricated by combining concepts from colloidal chemistry, self-assembly, and subtractive soft lithography. Leveraging chemical interactions between the capping ligands of pre-synthesized gold colloids and a polydimethylsiloxane stamp, we demonstrated patterning gold nanoparticles over centimeter-scale areas with a variety of micro- and nanoscale geometries, including islands, lines, and chiral structures (e.g., square spirals). By successfully achieving nanoscale manipulation over a wide range of substrates and patterns, we establish a powerful and straightforward strategy, nanoparticle chemical lift-off lithography (NP-CLL), for the economical and scalable fabrication of functional plasmonic materials with colloidal nanoparticles as building blocks, offering a transformative solution for designing next-generation plasmonic technologies.
Collapse
Affiliation(s)
- Naihao Chiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Leonardo Scarabelli
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Gail A. Vinnacombe-Willson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Luis A. Pérez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Camilla Dore
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Agustín Mihi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Steven J. Jonas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Yao Y, Zhou J, Liu Z, Liu X, Fu G, Liu G. Refractory materials and plasmonics based perfect absorbers. NANOTECHNOLOGY 2021; 32:132002. [PMID: 33302265 DOI: 10.1088/1361-6528/abd275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In the past decades, metamaterial light absorbers have attracted tremendous attention due to their impressive absorption efficiency and significant potential for multiple kinds of applications. However, the conventional noble metals based metamaterial and nanomaterial absorbers always suffer from the structural damage by the local high temperature resulting from the strong plasmonic photo-thermal effects. To address this challenge, intensive research has been conducted to develop the absorbers which can realize efficient light absorption and simultaneously keep the structural stability under high temperatures. In this review, we present detail discussion on the refractory materials which can provide robust thermal stability and high performance for light absorption. Moreover, promising theoretical designs and experimental demonstrations that possess excellent features are also reviewed, including broadband strong light absorption, high temperature durability, and even the easy-to-fabricate configuration. Some applications challenges and prospects of refractory materials based plasmonic perfect absorbers are also introduced and discussed.
Collapse
Affiliation(s)
- Yu Yao
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Jin Zhou
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Zhengqi Liu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Xiaoshan Liu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Guolan Fu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Guiqiang Liu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| |
Collapse
|
27
|
Shi X, Chen C, Liu S, Li G. Nonvolatile, Reconfigurable and Narrowband Mid-Infrared Filter Based on Surface Lattice Resonance in Phase-Change Ge 2Sb 2Te 5. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2530. [PMID: 33339400 PMCID: PMC7766875 DOI: 10.3390/nano10122530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
We propose a nonvolatile, reconfigurable, and narrowband mid-infrared bandpass filter based on surface lattice resonance in phase-change material Ge2Sb2Te5. The proposed filter is composed of a two-dimensional gold nanorod array embedded in a thick Ge2Sb2Te5 film. Results show that when Ge2Sb2Te5 transits from the amorphous state to the crystalline state, the narrowband reflection spectrum of the proposed filter is tuned from 3.197 μm to 4.795 μm, covering the majority of the mid-infrared regime, the peak reflectance decreases from 72.6% to 25.8%, and the corresponding quality factor decreases from 19.6 to 10.3. We show that the spectral tuning range can be adjusted by varying the incidence angle or the lattice period. By properly designing the gold nanorod sizes, we also show that the quality factor can be greatly increased to 70 at the cost of relatively smaller peak reflection efficiencies, and that the peak reflection efficiency can be further increased to 80% at the cost of relatively smaller quality factors. We expect that this work will advance the engineering of Ge2Sb2Te5-based nonvalatile tunable surface lattice resonances and will promote their applications especially in reconfigurable narrowband filters.
Collapse
Affiliation(s)
- Xingzhe Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (X.S.); (C.C.); (S.L.)
