1
|
Zheng T, Xie X, Shi Q, Wu J, Yu C. Self-Powered Artificial Neuron Devices: Towards the All-In-One Perception and Computation System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416897. [PMID: 39967364 DOI: 10.1002/adma.202416897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/07/2025] [Indexed: 02/20/2025]
Abstract
The increasing demand for energy supply in sensing units and the computational efficiency of computation units has prompted researchers to explore novel, integrated technology that offers high efficiency and low energy consumption. Self-powered sensing technology enables environmental perception without external energy sources, while neuromorphic computation provides energy-efficient and high-performance computing capabilities. The integration of self-powered sensing technology and neuromorphic computation presents a promising solution for an all-in-one system. This review examines recent developments and advancements in self-powered artificial neuron devices based on triboelectric, piezoelectric, and photoelectric effects, focusing on their structures, mechanisms, and functions. Furthermore, it compares the electrical characteristics of various types of self-powered artificial neuron devices and discusses effective methods for enhancing their performance. Additionally, this review provides a comprehensive summary of self-powered perception systems, encompassing tactile, visual, and auditory perception systems. Moreover, it elucidates recently integrated systems that combine perception, computing, and actuation units into all-in-one configurations, aspiring to realize closed-loop control. The seamless integration of self-powered sensing and neuromorphic computation holds significant potential for shaping a more intelligent future for humanity.
Collapse
Affiliation(s)
- Tong Zheng
- College of Electrical Science and Engineering, Southeast university, Nanjing, 210000, China
| | - Xinkai Xie
- College of Electrical Science and Engineering, Southeast university, Nanjing, 210000, China
| | - Qiongfeng Shi
- College of Electrical Science and Engineering, Southeast university, Nanjing, 210000, China
| | - Jun Wu
- College of Electrical Science and Engineering, Southeast university, Nanjing, 210000, China
| | - Cunjiang Yu
- Department of Electrical and Computer Engineering, Department of Mechanical Science and Engineering, Department of Materials Science and Engineering, Department of Bioengineering, Beckman Institute for Advanced Science and Technology, Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
He Y, Tian J, Li F, Peng W, He Y. Evolution of Tribotronics: From Fundamental Concepts to Potential Uses. MICROMACHINES 2024; 15:1259. [PMID: 39459133 PMCID: PMC11509801 DOI: 10.3390/mi15101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The intelligent sensing network is one of the key components in the construction of the Internet of Things, and the power supply technology of sensor communication nodes needs to be solved urgently. As a new field combining tribo-potential with semiconductor devices, tribotronics, based on the contact electrification (CE) effect, realizes direct interaction between the external environment and semiconductor devices by combining triboelectric nanogenerator (TENG) and field-effect transistor (FET), further expanding the application prospects of micro/nano energy. In this paper, the research progress of tribotronics is systematically reviewed. Firstly, the mechanism of the CE effect and the working principles of TENG are introduced. Secondly, the regulation theory of tribo-potential on carrier transportation in semiconductor devices and the research status of tribotronic transistors are summarized. Subsequently, the applications of tribotronics in logic circuits and memory devices, smart sensors, and artificial synapses in recent years are demonstrated. Finally, the challenges and development prospects of tribotronics in the future are projected.
Collapse
Affiliation(s)
- Yue He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Jia Tian
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
3
|
Zhao X, Zou H, Wang M, Wang J, Wang T, Wang L, Chen X. Conformal Neuromorphic Bioelectronics for Sense Digitalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403444. [PMID: 38934554 DOI: 10.1002/adma.202403444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Sense digitalization, the process of transforming sensory experiences into digital data, is an emerging research frontier that links the physical world with human perception and interaction. Inspired by the adaptability, fault tolerance, robustness, and energy efficiency of biological senses, this field drives the development of numerous innovative digitalization techniques. Neuromorphic bioelectronics, characterized by biomimetic adaptability, stand out for their seamless bidirectional interactions with biological entities through stimulus-response and feedback loops, incorporating bio-neuromorphic intelligence for information exchange. This review illustrates recent progress in sensory digitalization, encompassing not only the digital representation of physical sensations such as touch, light, and temperature, correlating to tactile, visual, and thermal perceptions, but also the detection of biochemical stimuli such as gases, ions, and neurotransmitters, mirroring olfactory, gustatory, and neural processes. It thoroughly examines the material design, device manufacturing, and system integration, offering detailed insights. However, the field faces significant challenges, including the development of new device/system paradigms, forging genuine connections with biological systems, ensuring compatibility with the semiconductor industry and overcoming the absence of standardization. Future ambition includes realization of biocompatible neural prosthetics, exoskeletons, soft humanoid robots, and cybernetic devices that integrate smoothly with both biological tissues and artificial components.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Haochen Zou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, China
| | - Jianwu Wang
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiaodong Chen
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Zhou W, Zeng J, Dong Z, Xiao C, Gong L, Fan B, Li Y, Chen Y, Zhao J, Zhang C. A Degradable Tribotronic Transistor for Self-Destructing Intelligent Package e-Labels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30255-30263. [PMID: 38813772 DOI: 10.1021/acsami.4c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Recently, discarded electronic products have caused serious environmental pollution and information security issues, which have attracted widespread attention. Here, a degradable tribotronic transistor (DTT) for self-destructing intelligent package e-labels has been developed, integrated by a triboelectric nanogenerator and a protonic field-effect transistor with sodium alginate as a dielectric layer. The triboelectric potential generated by external contact electrification is used as the gate voltage of the organic field-effect transistor, which regulates carrier transport through proton migration/accumulation. The DTT has successfully demonstrated its output characteristics with a high sensitivity of 0.336 mm-1 and a resolution of over 100 μm. Moreover, the DTT can be dissolved in water within 3 min and completely degraded in soil within 12 days, demonstrating its excellent degradation characteristics, which may contribute to environmental protection. Finally, an intelligent package e-label based on the modulation of the DTT is demonstrated, which can display information about the package by a human touch. The e-label will automatically fail due to the degradation of the DTT over time, achieving the purpose of information confidentiality. This work has not only presented a degradable tribotronic transistor for package e-labels but also exhibited bright prospects in military security, information hiding, logistics privacy, and personal affairs.
Collapse
Affiliation(s)
- Weilin Zhou
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jianhua Zeng
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Zefang Dong
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongyong Xiao
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Likun Gong
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beibei Fan
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Yongbo Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanfen Chen
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Junqing Zhao
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi Zhang
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Chen L, Karilanova S, Chaki S, Wen C, Wang L, Winblad B, Zhang SL, Özçelikkale A, Zhang ZB. Spike timing-based coding in neuromimetic tactile system enables dynamic object classification. Science 2024; 384:660-665. [PMID: 38723082 DOI: 10.1126/science.adf3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2024] [Indexed: 05/31/2024]
Abstract
Rapid processing of tactile information is essential to human haptic exploration and dexterous object manipulation. Conventional electronic skins generate frames of tactile signals upon interaction with objects. Unfortunately, they are generally ill-suited for efficient coding of temporal information and rapid feature extraction. In this work, we report a neuromorphic tactile system that uses spike timing, especially the first-spike timing, to code dynamic tactile information about touch and grasp. This strategy enables the system to seamlessly code highly dynamic information with millisecond temporal resolution on par with the biological nervous system, yielding dynamic extraction of tactile features. Upon interaction with objects, the system rapidly classifies them in the initial phase of touch and grasp, thus paving the way to fast tactile feedback desired for neuro-robotics and neuro-prosthetics.
