1
|
Barakat MR, Brown D, Hu A, Khurana RN, Marcus D, Pearlman J, Wykoff CC, Kapik B, Ciulla T. Safety and Tolerability of Suprachoroidal Axitinib Injectable Suspension, for Neovascular Age-related Macular Degeneration; Phase I/IIa Open-Label, Dose-Escalation Trial. OPHTHALMOLOGY SCIENCE 2025; 5:100586. [PMID: 39328827 PMCID: PMC11426123 DOI: 10.1016/j.xops.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024]
Abstract
Purpose To evaluate the safety and tolerability of a single dose of axitinib injectable suspension (CLS-AX), a pan-anti-VEGF tyrosine kinase inhibitor (TKI), administered via suprachoroidal injection in patients with neovascular age-related macular degeneration (nAMD). Design Phase I/IIa, open-label, sequential dose escalation. Participants Anti-VEGF treatment-experienced patients with active subfoveal choroidal neovascularization secondary to nAMD. Methods The study included 4 cohorts (0.03, 0.10, 0.50, and 1.0 mg) of approximately 5 patients each enrolled in a dose-escalating fashion. Enrolled patients received intravitreal aflibercept (2 mg) followed by a single unilateral dose of CLS-AX 1 month later. All patients were followed monthly for 3 months with the option of an additional 3 months of extended follow-up for cohorts 2 to 4. End points included systemic and ocular safety and tolerability, visual acuity, retinal thickness, and need for aflibercept therapy. Main Outcome Measures The number of patients reporting treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs), changes in ophthalmic examinations, and the number of patients qualifying for additional therapy for nAMD based on protocol-defined criteria. Results OASIS enrolled 27 patients with nAMD with mean age of 81 years, mean duration of nAMD diagnosis of 54 months, and between 5 and 90 prior anti-VEGF treatments. Twenty-six patients completed through 3 months, with 14 entering and completing the 3-month extension. No SAEs, drug-related TEAEs, or TEAEs leading to discontinuation were observed after CLS-AX administration; there were no adverse events related to ocular inflammation, vasculitis, intraocular pressure, or dispersion of drug into the vitreous or anterior chamber. Through 6 months, stable mean best-corrected visual acuity and stable mean central subfield thickness (CST) were observed, suggestive of TKI biologic effect. No aflibercept therapy was administered up to 3 months in 58% (15/26) of patients who completed 3 months of follow-up in OASIS. In the Extension, 57% (8/14) of patients went up to 6 months without receiving aflibercept therapy. Conclusions Up to 1.0 mg CLS-AX, a highly potent TKI targeted to the suprachoroidal space (SCS) via the SCS Microinjector, was well tolerated, with stable mean visual acuity and mean CST. A majority of patients followed for 6 months did not require aflibercept therapy. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
| | | | - Allen Hu
- Cumberland Valley Retina Consultants, Hagerstown, Maryland
| | - Rahul N Khurana
- Northern California Retina Vitreous Associates, Mountain View, California
| | | | - Joel Pearlman
- Retina Consultants Medical Group, Sacramento, California
| | | | - Barry Kapik
- Clearside Biomedical, Inc., Alpharetta, Georgia
| | - Thomas Ciulla
- Clearside Biomedical, Inc., Alpharetta, Georgia
- Midwest Eye Institute, Indianapolis, Indiana
| |
Collapse
|
2
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
3
|
Maria DN, Ibrahim MM, Kim MJ, Maria SN, White WA, Wang X, Hollingsworth TJ, Jablonski MM. Evaluation of Pregabalin bioadhesive multilayered microemulsion IOP-lowering eye drops. J Control Release 2024; 373:667-687. [PMID: 39079659 PMCID: PMC11384292 DOI: 10.1016/j.jconrel.2024.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
In spite of available treatment options, glaucoma continues to be a leading cause of irreversible blindness in the world. Current glaucoma medications have multiple limitations including: lack of sustained action; requirement for multiple dosing per day, ocular irritation and limited options for drugs with different mechanisms of action. Previously, we demonstrated that pregabalin, a drug with high affinity and selectivity for CACNA2D1, lowered IOP in a dose-dependent manner. The current study was designed to evaluate pregabalin microemulsion eye drops and to estimate its efficacy in humans using in silico methods. Molecular docking studies of pregabalin against CACNA2D1 of mouse, rabbit, and human were performed. Pregabalin microemulsion eye drops were characterized using multiple in vivo studies and its stability was evaluated over one year at different storage conditions. Molecular docking analyses and QSPR of pregabalin confirmed its suitability as a new IOP-lowering medication that functions using a new mechanism of action by binding to CACNA2D1 in all species evaluated. Because of its prolonged corneal residence time and corneal penetration enhancement, a single topical application of pregabalin ME can provide an extended IOP reduction of more than day in different animal models. Repeated daily dosing for 2 months confirms the lack of any tachyphylactic effect, which is a common drawback among marketed IOP-lowering medications. In addition, pregabalin microemulsion demonstrated good physical stability for one year, and chemical stability for 3-6 months if stored below 25 °C. Collectively, these outcomes greatly support the use of pregabalin eye drops as once daily IOP-lowering therapy for glaucoma management.
Collapse
Affiliation(s)
- Doaa N Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed M Ibrahim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Minjae J Kim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sara N Maria
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - William A White
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - XiangDi Wang
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - T J Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Monica M Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
4
|
Sorrentino FS, Gardini L, Culiersi C, Fontana L, Musa M, D’Esposito F, Surico PL, Gagliano C, Zeppieri M. Nano-Based Drug Approaches to Proliferative Vitreoretinopathy Instead of Standard Vitreoretinal Surgery. Int J Mol Sci 2024; 25:8720. [PMID: 39201407 PMCID: PMC11354910 DOI: 10.3390/ijms25168720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Proliferative vitreoretinopathy (PVR) has traditionally been managed with vitreoretinal surgery. Although there have been several recent innovations in this surgery to make the retinal approach as uninvasive as possible, the outcomes remain unsatisfactory. Significant complications remain and the complexity of the surgical approach is challenging. The focus of this review was to investigate and discuss the effectiveness of nanomedicine, featuring a wide range of drugs and molecules, as a novel potential treatment for PVR. To date, ocular drug delivery remains a significant issue due to the physiological and anatomical barriers, dynamic or static, which prevent the entry of exogenous molecules. We tried to summarize the nanotechnology-based ophthalmic drugs and new nanoparticles currently under research, with the intention of tackling the onset and development of PVR. The purpose of this review was to thoroughly and analytically examine and assess the potential of nano-based techniques as innovative strategies to treat proliferative vitreoretinopathy (PVR). This study aimed to emphasize the breakthroughs in nanomedicine that provide promising therapeutic options to enhance the results of vitreoretinal surgery and halt disease progression, considering the complexity and difficulty of PVR treatment. The future directions of the nanoparticles and nanotherapies applied to PVR highlight the importance of investing in the development of better designs and novel ophthalmic formulations in order to accomplish a mini-invasive ocular approach, replacing the standard-of-care vitreoretinal surgery.