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Changshui Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (X.S.); (C.C.); (S.L.)
| | - Songhao Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (X.S.); (C.C.); (S.L.)
| | - Guangyuan Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
28
|
Yi Z, Li J, Lin J, Qin F, Chen X, Yao W, Liu Z, Cheng S, Wu P, Li H. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. NANOSCALE 2020; 12:23077-23083. [PMID: 33179661 DOI: 10.1039/d0nr04502k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, solar energy is considered one of the most clean energy sources. In addition, the data from the literature tell us that its main radiation bandwidth is approximately 295-2500 nm. In this work, we proposed a novel kind of broadband solar energy absorber based on tungsten (W) to achieve broadband absorption of solar energy. A four-layer ring-disk structure (SiO2-SiO2-W) is employed in our design. A finite-difference time-domain (FDTD) simulation was used to ascertain the absorption performance of the absorber. The results demonstrate that a broadband solar energy absorption was realized, the bandwidth is of 1530 nm with an absorption efficiency of more than 90%, and an absorption efficiency of 97% was achieved in this region. The absorption spectra can be tuned through changing the structural and geometric parameters. Moreover, the absorber has excellent polarization independence and can be used under incident angles from 0° to 60°. The proposed solar energy absorber is simple to fabricate, and can be used for photothermal conversion, solar energy harvesting and utilization.
Collapse
Affiliation(s)
- Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhou J, Liu Z, Liu G, Pan P, Liu X, Tang C, Liu Z, Wang J. Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics. OPTICS EXPRESS 2020; 28:36476-36486. [PMID: 33379740 DOI: 10.1364/oe.411918] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Metamaterial absorbers have attracted great attention over the past few years and exhibited a promising prospect in solar energy harvesting and solar thermophotovoltaics (STPVs). In this work, we introduce a solar absorber scheme, which enables efficient solar irradiance harvesting, superb thermal robustness and high solar thermal energy conversion for STPV systems. The optimum structure demonstrates an average absorbance of 97.85% at the spectral region from 200 nm to 2980 nm, indicating the near-unity absorption in the main energy range of the solar radiance. The solar-thermal conversion efficiencies surpassing 90% are achieved over an ultra-wide temperature range (100-800 °C). Meanwhile, the analysis indicates that this metamaterial has strong tolerance for fabrication errors. By utilizing the simple two-dimensional (2D) titanium (Ti) gratings, this design is able to get beyond the limit of costly and sophisticated nanomanufacturing techniques. These impressive features can hold the system with wide applications in metamaterial and other optoelectronic devices.
Collapse
|
30
|
Zhang H, Liu Z, Zhong H, Liu G, Liu X, Wang J. Metal-free plasmonic refractory core-shell nanowires for tunable all-dielectric broadband perfect absorbers. OPTICS EXPRESS 2020; 28:37049-37057. [PMID: 33379786 DOI: 10.1364/oe.405625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In this work, we numerically demonstrate a new facile strategy for all-dielectric broadband optical perfect absorbers. A monolayer refractory titanium oxide and nitride (TiN/TiO2) core-shell nanowires array is used to form the grating on the opaque TiN substrate. Multiple resonant absorption bands are observed in the adjacent wavelength range, which therefore leads to the formation of an ultra-broadband absorption window from the visible to the infrared regime. The maximal absorption reaches 95.6% and the average absorption efficiency in the whole range (0.5-1.8 µm) is up to 85.4%. Moreover, the absorption bandwidth can be feasibly adjusted while the absorption efficiency can be still maintained in a high level via tuning the polarization state. Furthermore, the absorption window is observed to be highly adjustable in the wavelength range, showing a nearly linear relationship to the shell's index. These features not only confirm the achievement of the broadband perfect absorption but also introduce feasible ways to artificially manipulate the absorption properties, which will hold wide applications in metal-free plasmonic optoelectronic devices such as the solar harvesting, photo-detection, and thermal generation and its related bio-medical techniques.