Collapse
Affiliation(s)
- Libo Chen
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Sanja Karilanova
- Division of Signals and Systems, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Soumi Chaki
- Division of Signals and Systems, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Chenyu Wen
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Lisha Wang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna 17164, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna 17164, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge 14186, Sweden
| | - Shi-Li Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Ayça Özçelikkale
- Division of Signals and Systems, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Zhi-Bin Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| |
Collapse
|
6
|
Wang W, Wang S, Gu Y, Zhou J, Zhang J. Contact-separation-induced self-recoverable mechanoluminescence of CaF 2:Tb 3+/PDMS elastomer. Nat Commun 2024; 15:2014. [PMID: 38443411 PMCID: PMC10914845 DOI: 10.1038/s41467-024-46432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Centrosymmetric-oxide/polydimethylsiloxane elastomers emit ultra-strong non-pre-irradiation mechanoluminescence under stress and are considered one of the most ideal mechanoluminescence materials. However, previous centrosymmetric-oxide/polydimethylsiloxane elastomers show severe mechanoluminescence degradation under stretching, which limits their use in applications. Here we show an elastomer based on centrosymmetric fluoride CaF2:Tb3+ and polydimethylsiloxane, with mechanoluminescence that can self-recover after each stretching. Experimentation indicates that the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer occurs essentially due to contact electrification arising from contact-separation interactions between the centrosymmetric phosphors and the polydimethylsiloxane. Accordingly, a contact-separation cycle model of the phosphor-polydimethylsiloxane couple is established, and first-principles calculations are performed to model state energies in the contact-separation cycle. The results reveal that the fluoride-polydimethylsiloxane couple helps to induce contact electrification and maintain the contact-separation cycle at the interface, resulting in the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer. Therefore, it would be a good strategy to develop self-recoverable mechanoluminescence elastomers based on centrosymmetric fluoride phosphors and polydimethylsiloxane.
Collapse
Affiliation(s)
- Wenxiang Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Shanwen Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Yan Gu
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jinyu Zhou
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jiachi Zhang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China.
| |
Collapse
|
7
|
Dinuwan
Gunawardhana KRS, Simorangkir RBVB, McGuinness GB, Rasel MS, Magre Colorado LA, Baberwal SS, Ward TE, O’Flynn B, Coyle SM. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems. ACS NANO 2024; 18:2649-2684. [PMID: 38230863 PMCID: PMC10832067 DOI: 10.1021/acsnano.3c09077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed.
Collapse
Affiliation(s)
- K. R. Sanjaya Dinuwan
Gunawardhana
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | | | | | - M. Salauddin Rasel
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | - Luz A. Magre Colorado
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Sonal S. Baberwal
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Tomás E. Ward
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
- School
of Computing, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Brendan O’Flynn
- Tyndall
National Institute, Lee Maltings Complex
Dyke Parade, T12R5CP Cork, Ireland
| | - Shirley M. Coyle
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| |
Collapse
|
8
|
Hu L, Li X, Guo X, Xu M, Shi Y, Herve NB, Xiang R, Zhang Q. Electret Modulation Strategy to Enhance the Photosensitivity Performance of Two-Dimensional Molybdenum Sulfide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59704-59713. [PMID: 38087993 DOI: 10.1021/acsami.3c14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Due to the limited light absorption efficiency of atomic thickness layers and the existence of quenching effects, photodetectors solely made of transition metal dichalcogenides (TMDs) have exhibited an unsatisfactory detection performance. In this article, electret/TMD hybridized devices were proposed by vertically coupling a MoS2 channel and the PTFE film, which reveals an optimized photodetection behavior. Negative charges were generated in the PTFE layer through the corona charging method, akin to applying a negative bias on the MoS2 channel in lieu of a traditional voltage-driven back gate. Under a charging voltage of -6 kV, PTFE/MoS2 devices reveal improved photodetection performance (Rhybrid = 67.95A/W versus Ronly = 3.37 A/W, at 470 nm, 1.20 mW cm-2) and faster recovery speed (τd(hybrid) = 2000 ms versus τd(only) = 2900 ms) compared to those bare MoS2 counterparts. The optimal detection performance (2 orders of magnitude) was obtained when the charging voltage was -2 kV, limited by the minimum of the carrier density in MoS2 channels. This study provides an alternative strategy to optimize optoelectronic devices based on the 2D components through non-voltage-driven gating.
Collapse
Affiliation(s)
- Lian Hu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xinyu Guo
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Nduwarugira B Herve
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| | - Rong Xiang
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
9
|
Tang W, Sun Q, Wang ZL. Self-Powered Sensing in Wearable Electronics─A Paradigm Shift Technology. Chem Rev 2023; 123:12105-12134. [PMID: 37871288 PMCID: PMC10636741 DOI: 10.1021/acs.chemrev.3c00305] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
With the advancements in materials science and micro/nanoengineering, the field of wearable electronics has experienced a rapid growth and significantly impacted and transformed various aspects of daily human life. These devices enable individuals to conveniently access health assessments without visiting hospitals and provide continuous, detailed monitoring to create comprehensive health data sets for physicians to analyze and diagnose. Nonetheless, several challenges continue to hinder the practical application of wearable electronics, such as skin compliance, biocompatibility, stability, and power supply. In this review, we address the power supply issue and examine recent innovative self-powered technologies for wearable electronics. Specifically, we explore self-powered sensors and self-powered systems, the two primary strategies employed in this field. The former emphasizes the integration of nanogenerator devices as sensing units, thereby reducing overall system power consumption, while the latter focuses on utilizing nanogenerator devices as power sources to drive the entire sensing system. Finally, we present the future challenges and perspectives for self-powered wearable electronics.
Collapse
Affiliation(s)
- Wei Tang
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Applied Nanotechnology, Jiaxing, Zhejiang 314031, P.R. China
| | - Qijun Sun
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Yonsei
Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
- Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
10
|
Zeng W, Peng Z, Lin D, Guliakova AA, Zhang Q, Zhu G. Tungsten-Doped Indium Tin Oxide Thin-Film Transistors for Dual-mode Proximity Sensing Application. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37933535 DOI: 10.1021/acsami.3c11393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Technologies for human-machine interactions are booming now. In order to achieve multifunctional sensing abilities of electronic skins, further developments of various sensors are in urgent demand. Herein, a dual-mode proximity sensor based on an oxide thin-film transistor (TFT) is reported. Although InSnO (ITO) is featured with high mobility, the inherent high carrier concentration limits its use as a channel material for thin-film transistors. Herein, the tungsten element was introduced as a carrier suppressor to develop ITO-based semiconducting materials and devices. TFTs with amorphous tungsten-doped ITO (ITWO) channel layers were fabricated. As for a flat panel display application, the TFT device from 250 °C-annealed ITWO layer with an atomic ratio of In/Sn/W = 86:9:5 presented the optimal device performance with carrier mobility of 11.53 cm2 V-1 s-1, swing subthreshold of 0.66 V dec-1, threshold voltage of -2.18 V, and Ion/Ioff ratio of 3.33 × 107 and much small hysteresis of transfer characteristic. ITWO TFT devices were further developed as dual-mode proximity sensors that could work with both extended-gate and compact configurations, where the drain current was directly related to the surface potential of a charged object and the distance between the sensing end and the object, enabling the proximity sensing of charged stimuli. For extended-gate-configured proximity sensing, a charged object modulated the formation of a conductive channel at the semiconductor/SiO2 interface, while this conductive channel occurred at the semiconductor/air interface for compact-configured sensing. Formation of the conductive channel of the compact transistor was modulated by the electric field component in the direction perpendicular to the interface, and the drain current was sensitive to the orientation of the approaching object, which implied the capacity of angle sensing to the approach of a charged object. This work further emphasizes that the basic device performance should be optimized according to its specific application scenarios rather than only considering the requirements of the panel display.