Collapse
Affiliation(s)
| | - Lorenzo Gardini
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.)
| | - Carola Culiersi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, 40100 Bologna, Italy; (F.S.S.)
| | - Luigi Fontana
- Department of Surgical Sciences, Ophthalmology Unit, Alma Mater Studiorum University of Bologna, IRCCS Azienda Ospedaliero-Universitaria Bologna, 40100 Bologna, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
- Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd., London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Wang K, Dai P, Zhang N, Dong Y, Zhao B, Wang J, Zhang X, Tu Q. An injectable hydrogel based on sodium alginate and gelatin treats bacterial keratitis through multimodal antibacterial strategy. Int J Biol Macromol 2024; 275:133595. [PMID: 38960253 DOI: 10.1016/j.ijbiomac.2024.133595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Bacterial keratitis is among the most prevalent causes of blindness. Currently, the abuse of antibiotics in clinical settings not only lacks bactericidal effects but also readily induces bacterial resistance, making the clinical treatment of bacterial keratitis a significant challenge. In this study, we present an injectable hydrogel (GS-PNH-FF@CuS/MnS) containing self-assembled diphenylalanine dipeptide (FF) and CuS/MnS nanocomposites (CuS/MnS NCs) that destroy bacterial cell walls through a synergistic combination of mild photothermal therapy (PTT), chemodynamic therapy (CDT), ion release chemotherapy, and self-assembled dipeptide contact, thereby eliminating Pseudomonas aeruginosa. Under 808 nm laser irradiation, the bactericidal efficiency of GS-PNH-FF@CuS/MnS hydrogel against P. aeruginosa in vitro reach up to 96.97 %. Furthermore, GS-PNH-FF@CuS/MnS hydrogel is applied topically to kill bacteria, reduce inflammation, and promote wound healing. Hematoxylin-eosin (H&E) staining, Masson staining, immunohistochemistry and immunofluorescence staining are used to evaluate the therapeutic effect on infected rabbit cornea models in vivo. The GS-PNH-FF@CuS/MnS demonstrate good biocompatibility with human corneal epithelial cells and exhibit no obvious eyes side effects. In conclusion, the GS-PNH-FF@CuS/MnS hydrogel in this study provides an effective and safe treatment strategy for bacterial keratitis through a multimodal approach.
Collapse
Affiliation(s)
- Keke Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengxiu Dai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nannan Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuchuan Dong
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinke Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qin Tu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Meng T, Zheng J, Shin CS, Gao N, Bande D, Sudarjat H, Chow W, Halquist MS, Yu FS, Acharya G, Xu Q. Combination Nanomedicine Strategy for Preventing High-Risk Corneal Transplantation Rejection. ACS NANO 2024; 18:20679-20693. [PMID: 39074146 PMCID: PMC11308920 DOI: 10.1021/acsnano.4c06595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
High-risk (HR) corneal transplantation presents a formidable challenge, with over 50% of grafts experiencing rejection despite intensive postoperative care involving frequent topical eyedrop administration up to every 2 h, gradually tapering over 6-12 months, and ongoing maintenance dosing. While clinical evidence underscores the potential benefits of inhibiting postoperative angiogenesis, effective antiangiogenesis therapy remains elusive in this context. Here, we engineered controlled-release nanomedicine formulations comprising immunosuppressants (nanoparticles) and antiangiogenesis drugs (nanowafer) and demonstrated that these formulations can prevent HR corneal transplantation rejection for at least 6 months in a clinically relevant rat model. Unlike untreated corneal grafts, which universally faced rejection within 2 weeks postsurgery, a single subconjunctival injection of the long-acting immunosuppressant nanoparticle alone effectively averted graft rejection for 6 months, achieving a graft survival rate of ∼70%. Notably, the combination of an immunosuppressant nanoparticle and an anti-VEGF nanowafer yielded significantly better efficacy with a graft survival rate of >85%. The significantly enhanced efficacy demonstrated that a combination nanomedicine strategy incorporating immunosuppressants and antiangiogenesis drugs can greatly enhance the ocular drug delivery and benefit the outcome of HR corneal transplantation with increased survival rate, ensuring patient compliance and mitigating dosing frequency and toxicity concerns.
Collapse
Affiliation(s)
- Tuo Meng
- Department
of Pharmaceutics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Jinhua Zheng
- Department
of Pharmaceutics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Department
of Ophthalmology, Affiliated Hospital of
Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Crystal S. Shin
- Michale
E. DeBakey Department of Surgery, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Nan Gao
- Departments
of Ophthalmology, Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Divya Bande
- Department
of Pharmaceutics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Hadi Sudarjat
- Department
of Pharmaceutics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Woon Chow
- Department
of Ophthalmology, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Department
of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Matthew Sean Halquist
- Department
of Pharmaceutics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Fu-Shin Yu
- Departments
of Ophthalmology, Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Ghanashyam Acharya
- Michale
E. DeBakey Department of Surgery, Baylor
College of Medicine, Houston, Texas 77030, United States
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Qingguo Xu
- Department
of Pharmaceutics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Department
of Ophthalmology, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Center
for Pharmaceutical Engineering; Institute for Structural Biology,
Drug Discovery & Development (ISB3D); and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
7
|
Ge Z, Long L, Zhang F, Dong R, Chen Z, Tang S, Yang L, Wang Y. Development of an injectable oxidized dextran/gelatin hydrogel capable of promoting the healing of alkali burn-associated corneal wounds. Int J Biol Macromol 2024; 273:132740. [PMID: 38825267 DOI: 10.1016/j.ijbiomac.2024.132740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
The cornea serves as an essential shield that protects the underlying eye from external conditions, yet it remains highly vulnerable to injuries that could lead to blindness and scarring if not promptly and effectively treated. Excessive inflammatory response constitute the primary cause of pathological corneal injury. This study aimed to develop effective approaches for enabling the functional repair of corneal injuries by combining nanoparticles loaded with anti-inflammatory agents and an injectable oxidized dextran/gelatin/borax hydrogel. The injectability and self-healing properties of developed hydrogels based on borate ester bonds and dynamic Schiff base bonds were excellent, improving the retention of administered drugs on the ocular surface. In vitro cellular assays and in vivo animal studies collectively substantiated the proficiency of probucol nanoparticle-loaded hydrogels to readily suppress proinflammatory marker expression and to induce the upregulation of anti-inflammatory mediators, thereby supporting rapid repair of rat corneal tissue following alkali burn-induced injury. As such, probucol nanoparticle-loaded hydrogels represent a prospective avenue to developing long-acting and efficacious therapies for ophthalmic diseases.
Collapse
Affiliation(s)
- Zhengwei Ge
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province 510071, China; Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China
| | - Linyu Long
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan Province 410035, China; National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China; Eye Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Ruiqi Dong
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Zhongping Chen
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province 510071, China; Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, China.
| | - Shibo Tang
- Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan Province 410035, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
8
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
9
|
Wu D, Chan KE, Lim BXH, Lim DKA, Wong WM, Chai C, Manotosh R, Lim CHL. Management of corneal neovascularization: Current and emerging therapeutic approaches. Indian J Ophthalmol 2024; 72:S354-S371. [PMID: 38648452 PMCID: PMC467007 DOI: 10.4103/ijo.ijo_3043_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 04/25/2024] Open
Abstract
Corneal neovascularization (CoNV) is a sight-threatening condition affecting an estimated 1.4 million people per year, and the incidence is expected to rise. It is a complication of corneal pathological diseases such as infective keratitis, chemical burn, corneal limbal stem cell deficiency, mechanical trauma, and immunological rejection after keratoplasties. CoNV occurs due to a disequilibrium in proangiogenic and antiangiogenic mediators, involving a complex system of molecular interactions. Treatment of CoNV is challenging, and no therapy thus far has been curative. Anti-inflammatory agents such as corticosteroids are the mainstay of treatment due to their accessibility and well-studied safety profile. However, they have limited effectiveness and are unable to regress more mature neovascularization. With the advent of advanced imaging modalities and an expanding understanding of its pathogenesis, contemporary treatments targeting a wide array of molecular mechanisms and surgical options are gaining traction. This review aims to summarize evidence regarding conventional and emerging therapeutic options for CoNV.