Collapse
|
31
|
Ali F, Aksu S. A Narrow-Band Multi-Resonant Metamaterial in Near-IR. MATERIALS 2020; 13:ma13225140. [PMID: 33202666 PMCID: PMC7696973 DOI: 10.3390/ma13225140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023]
Abstract
We theoretically investigate a multi-resonant plasmonic metamaterial perfect absorber operating between 600 and 950 nm wavelengths. The presented device generates 100% absorption at two resonance wavelengths and delivers an ultra-narrow band (sub-20 nm) and high quality factor (Q=44) resonance. The studied perfect absorber is a metal–insulator–metal configuration where a thin MgF2 spacer is sandwiched between an optically thick gold layer and uniformly patterned gold circular nanodisc antennas. The localized and propagating nature of the plasmonic resonances are characterized and confirmed theoretically. The origin of the perfect absorption is investigated using the impedance matching and critical coupling phenomenon. We calculate the effective impedance of the perfect absorber and confirm the matching with the free space impedance. We also investigate the scattering properties of the top antenna layer and confirm the minimized reflection at resonance wavelengths by calculating the absorption and scattering cross sections. The excitation of plasmonic resonances boost the near-field intensity by three orders of magnitude which enhances the interaction between the metamaterial surface and the incident energy. The refractive index sensitivity of the perfect absorber could go as high as S=500 nm/RIU. The presented optical characteristics make the proposed narrow-band multi-resonant perfect absorber a favorable platform for biosensing and contrast agent based bioimaging.
Collapse
Affiliation(s)
- Farhan Ali
- Department of Physics, Bilkent University, Ankara 06800, Turkey;
- Department of Physics, Koc University, Istanbul 34450, Turkey
| | - Serap Aksu
- Department of Physics, Koc University, Istanbul 34450, Turkey
- Correspondence:
| |
Collapse
|
32
|
Zhang K, Deng R, Song L, Zhang T. Numerical investigation of an ultra-broadband, wide-angle, and polarization-independent metasurface light absorber. APPLIED OPTICS 2020; 59:8878-8885. [PMID: 33104573 DOI: 10.1364/ao.405135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we propose and numerically investigate an ultra-broadband, wide-angle, and polarization-independent metasurface absorber based on periodic hexagon-latticed titanium (Ti) nanoring arrays over a continuous Ti film. The proposed absorber can achieve more than 90% absorptivity under normal incidence, ranging from 350 to 1453 nm, and the average absorption is up to 95.6%. Additionally, the absorptivity still remained beyond 70% when the incident angles varied from 0° to 60°. The simulations of electric field distributions indicate that the broadband absorption performance can be ascribed to the superposition of the localized surface plasmon resonance (LSPR) originated from the nanopillars and nanoholes, respectively. The proposed approach is simple and inexpensive, and the metal material is optional. Therefore, we believe that the proposed absorber will be a candidate for many potential applications, such as thermophotovoltaic cells, thermal emitters, and optoelectronic devices.
Collapse
|
33
|
Feng L, Huo P, Liang Y, Xu T. Photonic Metamaterial Absorbers: Morphology Engineering and Interdisciplinary Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903787. [PMID: 31566259 DOI: 10.1002/adma.201903787] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Recent advances in nanofabrication technologies have spurred many breakthroughs in the field of photonic metamaterials that provide efficient ways of manipulating light-matter interaction at subwavelength scales. As one of the most important applications, photonic metamaterials can be used to implement novel optical absorbers. First the morphology engineering of various photonic metamaterial absorbers is discussed, which is highly associated with impendence matching conditions and resonance modes of the absorbers, thus directly determines their absorption efficiency, operational bandwidth, incident angle, and polarization dependence. Then, the recent achievements of various interdisciplinary applications based on photonic metamaterial absorbers, including structural color generation, ultrasensitive optical sensing, solar steam generation, and highly responsive photodetection, are reviewed. This report is expected to provide an overview and vision for the future development of photonic metamaterial absorbers and their applications in novel nanophotonic systems.
