1
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
2
|
Rust C, Shapturenka P, Spari M, Jin Q, Li H, Bacher A, Guttmann M, Zheng M, Adel T, Walker ARH, Fagan JA, Flavel BS. The Impact of Carbon Nanotube Length and Diameter on their Global Alignment by Dead-End Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206774. [PMID: 36549899 DOI: 10.1002/smll.202206774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Dead-end filtration has proven to effectively prepare macroscopically (3.8 cm2 ) aligned thin films from solutionbased single-wall carbon nanotubes (SWCNTs). However, to make this technique broadly applicable, the role of SWCNT length and diameter must be understood. To date, most groups report the alignment of unsorted, large diameter (≈1.4 nm) SWCNTs, but systematic studies on their small diameter are rare (≈0.78 nm). In this work, films with an area of A = 3.81 cm2 and a thickness of ≈40 nm are prepared from length-sorted fractions comprising of small and large diameter SWCNTs, respectively. The alignment is characterized by cross-polarized microscopy, scanning electron microscopy, absorption and Raman spectroscopy. For the longest fractions (Lavg = 952 nm ± 431 nm, Δ = 1.58 and Lavg = 667 nm ± 246 nm, Δ = 1.55), the 2D order parameter, S2D, values of ≈0.6 and ≈0.76 are reported for the small and large diameter SWCNTs over an area of A = 625 µm2 , respectively. A comparison of Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory calculations with the aligned domain size is then used to propose a law identifying the required length of a carbon nanotube with a given diameter and zeta potential.
Collapse
Affiliation(s)
- Christian Rust
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Manuel Spari
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Qihao Jin
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstraße 13, 76131, Karlsruhe, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Bacher
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Markus Guttmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Tehseen Adel
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Angela R Hight Walker
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200054. [PMID: 35293698 PMCID: PMC9108629 DOI: 10.1002/advs.202200054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Indexed: 05/04/2023]
Abstract
Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices. Here, the recent advances in the structure separation of SWCNTs are reviewed, from metallic/semiconducting SWCNTs, to single-chirality species, and to enantiomers by several typical separation techniques and the application of the corresponding sorted SWCNTs. Based on the separation procedure, efficiency, and scalability, as well as, the separable SWCNT species, purity, and quantity, the advantages and disadvantages of various separation techniques are compared. Combined with the requirements of SWCNT application, the challenges, prospects, and development direction of structure separation are further discussed.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Wenke Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Xiao Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
4
|
Watkins KJ, Parkinson BA. Spectral Sensitization of n- and p-Type Gallium Phosphide Single Crystals with Single-Walled Semiconducting Carbon Nanotubes. J Phys Chem Lett 2019; 10:3604-3609. [PMID: 31188608 DOI: 10.1021/acs.jpclett.9b00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The spectral sensitization of single-crystal p-GaP by semiconducting single-walled carbon nanotubes (s-SWCNT) via hole injection into the p-GaP valence band is reported. The results are compared to SWNCT sensitized n-type single-crystal substrates: TiO2, SnO2, and n-GaP. It was found that the sensitized photocurrents from CoMoCAT and HiPco s-SWCNTs were from a hole injection mechanism on all substrates, even when electron injection into the conduction band should be energetically favored. The results suggest an intrinsic p-type character of the s-SWCNTs surface films investigated in this work.
Collapse
Affiliation(s)
- Kevin J Watkins
- Department of Chemistry and School of Energy Resources , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Bruce A Parkinson
- Department of Chemistry and School of Energy Resources , University of Wyoming , Laramie , Wyoming 82071 , United States
| |
Collapse
|
5
|
Kubie L, Watkins KJ, Ihly R, Wladkowski HV, Blackburn JL, Rice WD, Parkinson BA. Optically Generated Free-Carrier Collection from an All Single-Walled Carbon Nanotube Active Layer. J Phys Chem Lett 2018; 9:4841-4847. [PMID: 30085684 DOI: 10.1021/acs.jpclett.8b01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Semiconducting single-walled carbon nanotubes' (SWCNTs) broad absorption range and all-carbon composition make them attractive materials for light harvesting. We report photoinduced charge transfer from both multichiral and single-chirality SWCNT films into atomically flat SnO2 and TiO2 crystals. Higher-energy second excitonic SWCNT transitions produce more photocurrent, demonstrating carrier injection rates are competitive with fast hot-exciton relaxation processes. A logarithmic relationship exists between photoinduced electron-transfer driving force and photocarrier collection efficiency, becoming more efficient with smaller diameter SWCNTs. Photocurrents are generated from both conventional sensitization and in the opposite direction with the semiconductor under accumulation and acting as an ohmic contact with only the p-type nanotubes. Finally, we demonstrate that SWCNT surfactant choice and concentration play a large role in photon conversion efficiency and present methods of maximizing photocurrent yields.