Collapse
Affiliation(s)
- Wanyu Zeng
- Department of Materials Science, National Engineering Laboratory for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Zengchong Peng
- Department of Materials Science, National Engineering Laboratory for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Dong Lin
- School of Ocean Information Engineering, Jimei University, Xiamen 361021, China
| | - Anna A Guliakova
- Department of General and Experimental Physics, Herzen University, St. Petersburg 191186, Russia
| | - Qun Zhang
- Department of Materials Science, National Engineering Laboratory for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Guodong Zhu
- Department of Materials Science, National Engineering Laboratory for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Zhou Y, Zhang JH, Li S, Qiu H, Shi Y, Pan L. Triboelectric Nanogenerators Based on 2D Materials: From Materials and Devices to Applications. MICROMACHINES 2023; 14:mi14051043. [PMID: 37241666 DOI: 10.3390/mi14051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Recently, there has been an increasing consumption of fossil fuels such as oil and natural gas in both industrial production and daily life. This high demand for non-renewable energy sources has prompted researchers to investigate sustainable and renewable energy alternatives. The development and production of nanogenerators provide a promising solution to address the energy crisis. Triboelectric nanogenerators, in particular, have attracted significant attention due to their portability, stability, high energy conversion efficiency, and compatibility with a wide range of materials. Triboelectric nanogenerators (TENGs) have many potential applications in various fields, such as artificial intelligence (AI) and the Internet of Things (IoT). Additionally, by virtue of their remarkable physical and chemical properties, two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), MXenes, and layered double hydroxides (LDHs), have played a crucial role in the advancement of TENGs. This review summarizes recent research progress on TENGs based on 2D materials, from materials to their practical applications, and provides suggestions and prospects for future research.
Collapse
Affiliation(s)
- Yukai Zhou
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jia-Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Songlin Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hao Qiu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Zeng J, Zhao J, Bu T, Liu G, Qi Y, Zhou H, Dong S, Zhang C. A Flexible Tribotronic Artificial Synapse with Bioinspired Neurosensory Behavior. NANO-MICRO LETTERS 2022; 15:18. [PMID: 36580114 PMCID: PMC9800681 DOI: 10.1007/s40820-022-00989-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
As key components of artificial afferent nervous systems, synaptic devices can mimic the physiological synaptic behaviors, which have attracted extensive attentions. Here, a flexible tribotronic artificial synapse (TAS) with bioinspired neurosensory behavior is developed. The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor, which can tune the carriers transport through the migration/accumulation of ions. The TAS successfully demonstrates a series of synaptic behaviors by external stimuli, such as excitatory postsynaptic current, paired-pulse facilitation, and the hierarchical memory process from sensory memory to short-term memory and long-term memory. Moreover, the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm, and the TAS still exhibits excellent durability after 1000 bending cycles. Finally, Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell, respectively. This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems, which is great significance to the practical application of artificial limbs, robotics, and bionics in future.
Collapse
Affiliation(s)
- Jianhua Zeng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Youchao Qi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Zhou
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Sicheng Dong
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
13
|
Wei Y, Liu W, Yu J, Li Y, Wang Y, Huo Z, Cheng L, Feng Z, Sun J, Sun Q, Wang ZL. Triboelectric Potential Powered High-Performance Organic Transistor Array. ACS NANO 2022; 16:19199-19209. [PMID: 36354955 DOI: 10.1021/acsnano.2c08420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Triboelectric potential gated transistors have inspired various applications toward mechanical behavior controlled logic circuits, multifunctional sensors, artificial sensory neurons, etc. Their rapid development urgently calls for high-performance devices and corresponding figure of merits to standardize the tribotronic gating properties. Organic semiconductors paired with solution processability promise low-cost manufacture of high-performance tribotronic transistor devices/arrays. Here, we demonstrate a record high-performance tribotronic transistor array composed of an integrated triboelectric nanogenerator (TENG) and a large-area device array of C8-BTBT-PS transistors. The working mechanism of effective triboelectric potential gating is elaborately explained from the aspect of conjugated energy bands of the contact-electrification mediums and organic semiconductors. Driven by the triboelectric potential, the tribotronic transistor shows superior properties of record high current on/off ratios (>108), a steep subthreshold swing (29.89 μm/dec), high stability, and excellent reproducibility. Moreover, tribotronic logic devices modulated by mechanical displacement have also been demonstrated with good stability and a high gain of 1260 V/mm. The demonstrated large-area tribotronic transistor array of organic semiconductor exhibits record high performance and offers an effective R&D platform for mechano-driven electronic terminals, interactive intelligent system, artificial robotic skin, etc.
Collapse
Affiliation(s)
- Yichen Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Wanrong Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yonghai Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Ziwei Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Liuqi Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Zhenyu Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Jia Sun
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Shandong Zhongke Naneng Energy Technology Co., Ltd., Dongying, 257061, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Georgia Institute of Technology, Atlanta, Georgia30332-0245, United States
| |
Collapse
|
14
|
Shi K, Chai B, Zou H, Min D, Li S, Jiang P, Huang X. Dielectric Manipulated Charge Dynamics in Contact Electrification. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9862980. [PMID: 35198985 PMCID: PMC8829537 DOI: 10.34133/2022/9862980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
Surface charge density has been demonstrated to be significantly impacted by the dielectric properties of tribomaterials. However, the ambiguous physical mechanism of dielectric manipulated charge behavior still restricts the construction of high-performance tribomaterials. Here, using the atomic force microscopy and Kelvin probe force microscopy, an in situ method was conducted to investigate the contact electrification and charge dynamics on a typical tribomaterial (i.e., BaTiO3/PVDF-TrFE nanocomposite) at nanoscale. Combined with the characterization of triboelectric device at macroscale, it is found that the number of transferred electrons increases with contact force/area and tends to reach saturation under increased friction cycles. The incorporated high permittivity BaTiO3 nanoparticles enhance the capacitance and electron trapping capability of the nanocomposites, efficiently inhibiting the lateral diffusion of electrons and improving the output performance of the triboelectric devices. Exponential decay of the surface potential is observed over monitoring time for all dielectric samples. At high BaTiO3 loadings, more electrons can drift into the bulk and combine with the induced charges on the back electrode, forming a large leakage current and accordingly accelerating the electron dissipation. Hence, the charge trapping/storing and dissipating, as well as the charge attracting properties, should be comprehensively considered in the design of high-performance tribomaterials.
Collapse
Affiliation(s)
- Kunming Shi
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Chai
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyang Zou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| | - Daomin Min
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shengtao Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Self-powered bifunctional sensor based on tribotronic planar graphene transistors. Sci Rep 2021; 11:21483. [PMID: 34728721 PMCID: PMC8563961 DOI: 10.1038/s41598-021-01011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
With the development of material science, micro-nano-fabrication and microelectronics, the higher level requirements are posed on the electronic skins (E-skin). The lower energy consumption and multiple functions are the imperative requirements to spurred scientists and mechanists to make joint efforts to meet. To achieve lower energy consumption, a promising energy-harvesting style of triboelectric nanogenerators (TENG) is incorporated into the field effect transistors (FETs) to play the important role for sensor. For bifunctional sensor, to harness the difficult for reflecting the magnitude of frequency, we resorted to synaptic transistors to achieve more intelligentization. Furthermore, with regards to the configuration of FET, we continued previous work: using the electrolyte gate dielectrics of FET-ion gel as the electrification layer to achieve high efficient, compact and extensively adoption for mechanosensation. The working principle of the GFET was based on the coupling effects of the FET and the TENG. This newly emerged self-powered sensor would offer a new platform for lower power consumption sensor for human-machine interface and intelligent robot.
Collapse
|
16
|
|
17
|
Zhang P, Xiao Y, Zhang J, Liu B, Ma X, Wang Y. Highly sensitive gas sensing platforms based on field effect Transistor-A review. Anal Chim Acta 2021; 1172:338575. [PMID: 34119019 DOI: 10.1016/j.aca.2021.338575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
Highly selective, sensitive and fast gas sensing has attracted increasing attention in the fields of environmental protection, industrial production, personal safety as well as medical diagnostics. Field effect transistor (FET) sensors have been extensively investigated in gas sensing fields due to their small size, high sensitivity, high reliability and low energy consumption. This comprehensive review aims to discuss the recent advances in FET gas sensors based on materials such as carbon nanotubes, silicon carbide, silicon, metal oxides-, graphene-, transition metal dichalcogenides- and 2-dimensional black phosphorus. We first introduce different types of sensor structures and elaborate the gas-sensing mechanisms. Then, we describe the optimizing strategies for sensing performances, response parameters, FET based dual-mode sensors and FET based logic circuit sensors. Moreover, we present the key advances of the above materials in gas sensing performances. Meanwhile, shortcomings of such materials are also discussed and the future development of this field is proposed in this review.