Collapse
Affiliation(s)
- Duoduo Wu
- Department of Ophthalmology, National University Hospital, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Blanche Xiao Hong Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dawn Ka-Ann Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wendy Meihua Wong
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charmaine Chai
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ray Manotosh
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chris Hong Long Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Singapore Eye Research Institute, Singapore
| |
Collapse
|
10
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
11
|
Shen X, Huang C, Bai J, Wen J. Targeted Bacterial Keratitis Treatment with Polyethylene Glycol-Dithiothreitol-Boric Acid Hydrogel and Gatifloxacin. Curr Drug Deliv 2024; 21:1548-1558. [PMID: 38425110 DOI: 10.2174/0115672018279105240226050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION/OBJECTIVE To prolong the ocular residence time of gatifloxacin and enhance its efficacy against bacterial keratitis, this study developed a velocity-controlled polyethylene glycol-dithiothreitol-boric acid (PDB) hydrogel loaded with gatifloxacin. METHODS First, the basic properties of the synthesized PDB hydrogel and the gatifloxacin-loaded PDB hydrogel were assessed. Secondly, the in vitro degradation rate of the drug-loaded PDB was measured in a simulated body fluid environment with pH 7.4/5.5. The release behavior of the drug-loaded PDB was studied using a dialysis method with PBS solution of pH 7.4/5.5 as the release medium. Finally, a mouse model of bacterial keratitis was established, and tissue morphology was observed using hematoxylin-eosin staining. Additionally, mouse tear fluid was extracted to observe the antibacterial effect of the gatifloxacin-loaded PDB hydrogel. RESULTS The results showed that the PDB hydrogel had a particle size of 124.9 nm and a zeta potential of -23.3 mV, with good porosity, thermosensitivity, viscosity distribution, rheological properties, and high cell compatibility. The encapsulation of gatifloxacin did not alter the physical properties of the PDB hydrogel and maintained appropriate swelling and stability, with a high drug release rate in acidic conditions. Furthermore, animal experiments demonstrated that the gatifloxacin- loaded PDB hydrogel exhibited superior therapeutic effects compared to gatifloxacin eye drops and displayed strong antibacterial capabilities against bacterial keratitis. CONCLUSION This study successfully synthesized PDB hydrogel and developed a gatifloxacin drug release system. The hydrogel exhibited good thermosensitivity, pH responsiveness, stability, and excellent biocompatibility, which can enhance drug retention, utilization, and therapeutic effects on the ocular surface.
Collapse
Affiliation(s)
- Xiao Shen
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chunlian Huang
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jianhai Bai
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jing Wen
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
12
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Chung HS, Ye EA, Lee H, Kim JY. Current Advances in Regenerative Strategies for Dry Eye Diseases: A Comprehensive Review. Bioengineering (Basel) 2023; 11:39. [PMID: 38247916 PMCID: PMC10813666 DOI: 10.3390/bioengineering11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Dry eye disease (DED) is an emerging health issue affecting millions of individuals annually. Ocular surface disorders, such as DED, are characterized by inflammation triggered by various factors. This condition can lead to tear deficiencies, resulting in the desiccation of the ocular surface, corneal ulceration/perforation, increased susceptibility to infections, and a higher risk of severe visual impairment and blindness. Currently, the clinical management of DED primarily relies on supportive and palliative measures, including the frequent and lifelong use of different lubricating agents. While some advancements like punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts have been attempted, they have shown limited effectiveness. Recently, there have been promising developments in the treatment of DED, including biomaterials such as nano-systems, hydrogels, and contact lenses for drug delivery, cell-based therapies, biological approaches, and tissue-based regenerative therapy. This article specifically explores the different strategies reported so far for treating DED. The aim is to discuss their potential as long-term cures for DED while also considering the factors that limit their feasibility and effectiveness. These advancements offer hope for more effective and sustainable treatment options in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jae-Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.B.); (S.-H.O.); (C.-M.K.); (Y.-J.Y.); (H.-S.C.); (E.-A.Y.); (H.L.)
| |
Collapse
|
13
|
Aldawsari MF, Moglad EH, Alotaibi HF, Alkahtani HM, Khafagy ES. Ophthalmic Bimatoprost-Loaded Niosomal In Situ Gel: Preparation, Optimization, and In Vivo Pharmacodynamics Study. Polymers (Basel) 2023; 15:4336. [PMID: 37960016 PMCID: PMC10649908 DOI: 10.3390/polym15214336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed at formulating the antiglaucoma agent, Bimatoprost (BMT), into niosomal in situ gel (BMT-ISG) for ocular delivery. Niosomes containing cholesterol/span 60 entrapping BMT were fabricated using a thin-film hydration method. The fabricated niosomes were optimized and characterized for entrapment efficiency (%EE) and size. The optimized BMT-loaded niosomal formulation prepared at a cholesterol/span 60 ratio of 1:2 exhibited the highest entrapment (81.2 ± 1.2%) and a small particle size (167.3 ± 9.1 nm), and they were selected for incorporation into in situ gelling systems (BMT-ISGs) based on Pluronic F127/Pluronic F68. Finally, the in vivo efficiency of the BMT-ISG formulation, in terms of lowering the intraocular pressure (IOP) in normotensive male albino rabbits following ocular administration, was assessed and compared to that of BMT ophthalmic solution. All the formulated BMT-ISGs showed sol-gel transition temperatures ranging from 28.1 °C to 40.5 ± 1.6 °C. In addition, the BMT-ISG formulation sustained in vitro BMT release for up to 24 h. Interestingly, in vivo experiments depicted that topical ocular administration of optimized BMT-ISG formulation elicited a significant decline in IOP, with maximum mean decreases in IOP of 9.7 ± 0.6 mm Hg, compared to BMT aqueous solution (5.8 ± 0.6 mm Hg). Most importantly, no signs of irritation to the rabbit's eye were observed following topical ocular administration of the optimized BMT-ISG formulation. Collectively, our results suggested that niosomal in situ gels might be a feasible delivery vehicle for topical ocular administration of anti-glaucoma agents, particularly those with poor ocular bioavailability.
Collapse
Affiliation(s)
- Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia (E.H.M.)
| | - Ehssan H. Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia (E.H.M.)
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint AbdulRahman University, Riyadh 11671, Saudi Arabia;
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia (E.H.M.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
14
|
Liu LC, Chen YH, Lu DW. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int J Mol Sci 2023; 24:15352. [PMID: 37895032 PMCID: PMC10607833 DOI: 10.3390/ijms242015352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
15
|
Boddu SH, Acharya D, Hala V, Jani H, Pande S, Patel C, Shahwan M, Jwala R, Ranch KM. An Update on Strategies to Deliver Protein and Peptide Drugs to the Eye. ACS OMEGA 2023; 8:35470-35498. [PMID: 37810716 PMCID: PMC10552503 DOI: 10.1021/acsomega.3c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
In the past few decades, advancements in protein engineering, biotechnology, and structural biochemistry have resulted in the discovery of various techniques that enhanced the production yield of proteins, targetability, circulating half-life, product purity, and functionality of proteins and peptides. As a result, the utilization of proteins and peptides has increased in the treatment of many conditions, including ocular diseases. Ocular delivery of large molecules poses several challenges due to their high molecular weight, hydrophilicity, unstable nature, and poor permeation through cellular and enzymatic barriers. The use of novel strategies for delivering protein and peptides such as glycoengineering, PEGylation, Fc-fusion, chitosan nanoparticles, and liposomes have improved the efficacy, safety, and stability, which consequently expanded the therapeutic potential of proteins. This review article highlights various proteins and peptides that are useful in ocular disorders, challenges in their delivery to the eye, and strategies to enhance ocular bioavailability using novel delivery approaches. In addition, a few futuristic approaches that will assist in the ocular delivery of proteins and peptides were also discussed.
Collapse
Affiliation(s)
- Sai H.
