1
|
Kargar B, Fazeli M, Sobhani Z, Hosseinzadeh S, Solhjoo A, Akbarizadeh AR. Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer. Sci Rep 2024; 14:10117. [PMID: 38698033 PMCID: PMC11066107 DOI: 10.1038/s41598-024-57612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.
Collapse
Affiliation(s)
- Bahareh Kargar
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Zahra Sobhani
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Aida Solhjoo
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Liu Y, Yu S, Chen Y, Hu Z, Fan L, Liang G. The clinical regimens and cell membrane camouflaged nanodrug delivery systems in hematologic malignancies treatment. Front Pharmacol 2024; 15:1376955. [PMID: 38689664 PMCID: PMC11059051 DOI: 10.3389/fphar.2024.1376955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Hematologic malignancies (HMs), also referred to as hematological or blood cancers, pose significant threats to patients as they impact the blood, bone marrow, and lymphatic system. Despite significant clinical strategies using chemotherapy, radiotherapy, stem cell transplantation, targeted molecular therapy, or immunotherapy, the five-year overall survival of patients with HMs is still low. Fortunately, recent studies demonstrate that the nanodrug delivery system holds the potential to address these challenges and foster effective anti-HMs with precise treatment. In particular, cell membrane camouflaged nanodrug offers enhanced drug targeting, reduced toxicity and side effects, and/or improved immune response to HMs. This review firstly introduces the merits and demerits of clinical strategies in HMs treatment, and then summarizes the types, advantages, and disadvantages of current nanocarriers helping drug delivery in HMs treatment. Furthermore, the types, functions, and mechanisms of cell membrane fragments that help nanodrugs specifically targeted to and accumulate in HM lesions are introduced in detail. Finally, suggestions are given about their clinical translation and future designs on the surface of nanodrugs with multiple functions to improve therapeutic efficiency for cancers.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shanwu Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yixiang Chen
- Luoyang Vocational and Technical College, Luoyang, Henan, China
| | - Zhihong Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingling Fan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
3
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
4
|
Amanat MA, Farrukh A, Ishaq MUBM, Bin Shafqat B, Haidri SH, Amin R, Sameen R, Kamal T, Riaz MN, Quresh W, Ikram R, Ali GM, Begum S, Bangash SAK, Kaleem I, Bashir S, Khattak SH. The Potential of Nanotechnology to Replace Cancer Stem Cells. Curr Stem Cell Res Ther 2024; 19:820-831. [PMID: 37264662 DOI: 10.2174/1574888x18666230601140700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 06/03/2023]
Abstract
Stem cells, which were initially identified in the 1900s, are distinct cells with the potential to replenish themselves as well as differentiate into specialised cells with certain forms and functions. Cancer stem cells play a significant role in the growth and recurrence of the tumours and, similar to normal stem cells, are capable of proliferating and differentiating. Traditional cancer treatments are ineffective against cancer stem cells, which leads to tumour regrowth. Cancer stem cells are thought to emerge as a result of epithelial-to-mesenchymal transition pathways. Brain, prostate, pancreatic, blood, ovarian, lung, liver, melanomas, AML, and breast cancer stem cells are among the most prevalent cancer forms. This review aims to comprehend the possibility of using specific forms of nanotechnology to replace cancer stem cells. In terms of nanotechnology, magnetic nanoparticles can deliver medications, especially to the target region without harming healthy cells, and they are biocompatible. In order to kill glioma cancer stem cells, the gold nanoparticles bond with DNA and function as radio sensitizers. In contrast, liposomes can circulate and traverse biological membranes and exhibit high therapeutic efficacy, precise targeting, and better drug release. Similar to carbon nanotubes, grapheme, and grapheme oxide, these substances can be delivered specifically when utilized in photothermal therapy. Recent treatments including signaling pathways and indicators targeted by nanoparticles are being researched. Future research in nanotechnology aims to develop more effective and targeted medicinal approaches. The results of the current investigation also showed that this technology's utilization will improve medical therapy and treatment.