Collapse
Affiliation(s)
- Pan Zhang
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center Functional Fine Chemical, Tianjin University, Tianjin, 300072, PR China.
| | - Jingjing Zhang
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
| | - Bingjie Liu
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center Functional Fine Chemical, Tianjin University, Tianjin, 300072, PR China.
| | - Xiaofei Ma
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
| | - Yong Wang
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
18
|
Panda K, Kim JE, Sankaran KJ, Lin IN, Haenen K, Duesberg GS, Park JY. Hydrogenation of diamond nanowire surfaces for effective electrostatic charge storage. NANOSCALE 2021; 13:7308-7321. [PMID: 33889909 DOI: 10.1039/d1nr00189b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a novel versatile method for writing charged areas on diamond nanowire (DNW) surfaces using an atomic force microscopy (AFM) tip. Transmission electron microscopy (TEM) investigations revealed the existence of abundant plate-like diamond aggregates, which were encased in layers of graphite, forming nano-sized diamond-graphite composites (DGCs) on DNW surfaces. These DGCs are the main feature, acting as charge-trapping centers and storing electrostatic charge. A hydrogenation process has been observed effectively enhancing the charge-trapping properties of these DNW materials. The effective charge trapping properties with hydrogenation are ascribed to the disintegration of the DGCs into smaller pieces, with an overall increase in the metallic nanographitic phase fractions in a dielectric diamond matrix. Moreover, the written charge on the surface can be easily modified, re-written, or completely erased, enabling application in diamond-based re-writable electronic devices. However, excessive hydrogenation degrades the charge-trapping properties, which is attributed to the etching of the DGCs from the surface. This study demonstrates the potential importance of a simple hydrogenation process in effective electrostatic charge trapping and storage for diamond related nanocarbon materials and the role of DGCs to further enhance it.
Collapse
Affiliation(s)
- Kalpataru Panda
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Jae-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| | | | - I-Nan Lin
- Department of Physics, Tamkang University, 251 Tamsui, Taiwan, Republic of China
| | - Ken Haenen
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium
- IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, South Korea.
| |
Collapse
|
19
|
Contact-electrification-activated artificial afferents at femtojoule energy. Nat Commun 2021; 12:1581. [PMID: 33707420 PMCID: PMC7952391 DOI: 10.1038/s41467-021-21890-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Low power electronics endowed with artificial intelligence and biological afferent characters are beneficial to neuromorphic sensory network. Highly distributed synaptic sensory neurons are more readily driven by portable, distributed, and ubiquitous power sources. Here, we report a contact-electrification-activated artificial afferent at femtojoule energy. Upon the contact-electrification effect, the induced triboelectric signals activate the ion-gel-gated MoS2 postsynaptic transistor, endowing the artificial afferent with the adaptive capacity to carry out spatiotemporal recognition/sensation on external stimuli (e.g., displacements, pressures and touch patterns). The decay time of the synaptic device is in the range of sensory memory stage. The energy dissipation of the artificial afferents is significantly reduced to 11.9 fJ per spike. Furthermore, the artificial afferents are demonstrated to be capable of recognizing the spatiotemporal information of touch patterns. This work is of great significance for the construction of next-generation neuromorphic sensory network, self-powered biomimetic electronics and intelligent interactive equipment. Low power electronics endowed with artificial intelligence and biological afferent characters are beneficial to neuromorphic sensory network. Here, the authors report contact-electrification-activated artificial afferent at femtojoule energy, which is able to carry out spatiotemporal recognition on external stimuli.
Collapse
|
20
|
Yu J, Yang X, Gao G, Xiong Y, Wang Y, Han J, Chen Y, Zhang H, Sun Q, Wang ZL. Bioinspired mechano-photonic artificial synapse based on graphene/MoS 2 heterostructure. SCIENCE ADVANCES 2021; 7:7/12/eabd9117. [PMID: 33731346 PMCID: PMC7968845 DOI: 10.1126/sciadv.abd9117] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/29/2021] [Indexed: 05/22/2023]
Abstract
Developing multifunctional and diversified artificial neural systems to integrate multimodal plasticity, memory, and supervised learning functions is an important task toward the emulation of neuromorphic computation. Here, we present a bioinspired mechano-photonic artificial synapse with synergistic mechanical and optical plasticity. The artificial synapse is composed of an optoelectronic transistor based on graphene/MoS2 heterostructure and an integrated triboelectric nanogenerator. By controlling the charge transfer/exchange in the heterostructure with triboelectric potential, the optoelectronic synaptic behaviors can be readily modulated, including postsynaptic photocurrents, persistent photoconductivity, and photosensitivity. The photonic synaptic plasticity is elaborately investigated under the synergistic effect of mechanical displacement and the light pulses embodying different spatiotemporal information. Furthermore, artificial neural networks are simulated to demonstrate the improved image recognition accuracy up to 92% assisted with mechanical plasticization. The mechano-photonic artificial synapse is highly promising for implementing mixed-modal interaction, emulating complex biological nervous system, and promoting the development of interactive artificial intelligence.
Collapse
Affiliation(s)
- Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xixi Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Guoyun Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Yao Xiong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Jing Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Youhui Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Huai Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Zhang H, Yu J, Yang X, Gao G, Qin S, Sun J, Ding M, Jia C, Sun Q, Wang ZL. Ion Gel Capacitively Coupled Tribotronic Gating for Multiparameter Distance Sensing. ACS NANO 2020; 14:3461-3468. [PMID: 32058695 DOI: 10.1021/acsnano.9b09549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing sophisticated device architectures is of great significance to go beyond Moore's law with versatility toward human-machine interaction and artificial intelligence. Tribotronics/tribo-iontronics offer a direct way to controlling the transport properties of semiconductor devices by mechanical actions, which fundamentally relies on how to enhance the tribotronic gating effect through device engineering. Here, we propose a universal method to enhance the tribotronic properties through electric double layer (EDL) capacitive coupling. By preparing an ion gel layer on top of tribotronic graphene transistor, we demonstrate a dual-mode field effect transistor (i.e., a tribotronic transistor with capacitively coupled ion gel and an ion-gel-gated graphene transistor with a second tribotronic gate). The resulted tribotronic gating performances are greatly improved by twice for the on-state current and four times for the on/off ratio (the first mode). It can also be utilized as a multiparameter distance sensor with drain current increased by ∼600 μA and threshold voltage shifted by ∼0.8 V under a mechanical displacement of 0.25 mm (the second mode). The proposed methodology of EDL capacitive coupling offers a facile and efficient way to designing more sophisticated tribotronic devices with superior performance and multifunctional sensations.
Collapse
Affiliation(s)
- Huai Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xixi Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoyun Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Qin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Sun
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Mei Ding
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
22
|
Abstract
Tribotronics has attracted great attention owing to the demonstrated triboelectrification-controlled electronics and established direct modulation mechanism by external mechanical stimuli. Here, a nanoscale triboelectrification-gated transistor has been studied with contact-mode atomic force microscopy and scanning Kevin probe microscopy. The detailed working principle was analyzed at first, in which the nanoscale triboelectrification can tune the carrier transport in the transistor. Then with the manipulated nanoscale triboelectrification, the effects of contact force, scan speed, contact cycles, contact region and charge diffusion on the transistor were investigated, respectively. Moreover, the manipulated nanoscale triboelectrification serving as a rewritable floating gate has demonstrated different modulation effects by an applied tip voltage. This work has realized the nanoscale triboelectric modulation on electronics, which could provide a deep understanding for the theoretical mechanism of tribotronics and may have great applications in nanoscale transistor, micro/nano-electronic circuit and nano-electromechanical system. Though tribotronics, e.g., semiconductor electronics that utilize triboelectricity, is a promising technology, current devices have limited application in micro/nano electronics. Here, the authors report a triboelectrification-gated transistor with triboelectric modulation at the nanoscale.