S. Boddu
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Devarshi Acharya
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Vivek Hala
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Harshil Jani
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
| | - Sonal Pande
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Chirag Patel
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Moyad Shahwan
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Renukuntla Jwala
- School
of
Pharmacy, The University of Texas at El
Paso, 1101 N Campbell
St., El Paso, Texas 79902, United States
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, 27240, United States
| | - Ketan M. Ranch
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
16
|
Shafiq M, Rafique M, Cui Y, Pan L, Do CW, Ho EA. An insight on ophthalmic drug delivery systems: Focus on polymeric biomaterials-based carriers. J Control Release 2023; 362:446-467. [PMID: 37640109 DOI: 10.1016/j.jconrel.2023.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Presently, different types of eye diseases, such as glaucoma, myopia, infection, and dry eyes are treated with topical eye drops. However, due to ocular surface barriers, eye drops require multiple administrations, which may cause several risks, thereby necessitating additional strategies. Some of the key characteristics of an ideal ocular drug delivery system are as follows: (a) good penetration into cornea, (b) high drug retention in the ocular tissues, (c) targetability to the desired regions of the eye, and (d) good bioavailability. It is worthy to note that the corneal epithelial tight junctions hinder the permeation of therapeutics through the cornea. Therefore, it is necessary to design nanocarriers that can overcome these barriers and enhance drug penetration into the inner parts of the eye. Moreover, intelligent multifunctional nanocarriers can be designed to include cavities, which may help encapsulate sufficient amount of the drug. In addition, nanocarriers can be modified with the targeting moieties. Different types of nanocarriers have been developed for ocular drug delivery applications, including emulsions, liposomes, micelles, and nanoparticles. However, these formulations may be rapidly cleared from the eye. The therapeutic use of the nanoparticles (NPs) is also hindered by the non-specific adsorption of proteins on NPs, which may limit their interaction with the cellular moieties or other targeted biological factors. Functional drug delivery systems (DDS), which can offer targeted ocular drug delivery while avoiding the non-specific protein adsorption could exhibit great potential. This could be further realized by the on-demand DDS, which can respond to the stimuli in a spatio-temporal fashion. The cell-mediated DDS offer another valuable platform for ophthalmological drug delivery.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yingkun Cui
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Waterloo, Canada; Waterloo Institute for Nanotechnology, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| |
Collapse
|
17
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
18
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
19
|
Mahaling B, Low SWY, Ch S, Addi UR, Ahmad B, Connor TB, Mohan RR, Biswas S, Chaurasia SS. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023; 15:2005. [PMID: 37514191 PMCID: PMC10383092 DOI: 10.3390/pharmaceutics15072005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shermaine W Y Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Utkarsh R Addi
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thomas B Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- One-Health One-Medicine Ophthalmology and Vision Research Program, University of Missouri, Columbia, MO 65211, USA
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
20
|
Sanap SN, Bisen AC, Agrawal S, Kedar A, Bhatta RS. Ophthalmic nano-bioconjugates: critical challenges and technological advances. Ther Deliv 2023; 14:419-441. [PMID: 37535389 DOI: 10.4155/tde-2023-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Ophthalmic disease can cause permanent loss of vision and blindness. Easy-to-administer topical and systemic treatments are preferred for treating sight-threatening disorders. Typical ocular anatomy makes topical and systemic ophthalmic drug delivery challenging. Various novel nano-drug delivery approaches are developed to attain the desired bioavailability in the eye by increasing residence time and improved permeability across the cornea. The review focuses on novel methods that are biocompatible, safe and highly therapeutic. Novelty in nanocarrier design and modification can overcome their drawbacks and make them potential drug carriers for eye disorders in both the anterior and posterior eye segments. This review briefly discussed technologies, patented developments, and clinical trial data to support nanocarriers' use in ocular drug delivery.
Collapse
Affiliation(s)
- Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
21
|
Amrutkar CS, Patil SB. Nanocarriers for ocular drug delivery: Recent advances and future opportunities. Indian J Ophthalmol 2023; 71:2355-2366. [PMID: 37322644 PMCID: PMC10418032 DOI: 10.4103/ijo.ijo_1893_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/27/2022] [Accepted: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
Topical route of administration is very important and the most commonly used method of drug delivery for treatment of ocular diseases. However, due to unique anatomical and physiological barriers of eye, it is difficult to achieve the therapeutic concentration in the targeted tissue within the eye. To overcome the effect of these barriers in absorption and to provide targeted and sustained drug delivery, various advances have been made in developing safe and efficient drug delivery systems. Various formulation strategies for ocular drug delivery are used, like basic formulation techniques for improving availability of drugs, viscosity enhancers, and use of mucoadhesives for drug retention and penetration enhancers to promote drug transport to the eye. In this review, we present a summary of the current literature to understand the anatomical and physiological limitations in achieving adequate ocular bioavailability and targeted drug delivery of topically applied drugs and use of new techniques in formulating dosage forms in overcoming these limitations. The recent and future advances in nanocarrier-mediated drug delivery may have the potential to provide patient-friendly and noninvasive techniques for the treatment of diseases related to the anterior and posterior segments of the eye.
Collapse
Affiliation(s)
- Chetan S Amrutkar
- Department of Pharmaceutics, SNJB’s Shriman Sureshdada Jain College of Pharmacy, Nashik, Maharashtra, India
| | - Sanjay B Patil
- Department of Pharmaceutics, SNJB’s Shriman Sureshdada Jain College of Pharmacy, Nashik, Maharashtra, India
| |
Collapse
|
22
|
Jiang D, Xu T, Zhong L, Liang Q, Hu Y, Xiao W, Shi J. Research progress of VEGFR small molecule inhibitors in ocular neovascular diseases. Eur J Med Chem 2023; 257:115535. [PMID: 37285684 DOI: 10.1016/j.ejmech.2023.115535] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Angiogenesis is the biological process in which existing blood vessels generate new ones and it is essential for body growth and development, wound healing, and granulation tissue formation. Vascular endothelial growth factor receptor (VEGFR) is a crucial cell membrane receptor that binds to VEGF to regulate angiogenesis and maintenance. Dysregulation of VEGFR signaling can lead to several diseases, such as cancer and ocular neovascular disease, making it a crucial research area for disease treatment. Currently, anti-VEGF drugs commonly used in ophthalmology are mainly four macromolecular drugs, Bevacizumab, Ranibizumab, Conbercept and Aflibercept. Although these drugs are relatively effective in treating ocular neovascular diseases, their macromolecular properties, strong hydrophilicity, and poor blood-eye barrier penetration limit their efficacy. However, VEGFR small molecule inhibitors possess high cell permeability and selectivity, allowing them to traverse and bind to VEGF-A specifically. Consequently, they have a shorter duration of action on the target, and they offer significant therapeutic benefits to patients in the short term. Consequently, there is a need to develop small molecule inhibitors of VEGFR to target ocular neovascularization diseases. This review summarizes the recent developments in potential VEGFR small molecule inhibitors for the targeted treatment of ocular neovascularization diseases, with the aim of providing insights for future studies on VEGFR small molecule inhibitors.
Collapse
Affiliation(s)
- Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Xu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 611756, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
23
|
Kong X, Jia Y, Wang H, Li R, Li C, Cheng S, Chen T, Mai Y, Nie Y, Deng Y, Xie Z, Liu Y. Effective Treatment of Haemophilus influenzae-Induced Bacterial Conjunctivitis by a Bioadhesive Nanoparticle Reticulate Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22892-22902. [PMID: 37154428 DOI: 10.1021/acsami.3c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ocular formulations should provide an effective antibiotic concentration at the site of infection to treat bacterial eye infections. However, tears and frequent blinking accelerate the drug clearance rate and limit drug residence time on the ocular surface. This study describes a biological adhesion reticulate structure (BNP/CA-PEG) consisting of antibiotic-loaded bioadhesion nanoparticles (BNP/CA), with an average 500-600 nm diameter, and eight-arm NH2-PEG-NH2 for local and extended ocular drug delivery. This retention-prolonging effect is a function of the Schiff base reaction between groups on the surface of BNP and amidogen on PEG. BNP/CA-PEG showed significantly higher adhesion properties and better treatment efficacy in an ocular rat model with conjunctivitis in comparison to non-adhesive nanoparticles, BNP, or free antibiotics. Both in vivo safety experiment and in vitro cytotoxicity test verified the biocompatibility and biosafety of the biological adhesion reticulate structure, indicating a promising translational prospect for further clinical use.