Collapse
Affiliation(s)
- Lei Feng
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Pengcheng Huo
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yuzhang Liang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ting Xu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
34
|
Barbillon G. Latest Novelties on Plasmonic and Non-Plasmonic Nanomaterials for SERS Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1200. [PMID: 32575470 PMCID: PMC7353120 DOI: 10.3390/nano10061200] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
An explosion in the production of substrates for surface enhanced Raman scattering (SERS) has occurred using novel designs of plasmonic nanostructures (e.g., nanoparticle self-assembly), new plasmonic materials such as bimetallic nanomaterials (e.g., Au/Ag) and hybrid nanomaterials (e.g., metal/semiconductor), and new non-plasmonic nanomaterials. The novel plasmonic nanomaterials can enable a better charge transfer or a better confinement of the electric field inducing a SERS enhancement by adjusting, for instance, the size, shape, spatial organization, nanoparticle self-assembly, and nature of nanomaterials. The new non-plasmonic nanomaterials can favor a better charge transfer caused by atom defects, thus inducing a SERS enhancement. In last two years (2019-2020), great insights in the fields of design of plasmonic nanosystems based on the nanoparticle self-assembly and new plasmonic and non-plasmonic nanomaterials were realized. This mini-review is focused on the nanoparticle self-assembly, bimetallic nanoparticles, nanomaterials based on metal-zinc oxide, and other nanomaterials based on metal oxides and metal oxide-metal for SERS sensing.
Collapse
|
35
|
Abstract
Plasmonics is one of the most used domains for applications to optical devices, biological and chemical sensing, and non-linear optics, for instance. Indeed, plasmonics enables confining the electromagnetic field at the nanoscale. The resonances of plasmonic systems can be set in a given domain of a spectrum by adjusting the geometry, the spatial arrangement, and the nature of the materials. Moreover, symmetry breaking can be used for the further improvement of the optical properties of the plasmonic systems. In the last three years, great advances in or insights into the use of symmetry breaking in plasmonics have occurred. In this mini-review, we present recent insights and advances on the use of symmetry breaking in plasmonics for applications to chemistry, sensing, devices, non-linear optics, and chirality.
Collapse
|
36
|
Audhkhasi R, Povinelli ML. Spectral emissivity design using aluminum-based hybrid gratings. OPTICS EXPRESS 2020; 28:8076-8084. [PMID: 32225440 DOI: 10.1364/oe.386084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
We propose a strategy to design infrared emitters with predefined spectral response using aluminum gratings as building blocks. We begin by identifying 3 target spectra with resonances in the 7-15 µm wavelength range. Next, we use FDTD simulations and interpolation to create a reference library of gratings relating their structural parameters to attributes of their infrared spectra. By using a search algorithm based on minimization of errors in spectral attributes, we identify gratings from this library corresponding to peaks in the target spectra. Finally, we discuss an approach for designing hybrid structures from these gratings to generate each of the 3 target spectra. This strategy can be extended to design structures with complex spectral responses.
Collapse
|
37
|
Gerislioglu B, Dong L, Ahmadivand A, Hu H, Nordlander P, Halas NJ. Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. NANO LETTERS 2020; 20:2087-2093. [PMID: 31990568 DOI: 10.1021/acs.nanolett.0c00075] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dimers, two closely spaced metallic nanostructures, are one of the primary nanoscale geometries in plasmonics, supporting high local field enhancements in their interparticle junction under excitation of their hybridized "bonding" plasmon. However, when a dimer is fabricated on a metallic substrate, its characteristics are changed profoundly. Here we examine the properties of a Au dimer on a Au substrate. This structure supports a bright "bonding" dimer plasmon, screened by the metal, and a lower energy magnetic charge transfer plasmon. Changing the dielectric environment of the dimer-on-film structure reveals a broad family of higher-order hybrid plasmons in the visible region of the spectrum. Both of the localized surface plasmons resonances (LSPR) of the individual dimer-on-film structures as well as their collective surface lattice resonances (SLR) show a highly sensitive refractive index sensing response. Implementation of such all-metal magnetic-resonant nanostructures offers a promising route to achieve higher-performance LSPR- and SLR-based plasmonic sensors.