Collapse
|
23
|
Fang C, Cao Y, Jiang D, Tian J, Zhang C. Triboelectric effect-modulated varifocal liquid lens. MICROSYSTEMS & NANOENGINEERING 2020; 6:61. [PMID: 34567672 PMCID: PMC8433165 DOI: 10.1038/s41378-020-0174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 05/03/2023]
Abstract
Electrically modulated varifocal liquid lenses, which are usually modulated by an external high voltage power source, have attracted much attention due to their bright application prospects in artificial optical systems. Here, a triboelectric nanogenerator (TENG)-based varifocal liquid lens (TVLL) has been demonstrated, in which the focal length can be directly modulated by external mechanical sliding. A dielectrophoretic force is generated by the TENG through the transfer of triboelectric charges in the asymmetric electrodes, which is used to continuously change the shape of the air-liquid interface between concave and convex without any complicated boost converter. Moreover, a triboelectric magnifying glass based on the accurate modulation effect of the TVLL on a light beam has been demonstrated. In this work, the TENG is used as a medium to modulate and accurately control the focal length of the liquid lens by an external mechanical stimulus, which may have great applications in micro-optical-electro-mechanical systems (MOEMS), human-machine interaction, artificial vision systems, etc.
Collapse
Affiliation(s)
- Chunlong Fang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
| | - Yuanzhi Cao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, P.R. China
| | - Dongdong Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, P.R. China
| | - Jiarui Tian
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, P.R. China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, 530004 Nanning, P.R. China
| |
Collapse
|
24
|
Zhao J, Bu T, Zhang X, Pang Y, Li W, Zhang Z, Liu G, Wang ZL, Zhang C. Intrinsically Stretchable Organic-Tribotronic-Transistor for Tactile Sensing. RESEARCH (WASHINGTON, D.C.) 2020; 2020:1398903. [PMID: 32676585 PMCID: PMC7333181 DOI: 10.34133/2020/1398903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Stretchable electronics are of great significance for the development of the next-generation smart interactive systems. Here, we propose an intrinsically stretchable organic tribotronic transistor (SOTT) without a top gate electrode, which is composed of a stretchable substrate, silver nanowire electrodes, semiconductor blends, and a nonpolar elastomer dielectric. The drain-source current of the SOTT can be modulated by external contact electrification with the dielectric layer. Under 0-50% stretching both parallel and perpendicular to the channel directions, the SOTT retains great output performance. After being stretched to 50% for thousands of cycles, the SOTT can survive with excellent stability. Moreover, the SOTT can be conformably attached to the human hand, which can be used for tactile signal perception in human-machine interaction and for controlling smart home devices and robots. This work has realized a stretchable tribotronic transistor as the tactile sensor for smart interaction, which has extended the application of tribotronics in the human-machine interface, wearable electronics, and robotics.
Collapse
Affiliation(s)
- Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaokun Pang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Material Science and Engineering Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
25
|
Nano-templated films from waste optical discs for self-powered biosensor application and environmental surveillance. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Wang HL, Kuang SY, Li HY, Wang ZL, Zhu G. Large-Area Integrated Triboelectric Sensor Array for Wireless Static and Dynamic Pressure Detection and Mapping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906352. [PMID: 31814245 DOI: 10.1002/smll.201906352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 05/08/2023]
Abstract
Large-area flexible pressure sensors are of paramount importance for various future applications, such as electronic skin, human-machine interfacing, and health-monitoring devices. Here, a self-powered and large-area integrated triboelectric sensor array (ITSA) based on coupling a triboelectric sensor array and an array chip of CD4066 through a traditional connection is reported. Enabled by a simple and cost-effective fabrication process, the size of the ITSA can be scaled up to 38 × 38 cm2 . In addition, unlike previously proposed triboelectric sensors arrays, which can only react to the dynamic interaction, this ITSA is able to detect static and dynamic pressure. Moreover, through integrating the ITSA with a signal processing circuit, a complete wireless sensing system is present. Diverse applications of the system are demonstrated in detail, including detecting pressure, identifying position, tracking trajectory, and recognizing the profile of external contact objects. Thus, the ITSA in this work opens a new route in the direction of large-area, self-powered, and wireless triboelectric sensing systems.
Collapse
Affiliation(s)
- Hai Lu Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100048, P. R. China
| | - Shuang Yang Kuang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei, Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hua Yang Li
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100048, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guang Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100048, P. R. China
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
27
|
Gao G, Yu J, Yang X, Pang Y, Zhao J, Pan C, Sun Q, Wang ZL. Triboiontronic Transistor of MoS 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806905. [PMID: 30589132 DOI: 10.1002/adma.201806905] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/11/2018] [Indexed: 05/21/2023]
Abstract
Electric double layers (EDLs) formed in electrolyte-gated field-effect transistors (FETs) induce an extremely large local electric field that gives a highly efficient charge carrier control in the semiconductor channel. To achieve highly efficient triboelectric potential gating on the FET and explore diversified applications of electric double layer FETs (EDL-FETs), a triboiontronic transistor is proposed to bridge triboelectric potential modulation and ion-controlled semiconductor devices. Utilizing the triboelectric potential instead of applying an external gate voltage, the triboiontronic MoS2 transistor is efficiently operated owing to the formation of EDLs in the ion-gel dielectric layer. The operation mechanism of the triboiontronic transistor is proposed, and high current on/off ratio over 107 , low threshold value (75 μm), and steep switching properties (20 µm dec-1 ) are achieved. A triboiontronic logic inverter with desirable gain (8.3 V mm-1 ), low power consumption, and high stability is also demonstrated. This work presents a low-power-consuming, active, and a general approach to efficiently modulate semiconductor devices through mechanical instructions, which has great potential in human-machine interaction, electronic skin, and intelligent wearable devices. The proposed triboiontronics utilize ion migration and arrangement triggered by mechanical stimuli to control electronic properties, which are ready to deliver new interdisciplinary research directions.
Collapse
Affiliation(s)
- Guoyun Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xixi Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaokun Pang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
28
|
Hu W, Zhang C, Wang ZL. Recent progress in piezotronics and tribotronics. NANOTECHNOLOGY 2019; 30:042001. [PMID: 30499452 DOI: 10.1088/1361-6528/aaeddd] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As the electronic technology is approaching its limits of materials and processing, a smart interaction between functional device and environment is a promising way for future electronic technology above the Moore's law. The mechanical signal triggering is the most common and natural way for the smart interactions, which has realized direct interaction between human/ambient and electronics and artificial intelligence. In 2006, the piezotronic effect, as a novel effect, was first proposed by Wang to achieve the effective, adaptive and seamless interactions between electronic devices and the external stress, which utilizes the piezoelectric polarization potential as the virtual gate to tune/control the carriers' transportation in the electronic device. Since then, this new effect has been widely observed in many low-dimensional semiconductors such as ZnO, GaN, CdS nanowires, and 2D MoS2. In extension, tribotronics was first proposed in 2014 by Wang, which is about the devices manufactured using the electrostatic potential created by triboelectrification as a 'gate' voltage to tune/control energy transformation and electrical transport in semiconductors for the smart interaction between device and environment. Tribotronics has made rapid research progress and many tribotronic functional devices have been studied with a variety of materials, such as tribotronic tactile switch, memory, hydrogen sensor and phototransistor. This review highlights advances in piezotronics and tribotronics with focus on fundamental theories, nanoscale materials, functional devices and simulations. Our emphasis is mainly about their application for third-generation semiconductor. The concepts and results presented in this review show that the piezotronics and tribotronics will facilitate the development of MEMS/NEMS, self-powered sensing, man-computer interfacing, and active wearable electronics.
Collapse
Affiliation(s)
- Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | | | | |
Collapse
|
29
|
Xi F, Pang Y, Li W, Bu T, Zhao J, Liu G, Guo T, Liu W, Zhang C. Tribotronic bipolar junction transistor for mechanical frequency monitoring and use as touch switch. MICROSYSTEMS & NANOENGINEERING 2018; 4:25. [PMID: 31057913 PMCID: PMC6220156 DOI: 10.1038/s41378-018-0026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/02/2018] [Accepted: 06/17/2018] [Indexed: 05/28/2023]
Abstract
Tribotronics, a new field that involves the coupling of triboelectricity and semiconductors, has attracted great interest in the nanoenergy and nanoelectronics domains. This paper proposes a tribotronic bipolar junction transistor (TBJT) that incorporates a bipolar junction transistor and a triboelectric nanogenerator (TENG) in the single-electrode mode. When the mobile triboelectric layer slides on the device surface for electrification, a bias voltage is created and applied to the emitter junction, and then the base current from the TENG is amplified. Based on the fabricated TBJT, a mechanical frequency monitoring sensor with high sensitivity and excellent stability and a finger-triggered touch switch were developed. This work demonstrated for the first time a tribotronic device with simultaneously controlled voltage and current voltage/current simultaneously controlled tribotronic device, which has promising potential applications in micro/nano-sensors, human-machine interactions, intelligent instrumentation, wearable electronics, and other applications.
