1
|
Yang D, Huang R, Zou B, Wang R, Wang Y, Ang EH, Song X. Unraveling nanosprings: morphology control and mechanical characterization. MATERIALS HORIZONS 2024; 11:3500-3527. [PMID: 38864466 DOI: 10.1039/d4mh00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nanosprings demonstrate promising mechanical characteristics, positioning them as pivotal components in a diverse array of potential nanoengineering applications. To unlock the full potential of these nanosprings, ongoing research is concentrated on emulating springs at the nanoscale in terms of both morphology and function. This review underscores recent advancements in the field and provides a comprehensive overview of the diverse methods employed for nanospring preparation. Understanding the general mechanism behind nanospring formation lays the groundwork for the informed design of nanosprings. The synthesis section delineates four prominent methods employed for nanospring fabrication: vapor phase synthesis, templating methods, post-treatment techniques, and molecular engineering. Each method is critically analyzed, highlighting its strengths, limitations, and potential for scalability. Mechanical properties of nanosprings are explored in depth, discussing their response to external stimuli and their potential applications in various fields such as sensing, energy storage, and biomedical engineering. The interplay between nanospring morphology and mechanical behavior is elucidated, providing insights into the design principles for tailored functionality. Additionally, we anticipate that the evolution of state-of-the-art characterization tools, such as in situ transmission electron microscopy, 3D electron tomography, and machine learning, will significantly contribute to both the study of nanospring mechanisms and their applications.
Collapse
Affiliation(s)
- Dahai Yang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Rui Huang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Bolin Zou
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Ruoxu Wang
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yong Wang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| |
Collapse
|
2
|
Zhang Z, Wu B, Wang Y, Cai T, Ma M, You C, Liu C, Jiang G, Hu Y, Li X, Chen XZ, Song E, Cui J, Huang G, Kiravittaya S, Mei Y. Multilevel design and construction in nanomembrane rolling for three-dimensional angle-sensitive photodetection. Nat Commun 2024; 15:3066. [PMID: 38594254 PMCID: PMC11004118 DOI: 10.1038/s41467-024-47405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Binmin Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yang Wang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Tianjun Cai
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Mingze Ma
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chunyu You
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Guobang Jiang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yuhang Hu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xing Li
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiang-Zhong Chen
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jizhai Cui
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Suwit Kiravittaya
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China.
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
3
|
Sakharova NA, Antunes JM, Pereira AFG, Chaparro BM, Parreira TG, Fernandes JV. Numerical Evaluation of the Elastic Moduli of AlN and GaN Nanosheets. MATERIALS (BASEL, SWITZERLAND) 2024; 17:799. [PMID: 38399050 PMCID: PMC10890007 DOI: 10.3390/ma17040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Two-dimensional (2D) nanostructures of aluminum nitride (AlN) and gallium nitride (GaN), called nanosheets, have a graphene-like atomic arrangement and represent novel materials with important upcoming applications in the fields of flexible electronics, optoelectronics, and strain engineering, among others. Knowledge of their mechanical behavior is key to the correct design and enhanced functioning of advanced 2D devices and systems based on aluminum nitride and gallium nitride nanosheets. With this background, the surface Young's and shear moduli of AlN and GaN nanosheets over a wide range of aspect ratios were assessed using the nanoscale continuum model (NCM), also known as the molecular structural mechanics (MSM) approach. The NCM/MSM approach uses elastic beam elements to represent interatomic bonds and allows the elastic moduli of nanosheets to be evaluated in a simple way. The surface Young's and shear moduli calculated in the current study contribute to building a reference for the evaluation of the elastic moduli of AlN and GaN nanosheets using the theoretical method. The results show that an analytical methodology can be used to assess the Young's and shear moduli of aluminum nitride and gallium nitride nanosheets without the need for numerical simulation. An exploratory study was performed to adjust the input parameters of the numerical simulation, which led to good agreement with the results of elastic moduli available in the literature. The limitations of this method are also discussed.
Collapse
Affiliation(s)
- Nataliya A. Sakharova
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
| | - Jorge M. Antunes
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
- Abrantes High School of Technology, Polytechnic Institute of Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal;
| | - André F. G. Pereira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
| | - Bruno M. Chaparro
- Abrantes High School of Technology, Polytechnic Institute of Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal;
| | - Tomás G. Parreira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
| | - José V. Fernandes
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (T.G.P.); (J.V.F.)
| |
Collapse
|
4
|
Duan Y, Che S. Chiral Mesostructured Inorganic Materials with Optical Chiral Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205088. [PMID: 36245314 DOI: 10.1002/adma.202205088] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Fabricating chiral inorganic materials and revealing their unique quantum confinement-determined optical chiral responses are crucial tasks in the multidisciplinary fields of chemistry, physics, and biology. The field of chiral mesostructured inorganic materials started from the synthesis of individual nanocrystals and evolved to include their assembly from metals, semiconductors, ceramics, and inorganic salts endowed with various chiral structures ranging from atomic to micron scales. This tutorial review highlights the recent research on chiral mesostructured inorganic materials, especially the novel expression of mesostructured chirality and endowed optical chiral response, and it may inspire us with new strategies for the design of chiral inorganic materials and new opportunities beyond the traditional applications of chirality. Fabrication methods for chiral mesostructured inorganic materials are classified according to chirality type, scale, and symmetry-breaking mechanism. Special attention is given to highlight systems with original discoveries, exceptional phenomena, or unique mechanisms of optical chiral response for left- and right-handedness.