Collapse
Affiliation(s)
| | | | | | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
38
|
Wang BX, He Y, Lou P, Xing W. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. NANOSCALE ADVANCES 2020; 2:763-769. [PMID: 36133238 PMCID: PMC9418574 DOI: 10.1039/c9na00770a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 05/02/2023]
Abstract
A dual-band terahertz metamaterial absorber composed of two identical square metallic patches and an insulating medium layer on top of a continuous metallic ground is demonstrated. Two resonance peaks (labeled A and B) with near 100% absorbance are obtained, of which peak A derived from the localized resonance of the two square patches has a line-width of 0.2571 THz and quality factor of 6.9156, while peak B which resulted from the hybrid coupling of the localized resonance of the two square patches and surface lattice resonance of the device has a very narrow line-width of 0.0083 THz and large quality factor of 296.2771. Narrow line-width and large quality factor have important prospects in sensing application. Based on this, the sensing performance of the device is explored; it is revealed that peak B exhibits highly sensitive sensing ability (including a sensing sensitivity of 1.9010 THz per RIU and figure of merit of 229.04) in terms of the surrounding index. In addition, the influence of structural parameters on the absorption performance is discussed to further verify the formation mechanism of these two absorption peaks.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University Wuxi 214122 China
| | - Yuanhao He
- School of Science, Jiangnan University Wuxi 214122 China
| | - Pengcheng Lou
- School of Science, Jiangnan University Wuxi 214122 China
| | - Wenhui Xing
- School of Science, Jiangnan University Wuxi 214122 China
| |
Collapse
|
39
|
Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications. Sci Rep 2020; 10:1480. [PMID: 32001802 PMCID: PMC6992795 DOI: 10.1038/s41598-020-58456-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/15/2020] [Indexed: 11/18/2022] Open
Abstract
Due to their low losses, dielectric metamaterials provide an ideal resolution to construct ultra-narrowband absorbers. To improve the sensing performance, we present numerically a near-infrared ultra-narrowband absorber by putting ultra-sparse dielectric nanowire grids on metal substrate in this paper. The simulation results show that the absorber has an absorption rate larger than 0.99 with full width at half-maximum (FWHM) of 0.38 nm. The simulation field distribution also indicates that the ultra-narrowband absorption is originated from the low loss in the guided-mode resonance. Thanks to the ultra-narrow absorption bandwidths and the electric field mainly distributed out of the ultra-sparse dielectric nanowire grids, our absorber has a high sensitivity S of 1052 nm/RIU and a large figure of merit (FOM) of 2768 which mean that this ultra-narrowband absorber can be applied as a high-performance refractive index sensor.
Collapse
|
40
|
A Tunable Triple-Band Near-Infrared Metamaterial Absorber Based on Au Nano-Cuboids Array. NANOMATERIALS 2020; 10:nano10020207. [PMID: 31991689 PMCID: PMC7074931 DOI: 10.3390/nano10020207] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
In this article, we present a design for a triple-band tunable metamaterial absorber with an Au nano-cuboids array, and undertake numerical research about its optical properties and local electromagnetic field enhancement. The proposed structure is investigated by the finite-difference time domain (FDTD) method, and we find that it has triple-band tunable perfect absorption peaks in the near infrared band (1000–2500 nm). We investigate some of structure parameters that influence the fields of surface plasmons (SP) resonances of the nano array structure. By adjusting the relevant structural parameters, we can accomplish the regulation of the surface plasmons resonance (SPR) peaks. In addition, the triple-band resonant wavelength of the absorber has good operational angle-polarization-tolerance. We believe that the excellent properties of our designed absorber have promising applications in plasma-enhanced photovoltaic, optical absorption switching and infrared modulator optical communication.
Collapse
|
41
|
Barbillon G, Ivanov A, Sarychev AK. Hybrid Au/Si Disk-Shaped Nanoresonators on Gold Film for Amplified SERS Chemical Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1588. [PMID: 31717468 PMCID: PMC6915542 DOI: 10.3390/nano9111588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022]
Abstract
We present here the amplification of the surface-enhanced Raman scattering (SERS) signal of nanodisks on a gold film for SERS sensing of small molecules (thiophenol) with an excellent sensitivity. The enhancement is achieved by adding a silicon underlayer for the composition of the nanodisks. We experimentally investigated the sensitivity of the suggested Au/Si disk-shaped nanoresonators for chemical sensing by SERS. We achieved values of enhancement factors of 5 × 10 7 - 6 × 10 7 for thiophenol sensing. Moreover, we remarked that the enhancement factor (EF) values reached experimentally behave qualitatively as those evaluated with the E 4 model.