Collapse
Affiliation(s)
- Lenore Kubie
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Kevin J Watkins
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Rachelle Ihly
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Henry V Wladkowski
- Department of Physics and Astronomy , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Jeffrey L Blackburn
- Energy Sciences Division , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - William D Rice
- Department of Physics and Astronomy , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Bruce A Parkinson
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| |
Collapse
|
6
|
Alam A, Dehm S, Hennrich F, Zakharko Y, Graf A, Pfohl M, Hossain IM, Kappes MM, Zaumseil J, Krupke R, Flavel BS. Photocurrent spectroscopy of dye-sensitized carbon nanotubes. NANOSCALE 2017; 9:11205-11213. [PMID: 28749520 DOI: 10.1039/c7nr04022a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monochiral (7,5) single walled carbon nanotubes (SWCNTs) are integrated into a field effect transistor device in which the built-in electric field at the nanotube/metal contact allows for exciton separation under illumination. Variable wavelength spectroscopy and 2D surface mapping of devices consisting of 10-20 nanotubes are performed in the visible region and a strong correlation between the nanotube's second optical transition (S22) and the photocurrent is found. After integration, the SWCNTs are non-covalently modified with three different fluorescent dye molecules with off-resonant absorption maxima at 532 nm, 565 nm, and 610 nm. The dyes extend the absorption properties of the nanotube and contribute to the photocurrent. This approach holds promise for the development of photo-detectors and for applications in photovoltaics and biosensing.
Collapse
Affiliation(s)
- Asiful Alam
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pfohl M, Tune DD, Graf A, Zaumseil J, Krupke R, Flavel BS. Fitting Single-Walled Carbon Nanotube Optical Spectra. ACS OMEGA 2017; 2:1163-1171. [PMID: 28393134 PMCID: PMC5377271 DOI: 10.1021/acsomega.6b00468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
In this work, a comprehensive methodology for the fitting of single-walled carbon nanotube absorption spectra is presented. Different approaches to background subtraction, choice of line profile, and calculation of full width at half-maximum are discussed both in the context of previous literature and the contemporary understanding of carbon nanotube photophysics. The fitting is improved by the inclusion of exciton-phonon sidebands, and new techniques to improve the individualization of overlapped nanotube spectra by exploiting correlations between the first- and second-order optical transitions and the exciton-phonon sidebands are presented. Consideration of metallic nanotubes allows an analysis of the metallic/semiconducting content, and a process of constraining the fit of highly congested spectra of carbon nanotube solid films according to the spectral weights of each (n, m) species in solution is also presented, allowing for more reliable resolution of overlapping peaks into single (n, m) species contributions.
Collapse
Affiliation(s)
- Moritz Pfohl
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), P.O.
Box 3640, 76021 Karlsruhe, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Jovanka-Bontschits-Str.
2, 64287 Darmstadt, Germany
| | - Daniel D. Tune
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), P.O.
Box 3640, 76021 Karlsruhe, Germany
- Centre
for Nanoscale Science and Technology, Flinders
University, GPO Box 2100, 5042 Adelaide, Australia
| | - Arko Graf
- Institute
for Physical Chemistry, Universität
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Ralph Krupke
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), P.O.
Box 3640, 76021 Karlsruhe, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Jovanka-Bontschits-Str.
2, 64287 Darmstadt, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), P.O.
Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
8
|
Park J, Reid OG, Blackburn JL, Rumbles G. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes. Nat Commun 2015; 6:8809. [PMID: 26531728 PMCID: PMC4667683 DOI: 10.1038/ncomms9809] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/06/2015] [Indexed: 02/08/2023] Open
Abstract
Strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. The conditions of the microwave conductivity measurement allow us to avoid the complications of most previous measurements of nanotube free-carrier generation, including tube-tube/tube-electrode contact, dielectric screening by nearby excitons and many-body interactions. Even at low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions.
Collapse
Affiliation(s)
- Jaehong Park
- National Renewable Energy Laboratory, Chemistry and Nanoscience Center, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - Obadiah G Reid
- National Renewable Energy Laboratory, Chemistry and Nanoscience Center, 15013 Denver West Parkway, Golden, Colorado 80401, USA.,Renewable and Sustainable Energy Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Jeffrey L Blackburn
- National Renewable Energy Laboratory, Chemistry and Nanoscience Center, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - Garry Rumbles
- National Renewable Energy Laboratory, Chemistry and Nanoscience Center, 15013 Denver West Parkway, Golden, Colorado 80401, USA.,Renewable and Sustainable Energy Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
9
|
Moore KE, Tune DD, Flavel BS. Double-walled carbon nanotube processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3105-37. [PMID: 25899061 DOI: 10.1002/adma.201405686] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/27/2015] [Indexed: 05/06/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been the focus of intense research, and the body of literature continues to grow exponentially, despite more than two decades having passed since the first reports. As well as extensive studies of the fundamental properties, this has seen SWCNTs used in a plethora of applications as far ranging as microelectronics, energy storage, solar cells, and sensors, to cancer treatment, drug delivery, and neuronal interfaces. On the other hand, the properties and applications of double-walled carbon nanotubes (DWCNTs) have remained relatively under-explored. This is despite DWCNTs not only sharing many of the same unique characteristics of their single-walled counterparts, but also possessing an additional suite of potentially advantageous properties arising due to the presence of the second wall and the often complex inter-wall interactions that arise. For example, it is envisaged that the outer wall can be selectively functionalized whilst still leaving the inner wall in its pristine state and available for signal transduction. A similar situation arises in DWCNT field effect transistors (FETs), where the outer wall can provide a convenient degree of chemical shielding of the inner wall from the external environment, allowing the excellent transconductance properties of the pristine nanotubes to be more fully exploited. Additionally, DWCNTs should also offer unique opportunities to further the fundamental understanding of the inter-wall interactions within and between carbon nanotubes. However, the realization of these goals has so far been limited by the same challenge experienced by the SWCNT field until recent years, namely, the inherent heterogeneity of raw, as-produced DWCNT material. As such, there is now an emerging field of research regarding DWCNT processing that focuses on the preparation of material of defined length, diameter and electronic type, and which is rapidly building upon the experience gained by the broader SWCNT community. This review describes the background of the field, summarizing some relevant theory and the available synthesis and purification routes; then provides a thorough synopsis of the current state-of-the-art in DWCNT sorting methodologies, outlines contemporary challenges in the field, and discusses the outlook for various potential applications of the resulting material.
Collapse
Affiliation(s)
- Katherine E Moore
- Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, 5042, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
| | - Daniel D Tune
- Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, 5042, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
| |
Collapse
|
10
|
Liu H, Tanaka T, Kataura H. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography. NANO LETTERS 2014; 14:6237-43. [PMID: 25347592 DOI: 10.1021/nl5025613] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report a gel column chromatography method for easily separating the optical isomers (i.e., left- and right-handed structures) of single-chirality carbon nanotubes. This method uses the difference in the interactions of the two isomers of a chiral single-wall carbon nanotube (SWCNT) with an allyl dextran-based gel, which result from the selective interaction of the chiral moieties of the gel with the isomers. Using this technique, we sorted optical isomers of nine distinct (n, m) single-chirality species from HiPco SWCNTs, which is the maximum number of isolable species of SWCNTs reported to date. Because of its advantages of technical simplicity, low cost, and high efficiency, gel column chromatography allows researchers to prepare macroscopic ensembles of single-structure SWCNTs and enables the complete discovery of intrinsic properties of SWCNTs and advances their application.
Collapse
Affiliation(s)
- Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | | | |
Collapse
|