Collapse
Affiliation(s)
- Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Matrix Composite, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Zhang J, Reif J, Strobel C, Chava P, Erbe A, Voigt A, Mikolajick T, Kirchner R. Dry release of MEMS origami using thin Al2O3 films for facet-based device integration. MICRO AND NANO ENGINEERING 2023. [DOI: 10.1016/j.mne.2023.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Wang H, Lu S, Wang B. Computational analysis of geometric structures and edge‐termination effects of boron‐nitride and edge‐termination boron‐nitride nanoribbons. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Houng‐Wei Wang
- Center for Condensed Matter Sciences National Taiwan University Taipei Taiwan
| | - Shih‐I Lu
- Department of Chemistry Soochow University Taipei Taiwan
| | - Bo‐Cheng Wang
- Department of Chemistry Tamkang University Tamsui Taiwan
| |
Collapse
|
7
|
Huang J, Huang G, Zhao Z, Wang C, Cui J, Song E, Mei Y. Nanomembrane-assembled nanophotonics and optoelectronics: from materials to applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:093001. [PMID: 36560918 DOI: 10.1088/1361-648x/acabf3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanophotonics and optoelectronics are the keys to the information transmission technology field. The performance of the devices crucially depends on the light-matter interaction, and it is found that three-dimensional (3D) structures may be associated with strong light field regulation for advantageous application. Recently, 3D assembly of flexible nanomembranes has attracted increasing attention in optical field, and novel optoelectronic device applications have been demonstrated with fantastic 3D design. In this review, we first introduce the fabrication of various materials in the form of nanomembranes. On the basis of the deformability of nanomembranes, 3D structures can be built by patterning and release steps. Specifically, assembly methods to build 3D nanomembrane are summarized as rolling, folding, buckling and pick-place methods. Incorporating functional materials and constructing fine structures are two important development directions in 3D nanophotonics and optoelectronics, and we settle previous researches on these two aspects. The extraordinary performance and applicability of 3D devices show the potential of nanomembrane assembly for future optoelectronic applications in multiple areas.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhe Zhao
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Chao Wang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Jizhai Cui
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongfeng Mei
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
8
|
Khandelwal A, Ren Z, Namiki S, Yang Z, Choudhary N, Li C, Wang P, Mi Z, Li X. Self-Rolled-Up Aluminum Nitride-Based 3D Architectures Enabled by Record-High Differential Stress. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29014-29024. [PMID: 35700345 DOI: 10.1021/acsami.2c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aluminum nitride (AlN) continues to kindle considerable interest in various microelectromechanical system (MEMS)-related fields because of its superior optical, mechanical, thermal, and piezoelectric properties. In this study, we use magnetron sputtering to tailor intrinsic stress in AlN thin films from highly compressive (-1200 MPa) to highly tensile (+700 MPa), with a differential stress of 1900 MPa. By monolithically combining the compressive and tensile ultrathin AlN bilayer membranes (20-60 nm) during deposition, perfectly curved three-dimensional (3D) architectures are spontaneously formed upon dry-releasing from the substrate via a 3D MEMS approach: the complementary metal-oxide-semiconductor (CMOS)-compatible strain-induced self-rolled-up membrane (S-RuM) method. The thermal stability of the AlN 3D architectures is examined, and the curvature of S-RuM microtubes and helical structures as a function of the cumulative membrane thickness and stress are characterized experimentally and simulated using a finite-element physiomechanic method. By combining AlN with various materials such as metal (Cu) and silicon nitride (SiNx), AlN-based hybrid S-RuM microtubes with diameters as small as ∼6 μm are demonstrated with a near-unity yield (∼99%). Compared with other stressed thin films for S-RuMs, including PECVD SiNx, magnetron-sputtered AlN-based S-RuMs show better structural controllability and versatility, probably due to the high Young's modulus and stress uniformity. This work establishes the sputtered AlN thin film as a superior stress-configurable S-RuM shell material for high-performance applications in miniaturizing and integrating electronic components beyond those based on other materials such as SiNx. In addition, for the first time, a single-crystal Al1-xScxN/AlN bilayer grown by molecular beam epitaxy is successfully rolled-up with the diameter varying from ∼9 to 14 μm, paving the way for 3D tubular Al1-xScxN piezoelectric devices.