Collapse
Affiliation(s)
- Fengben Xi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yaokun Pang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wenjian Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Tong Guo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Wenbo Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
30
|
Chen L, Shi Q, Sun Y, Nguyen T, Lee C, Soh S. Controlling Surface Charge Generated by Contact Electrification: Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802405. [PMID: 30129287 DOI: 10.1002/adma.201802405] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Contact electrification is the phenomenon in which charge is generated on the surfaces of materials after they come into contact. The surface charge generated has traditionally been known to cause a vast range of undesirable consequences in our lives and in industry; on the other hand, it can also give rise to many types of useful applications. In addition, there has been a lot of interest in recent years for fabricating devices and materials based on regulating a desired amount of surface charge. It is thus important to understand the general strategies for increasing, decreasing, or controlling the surface charge generated by contact electrification. Herein, the fundamental mechanisms for influencing the amount of charge generated, the methods used for implementing these mechanisms, and some of the recent interesting applications that require regulating the amount of surface charge generated by contact electrification, are briefly summarized.
Collapse
Affiliation(s)
- Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Yajuan Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Trang Nguyen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
31
|
Chen Y, Zhang Y, Wang Z, Zhan T, Wang YC, Zou H, Ren H, Zhang G, Zou C, Wang ZL. Dynamic Electronic Doping for Correlated Oxides by a Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803580. [PMID: 30239043 DOI: 10.1002/adma.201803580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The metal-insulator transition of vanadium dioxide (VO2 ) is exceptionally sensitive to charge density and electron orbital occupancy. Thus three-terminal field-effect transistors with VO2 channels are widely adopted to control the phase transition by external gating voltage. However, current leakage, electrical breakdown, or interfacial electrochemical reactions may be inevitable if conventional solid dielectrics or ionic-liquid layers are used, which possibly induce Joule heating or doping in the VO2 layer and make the voltage-controlled phase transition more complex. Here, a triboelectric nanogenerator (TENG) and a VO2 film are combined for a novel TENG-VO2 device, which can overcome the abovementioned challenges and achieve electron-doping-induced phase modulation. By taking advantage of the TENG structure, electrons can be induced in the VO2 channel and thus adjust the electronic states of the VO2 , simultaneously. The modulation degree of the VO2 resistance depends on the temperature, and the major variation occurs when the temperature is in the phase-transition region. The accumulation of electrons in the VO2 channel also is simulated by finite element analysis, and the electron doping mechanism is verified by theoretical calculations. The results provide a promising approach to develop a novel type of tribotronic transistor and new electronic doping technology.
Collapse
Affiliation(s)
- Yuliang Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Ying Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaowu Wang
- School of Physics and Engineering, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang, 471023, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Taotao Zhan
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi-Cheng Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Haiyang Zou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Hui Ren
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Guobin Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100085, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Meng Y, Zhao J, Yang X, Zhao C, Qin S, Cho JH, Zhang C, Sun Q, Wang ZL. Mechanosensation-Active Matrix Based on Direct-Contact Tribotronic Planar Graphene Transistor Array. ACS NANO 2018; 12:9381-9389. [PMID: 30183252 DOI: 10.1021/acsnano.8b04490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mechanosensitive electronics aims at replicating the multifunctions of human skin to realize quantitative conversion of external stimuli into electronic signals and provide corresponding feedback instructions. Here, we report a mechanosensation-active matrix based on a direct-contact tribotronic planar graphene transistor array. Ion gel is utilized as both the dielectric in the graphene transistor and the friction layer for triboelectric potential coupling to achieve highly efficient gating and sensation properties. Different contact distances between the ion gel and other friction materials produce different triboelectric potentials, which are directly coupled to the graphene channel and lead to different output signals through modulating the Fermi level of graphene. Based on this mechanism, the tribotronic graphene transistor is capable of sensing approaching distances, recognizing the category of different materials, and even distinguishing voices. It possesses excellent sensing properties, including high sensitivity (0.16 mm-1), fast response time (∼15 ms), and excellent durability (over 1000 cycles). Furthermore, the fabricated mechanosensation-active matrix is demonstrated to sense spatial contact distances and visualize a 2D color mapping of the target object. The tribotronic active matrix with ion gel as dielectric/friction layer provides a route for efficient and low-power-consuming mechanosensation in a noninvasive fashion. It is of great significance in multifunction sensory systems, wearable human-machine interactive interfaces, artificial electronic skin, and future telemedicine for patient surveillance.
Collapse
Affiliation(s)
- Yanfang Meng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Junqing Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - XiXi Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunlin Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shanshan Qin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jeong Ho Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering , Sungkyunkwan University , Suwon 440-746 , South Korea
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
33
|
Gao G, Wan B, Liu X, Sun Q, Yang X, Wang L, Pan C, Wang ZL. Tunable Tribotronic Dual-Gate Logic Devices Based on 2D MoS 2 and Black Phosphorus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705088. [PMID: 29436069 DOI: 10.1002/adma.201705088] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/15/2017] [Indexed: 05/12/2023]
Abstract
With the Moore's law hitting the bottleneck of scaling-down in size (below 10 nm), personalized and multifunctional electronics with an integration of 2D materials and self-powering technology emerge as a new direction of scientific research. Here, a tunable tribotronic dual-gate logic device based on a MoS2 field-effect transistor (FET), a black phosphorus FET and a sliding mode triboelectric nanogenerator (TENG) is reported. The triboelectric potential produced from the TENG can efficiently drive the transistors and logic devices without applying gate voltages. High performance tribotronic transistors are achieved with on/off ratio exceeding 106 and cutoff current below 1 pA μm-1 . Tunable electrical behaviors of the logic device are also realized, including tunable gains (improved to ≈13.8) and power consumptions (≈1 nW). This work offers an active, low-power-consuming, and universal approach to modulate semiconductor devices and logic circuits based on 2D materials with TENG, which can be used in microelectromechanical systems, human-machine interfacing, data processing and transmission.
Collapse
Affiliation(s)
- Guoyun Gao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bensong Wan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Department of Physics, Beihang University, Beijing, 100191, China
| | - Xingqiang Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qijun Sun
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaonian Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longfei Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
34
|
Liu G, Nie J, Han C, Jiang T, Yang Z, Pang Y, Xu L, Guo T, Bu T, Zhang C, Wang ZL. Self-Powered Electrostatic Adsorption Face Mask Based on a Triboelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7126-7133. [PMID: 29394045 DOI: 10.1021/acsami.7b18732] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The physical filtration mechanism of a traditional face mask has a low removal efficiency of ultrafine particulates in the size range of 10-1000 nm, which are badly harmful to human health. Herein, a novel self-powered electrostatic adsorption face mask (SEA-FM) based on the poly(vinylidene fluoride) electrospun nanofiber film (PVDF-ESNF) and a triboelectric nanogenerator (TENG) driven by respiration (R-TENG) is developed. The ultrafine particulates are electrostatically adsorbed by the PVDF-ESNF, and the R-TENG can continually provide electrostatic charges in this adsorption process by respiration. On the basis of the R-TENG, the SEA-FM shows that the removal efficiency of coarse and fine particulates is higher than 99.2 wt % and the removal efficiency of ultrafine particulates is still as high as 86.9 wt % after continually wearing for 240 min and a 30-day interval. This work has proposed as a new method of wearable air filtration and may have great prospects in human health, self-powered electronics, and wearable devices.