Collapse
Affiliation(s)
- Muhammad Ammar Amanat
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | | | | | - Binyameen Bin Shafqat
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Saqib Hussain Haidri
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Rehab Amin
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Rafia Sameen
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Tahira Kamal
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Naeem Riaz
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
- Animal biotechnology program, Animal Sciences Institute (ASI), National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Waleed Quresh
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Rabia Ikram
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Sania Begum
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | | | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Shahid Bashir
- Neurosciences Center, King Fahad Specialist Hospital Dammam, P.O. Box 15215, Dammam 31444, Saudi Arabia
| | - Sahir Hameed Khattak
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| |
Collapse
|
5
|
Al Baroot A, Elsayed KA, Khan FA, Haladu SA, Ercan F, Çevik E, Drmosh QA, Almessiere MA. Anticancer Activity of Au/CNT Nanocomposite Fabricated by Nanosecond Pulsed Laser Ablation Method on Colon and Cervical Cancer. MICROMACHINES 2023; 14:1455. [PMID: 37512767 PMCID: PMC10384248 DOI: 10.3390/mi14071455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Gold nanoparticles (AuNPs) and carbon nanotubes (CNTs) are increasingly being investigated for cancer management due to their physicochemical properties, low toxicity, and biocompatibility. This study used an eco-friendly technique (laser synthesis) to fabricate AuNP and Au/CNT nanocomposites. AuNPs, Au/CNTs, and CNTs were tested as potential cancer nanotherapeutics on colorectal carcinoma cells (HCT-116) and cervical cancer cells (HeLa) using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. In addition, the non-cancer embryonic kidney cells HEK-293 were taken as a control in the study. The cell viability assay demonstrated a significant reduction in cancer cell population post 48 h treatments of AuNPs, and Au/CNTs. The average cell viabilities of AuNPs, Au/CNTs, and CNTs for HCT-116 cells were 50.62%, 65.88%, 93.55%, and for HeLa cells, the cell viabilities were 50.88%, 66.51%, 91.73%. The cell viabilities for HEK-293 were 50.44%, 65.80%, 93.20%. Both AuNPs and Au/CNTs showed higher cell toxicity and cell death compared with CNT nanomaterials. The treatment of AuNPs and Au/CNTs showed strong inhibitory action on HCT-116 and HeLa cells. However, the treatment of CNTs did not significantly decrease HCT-116 and HeLa cells, and there was only a minor decrease. The treatment of AuNPs, and Au/CNTs, on normal HEK-293 cells also showed a significant decrease in cell viability, but the treatment of CNTs did not produce a significant decrease in the HEK-293 cells. This study shows that a simplified synthesis technique like laser synthesis for the preparation of high-purity nanomaterials has good efficacy for possible future cancer therapy with minimal toxicity.
Collapse
Affiliation(s)
- Abbad Al Baroot
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Khaled A Elsayed
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shamsuddeen A Haladu
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Filiz Ercan
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Emre Çevik
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Q A Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Centre for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
6
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Fatima H, Naz MY, Shukrullah S, Aslam H, Ullah S, Assiri MA. A Review of Multifunction Smart Nanoparticle based Drug Delivery Systems. Curr Pharm Des 2022; 28:2965-2983. [PMID: 35466867 DOI: 10.2174/1381612828666220422085702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Cancer nano-therapeutics are rapidly evolving and are often used to overcome a number of concerns with traditional drug delivery methods, including non-specific drug targeting and distribution, low oral bioavailability, and poor hydrophilicity. Modern nano-based targeting techniques have been developed as a result of advances in nano vehicle engineering and materials science, which may bring people with cancer a new hope. Clinical trials have been authorized for a number of medicinal nanocarriers. Nanocarriers with the best feasible size and surface attributes have been developed to optimize biodistribution and increase blood circulation duration. Nanotherapeutics can carry preloaded active medicine towards cancerous cells by preferentially leveraging the specific physiopathology of malignancies. In contrast to passive targeting, active targeting strategies involving antigens or ligands, developed against specific tumor sites, boost the selectivity of these curative nanovehicles. Another barrier that nanoparticles may resolve or lessen is drug resistance. Multifunctional and complex nanoparticles are currently being explored and are predicted to usher in a new era of nanoparticles that will allow for more individualized and customized cancer therapy. The potential prospects and opportunities of stimuli-triggered nanosystems in therapeutic trials are also explored in this review.