Collapse
Affiliation(s)
- Apratim Khandelwal
- Department of Electrical and Computer Engineering, Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhongjie Ren
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Shunya Namiki
- Department of Electrical and Computer Engineering, Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhendong Yang
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Nitin Choudhary
- Plasma-Therm LLC, 1051 North Fiesta Blvd., Suite 3, Gilbert, Maricopa, Arizona 85233, United States
| | - Chao Li
- Plasma-Therm LLC, 1051 North Fiesta Blvd., Suite 3, Gilbert, Maricopa, Arizona 85233, United States
| | - Ping Wang
- Department of Electrical Engineering and Computer Science (EECS), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science (EECS), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiuling Li
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
9
|
Ibrahim Q, Creedon L, Gharbia S. A Literature Review of Modelling and Experimental Studies of Water Treatment by Adsorption Processes on Nanomaterials. MEMBRANES 2022; 12:360. [PMID: 35448329 PMCID: PMC9029349 DOI: 10.3390/membranes12040360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
A significant growth in the future demand for water resources is expected. Hence researchers have focused on finding new technologies to develop water filtration systems by using experimental and simulation methods. These developments were mainly on membrane-based separation technology, and photocatalytic degradation of organic pollutants which play an important role in wastewater treatment by means of adsorption technology. In this work, we provide valuable critical review of the latest experimental and simulation methods on wastewater treatment by adsorption on nanomaterials for the removal of pollutants. First, we review the wastewater treatment processes that were carried out using membranes and nanoparticles. These processes are highlighted and discussed in detail according to the rate of pollutant expulsion, the adsorption capacity, and the effect of adsorption on nanoscale surfaces. Then we review the role of the adsorption process in the photocatalytic degradation of pollutants in wastewater. We summarise the comparison based on decomposition ratios and degradation efficiency of pollutants. Therefore, the present article gives an evidence-based review of the rapid development of experimental and theoretical studies on wastewater treatment by adsorption processes. Lastly, the future direction of adsorption methods on water filtration processes is indicated.
Collapse
Affiliation(s)
| | | | - Salem Gharbia
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland; (Q.I.); (L.C.)
| |
Collapse
|
10
|
Khandelwal A, Athreya N, Tu MQ, Janavicius LL, Yang Z, Milenkovic O, Leburton JP, Schroeder CM, Li X. Self-assembled microtubular electrodes for on-chip low-voltage electrophoretic manipulation of charged particles and macromolecules. MICROSYSTEMS & NANOENGINEERING 2022; 8:27. [PMID: 35310513 PMCID: PMC8882674 DOI: 10.1038/s41378-022-00354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
On-chip manipulation of charged particles using electrophoresis or electroosmosis is widely used for many applications, including optofluidic sensing, bioanalysis and macromolecular data storage. We hereby demonstrate a technique for the capture, localization, and release of charged particles and DNA molecules in an aqueous solution using tubular structures enabled by a strain-induced self-rolled-up nanomembrane (S-RuM) platform. Cuffed-in 3D electrodes that are embedded in cylindrical S-RuM structures and biased by a constant DC voltage are used to provide a uniform electrical field inside the microtubular devices. Efficient charged-particle manipulation is achieved at a bias voltage of <2-4 V, which is ~3 orders of magnitude lower than the required potential in traditional DC electrophoretic devices. Furthermore, Poisson-Boltzmann multiphysics simulation validates the feasibility and advantage of our microtubular charge manipulation devices over planar and other 3D variations of microfluidic devices. This work lays the foundation for on-chip DNA manipulation for data storage applications.
Collapse
Affiliation(s)
- Apratim Khandelwal
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Nagendra Athreya
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Michael Q. Tu
- Department of Chemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Lukas L. Janavicius
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Zhendong Yang
- Department of Electrical and Computer Engineering, Microelectronics Research Center, University of Texas, Austin, TX 78758 USA
| | - Olgica Milenkovic
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Jean-Pierre Leburton
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Charles M. Schroeder
- Department of Chemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Xiuling Li
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
- Department of Electrical and Computer Engineering, Microelectronics Research Center, University of Texas, Austin, TX 78758 USA
| |
Collapse
|
11
|
Song P, Fu H, Wang Y, Chen C, Ou P, Rashid RT, Duan S, Song J, Mi Z, Liu X. A microfluidic field-effect transistor biosensor with rolled-up indium nitride microtubes. Biosens Bioelectron 2021; 190:113264. [PMID: 34225055 DOI: 10.1016/j.bios.2021.113264] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
Field-effect-transistor (FET) biosensors capable of rapidly detecting disease-relevant biomarkers have long been considered as a promising tool for point-of-care (POC) diagnosis. Rolled-up nanotechnology, as a batch fabrication strategy for generating three-dimensional (3D) microtubes, has been demonstrated to possess unique advantages for constructing FET biosensors. In this paper, we report a new approach combining the two fascinating technologies, the FET biosensor and the rolled-up microtube, to develop a microfluidic diagnostic biosensor. We integrated an excellent biosensing III-nitride material-indium nitride (InN)-into a rolled-up microtube and used it as the FET channel. The InN possesses strong, intrinsic, and stable electron accumulation (~1013 cm-2) on its surface, thereby providing a high device sensitivity. Multiple rolled-up InN microtube FET biosensors fabricated on the same substrate were integrated with a microfluidic channel for convenient fluids handling, and shared the same external electrode (inserted into the microchannel outlet) for gating voltage modulation. Using human immunodeficiency virus (HIV) antibody as a model disease marker, we characterized the analytical performance of the developed biosensor and achieved a limit of detection (LOD) of 2.5 pM for serum samples spiked with HIV gp41 antibodies. The rolled-up InN microtube FET biosensor represents a new type of III-nitride-based FET biosensor and holds significant potential for practical POC diagnosis.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada; School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Hao Fu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada
| | - Yongjie Wang
- School of Science, Harbin Institute of Technology-Shenzhen, 1 Pingshan Road, Shenzhen, 518000, China
| | - Cheng Chen
- School of Aeronautics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, 710000, China
| | - Pengfei Ou
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, H3A 0C5, Canada
| | - Roksana Tonny Rashid
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, 215000, China
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, H3A 0C5, Canada
| | - Zetian Mi
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, H3A 0E9, Canada; Department Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
| |
Collapse
|
12
|
Ahmed I, Shuai Y, Rafique M, Mahar MA, Larik AS. Tailoring spintronic and opto-electronic characteristics of bilayer AlN through MnO x clusters intercalation; an ab initio study. RSC Adv 2021; 11:15167-15176. [PMID: 35424022 PMCID: PMC8698386 DOI: 10.1039/d1ra01532j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Adopting ab initio density functional theory (DFT) technique, the spintronic and opto-electronic characteristics of MnO x (i.e., Mn, MnO, MnO2, MnO3 and MnO4) clusters intercalated bilayer AlN (BL/AlN) systems are investigated in this paper. In terms of electron transfer, charge transfer occurs from BL/AlN to the MnO x clusters. MnO x clusters intercalation induces magnetic behavior in the non-magnetic AlN system. The splitting of electronic bands occurs, thus producing spintronic trends in the electronic structure of BL/AlN system. Further, MnO x intercalation converts insulating BL/AlN to a half metal/semiconductor material during spin up/down bands depending upon the type of impurity cluster present in its lattice. For instance, Mn, MnO and MnO2 intercalation in BL/AlN produces a half metallic BL/AlN system as surface states are available at the Fermi Energy (E F) level for spin up and down band channels, accordingly. Whereas, MnO3 and MnO4 intercalation produces a conducting BL/AlN system having a 0.5 eV and 0.6 eV band gap during the spin down band channel, respectively. During spin up band channels these systems behave as semiconductors with band gaps of 1.4 eV and 1.2 eV, respectively. In terms of optical characteristics (i.e., absorption coefficient, reflectivity and energy loss spectrum (ELS)), it was found that MnO x intercalation improves the absorption spectrum in the low electron energy range and absorption peaks are observed in the 0-3 eV energy range, which are not present in the absorption spectrum of pure BL/AlN. The static reflectivity parameter of BL/AlN is increased after MnO x intercalation and the ELS parameter obtains significant peak intensities in the 0-2 eV energy range, whereas for pure BL/AlN, ELS contains negligible value in this energy range. Outcomes of this study indicate that, MnO x clusters intercalation in BL/AlN is a suitable technique to tailor its spintronic and opto-electronic trends. Thus, experimental investigation can be carried out on the systems discussed in this work, so as to fabricate practical layered AlN systems that are functional in the field of nano-technology.
Collapse
Affiliation(s)
- Irfan Ahmed
- Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs' Pakistan
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology 92 West Dazhi Street Harbin 150001 PR China
| | - Muhammad Rafique
- Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs' Pakistan
- School of Energy Science and Engineering, Harbin Institute of Technology 92 West Dazhi Street Harbin 150001 PR China
| | - Mukhtiar Ahmed Mahar
- Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs' Pakistan
- Mehran University of Engineering and Technology Jamshoro Sindh Pakistan
| | - Abdul Sattar Larik
- Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs' Pakistan
- Mehran University of Engineering and Technology Jamshoro Sindh Pakistan
| |
Collapse
|
13
|
Jakšić Z, Jakšić O. Biomimetic Nanomembranes: An Overview. Biomimetics (Basel) 2020; 5:E24. [PMID: 32485897 PMCID: PMC7345464 DOI: 10.3390/biomimetics5020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Nanomembranes are the principal building block of basically all living organisms, and without them life as we know it would not be possible. Yet in spite of their ubiquity, for a long time their artificial counterparts have mostly been overlooked in mainstream microsystem and nanosystem technologies, being a niche topic at best, instead of holding their rightful position as one of the basic structures in such systems. Synthetic biomimetic nanomembranes are essential in a vast number of seemingly disparate fields, including separation science and technology, sensing technology, environmental protection, renewable energy, process industry, life sciences and biomedicine. In this study, we review the possibilities for the synthesis of inorganic, organic and hybrid nanomembranes mimicking and in some way surpassing living structures, consider their main properties of interest, give a short overview of possible pathways for their enhancement through multifunctionalization, and summarize some of their numerous applications reported to date, with a focus on recent findings. It is our aim to stress the role of functionalized synthetic biomimetic nanomembranes within the context of modern nanoscience and nanotechnologies. We hope to highlight the importance of the topic, as well as to stress its great applicability potentials in many facets of human life.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | | |
Collapse
|
14
|
Karnaushenko D, Kang T, Bandari VK, Zhu F, Schmidt OG. 3D Self-Assembled Microelectronic Devices: Concepts, Materials, Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902994. [PMID: 31512308 DOI: 10.1002/adma.201902994] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self-assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin-film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self-assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.