Collapse
Affiliation(s)
- Guoxu Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jinhui Nie
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Changbao Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Tao Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiwei Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yaokun Pang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Tong Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Tianzhao Bu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- School of Material Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Pang Y, Xi F, Luo J, Liu G, Guo T, Zhang C. An alginate film-based degradable triboelectric nanogenerator. RSC Adv 2018; 8:6719-6726. [PMID: 35540391 PMCID: PMC9078329 DOI: 10.1039/c7ra13294h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
Alginate, as a natural linear polysaccharide derived from brown sea algae, has the advantage of low toxicity, good biocompatibility, and biodegradability, which has aroused wide interests in recent years. In this study, a degradable triboelectric generator based on an alginate film is presented. The calcium alginate film, which is prepared by a simple freeze-drying method and a crosslinking reaction, has a form of porous structures that are beneficial for triboelectric power generation. The fabricated TENG has a stable output performance with a maximum voltage, current, and power of 33 V, 150 nA, and 9.5 μW, respectively. The performances of the TENG were investigated at different thicknesses of the calcium alginate film and various concentrations of the sodium alginate solution, as well as the degradability of the film with different thicknesses and temperatures. In addition, the TENG was designed for harvesting water wave energy in a low-frequency range from 1 to 4 Hz. This study is promising to provide new insights to develop degradable and eco-friendly TENG based on ocean plants and expand the application range in blue energy. A degradable triboelectric generator based on an alginate film has been proposed, which can be used to harvest water wave energy.![]()
Collapse
Affiliation(s)
- Yaokun Pang
- CAS Center for Excellence in Nanoscience
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100083
| | - Fengben Xi
- CAS Center for Excellence in Nanoscience
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100083
| | - Jianjun Luo
- CAS Center for Excellence in Nanoscience
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100083
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100083
| | - Tong Guo
- CAS Center for Excellence in Nanoscience
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100083
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100083
| |
Collapse
|
36
|
Sun Y, Zheng X, Yan X, Liao Q, Liu S, Zhang G, Li Y, Zhang Y. Bioinspired Tribotronic Resistive Switching Memory for Self-Powered Memorizing Mechanical Stimuli. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43822-43829. [PMID: 29160691 DOI: 10.1021/acsami.7b15269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Haptic memory, from the interaction of skin and brain, can not only perceive external stimuli but also memorize it after removing the external stimuli. For the mimicry of human sensory memory, a self-powered artificial tactile memorizing system was developed by coupling bionic electronic skin and nonvolatile resistive random access memory (RRAM). The tribotronic nanogenerator is utilized as electronic skin to transform the touching signal into electric pulse, which will be programmed into the artificial brain: RRAM. Because of the advanced structural designs and accurate parameter matching, including the output voltages and the resistances in different resistive states, the artificial brain can be operated in self-powered mode to memorize the touch stimuli with the responsivity up to 20 times. For demonstrating the application potential of this system, it was fabricated as an independently addressed matrix to realize the memorizing of motion trace in two-dimensional space. The newly designed self-powered nonvolatile system has broad applications in next-generation high-performance sensors, artificial intelligence, and bionics.
Collapse
Affiliation(s)
- Yihui Sun
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Xin Zheng
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
- College of Materials & Environmental Engineering, Hangzhou Dianzi University , Hangzhou 310018, China
| | - Xiaoqin Yan
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Qingliang Liao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Shuo Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Guangjie Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Yong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Yue Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
37
|
Zhao J, Guo H, Pang YK, Xi F, Yang ZW, Liu G, Guo T, Dong G, Zhang C, Wang ZL. Flexible Organic Tribotronic Transistor for Pressure and Magnetic Sensing. ACS NANO 2017; 11:11566-11573. [PMID: 29099579 DOI: 10.1021/acsnano.7b06480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Flexible electronics has attracted enormous interest in wearable electronics and human-machine interfacing. Here, a flexible organic tribotronic transistor (FOTT) without a top gate electrode has been demonstrated. The FOTT is fabricated on a flexible polyethylene terephthalate film using the p-type pentacene and poly(methyl methacrylate)/Cytop composites as the conductive channel and dielectric layer, respectively. The charge carriers can be modulated by the contact electrification between the dielectric layer and a mobile triboelectric layer. Based on the fabricated FOTT, pressure and magnetic sensors have been developed, respectively, that exhibit great sensitivity, fast response time, and excellent stability. The FOTT in this simple structure shows bright potentials of tribotronics in human-machine interaction, electronic skins, wearable electronics, intelligent sensing, and so on.
Collapse
Affiliation(s)
- Junqing Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Hang Guo
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Chemistry Department, Tsinghua University , Beijing 100084, People's Republic of China
| | - Yao Kun Pang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Fengben Xi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Zhi Wei Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Guoxu Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Tong Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Guifang Dong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Chemistry Department, Tsinghua University , Beijing 100084, People's Republic of China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
- School of Material Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
38
|
Zhou T, Yang ZW, Pang Y, Xu L, Zhang C, Wang ZL. Tribotronic Tuning Diode for Active Analog Signal Modulation. ACS NANO 2017; 11:882-888. [PMID: 28001357 DOI: 10.1021/acsnano.6b07446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.
Collapse
Affiliation(s)
- Tao Zhou
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Zhi Wei Yang
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Yaokun Pang
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences , Beijing 100083, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Khan U, Kim TH, Ryu H, Seung W, Kim SW. Graphene Tribotronics for Electronic Skin and Touch Screen Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 27786382 DOI: 10.1002/adma.201603544] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/28/2016] [Indexed: 05/05/2023]
Abstract
Graphene tribotronics is introduced for touch-sensing applications such as electronic skins and touch screens. The devices are based on a coplanar coupling of triboelectrification and current transport in graphene transistors. The touch sensors are ultrasensitive, fast, and stable. Furthermore, they are transparent and flexible, and can spatially map touch stimuli such as movement of a ball, multi-touch, etc.
Collapse
Affiliation(s)
- Usman Khan
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Tae-Ho Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Hanjun Ryu
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Wanchul Seung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| |
Collapse
|
40
|
Yang ZW, Pang Y, Zhang L, Lu C, Chen J, Zhou T, Zhang C, Wang ZL. Tribotronic Transistor Array as an Active Tactile Sensing System. ACS NANO 2016; 10:10912-10920. [PMID: 28024389 DOI: 10.1021/acsnano.6b05507] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Large-scale tactile sensor arrays are of great importance in flexible electronics, human-robot interaction, and medical monitoring. In this paper, a flexible 10 × 10 tribotronic transistor array (TTA) is developed as an active tactile sensing system by incorporating field-effect transistor units and triboelectric nanogenerators into a polyimide substrate. The drain-source current of each tribotronic transistor can be individually modulated by the corresponding external contact, which has induced a local electrostatic potential to act as the conventional gate voltage. By scaling down the pixel size from 5 × 5 to 0.5 × 0.5 mm2, the sensitivities of single pixels are systematically investigated. The pixels of the TTA show excellent durability, independence, and synchronicity, which are suitable for applications in real-time tactile sensing, motion monitoring, and spatial mapping. The integrated tribotronics provides an unconventional route to realize an active tactile sensing system, with prospective applications in wearable electronics, human-machine interfaces, fingerprint identification, and so on.
Collapse
Affiliation(s)
- Zhi Wei Yang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Yaokun Pang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Limin Zhang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Cunxin Lu
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Jian Chen
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Tao Zhou
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, and National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Pang Y, Xue F, Wang L, Chen J, Luo J, Jiang T, Zhang C, Wang ZL. Tribotronic Enhanced Photoresponsivity of a MoS 2 Phototransistor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500419. [PMID: 27812472 PMCID: PMC5067630 DOI: 10.1002/advs.201500419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/10/2016] [Indexed: 05/08/2023]
Abstract
Molybdenum disulfide (MoS2) has attracted a great attention as an excellent 2D material for future optoelectronic devices. Here, a novel MoS2 tribotronic phototransistor is developed by a conjunction of a MoS2 phototransistor and a triboelectric nanogenerator (TENG) in sliding mode. When an external friction layer produces a relative sliding on the device, the induced positive charges on the back gate of the MoS2 phototransistor act as a "gate" to increase the channel conductivity as the traditional back gate voltage does. With the sliding distance increases, the photoresponsivity of the device is drastically enhanced from 221.0 to 727.8 A W-1 at the 100 mW cm-2 UV excitation intensity and 1 V bias voltage. This work has extended the emerging tribotronics to the field of photodetection based on 2D material, and demonstrated a new way to realize the adjustable photoelectric devices with high photoresponsivity via human interfacing.