Collapse
Affiliation(s)
| | - Andrey Ivanov
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.I.); (A.K.S.)
| | - Andrey K. Sarychev
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.I.); (A.K.S.)
| |
Collapse
|
42
|
Zhang K, Deng R, Song L, Zhang T. Broadband Near-Infrared Absorber Based on All Metallic Metasurface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3568. [PMID: 31671708 PMCID: PMC6862091 DOI: 10.3390/ma12213568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/04/2022]
Abstract
Perfect broadband absorbers have increasingly been considered as important components for controllable thermal emission, energy harvesting, modulators, etc. However, perfect absorbers which can operate over a wide optical regime is still a big challenge to achieve. Here, we propose and numerically investigate a perfect broadband near-infrared absorber based on periodic array of four isosceles trapezoid prism (FITP) unit cell made of titanium (Ti) over a continuous silver film. The structure operates with low quality (Q) factor of the localized surface plasmon resonance (LSPR) because of the intrinsic high loss, which is the foundation of the broadband absorption. The high absorption of metal nanostructures mainly comes from the power loss caused by the continuous electron transition excited by the incident light inside the metal, and the resistance loss depends on the enhanced localized electric field caused by the FITP structure. Under normal incidence, the simulated absorption is over 90% in the spectrum ranging from 895 nm to 2269 nm. The absorber is polarization-independent at normal incidence, and has more than 80% high absorption persisting up to the incident angle of ~45° at TM polarization.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruixiang Deng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixin Song
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Zhang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Zhu Y, Lan T, Liu P, Yang J. Broadband near-infrared TiO 2 dielectric metamaterial absorbers. APPLIED OPTICS 2019; 58:7134-7138. [PMID: 31503985 DOI: 10.1364/ao.58.007134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Metamaterial absorbers (MAs) have drawn increasing attention due to their prospects in many fields such as sensing, thermal emission, solar energy harvesting, etc. However, it remains challenging to realize broadband MAs with a simple structure. Here, we propose a broadband, polarization-insensitive, and omnidirectional MA working in the near-infrared range with simple structure, which is composed of titanium dioxide (TiO2) cylinder nano-antenna arrays on the top of a vanadium (V) film deposited on a silicon substrate. This device demonstrates broadband absorption spectra from 820 to 1440 nm with the absorption above 90%, with high absorption up to the incident angle of ∼50°. The broadband absorption of the designed MA is mainly attributed to the interaction both of dielectric cavity resonance and electric dipole resonance. The electric and magnetic field intensity distribution of the MA are analyzed to better understand its absorption mechanism. In addition, the effects of the geometrical parameters on absorption are discussed. The demonstrated MA is relatively easy to fabricate and can be realized with other proper materials to work in other wavelength bands. The design is useful for applications such as solar energy harvesting, sensing, and camouflage.
Collapse
|
44
|
Li C, Fan H, Dai Q, Wei Z, Lan S, Liu H. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime. NANOMATERIALS 2019; 9:nano9091222. [PMID: 31470586 PMCID: PMC6780810 DOI: 10.3390/nano9091222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022]
Abstract
Excellent characteristics and promising application prospects promote the rapid development of metamaterials. We have numerically proposed and demonstrated a novel subwavelength broadband metamaterial perfect absorber (BMPA) based on diamond dielectric arrays. The proposed absorber is composed of an ultra-thin two-layer structure covering the dielectric periodic array on a metal substrate. The materials of dielectric silicon (Si) and gold (Au) substrate are discussed in detail. In addition, different dielectric and refractory materials are also applied to achieve broadband absorption, which will make the proposed absorber greatly broaden the application field. A perfect absorption window (i.e., absorption rate exceeding 90%) can be obtained from near-ultraviolet to the visible range. The average absorption rate of 93.3% is achieved in the visible range. The results of multipole decomposition show that broadband absorption is mainly caused by electromagnetic dipole resonance and lattice resonance in a periodic array of Si. The proposed absorber can be extended freely by adjusting the structural parameters. The polarization-independent and incident angle insensitivity are proved. The proposed absorber may well be used in light energy acquisition, as well as for the scalability of optoelectronic and sensing devices.