Collapse
Affiliation(s)
- Daniil Karnaushenko
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
| | - Tong Kang
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
| | - Vineeth K Bandari
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
| | - Feng Zhu
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, 01069, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, 09107, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Rosenbergstraße 6, TU Chemnitz, Chemnitz, 09126, Germany
- School of Science, TU Dresden, Dresden, 01062, Germany
| |
Collapse
|
15
|
Kimura T, Sato S, Kataoka K, Morikawa T, Nakamura D. Self-Assembled Single-Crystalline GaN Having a Bimodal Meso/Macropore Structure To Enhance Photoabsorption and Photocatalytic Reactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4233-4241. [PMID: 30608116 DOI: 10.1021/acsami.8b18088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper describes the self-assembled fabrication of single-crystal GaN with a bimodal pore (meso/macropore) size distribution (BiPS-GaN). A 4.7 μm-thick BiPS-GaN layer was grown spontaneously using halogen-free vapor phase epitaxy in conjunction with boron impurity doping (>1 × 1019 atoms/cm3) on a GaN template fabricated via metalorganic chemical vapor deposition (MOCVD-GaN). The boron impurity acted as a surfactant, and its segregation generated a dense (>1 × 1010 cm-2), homogeneous distribution of mesopores with sizes of 30-40 nm in GaN during growth. In addition, macropores with sizes of 0.1-2 μm were produced by the fusion of mesopores in close proximity to one another. As a result, BiPS-GaN exhibited a high density of both meso- and macropores, all aligned in the vertical direction (that is, along the c axis). BiPS-GaN showed good electroconductivity and almost the same high degree of crystallinity as the MOCVD-GaN template. Furthermore, the hybrid meso/macropore structure of BiPS-GaN imparted excellent photoabsorption properties and allowed this material to work as an efficient support for a nanosized IrO x catalyst. The photocurrent density in BiPS-GaN was enhanced by as much as a factor of 5 compared to planar GaN by effective absorption due to the hybrid meso/macropore structure of BiPS-GaN. Moreover, the oxygen generation efficiency of BiPS-GaN with the IrO x catalyst was approximately doubled, compared to that of BiPS-GaN without IrO x, while maintaining long-term stability. These results demonstrate that BiPS-GaN fabricated in this facile manner has significant potential in applications such as photoelectrochemical reactions and catalysis.
Collapse
Affiliation(s)
- Taishi Kimura
- Toyota Central R&D Labs., Inc. , Nagakute , Aichi 480-1192 , Japan
| | - Shunsuke Sato
- Toyota Central R&D Labs., Inc. , Nagakute , Aichi 480-1192 , Japan
| | - Keita Kataoka
- Toyota Central R&D Labs., Inc. , Nagakute , Aichi 480-1192 , Japan
| | - Takeshi Morikawa
- Toyota Central R&D Labs., Inc. , Nagakute , Aichi 480-1192 , Japan
| | - Daisuke Nakamura
- Toyota Central R&D Labs., Inc. , Nagakute , Aichi 480-1192 , Japan
| |
Collapse
|
16
|
Chen C, Song P, Meng F, Ou P, Liu X, Song J. Effect of topological patterning on self-rolling of nanomembranes. NANOTECHNOLOGY 2018; 29:345301. [PMID: 29848800 DOI: 10.1088/1361-6528/aac8fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of topological patterning (i.e., grating and rectangular patterns) on the self-rolling behaviors of heteroepitaxial strained nanomembranes have been systematically studied. An analytical modeling framework, validated through finite-element simulations, has been formulated to predict the resultant curvature of the patterned nanomembrane as the pattern thickness and density vary. The effectiveness of the grating pattern in regulating the rolling direction of the nanomembrane has been demonstrated and quantitatively assessed. Further to the rolling of nanomembranes, a route to achieve predictive design of helical structures has been proposed and showcased. The present study provides new knowledge and mechanistic guidance towards predictive control and tuning of roll-up nanostructures via topological patterning.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Materials Engineering, McGill University, Montréal, Québec H3A0C5, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Song E, Guo Q, Huang G, Jia B, Mei Y. Bendable Photodetector on Fibers Wrapped with Flexible Ultrathin Single Crystalline Silicon Nanomembranes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12171-12175. [PMID: 28351140 DOI: 10.1021/acsami.7b02123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silicon (Si) nanomembranes (NMs) enable conformal covering on complicated surfaces for novel applications. We adopt classical fibers as flexible/curved substrates and wrap them with freestanding ultrathin Si-NMs with a thickness of ∼20 nm. Intrinsic defects in single-crystalline Si-NMs provide a flow path for hydrofluoric acid (HF) to release the NM with a consecutive area of ∼0.25 cm2. Such Si-NMs with ultralow flexural rigidities are transferred onto a single-mode fiber (SMF) and functionalized into bendable photodetectors, which detects the leaked light when the fiber is bent. Our demonstration exemplifies optoelectronic applications in flexible photodetector for Si-NMs in a three-dimensional (3D) geometry.
Collapse
Affiliation(s)
- Enming Song
- Department of Materials Science, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Qinglei Guo
- Department of Materials Science, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Gaoshan Huang
- Department of Materials Science, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Bo Jia
- Department of Materials Science, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University , 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
18
|
Peng L, Zhu J, Agarwal S. Self-Rolled Porous Hollow Tubes Made up of Biodegradable Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ling Peng
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | - Jian Zhu
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | - Seema Agarwal
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
19
|
ElAfandy RT, AbuElela AF, Mishra P, Janjua B, Oubei HM, Büttner U, Majid MA, Ng TK, Merzaban JS, Ooi BS. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603080. [PMID: 27879037 DOI: 10.1002/smll.201603080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/29/2016] [Indexed: 05/23/2023]
Abstract
Knowledge of materials' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.