Collapse
Affiliation(s)
- Hareem Fatima
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Hira Aslam
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University Abha, 61413 Saudi Arabia
| | - Mohammed Ali Assiri
- Department of Chemistry, College of Science, King Khalid University Abha, 61413 Saudi Arabia
| |
Collapse
|
9
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
10
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
11
|
Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay Drug Dev Technol 2022; 20:191-210. [DOI: 10.1089/adt.2022.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hira Aslam
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hareem Fatima
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
12
|
Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022; 20:152. [PMID: 35331246 PMCID: PMC8944113 DOI: 10.1186/s12951-022-01364-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related problems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, temperature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea.
| | - Shweta B Borkar
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sondavid K Nandanwar
- Department of Basic Science Research Institute, Pukyong National University, Busan, 48513, Korea
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, S-75120, Uppsala, Sweden
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
13
|
Ci T, Zhang W, Qiao Y, Li H, Zang J, Li H, Feng N, Gu Z. Delivery strategies in treatments of leukemia. Chem Soc Rev 2022; 51:2121-2144. [PMID: 35188506 DOI: 10.1039/d1cs00755f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukemia is a hematological malignancy associated with the uncontrolled proliferation of mutant progenitors, suppressing the production of normal blood cells. Current treatments, including chemotherapy, radiotherapy, and immunotherapy, still lead to unsatisfactory results with a 5 year survival rate of only 30-50%. The poor prognosis is related to both disease relapse and treatment-associated toxicity. Delivery strategies can improve the in vivo pharmacokinetics of drugs, navigating the therapeutics to target cells or the tumor microenvironment and reversing drug resistance, which maximizes tumor elimination and alleviates systematic adverse effects. This review discusses available FDA-approved anti-leukemia drugs and therapies with a focus on the advances in the development of anti-leukemia drug delivery systems. Additionally, challenges in clinical translation of the delivery strategies and future research opportunities in leukemia treatment are also included.
Collapse
Affiliation(s)
- Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yingyu Qiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Huangjuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jing Zang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongjun Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
Véras JH, Cardoso CG, Puga SC, de Melo Bisneto AV, Roma RR, Santos Silva RR, Teixeira CS, Chen-Chen L. Lactose-binding lectin from Vatairea macrocarpa seeds induces in vivo angiogenesis via VEGF and TNF-ɑ expression and modulates in vitro doxorubicin-induced genotoxicity. Biochimie 2021; 194:55-66. [PMID: 34973362 DOI: 10.1016/j.biochi.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/04/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022]
Abstract
Lactose-binding lectin from Vatairea macrocarpa seeds (VML) has attracted great attention due to its interesting biological activities, such as pro-inflammatory effects and macrophage activation. This study evaluated the cytotoxicity and genotoxicity/antigenotoxicity of VML in human lymphocytes using the CometChip assay, and angiogenic activity by the chick embryo chorioallantoic membrane (CAM) assay. In genotoxicity, lymphocytes were treated with different concentrations of VML (0.5, 2 and 8 μM). In antigenotoxicity, lymphocytes were treated with the same concentrations of VML concomitant doxorubicin (90 μM DXR). To evaluate angiogenesis, all CAM were treated with different concentrations of VML (0.5, 2 and 8 μM) alone or co-treated with lactose (0.1 M). Furthermore, the levels of vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) in CAM were assessed by immunohistochemistry. The results showed that VML was cytotoxic to lymphocytes, genotoxic at the highest concentration (8 μM) and antigenotoxic at low concentrations (0.5, and 2 μM). Regarding the CAM assay and immunohistochemistry, VML was angiogenic and significantly increased VEGF and TNF-α levels. In contrast, co-treatment with lactose significantly reduced the angiogenic effect and VEGF levels. We propose that protein-carbohydrate interactions between VML and glycans in the cell membrane are probably the major events involved in these activities. It seems likely that VML elicits a pro-inflammatory response through VEGF and TNF-α expression, resulting in increased vascularization at the site of inflammation. Therefore, our results show novel information on the effects of VML on DNA, as well as provide data regarded the neovascularization process involving this lectin.