Collapse
Affiliation(s)
- Chenhui Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Haihua Fan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Qiaofeng Dai
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Zhongchao Wei
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Haiying Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Tsurimaki Y, Boriskina SV, Huang Y, Chen G. Spectral, spatial and polarization-selective perfect absorbers with large magnetic response for sensing and thermal emission control. OPTICS EXPRESS 2019; 27:A1041-A1059. [PMID: 31510490 DOI: 10.1364/oe.27.0a1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Spectral, spatial, and polarization selective perfect absorption of light in periodic metal-dielectric-metal nanoslits, each of which supporting a single electric-field anti-symmetric surface mode, is systematically studied. Our numerical analysis shows complete absorption of p-polarized light associated with large magnetic field enhancement at wavelengths from the visible to the mid-infrared range and roles played by the geometrical parameters of the structure. This understanding is then applied to the design of the structure with multiple nanoslits in a period that exhibits complete absorption at multiple wavelengths. Semi-analytical expression of the zeroth mode reflectance is derived, which shows a good agreement with numerical simulations and yields clear insight into the underlying physics of light-matter interactions in the structure.
Collapse
|
46
|
Yang S, Xue C, Zhao J, Wang L, Wu Y, Tai R. Parallel direct writing achromatic talbot lithography: a method for large-area arbitrary sub-micron periodic nano-arrays fabrication. NANOTECHNOLOGY 2019; 30:315301. [PMID: 30889553 DOI: 10.1088/1361-6528/ab1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metasurfaces with complex periodic nanoarrays have attracted a large amount of attention over the past decades due to their pronounced plasmonic and photonic properties. Though various metasurface properties have been theoretically and experimentally investigated, the realization of practical metasurface applications remains a big challenge due to very limited large-area complex nanostructure fabrication. In this paper, we demonstrate a parallel direct writing achromatic Talbot lithography (DW-ATL) technique for large-area arbitrary sub-micron periodic nano-arrays fabrication. By using a laser interferometer, the sparse hole/dot arrays obtained by ATL could be stitched precisely between discrete multiple exposures. Complex sub-micron periodic nanoarrays, such as elliptical discs, rods, L-shaped and Y-shaped periodic nanoarrays, with a sub-hundred nm resolution were fabricated over an area of ∼mm2.
Collapse
Affiliation(s)
- Shumin Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, People's Republic of China. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Road, Shanghai 201800, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Tavakoli F, Zarrabi FB, Saghaei H. Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. APPLIED OPTICS 2019; 58:5404-5414. [PMID: 31504008 DOI: 10.1364/ao.58.005404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, we present various optical metamaterial nanoabsorbers with the aim of improving the refractive index sensitivity using the Fano response. The proposed absorbers consist of various parasitic elements such as single cross, broken cross, Jerusalem cross, and also single L and double L models. We numerically study their absorption and reflection using the three-dimensional finite-difference time-domain method and calculate the sensitivity and figure of merit (FOM) in every absorption peak (reflection dip). Our simulations reveal that the Fano resonance at longer wavelengths can be used for increasing the sensitivity and FOM. The proposed absorbers have been coated with an external material with a maximum thickness of 100 nm and refractive indices in the range of 1.05-1.2. We also study and compare the FOM for these structures. They are modified for 900 and 1200-1300 nm. The maximum FOM is achieved around 2400 RIU-1 for the double L nanoabsorber coated with 1.05 indexed material, while its sensitivity is 473 nm/RIU. This absorber is an appropriate component for the design of highly sensitive optical sensors.