Collapse
Affiliation(s)
- Rami T ElAfandy
- Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ayman F AbuElela
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Pawan Mishra
- Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bilal Janjua
- Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hassan M Oubei
- Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ulrich Büttner
- Microfluidics Core Lab, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohammed A Majid
- Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tien Khee Ng
- Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jasmeen S Merzaban
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Glugla DJ, Alim MD, Byars KD, Nair DP, Bowman CN, Maute KK, McLeod RR. Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29658-29667. [PMID: 27802605 DOI: 10.1021/acsami.6b08981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.
Collapse
Affiliation(s)
- David J Glugla
- Department of Electrical, Computer, and Energy Engineering, University of Colorado , UCB 425, Boulder, Colorado 80309, United States
| | - Marvin D Alim
- Materials Science and Engineering Program, University of Colorado , UCB 596 Boulder, Colorado 80309, United States
| | - Keaton D Byars
- Department of Chemical and Biological Engineering, University of Colorado , UCB 596, Boulder, Colorado 80309, United States
| | - Devatha P Nair
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado , UCB 596, Boulder, Colorado 80309, United States
| | - Kurt K Maute
- Department of Aerospace Engineering, University of Colorado , UCB 429, Boulder, Colorado 80309, United States
| | - Robert R McLeod
- Department of Electrical, Computer, and Energy Engineering, University of Colorado , UCB 425, Boulder, Colorado 80309, United States
| |
Collapse
|
21
|
Possible sequestration of polar gas molecules by superhalogen supported aluminum nitride nanoflakes. J Mol Model 2016; 22:271. [DOI: 10.1007/s00894-016-3153-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/13/2016] [Indexed: 12/25/2022]
|
22
|
|
23
|
Djavid M, Liu X, Mi Z. Improvement of the light extraction efficiency of GaN-based LEDs using rolled-up nanotube arrays. OPTICS EXPRESS 2014; 22 Suppl 7:A1680-A1686. [PMID: 25607481 DOI: 10.1364/oe.22.0a1680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we have investigated the effect of rolled-up nanotubes on the light extraction efficiency of GaN-based LEDs using two-dimensional finite element method simulation. The light extraction involves two successive steps, including the coupling from the light source to the tube and the subsequent emission from the tube to the air. Significantly enhanced light extraction efficiency is observed for both TE and TM waves by optimizing the nanotube geometry and dimension as well as the separation between the nanotube and light source. We have further shown that densely packed nanotube arrays can be integrated with GaN-based LEDs to achieve unequivocal improvement of light extraction efficiency over a large surface area. With recent advances in rolled-up micro- and nanotubes, it is expected that this study can offer a potentially flexible, low cost approach to enhance the light extraction of various LED devices.
Collapse
|
24
|
Fa W, Chen S, Zeng XC. Boron-nitride and aluminum-nitride "Pringles" and flapping motion. Chem Commun (Camb) 2014; 50:7444-6. [PMID: 24874213 DOI: 10.1039/c4cc02294g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Motivated by the recent successful synthesis of a new nanocarbon, namely, a warped, double-concave graphene "Pringle" (Nat. Chem., 2013, 5, 739), we investigate properties of warped boron-nitride (BN) and aluminum-nitride (AlN) analogues, i.e., the non-planar B40N40H30 and Al40N40H30 "Pringles" using density functional theory (DFT) calculations. Particular attention is placed on the effect of non-hexagonal rings on the stability and physical properties of BN and AlN Pringles. We find that the warped BN and AlN Pringles with one pentagon and five heptagons are stable without imaginary frequencies. Both the warped B40N40H30 and Al40N40H30 Pringles are expected to be flexible in solution as both can periodically change their shape in a dynamic "flapping" fashion due to their much lower activation barrier of racemization compared to that of the C80H30 counterpart. Since the warped B40N40H30 possesses a smaller HOMO-LUMO gap than the planar B39N39H30, it is expected that incorporating non-hexagonal ring defects by design can be an effective way to modify electronic properties of BN-based nanoplates.
Collapse
Affiliation(s)
- Wei Fa
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China.
| | | | | |
Collapse
|
25
|
Malachowski K, Jamal M, Jin Q, Polat B, Morris C, Gracias DH. Self-folding single cell grippers. NANO LETTERS 2014; 14:4164-70. [PMID: 24937214 PMCID: PMC4096189 DOI: 10.1021/nl500136a] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/05/2014] [Indexed: 05/12/2023]
Abstract
Given the heterogeneous nature of cultures, tumors, and tissues, the ability to capture, contain, and analyze single cells is important for genomics, proteomics, diagnostics, therapeutics, and surgery. Moreover, for surgical applications in small conduits in the body such as in the cardiovascular system, there is a need for tiny tools that approach the size of the single red blood cells that traverse the blood vessels and capillaries. We describe the fabrication of arrayed or untethered single cell grippers composed of biocompatible and bioresorbable silicon monoxide and silicon dioxide. The energy required to actuate these grippers is derived from the release of residual stress in 3-27 nm thick films, did not require any wires, tethers, or batteries, and resulted in folding angles over 100° with folding radii as small as 765 nm. We developed and applied a finite element model to predict these folding angles. Finally, we demonstrated the capture of live mouse fibroblast cells in an array of grippers and individual red blood cells in untethered grippers which could be released from the substrate to illustrate the potential utility for in vivo operations.