Collapse
Affiliation(s)
- Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Han Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chujie Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shihong Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Bal-Öztürk A, Özcan-Bülbül E, Gültekin HE, Cecen B, Demir E, Zarepour A, Cetinel S, Zarrabi A. Application of Convergent Science and Technology toward Ocular Disease Treatment. Pharmaceuticals (Basel) 2023; 16:445. [PMID: 36986546 PMCID: PMC10053244 DOI: 10.3390/ph16030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Eyes are one of the main critical organs of the body that provide our brain with the most information about the surrounding environment. Disturbance in the activity of this informational organ, resulting from different ocular diseases, could affect the quality of life, so finding appropriate methods for treating ocular disease has attracted lots of attention. This is especially due to the ineffectiveness of the conventional therapeutic method to deliver drugs into the interior parts of the eye, and the also presence of barriers such as tear film, blood-ocular, and blood-retina barriers. Recently, some novel techniques, such as different types of contact lenses, micro and nanoneedles and in situ gels, have been introduced which can overcome the previously mentioned barriers. These novel techniques could enhance the bioavailability of therapeutic components inside the eyes, deliver them to the posterior side of the eyes, release them in a controlled manner, and reduce the side effects of previous methods (such as eye drops). Accordingly, this review paper aims to summarize some of the evidence on the effectiveness of these new techniques for treating ocular disease, their preclinical and clinical progression, current limitations, and future perspectives.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul 34396, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Ece Özcan-Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Türkiye
| | - Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
25
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
26
|
Shi X, Zhou T, Huang S, Yao Y, Xu P, Hu S, Tu C, Yin W, Gao C, Ye J. An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound healing. Acta Biomater 2023; 158:266-280. [PMID: 36638943 DOI: 10.1016/j.actbio.2023.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Ocular alkali burn is a serious ophthalmic emergency. Highly penetrative alkalis cause strong inflammatory responses leading to persistent epithelial defects, acute corneal perforation and severe scarring, and thereby persistent pain, loss of vision and cicatricial sequelae. Early and effective anti-inflammation management is vital in reducing the severity of injury. In this study, a double network biomaterial was prepared by compounding electrospinning nanofibres of thioketal-containing polyurethane (PUTK) with a reactive oxygen species (ROS)-scavenging hydrogel (RH) fabricated by crosslinking poly(poly(ethylene glycol) methyl ether methacrylate-co-glycidyl methacrylate) with thioketal diamine and 3,3'-dithiobis(propionohydrazide). The developed PUTK/RH patch exhibited good transparency, high tensile strength and increased hydrophilicity. Most importantly, it demonstrated strong antioxidant activity against H2O2 and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH). Next, a rat corneal alkali burn model was established, and the PUTK/RH patch was transplanted on the injured cornea. Reduced inflammatory cell infiltration was revealed by confocal microscopy, and lower expression levels of genes relative to inflammation, vascularization and scarring were identified by qRT-PCR and western blot. Fluorescein sodium dyeing, hematoxylin and eosin (H&E) staining and immunohistochemical staining confirmed that the PUTK/RH patch could accelerate corneal wound healing by inhibiting inflammation, promoting epithelial regeneration and decreasing scar formation. STATEMENT OF SIGNIFICANCE: Ocular alkali burn is a serious ophthalmic emergency, characterized with persistent inflammation and irreversible vision loss. Oxidative stress is the main pathological process at the acute inflammatory stage, during which combined use of glucocorticoids and amniotic membrane transplantation is the most widely accepted treatment. In this study, we fabricated a polyurethane electrospun nanofiber membrane functionalized with a ROS-scavenging hydrogel. This composite patch could be a promising amniotic membrane substitute, possessing with a transparent appearance, elasticity and anti-inflammation effect. It could be easily transplanted onto the alkali-burned corneas, resulting in a significant inhibition of stromal inflammation and accelerating the recovery of corneal transparency. The conception of ROS-scavenging wound patch may offer a new way for ocular alkali burn.
Collapse
Affiliation(s)
- Xin Shi
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shenyu Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Shaodan Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Chenxi Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Yin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China.
| |
Collapse
|
27
|
Srivastava V, Chary PS, Rajana N, Pardhi ER, Singh V, Khatri D, Singh SB, Mehra NK. Complex ophthalmic formulation technologies: Advancement and future perspectives. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
28
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
29
|
Thacker M, Singh V, Basu S, Singh S. Biomaterials for dry eye disease treatment: Current overview and future perspectives. Exp Eye Res 2023; 226:109339. [PMID: 36470431 DOI: 10.1016/j.exer.2022.109339] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/09/2022]
Abstract
Dry eye disease (DED) is an emerging health problem affecting millions of individuals every year. The current treatments for DED include lubricating eye drops and anti-inflammatory agents. These agents have to be used frequently and contain preservatives, which can damage the ocular surface. A substantially long-acting treatment with better bioavailability on the ocular surface might reduce the frequency of drug use and its side effects. This review summarizes the current state of different biomaterials-nanosystems, hydrogels, and contact lenses used as drug delivery systems in DED. The explored drugs in biomaterial formulation are cyclosporin, ocular lubricants, and topical steroids. Most of the data is from animal models where increased drug delivery and desired therapeutic effects could be obtained; however, trials involving human participants are yet to happen. There is no published study comparing the different types of biomaterials for DED use. Long-term studies evaluating their ocular toxicity and biocompatibility would enhance their transition to human use. Overall they look promising for DED treatment, but they are still in the stage of technological advancement and clinical studies.
Collapse
Affiliation(s)
- Minal Thacker
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Vivek Singh
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sayan Basu
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; The Cornea Institute, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Ophthalmic Plastic Surgery Services, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India.