Collapse
Affiliation(s)
- Yaokun Pang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology Beijing 100083 P. R. China
| | - Fei Xue
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology Beijing 100083 P. R. China
| | - Longfei Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology Beijing 100083 P. R. China
| | - Jian Chen
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology Beijing 100083 P. R. China
| | - Jianjun Luo
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology Beijing 100083 P. R. China
| | - Tao Jiang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology Beijing 100083 P. R. China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology Beijing 100083 P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology Beijing 100083 P. R. China; School of Material Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
42
|
Peng W, Yu R, He Y, Wang ZL. Theoretical Study of Triboelectric-Potential Gated/Driven Metal-Oxide-Semiconductor Field-Effect Transistor. ACS NANO 2016; 10:4395-4402. [PMID: 27077327 DOI: 10.1021/acsnano.6b00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Triboelectric nanogenerator has drawn considerable attentions as a potential candidate for harvesting mechanical energies in our daily life. By utilizing the triboelectric potential generated through the coupling of contact electrification and electrostatic induction, the "tribotronics" has been introduced to tune/control the charge carrier transport behavior of silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET). Here, we perform a theoretical study of the performances of tribotronic MOSFET gated by triboelectric potential in two working modes through finite element analysis. The drain-source current dependence on contact-electrification generated triboelectric charges, gap separation distance, and externally applied bias are investigated. The in-depth physical mechanism of the tribotronic MOSFET operations is thoroughly illustrated by calculating and analyzing the charge transfer process, voltage relationship to gap separation distance, and electric potential distribution. Moreover, a tribotronic MOSFET working concept is proposed, simulated and studied for performing self-powered FET and logic operations. This work provides a deep understanding of working mechanisms and design guidance of tribotronic MOSFET for potential applications in micro/nanoelectromechanical systems (MEMS/NEMS), human-machine interface, flexible electronics, and self-powered active sensors.
Collapse
Affiliation(s)
- Wenbo Peng
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
- School of Electronic and Information Engineering, Xi'an Jiaotong University , Xi'an 710049, China
| | - Ruomeng Yu
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Yongning He
- School of Electronic and Information Engineering, Xi'an Jiaotong University , Xi'an 710049, China
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
| |
Collapse
|
43
|
Li J, Zhang C, Duan L, Zhang LM, Wang LD, Dong GF, Wang ZL. Flexible Organic Tribotronic Transistor Memory for a Visible and Wearable Touch Monitoring System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:106-110. [PMID: 26540390 DOI: 10.1002/adma.201504424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 09/27/2015] [Indexed: 06/05/2023]
Abstract
A new type of flexible organic tribotronic transistor memory is proposed, which can be written and erased by externally applied touch actions as an active memory. By further coupling with an organic light-emitting diode (OLED), a visible and wearable touch monitoring system is achieved, in which touch triggering can be memorized and shown as the emission from the OLED.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Chemistry Department, Tsinghua University, Beijing, 100084, China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Chemistry Department, Tsinghua University, Beijing, 100084, China
| | - Li Min Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Li Duo Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Chemistry Department, Tsinghua University, Beijing, 100084, China
| | - Gui Fang Dong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Chemistry Department, Tsinghua University, Beijing, 100084, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
44
|
Han CB, Jiang T, Zhang C, Li X, Zhang C, Cao X, Wang ZL. Removal of Particulate Matter Emissions from a Vehicle Using a Self-Powered Triboelectric Filter. ACS NANO 2015; 9:12552-61. [PMID: 26554501 DOI: 10.1021/acsnano.5b06327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Particulate matter (PM) pollution from automobile exhaust has become one of the main pollution sources in urban environments. Although the diesel particulate filter has been used in heavy diesel vehicles, there is no particulate filter for most gasoline cars or light-duty vehicles because of high cost. Here, we introduce a self-powered triboelectric filter for removing PMs from automobile exhaust fumes using the triboelectrification effect. The finite element simulation reveals that the collision or friction between PTFE pellets and electrodes can generate large triboelectric charges and form a space electric field as high as 12 MV/m, accompanying an open-circuit voltage of ∼6 kV between the two electrodes, which is comparable to the measured value of 3 kV. By controlling the vibration frequency and fill ratio of pellets, more than 94% PMs in aerosol can be removed using the high electric field in the triboelectric filter. In real automobile exhaust fumes, the triboelectic filter has a mass collection efficiency of ∼95.5% for PM2.5 using self-vibration of the tailpipe.
Collapse
Affiliation(s)
- Chang Bao Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
| | - Tao Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
| | - Xiaohui Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
| | - Chaoying Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083, China
- School of Material Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245 United States
| |
Collapse
|
45
|
Pang YK, Li XH, Chen MX, Han CB, Zhang C, Wang ZL. Triboelectric Nanogenerators as a Self-Powered 3D Acceleration Sensor. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19076-82. [PMID: 26262509 DOI: 10.1021/acsami.5b04516] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A novel self-powered acceleration sensor based on triboelectric nanogenerator is proposed, which consists of an outer transparent shell and an inner mass-spring-damper mechanical system. The PTFE films on the mass surfaces can slide between two aluminum electrodes on an inner wall owing to the acceleration in the axis direction. On the basis of the coupling of triboelectric and electrostatic effects, the potential difference between the two aluminum electrodes is generated in proportion to the mass displacement, which can be used to characterize the acceleration in the axis direction with a detection range from about 13.0 to 40.0 m/s(2) at a sensitivity of 0.289 V·s(2)/m. With the integration of acceleration sensors in three axes, a self-powered 3D acceleration sensor is developed for vector acceleration measurement in any direction. The self-powered 3D acceleration sensor has excellent performance in the stability test, and the output voltages have a little decrease of ∼6% after 4000 cycles. Moreover, the self-powered acceleration sensor can be used to measure high collision acceleration, which has potential practicability in automobile security systems.
Collapse
Affiliation(s)
- Yao Kun Pang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing, 100083, China
| | - Xiao Hui Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing, 100083, China
| | - Meng Xiao Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing, 100083, China
| | - Chang Bao Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing, 100083, China
| | - Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing, 100083, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing, 100083, China
- School of Material Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
46
|
Zhang C, Zhang LM, Tang W, Han CB, Wang ZL. Tribotronic Logic Circuits and Basic Operations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3533-3540. [PMID: 25953435 DOI: 10.1002/adma.201501511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/15/2015] [Indexed: 06/04/2023]
Abstract
A tribotronic logic device is fabricated to convert external mechanical stimuli into logic level signals, and tribotronic logic circuits such as NOT, AND, OR, NAND, NOR, XOR, and XNOR gates are demonstrated for performing mechanical-electrical coupled tribotronic logic operations, which realize the direct interaction between the external environment and the current silicon integrated circuits.
Collapse
Affiliation(s)
- Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Li Min Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Wei Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Chang Bao Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
47
|
Wang ZL, Weiss PS. A conversation with Prof. Zhong Lin Wang, energy harvester. ACS NANO 2015; 9:2221-2226. [PMID: 25802088 DOI: 10.1021/acsnano.5b01581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
48
|
Zhang C, Tang W, Pang Y, Han C, Wang ZL. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:719-26. [PMID: 25430051 DOI: 10.1002/adma.201404291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 05/19/2023]
Abstract
Based on a triboelectric nanogenerator (TENG), the first active micro-actuator for optical modulation driven by mechanical energy without external power or mechanical joint is presented. This demonstrates the enormous potential of TENGs for independent and sustainable self-powered micro/nano electromechanical systems, and opens up new -applications of TENGs in triboelectric-voltage-controlled devices.
Collapse
Affiliation(s)
- Chi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | | | | | | | | |
Collapse
|