Collapse
Affiliation(s)
- Kate Malachowski
- Department
of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United
States
| | - Mustapha Jamal
- Department
of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United
States
| | - Qianru Jin
- Department
of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United
States
| | - Beril Polat
- Department
of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United
States
| | - Christopher
J. Morris
- United
States Army Research Laboratory, Sensors
and Electron Devices Directorate, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - David H. Gracias
- Department
of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United
States
| |
Collapse
|
26
|
|
27
|
Abstract
Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.
Collapse
Affiliation(s)
- Yong Wang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | | | | | | |
Collapse
|
28
|
Xu D, He H, Pandey R, Karna SP. Stacking and electric field effects in atomically thin layers of GaN. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:345302. [PMID: 23896638 DOI: 10.1088/0953-8984/25/34/345302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Atomically thin layers of nitrides are a subject of interest due to their novel applications. In this paper, we focus on GaN multilayers, investigating their stability and the effects of stacking and electric fields on their electronic properties in the framework of density functional theory. Both bilayers and trilayers prefer a planar configuration rather than a buckled bulk-like configuration. The application of an external perpendicular electric field induces distinct stacking-dependent features in the electronic properties of nitride multilayers: the band gap of a monolayer does not change whereas that of a trilayer is significantly reduced. Such a stacking-dependent tunability of the band gap in the presence of an applied field suggests that multilayer GaN is a good candidate material for next generation devices at the nanoscale.
Collapse
Affiliation(s)
- Dongwei Xu
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
29
|
Amorim RG, Zhong X, Mukhopadhyay S, Pandey R, Rocha AR, Karna SP. Strain- and electric field-induced band gap modulation in nitride nanomembranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:195801. [PMID: 23604312 DOI: 10.1088/0953-8984/25/19/195801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts.
Collapse
Affiliation(s)
- Rodrigo G Amorim
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | | | | | |
Collapse
|
30
|
Dai L, Zhang L. Directional scrolling of SiGe/Si/Cr nanoribbon on Si(111) surfaces controlled by two-fold rotational symmetry underetching. NANOSCALE 2013; 5:971-976. [PMID: 23238226 DOI: 10.1039/c2nr32515b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The controllable fabrication of self-scrolling SiGe/Si/Cr helical nanoribbons on Si(111) substrates is investigated. The initial lateral etching profile of the Si(111) substrates shows a 2-fold rotational symmetry using 4% ammonia solution, which provides guidance for initial scrolling of one-end-fixed nanoribbons to form helical structures. The chirality of the SiGe/Si/Cr helices with isotropic Young's moduli is governed by the anisotropic underetching in the initial stage, which can be precisely judged, as the orientation of the ribbon is predesigned. Furthermore, the helicity angle and radius of the formed helices are investigated by the lateral etching behavior and Cosserat curve theory of the Si(111) substrates, respectively, which are consistent with the experimental data. The present work provides the scrolling rule of nanoribbons with an isotropic Young's modulus and anisotropic underetching in the formation of micro-/nanohelices.
Collapse
Affiliation(s)
- Lu Dai
- School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215011, China.
| | | |
Collapse
|
31
|
Bilousov OV, Carvajal JJ, Drouin D, Mateos X, Díaz F, Aguiló M, O'Dwyer C. Reduced workfunction intermetallic seed layers allow growth of porous n-GaN and low resistivity, ohmic electron transport. ACS APPLIED MATERIALS & INTERFACES 2012; 4:6927-6934. [PMID: 23167596 DOI: 10.1021/am3020668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Porous GaN crystals have been successfully grown and electrically contacted simultaneously on Pt- and Au-coated silicon substrates as porous crystals and as porous layers. By the direct reaction of metallic Ga and NH(3) gas through chemical vapor deposition, intermetallic metal-Ga alloys form at the GaN-metal interface, allowing vapor-solid-solid seeding and subsequent growth of porous GaN. Current-voltage and capacitance-voltage measurements confirm that the intermetallic seed layers prevent interface oxidation and give a high-quality reduced workfunction contact that allows exceptionally low contact resistivities. Additionally, the simultaneous formation of a lower workfunction intermetallic permits ohmic electron transport to n-type GaN grown using high workfunction metals that best catalyze the formation of porous GaN layers and may be employed to seed and ohmically contact a range of III-N compounds and alloys for broadband absorption and emission.
Collapse
Affiliation(s)
- Oleksandr V Bilousov
- Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), Marcellí Domingo s/n, E-43007 Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu JW, Xu J, Ni Y, Fan FJ, Zhang CL, Yu SH. A family of carbon-based nanocomposite tubular structures created by in situ electron beam irradiation. ACS NANO 2012; 6:4500-4507. [PMID: 22530775 DOI: 10.1021/nn301310m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report a unique approach for the fabrication of a family of curling tubular nanostructures rapidly created by a rolling up of carbon membranes under in situ TEM electron beam irradiation. Multiwall tubes can also be created if irradiation by electron beam is performed long enough. This general approach can be extended to curve the conductive carbon film loaded with various functional nanomaterials, such as nanocrystals, nanorods, nanowires, and nanosheets, providing a unique strategy to make composite tubular structures and composite materials by a combination of desired optical, electronic, and magnetic properties, which could find potential applications, including fluid transportation, encapsulation, and capillarity on the nanometer scale.