| |
Collapse
|
30
|
Shin CS, Veettil RA, Sakthivel TS, Adumbumkulath A, Lee R, Zaheer M, Kolanthai E, Seal S, Acharya G. Noninvasive Delivery of Self-Regenerating Cerium Oxide Nanoparticles to Modulate Oxidative Stress in the Retina. ACS APPLIED BIO MATERIALS 2022; 5:5816-5825. [PMID: 36441967 DOI: 10.1021/acsabm.2c00809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diseases affecting the retina, such as age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and retinal vein occlusions, are currently treated by the intravitreal injection of drug formulations. These disease pathologies are driven by oxidative damage due to chronic high concentrations of reactive oxygen species (ROS) in the retina. Intravitreal injections often induce retinal detachment, intraocular hemorrhage, and endophthalmitis. Furthermore, the severe eye pain associated with these injections lead to patient noncompliance and treatment discontinuation. Hence, there is a critical need for the development of a noninvasive therapy that is effective for a prolonged period for treating retinal diseases. In this study, we developed a noninvasive cerium oxide nanoparticle (CNP) delivery wafer (Cerawafer) for the modulation of ROS in the retina. We fabricated Cerawafer loaded with CNP and determined its SOD-like enzyme-mimetic activity and ability to neutralize ROS generated in vitro. We demonstrated Cerawafer's ability to deliver CNP in a noninvasive fashion to the retina in healthy mouse eyes and the CNP retention in the retina for more than a week. Our studies have demonstrated the in vivo efficacy of the Cerawafer to modulate ROS and associated down-regulation of VEGF expression in the retinas of very-low-density lipoprotein receptor knockout (vldlr-/-) mouse model. The development of a Cerawafer nanotherapeutic will fulfill a hitherto unmet need. Currently, there is no such therapeutic available, and the development of a Cerawafer nanotherapeutic will be a major advancement in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Crystal S Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Remya Ammassam Veettil
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Tamil S Sakthivel
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Aparna Adumbumkulath
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77030, United States
| | - Richard Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mahira Zaheer
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States.,College of Medicine, Biionix Cluster, University of Central Florida, Orlando, Florida 32827, United States
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
31
|
Nagai N, Otake H. Novel drug delivery systems for the management of dry eye. Adv Drug Deliv Rev 2022; 191:114582. [PMID: 36283491 DOI: 10.1016/j.addr.2022.114582] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
Dry eye disease (DED) is a frequently observed eye complaint, which has recently attracted considerable research interest. Conventional therapy for DED involves the use of artificial tear products, cyclosporin, corticosteroids, mucin secretagogues, antibiotics and nonsteroidal anti-inflammatory drugs. In addition, ocular drug delivery systems based on nanotechnology are currently the focus of significant research effort and several nanotherapeutics, such as nanoemulsions, nanosuspensions, microemulsions, liposomes and nanomicelles, are in clinical trials and some have FDA approval as novel treatments for DED. Thus, there has been remarkable progress in the design of nanotechnology-based approaches to overcome the limitations of ophthalmic formulations for the management of anterior eye diseases. This review presents research results on diagnostic methods for DED, current treatment options, and promising pharmaceuticals as future therapeutics, as well as new ocular drug delivery systems.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
32
|
Garkal A, Bangar P, Mehta T. Thin-film nanofibers for treatment of age-related macular degeneration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Zhang C, Yin Y, Zhao J, Li Y, Wang Y, Zhang Z, Niu L, Zheng Y. An Update on Novel Ocular Nanosystems with Possible Benefits in the Treatment of Corneal Neovascularization. Int J Nanomedicine 2022; 17:4911-4931. [PMID: 36267540 PMCID: PMC9578304 DOI: 10.2147/ijn.s375570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Corneal neovascularization (CNV) is an ocular pathological change that results from an imbalance between angiogenic factors and antiangiogenic factors as a result of various ocular insults, including infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation. Current clinical strategies for the treatment of CNV include pharmacological treatment and surgical intervention. Despite some degree of success, the current treatment strategies are restricted by limited efficacy, adverse effects, and a short duration of action. Recently, gene-based antiangiogenic therapy has become an emerging strategy that has attracted considerable interest. However, potential complications with the use of viral vectors, such as potential genotoxicity resulting from long-term expression and nonspecific targeting, cannot be ignored. The use of ocular nanosystems (ONS) based on nanotechnology has emerged as a great advantage in ocular disease treatment during the last two decades. The potential functions of ONS range from nanocarriers, which deliver drugs and genes to target sites in the eye, to therapeutic agents themselves. Various preclinical studies conducted to date have demonstrated promising results of the use of ONS in the treatment of CNV. In this review, we provide an overview of CNV and its current therapeutic strategies and summarize the properties and applications of various ONS related to the treatment of CNV reported to date. Our goal is to provide a comprehensive review of these considerable advances in ONS in the field of CNV therapy over the past two decades to fill the gaps in previous related reports. Finally, we discuss existing challenges and future perspectives of the use of ONS in CNV therapy, with the goal of providing a theoretical contribution to facilitate future practical growth in the area.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuanping Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lingzhi Niu
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China,Correspondence: Yajuan Zheng, Email
| |
Collapse
|
34
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
35
|
All-small-molecule supramolecular hydrogels assembled from guanosine 5'-monophosphate disodium salt and tobramycin for the treatment of bacterial keratitis. Bioact Mater 2022; 16:293-300. [PMID: 35386321 PMCID: PMC8965694 DOI: 10.1016/j.bioactmat.2021.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial keratitis is the most common corneal infection which may lead to blindness, and seriously threatened the human visual health worldwide. Clinical treatment with antibiotic eye drops formulation usually falls in low bioavailability and poor therapeutic efficiency. Hydrogel has gained much attention as ophthalmic formulation recently due to the prolonged drug retention on ocular surface. In this study, we proposed a type of all-small-molecule supramolecular hydrogel assembled from guanosine-5′-monophosphate disodium salt and tobramycin for the treatment of bacterial keratitis. Guanosine-5′-monophosphate disodium salt assembled into guanosine-quartet nanofibers via hydrogen bonding and π-π stacking, and tobramycin with five primary amine groups further crosslinked the nanofibers bearing multiple phosphate moieties into gel networks via ionic interactions. The supramolecular gel showed shear thinning and thixotropic properties, good biocompatibility, and antibacterial activity. The gel treatment significantly ameliorated P. aeruginosa induced bacterial keratitis, and showed higher therapeutic efficacy compared to tobramycin eye drop. This study provides a facile and efficient antibiotic gel formulation for clinical treatment of bacterial keratitis. A type of all-small-molecule supramolecular hydrogel was assembled from 5′-GMP and tobramycin via ionic interactions. The prepared gel showed good transparency, thixotropic property, biocompatibility, and sustained drug release. The hydrogel showed higher therapeutic efficacy of P. aeruginosa induced bacterial keratitis compared to tobramycin eye drop.
Collapse
|
36
|
Dourado LFN, Silva CND, Gonçalves RS, Inoue TT, de Lima ME, Cunha-Júnior ADS. Improvement of PnPP-19 peptide bioavailability for glaucoma therapy: Design and application of nanowafers based on PVA. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Nanoparticle-mediated corneal neovascularization treatments: Toward new generation of drug delivery systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Li Q, Hua X, Li L, Zhou X, Tian Y, Deng Y, Zhang M, Yuan X, Chi W. AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model. Cell Commun Signal 2022; 20:59. [PMID: 35524333 PMCID: PMC9074213 DOI: 10.1186/s12964-022-00877-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background Apoptosis signal-regulating kinase 1-interacting protein 1 (AIP1) participates in inflammatory neovascularization induction. NADPH oxidase 4 (NOX4) produces reactive oxygen species (ROS), leading to an imbalance in nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) and NLR family pyrin domain containing 6 (NLRP6) expression. The mechanisms of AIP1, NOX4, ROS and inflammasomes in corneal neovascularization were studied herein. Methods C57BL/6 and AIP1-knockout mice were used in this study. The alkali burn procedure was performed on the right eye. Adenovirus encoding AIP1 plus green fluorescence protein (GFP) (Ad-AIP1-GFP) or GFP alone was injected into the right anterior chamber, GLX351322 was applied as a NOX4 inhibitor, and then corneal neovascularization was scored. The expression of related genes was measured by quantitative real-time polymerase chain reaction, western blotting and immunofluorescence staining. 2′,7′-Dichlorofluorescin diacetate staining was used to determine the ROS levels. Results The expression of AIP1 was decreased, while that of cleaved interleukin-1β (clv-IL-1β) and vascular endothelial growth factor A (VEGFa) was increased after alkali burn injury. NOX4 expression was increased, the imbalance in NLRP3/NLRP6 was exacerbated, and corneal neovascularization was increased significantly in AIP1-knockout mice compared with those in C57BL/6 mice after alkali burns. These effects were reversed by AIP1 overexpression. NLRP3/NLRP6 expression was imbalanced after alkali burns. GLX351322 reversed the imbalance in NLRP3/NLRP6 by reducing the ROS levels. This treatment also reduced the expression of clv-IL-1β and VEGFa, suppressing neovascularization. Conclusions AIP1 and NOX4 can regulate corneal inflammation and neovascularization after alkali burn injury. Based on the pathogenesis of corneal neovascularization, these findings are expected to provide new therapeutic strategies for patients. Plain English summary Corneal alkali burn injury is a common type of ocular injury that is difficult to treat in the clinic. The cornea is a clear and avascular tissue. Corneal neovascularization after alkali burn injury is a serious complication; it not only seriously affects the patient’s vision but also is the main reason for failed corneal transplantation. Corneal neovascularization affects approximately 1.4 million patients a year. We show for the first time that AIP1 and NOX4 can regulate corneal inflammation and neovascularization after alkali burns. The expression of AIP1 was decreased, while that of clv-IL-1β and VEGFa was increased after alkali burns. We tried to elucidate the specific molecular mechanisms by which AIP1 regulates corneal neovascularization. NOX4 activation was due to decreased AIP1 expression in murine corneas with alkali burns. NOX4 expression was increased, the imbalance in NLRP3/NLRP6 was exacerbated, and corneal neovascularization was increased significantly in AIP1-knockout mice compared with those in C57BL/6 mice after alkali burns. These effects were reversed by AIP1 overexpression. Additionally, NLRP3/NLRP6 expression was unbalanced, with NLRP3 activation and NLRP6 suppression in the corneal alkali burn murine model. Eye drops containing GLX351322, a NOX4 inhibitor, reversed the imbalance in NLRP3/NLRP6 by reducing ROS expression. This treatment also reduced the expression of clv-IL-1β and VEGFa, reducing neovascularization. Therefore, we provide new gene therapeutic strategies for patients. With the development of neovascularization therapy, we believe that in addition to corneal transplantation, new drug or gene therapies can achieve better results. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00877-5.