Collapse
|
48
|
Ghobadi A, Hajian H, Soydan MC, Butun B, Ozbay E. Lithography-Free Planar Band-Pass Reflective Color Filter Using A Series Connection of Cavities. Sci Rep 2019; 9:290. [PMID: 30670767 PMCID: PMC6342952 DOI: 10.1038/s41598-018-36540-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/23/2018] [Indexed: 12/03/2022] Open
Abstract
In this article, a lithography-free multilayer based color filter is realized using a proper series connection of two cavities that shows relatively high efficiency, high color purity, and a wide view angle. The proposed structure is a metal-insulator-metal-insulator-semiconductor (MIMIS) design. To optimize the device performance, at the first step, transfer matrix method (TMM) modeling is utilized to find the right choices of materials for each layer. Simulations are carried out later on to optimize the geometries of the layers to obtain our desired colors. Finally, the optimized devices are fabricated and experimentally characterized to evaluate our modelling findings. The characterization results of the fabricated samples prove the successful formation of efficient and wide view angle color filters. Unlike previously reported FP based designs that act as a band-stop filter in reflection mode (absorbing a narrow frequency range and reflecting the rest of the spectrum), this design generates a specific color by reflecting a narrow spectral range and absorbing the rest of the spectrum. The findings of this work can be extended to other multilayer structures where an efficient connection of cavities in a tandem scheme can propose functionalities that cannot be realized with conventional FP resonators.
Collapse
Affiliation(s)
- Amir Ghobadi
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey. .,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey.
| | - Hodjat Hajian
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Mahmut Can Soydan
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Bayram Butun
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Ekmel Ozbay
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey. .,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey. .,UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey. .,Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey. .,Department of Physics, Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|
49
|
Zhang H, Feng L, Liang Y, Xu T. An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption. NANOSCALE 2019; 11:437-443. [PMID: 30350835 DOI: 10.1039/c8nr05276j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An omnidirectional and broadband optical absorber has long been pursued for its wide application in optics, sensing and energy fields. The recent development of flexible and non-planar optoelectronic devices, however, poses a great challenge to fabricate an optical absorber with excellent mechanical flexibility. Here, based on a facile solution method, we demonstrate an ultra-flexible plasmonic metamaterial film (PMF), which is a composite of gold nanoparticles (Au NPs) and aramid nanofibers, to achieve omnidirectional and broadband optical absorption. Due to the comprehensive contributions of the anti-reflection effect of the PMF surface, localized surface plasmon resonances of the Au NPs, and non-resonant decay of light inside the nanocomposite, the PMF exhibits highly efficient omnidirectional and broadband absorption at visible and near-infrared frequencies. In addition, it also presents exceptional mechanical and fast collective light-heating properties, which makes it promising to be applied on flexible and non-planar photo-thermal devices.
Collapse
Affiliation(s)
- Hui Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | | | |
Collapse
|
50
|
Angle-insensitive narrowband optical absorption based on high-Q localized resonance. Sci Rep 2018; 8:15240. [PMID: 30323239 PMCID: PMC6189117 DOI: 10.1038/s41598-018-33489-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022] Open
Abstract
Strong optical absorption can be achieved easily based on an array of subwavelength localized resonators. The absorption bandwidth is typically wide since subwavelength metallic resonators are limited by a low quality factor (Q) due to their large material loss and so do dielectric counterparts owing to their weak photon binding. Here, an angle-insensitive narrowband optical absorber is suggested, which consists of subwavelength dielectric cavities buried inside a metal. Within each cavity, a special resonant mode of high Q can be supported, which is absorbed slowly by the metal walls as the electric field is concentrated at the cavity center and leaks slowly into the free space due to the blocking of the top metal film covering the cavities. Such a mode is excited to trap the incident wave in the optical absorption. When low-loss silver is used, one can obtain ultra-narrowband absorption with Q up to 487. At lower optical frequencies, the metal film needs to be punctured so that the incident wave can couple into the cavities effectively. The suggested absorption method may find its promising prospect in thermal radiation, photonic detection, optical sensing, and so on.
Collapse
|