Collapse
Affiliation(s)
- Jian-Wei Liu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Dai L, Zhang L, Dong LX, Shen WZ, Zhang XB, Ye ZZ, Nelson BJ. Long-range linear elasticity and mechanical instability of self-scrolling binormal nanohelices under a uniaxial load. NANOSCALE 2011; 3:4301-4306. [PMID: 21901216 DOI: 10.1039/c1nr10650c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mechanical properties of self-scrolling binormal nanohelices with a rectangular cross-section are investigated under uniaxial tensile and compressive loads using nanorobotic manipulation and Cosserat curve theory. Stretching experiments demonstrate that small-pitch nanohelices have an exceptionally large linear elasticity region and excellent mechanical stability, which are attributed to their structural flexibility based on an analytical model. In comparison between helices with a circular, square and rectangular cross-section, modeling results indicate that, while the binormal helical structure is stretched with a large strain, the stress on the material remains low. This is of particular significance for such applications as elastic components in micro-/nanoelectromechanical systems (MEMS/NEMS). The mechanical instability of a self-scrolling nanohelix under compressive load is also investigated, and the low critical load for buckling suggests that the self-scrolling nanohelices are more suitable for extension springs in MEMS/NEMS.
Collapse
Affiliation(s)
- L Dai
- School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215011, P.R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Carrillo JMY, Dobrynin AV. Layer-by-layer assembly of charged nanoparticles on porous substrates: molecular dynamics simulations. ACS NANO 2011; 5:3010-9. [PMID: 21438625 DOI: 10.1021/nn200065q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We performed molecular dynamics simulations of a multilayer assembly of oppositely charged nanoparticles on porous substrates with cylindrical pores. The film was constructed by sequential adsorption of oppositely charged nanoparticles in layer-by-layer fashion from dilute solutions. The multilayer assembly proceeds through surface overcharging after completion of each deposition step. There is almost linear growth in the surface coverage and film thickness during the deposition process. The multilayer assembly also occurs inside cylindrical pores. The adsorption of nanoparticles inside pores is hindered by the electrostatic interactions of newly adsorbing nanoparticles with the multilayer film forming inside the pores and on the substrate. This is manifested in the saturation of the average thickness of the nanoparticle layers formed on the pore walls with an increasing number of deposition steps. The distribution of nanoparticles inside the cylindrical pore was nonuniform with a significant excess of nanoparticles at the pore entrance.
Collapse
Affiliation(s)
- Jan-Michael Y Carrillo
- Polymer Program, Institute of Materials Science and Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
35
|
Li YC, Mannen S, Schulz J, Grunlan JC. Growth and fire protection behavior of POSS-based multilayer thin films. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03752d] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Cho JH, Datta D, Park SY, Shenoy VB, Gracias DH. Plastic deformation drives wrinkling, saddling, and wedging of annular bilayer nanostructures. NANO LETTERS 2010; 10:5098-102. [PMID: 21090597 PMCID: PMC3057339 DOI: 10.1021/nl1035447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We describe the spontaneous wrinkling, saddling, and wedging of metallic, annular bilayer nanostructures driven by grain coalescence in one of the layers. Experiments revealed these different outcomes based on the dimensions of the annuli, and we find that the essential features are captured using finite element simulations of the plastic deformation in the metal bilayers. Our results show that the dimensions and nanomechanics associated with the plastic deformation of planar nanostructures can be important in forming complex three-dimensional nanostructures.
Collapse
Affiliation(s)
- Jeong-Hyun Cho
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dibakar Datta
- School of Engineering, Brown University, Providence 02912, USA
| | - Si-Young Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vivek B. Shenoy
- School of Engineering, Brown University, Providence 02912, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
37
|
Huang G, Bolaños Quiñones VA, Ding F, Kiravittaya S, Mei Y, Schmidt OG. Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications. ACS NANO 2010; 4:3123-30. [PMID: 20527797 DOI: 10.1021/nn100456r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO(2) bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.
Collapse
Affiliation(s)
- Gaoshan Huang
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Cho JH, James T, Gracias DH. Curving nanostructures using extrinsic stress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2320-4. [PMID: 20376856 PMCID: PMC3010337 DOI: 10.1002/adma.200904410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Jeong-Hyun Cho
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Teena James
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
39
|
Leong TG, Zarafshar AM, Gracias DH. Three-dimensional fabrication at small size scales. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:792-806. [PMID: 20349446 PMCID: PMC3078552 DOI: 10.1002/smll.200901704] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Despite the fact that we live in a 3D world and macroscale engineering is 3D, conventional submillimeter-scale engineering is inherently 2D. New fabrication and patterning strategies are needed to enable truly 3D-engineered structures at small size scales. Here, strategies that have been developed over the past two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning are reviewed. A focus is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form, known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and "smart" components. This self-assembly approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Timothy G. Leong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University 3400 N Charles St. Baltimore, MD 21218 (USA)
| | - Aasiyeh M. Zarafshar
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University 3400 N Charles St. Baltimore, MD 21218 (USA)
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University 3400 N Charles St. Baltimore, MD 21218 (USA)
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St. Baltimore, MD 21218 (USA)
| |
Collapse
|
40
|
Jiao Y, Du A, Zhu Z, Rudolph V, Smith SC. A density functional theory study of CO2 and N2 adsorption on aluminium nitride single walled nanotubes. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01416h] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|