Collapse
Affiliation(s)
- Qingyu Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin University, Tianjin, China
| | - Liangpin Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Xueyan Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Ye Tian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Yang Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China. .,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China.
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
39
|
Park W, Nguyen VP, Jeon Y, Kim B, Li Y, Yi J, Kim H, Leem JW, Kim YL, Kim DR, Paulus YM, Lee CH. Biodegradable silicon nanoneedles for ocular drug delivery. SCIENCE ADVANCES 2022; 8:eabn1772. [PMID: 35353558 PMCID: PMC8967230 DOI: 10.1126/sciadv.abn1772] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Ocular drug delivery remains a grand challenge due to the complex structure of the eye. Here, we introduce a unique platform of ocular drug delivery through the integration of silicon nanoneedles with a tear-soluble contact lens. The silicon nanoneedles can penetrate into the cornea in a minimally invasive manner and then undergo gradual degradation over the course of months, enabling painless and long-term sustained delivery of ocular drugs. The tear-soluble contact lens can fit a variety of corneal sizes and then quickly dissolve in tear fluid within a minute, enabling an initial burst release of anti-inflammatory drugs. We demonstrated the utility of this platform in effectively treating a chronic ocular disease, such as corneal neovascularization, in a rabbit model without showing a notable side effect over current standard therapies. This platform could also be useful in treating other chronic ocular diseases.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Bongjoong Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Young L. Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Chen X, Wu J, Lin X, Wu X, Yu X, Wang B, Xu W. Tacrolimus Loaded Cationic Liposomes for Dry Eye Treatment. Front Pharmacol 2022; 13:838168. [PMID: 35185587 PMCID: PMC8855213 DOI: 10.3389/fphar.2022.838168] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Eye drops are ophthalmic formulations routinely used to treat dry eye. However, the low ocular bioavailability is an obvious drawback of eye drops owing to short ocular retention time and weak permeability of the cornea. Herein, to improve the ocular bioavailability of eye drops, a cationic liposome eye drop was constructed and used to treat dry eye. Tacrolimus liposomes exhibit a diameter of around 300 nm and a surface charge of +30 mV. Cationic liposomes could interact with the anionic ocular surface, extending the ocular retention time and improving tacrolimus amount into the cornea. The cationic liposomes notably prolonged the ocular retention time of eye drops, leading to an increased tacrolimus concentration in the ocular surface. The tacrolimus liposomes were also demonstrated to reduce reactive oxygen species and dry eye-related inflammation factors. The use of drug-loaded cationic liposomes is a good formulation in the treatment of ocular disease; the improved ocular retention time and biocompatibility give tremendous scope for application in the treatment of ocular disease, with further work in the area recommended.
Collapse
Affiliation(s)
- Xiang Chen
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xueqi Lin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xingdi Wu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuewen Yu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Wen Xu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med (Lausanne) 2022; 8:787644. [PMID: 35155469 PMCID: PMC8831705 DOI: 10.3389/fmed.2021.787644] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.
Collapse
Affiliation(s)
- Megan M. Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Richard H. Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elle B. Hellwarth
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Katelyn E. Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
42
|
Bhatt M, Shende P. Modulated approaches for strategic transportation of proteins and peptides via ocular route. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Sheskin T, Geyer O, Lotan N, Sivan S. Controlled and time‐scheduled drug delivery: Polyanhydride‐based nanoparticles as ocular medication carriers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tali Sheskin
- Department of Biomedical Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Orna Geyer
- Azrieli Faculty of Medicine Bar‐Ilan University Safed Israel
- Department of Ophthalmology Galilee Medical Center Nahariya Israel
| | - Noah Lotan
- Department of Biomedical Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Sarit Sivan
- Department of Biotechnology Engineering ORT Braude College of Engineering Karmiel Israel
| |
Collapse
|
44
|
Ammassam Veettil R, Marcano DC, Yuan X, Zaheer M, Adumbumkulath A, Lee R, Isenhart LC, Soriano N, Mhatre K, Joseph R, Mani SA, Shin CS, Acharya G. Dextran Sulfate Polymer Wafer Promotes Corneal Wound Healing. Pharmaceutics 2021; 13:pharmaceutics13101628. [PMID: 34683921 PMCID: PMC8539456 DOI: 10.3390/pharmaceutics13101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Eye injuries due to corneal abrasions, chemical spills, penetrating wounds, and microbial infections cause corneal scarring and opacification that result in impaired vision or blindness. However, presently available eye drop formulations of anti-inflammatory and antibiotic drugs are not effective due to their rapid clearance from the ocular surface or due to drug-related side effects such as cataract formation or increased intraocular pressure. In this article, we presented the development of a dextran sulfate-based polymer wafer (DS-wafer) for the effective modulation of inflammation and fibrosis and demonstrated its efficacy in two corneal injury models: corneal abrasion mouse model and alkali induced ocular burn mouse model. The DS-wafers were fabricated by the electrospinning method. We assessed the efficacy of the DS-wafer by light microscopy, qPCR, confocal fluorescence imaging, and histopathological analysis. These studies demonstrated that the DS-wafer treatment is significantly effective in modulating corneal inflammation and fibrosis and inhibited corneal scarring and opacification compared to the unsulfated dextran-wafer treated and untreated corneas. Furthermore, these studies have demonstrated the efficacy of dextran sulfate as an anti-inflammatory and antifibrotic polymer therapeutic.
Collapse
Affiliation(s)
- Remya Ammassam Veettil
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Daniela C. Marcano
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Xiaoyong Yuan
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Mahira Zaheer
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Aparna Adumbumkulath
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Richard Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Lucas C. Isenhart
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Nicole Soriano
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Kirti Mhatre
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Robiya Joseph
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.A.M.)
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.A.M.)
| | - Crystal S. Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
- Correspondence: (C.S.S.); (G.A.)
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
- Correspondence: (C.S.S.); (G.A.)
| |
Collapse
|
45
|
Co-Injection of Sulfotyrosine Facilitates Retinal Uptake of Hyaluronic Acid Nanospheres Following Intravitreal Injection. Pharmaceutics 2021; 13:pharmaceutics13091510. [PMID: 34575586 PMCID: PMC8469555 DOI: 10.3390/pharmaceutics13091510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gene and drug delivery to the retina is a critical therapeutic goal. While the majority of inherited forms of retinal degeneration affect the outer retina, specifically the photoreceptors and retinal pigment epithelium, effective targeted delivery to this region requires invasive subretinal delivery. Our goal in this work was to evaluate two innovative approaches for increasing both the persistence of delivered nanospheres and their penetration into the outer retina while using the much less invasive intravitreal delivery method. We formulated novel hyaluronic acid nanospheres (HA-NS, 250 nm and 500 nm in diameter) conjugated to fluorescent reporters and delivered them intravitreally to the adult Balb/C mouse retina. They exhibited persistence in the vitreous and along the inner limiting membrane (ILM) for up to 30 days (longest timepoint examined) but little retinal penetration. We thus evaluated the ability of the small molecule, sulfotyrosine, to disrupt the ILM, and found that 3.2 µg/µL sulfotyrosine led to significant improvement in delivery to the outer retina following intravitreal injections without causing retinal inflammation, degeneration, or loss of function. Co-delivery of sulfotyrosine and HA-NS led to robust improvements in penetration of HA-NS into the retina and accumulation along the interface between the photoreceptors and the retinal pigment epithelium. These exciting findings suggest that sulfotyrosine and HA-NS may be an effective strategy for outer retinal targeting after intravitreal injection.
Collapse
|
46
|
Yin C, Liu Y, Qi X, Guo C, Wu X. Kaempferol Incorporated Bovine Serum Albumin Fibrous Films for Ocular Drug Delivery. Macromol Biosci 2021; 21:e2100269. [PMID: 34528413 DOI: 10.1002/mabi.202100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Indexed: 11/09/2022]
Abstract
The possibility of using drug loaded bovine serum albumin (BSA) porous films as therapeutic contact lenses is investigated. Kaempferol (KAE), a hydrophobic antioxidant and anti-inflammatory agent, is incorporated into BSA porous films to form BSA/KAE films. The BSA/KAE films are transparent in the visible wavelength range of the human eye, possessing high water content and good cytocompatibility. A prolonged and sustained drug release is observed, and the in vivo efficacy of BSA/KAE films is better than the individual KAE. BSA/KAE films promoted the corneal re-epithelialization, inhibited neovascularization, and reduced the inflammation of an alkali burn induced corneal injury model. The study demonstrates the promising potential of BSA/KAE films as therapeutic contact lenses for the treatment of corneal injury, builds an available ocular drug delivery platform for ocular diseases.
Collapse
Affiliation(s)
- Chuanjin Yin
- Department of Pharmacy, Collegeof Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Yalu Liu
- Department of Ophthalmology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Daxue Road 269, Xuzhou, 221100, China
| | - Xueju Qi
- Department of Pharmacy, Collegeof Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, Collegeof Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, Collegeof Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| |
Collapse
|
47
|
Xu X, Awwad S, Diaz-Gomez L, Alvarez-Lorenzo C, Brocchini S, Gaisford S, Goyanes A, Basit AW. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13091421. [PMID: 34575497 PMCID: PMC8464872 DOI: 10.3390/pharmaceutics13091421] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Dry eye disease is a common ocular disorder that is characterised by tear deficiency or excessive tear evaporation. Current treatment involves the use of eye drops; however, therapeutic efficacy is limited because of poor ocular bioavailability of topically applied formulations. In this study, digital light processing (DLP) 3D printing was employed to develop dexamethasone-loaded punctal plugs. Punctal plugs with different drug loadings were fabricated using polyethylene glycol diacrylate (PEGDA) and polyethylene glycol 400 (PEG 400) to create a semi-interpenetrating network (semi-IPN). Drug-loaded punctal plugs were characterised in terms of physical characteristics (XRD and DSC), potential drug-photopolymer interactions (FTIR), drug release profile, and cytocompatibility. In vitro release kinetics of the punctal plugs were evaluated using an in-house flow rig model that mimics the subconjunctival space. The results showed sustained release of dexamethasone for up to 7 days from punctal plugs made with 20% w/w PEG 400 and 80% w/w PEGDA, while punctal plugs made with 100% PEGDA exhibited prolonged releases for more than 21 days. Herein, our study demonstrates that DLP 3D printing represents a potential manufacturing platform for fabricating personalised drug-loaded punctal plugs with extended release characteristics for ocular administration.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Sahar Awwad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
| | - Steve Brocchini
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- Correspondence: (A.G.); (A.W.B.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- Correspondence: (A.G.); (A.W.B.)
| |
Collapse
|
48
|
Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles:Gallic Acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater 2021; 128:262-276. [PMID: 33866034 DOI: 10.1016/j.actbio.2021.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Contact lenses are widely used for visual corrections. However, while wearing contact lenses, eyes typically face discomforts (itching, irritation, burning, etc.) due to foreign object sensation, lack of oxygen permeability, and tear film disruption as opposed to a lack of wetting agents. Eyes are also prone to ocular infections such as bacterial keratitis (BK) and fungal keratitis (FK) and inflammatory events such as contact lens-related acute red eye (CLARE), contact lens peripheral ulcer (CLPU), and infiltrative keratitis (IK) caused by pathogenic bacterial and fungal strains that contaminate contact lenses. Therefore, a good design of contact lenses should adequately address the need for wetting, the supply of antioxidants, and antifouling and antimicrobial efficacy. Here, we developed multifunctional gallic acid (GA), phytomolecules-coated zinc oxide nanoparticles (ZN), and phytomolecules-coated zinc oxide nanoparticles + gallic acid + tobramycin (ZGT)-coated contact lenses using a sonochemical technique. The coated contact lenses exhibited significant antibacterial (>log10 5.60), antifungal, and antibiofilm performance against BK-causing multidrug resistant bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia. coli) and FK-related pathogenic fungal strains (Candida albicans, Aspergillus fumigatus, and Fusarium solani). The gallic acid, tobramycin, and phytomolecules-coated zinc oxide nanoparticles have different functionalities (-OH, -NH2, -COOH, -COH, etc.) that enhanced wettability of the coated contact lenses as compared to that of uncoated ones and further enabled them to exhibit remarkable antifouling property by prohibiting adhesion of platelets and proteins. The coated contact lenses also showed significant antioxidant activity by scavenging DPPH and good cytocompatibility to human corneal epithelial cells and keratinocytes cell lines. STATEMENT OF SIGNIFICANCE: • Multifunctional coated lenses were developed with an efficient sonochemical approach. • Lens surface was modified with nanocoatings of ZnO nanoparticles, gallic acid, and tobramycin. • This synergistic combination endowed the lenses with remarkable antimicrobial activity. • Coated lenses also showed noteworthy antifouling and biofilm inhibition activities. • Coated lenses showed good antioxidant, biocompatibility, and wettability characteristics.
Collapse
|
49
|
Dennyson Savariraj A, Salih A, Alam F, Elsherif M, AlQattan B, Khan AA, Yetisen AK, Butt H. Ophthalmic Sensors and Drug Delivery. ACS Sens 2021; 6:2046-2076. [PMID: 34043907 PMCID: PMC8294612 DOI: 10.1021/acssensors.1c00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed.
Collapse
Affiliation(s)
| | - Ahmed Salih
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fahad Alam
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Elsherif
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bader AlQattan
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ammar A. Khan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Ali K. Yetisen
- Department
of Physics, Lahore University of Management
Sciences, Lahore Cantonment 54792, Lahore, Pakistan
| | - Haider Butt
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
50
|
Yin C, Qi X, Wu J, Guo C, Wu X. Therapeutic contact lenses fabricated by hyaluronic acid and silver incorporated bovine serum albumin porous films for the treatment of alkali-burned corneal wound. Int J Biol Macromol 2021; 184:713-720. [PMID: 34181997 DOI: 10.1016/j.ijbiomac.2021.06.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
Hyaluronic acid (HA) was covalently linked to the surface of bovine serum albumin/silver (BSA/Ag) porous films to fabricate a possible contact lens. The BSA/Ag/HA films showed favorable properties as contact lenses, including acceptable transparency, high water content, good hemocompatibility, non-cytotoxicity and antibacterial properties. The therapeutic potential of the BSA/Ag/HA films was evaluated on an alkali burn-induced corneal injury model on mice. The corneal healing rate was enhanced, the corneal opacification and neovascularization were lessened, and the inflammation response was reduced. The chemical cross-linking of HA on the films prolonged the retention time of HA on the corneal surface, thus enhanced the drug efficacy and improved the patient compliance, proving the high potential of BSA/Ag/HA films as contact lenses.
Collapse
Affiliation(s)
- Chuanjin Yin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Jing Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| |
Collapse
|