Collapse
Affiliation(s)
- Jefferson Hollanda Véras
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Clever Gomes Cardoso
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sara Cristina Puga
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Abel Vieira de Melo Bisneto
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Renato Rodrigues Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
15
|
Thiruvengadam M, Rajakumar G, Swetha V, Ansari MA, Alghamdi S, Almehmadi M, Halawi M, Kungumadevi L, Raja V, Sabura Sarbudeen S, Madhavan S, Rebezov M, Ali Shariati M, Sviderskiy A, Bogonosov K. Recent Insights and Multifactorial Applications of Carbon Nanotubes. MICROMACHINES 2021; 12:1502. [PMID: 34945354 PMCID: PMC8708822 DOI: 10.3390/mi12121502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022]
Abstract
Nanotechnology has undergone significant development in recent years, particularly in the fabrication of sensors with a wide range of applications. The backbone of nanotechnology is nanostructures, which are determined on a nanoscale. Nanoparticles are abundant throughout the universe and are thought to be essential building components in the process of planet creation. Nanotechnology is generally concerned with structures that are between 1 and 100 nm in at least one dimension and involves the production of materials or electronics that are that small. Carbon nanotubes (CNTs) are carbon-based nanomaterials that have the structure of tubes. Carbon nanotubes are often referred to as the kings of nanomaterials. The diameter of carbon is determined in nanometers. They are formed from graphite sheets and are available in a variety of colors. Carbon nanotubes have a number of characteristics, including high flexibility, good thermal conductivity, low density, and chemical stability. Carbon nanotubes have played an important part in nanotechnology, semiconductors, optical and other branches of materials engineering owing to their remarkable features. Several of the applications addressed in this review have already been developed and used to benefit people worldwide. CNTs have been discussed in several domains, including industry, construction, adsorption, sensors, silicon chips, water purifiers, and biomedical uses, to show many treatments such as injecting CNTs into kidney cancers in rats, drug delivery, and directing a near-infrared laser at the cancers. With the orderly development of research in this field, additional therapeutic modalities will be identified, mainly for dispersion and densification techniques and targeted drug delivery systems for managing and curing posterior cortical atrophy. This review discusses the characteristics of carbon nanotubes as well as therapeutic applications such as medical diagnostics and drug delivery.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea;
| | - Govindasamy Rajakumar
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Venkata Swetha
- Annamacharya Institute of Technology & Sciences, Tirupati 517520, India;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Halawi
- Medical Laboratory Technology, Applied Medical Sciences College, Jazan University, Jazan 45142, Saudi Arabia;
| | - Lakshmanan Kungumadevi
- Department of Physics, Mother Teresa Women’s University, Kodaikanal 624101, India; (L.K.); (V.R.); (S.S.S.)
| | - Vaishnavi Raja
- Department of Physics, Mother Teresa Women’s University, Kodaikanal 624101, India; (L.K.); (V.R.); (S.S.S.)
| | - Sulthana Sabura Sarbudeen
- Department of Physics, Mother Teresa Women’s University, Kodaikanal 624101, India; (L.K.); (V.R.); (S.S.S.)
| | - Saranya Madhavan
- Department of Chemistry, D.K.M. College for Women, Vellore 632001, India;
| | - Maksim Rebezov
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., 109004 Moscow, Russia; (M.R.); (K.B.)
- Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova Str., 119991 Moscow, Russia
| | - Mohammad Ali Shariati
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., 109004 Moscow, Russia; (M.R.); (K.B.)
| | - Alexandr Sviderskiy
- Faculty of Engineering and Technology, Innovative University of Eurasia, 45 Lomov St., Pavlodar 140000, Kazakhstan;
| | - Konstantin Bogonosov
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., 109004 Moscow, Russia; (M.R.); (K.B.)
| |
Collapse
|
16
|
Cheng M, Dou H. Nano‐assemblies based on biomacromolecules to overcome cancer drug resistance. POLYM INT 2021. [DOI: 10.1002/pi.6310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
17
|
Li X, He Y, Yang L, He Z, Zhu JJ. Gene/drug-embedded nanoscale metal azolate framework-7 for the reversal of P-glycoprotein-mediated multidrug resistance. Chem Commun (Camb) 2021; 57:6776-6779. [PMID: 34137399 DOI: 10.1039/d1cc02463a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the straightforward synthesis of ATP-responsive nanoscale metal azolate framework-7 (MAF-7) for gene/drug codelivery. The MAF-7 functions as (i) the armour to preserve DNAzymes, (ii) an ATP scavenger to lower the intracellular ATP level, and (iii) a built-in Zn2+ arsenal to initiate the biocatalysis of DNAzymes, ultimately inhibiting P-gp expression to enhance chemotherapy.
Collapse
Affiliation(s)
- Xiangli Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yiming He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Lin Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
19
|
Chall A, Stagg J, Mixson A, Gato E, Quirino RL, Sittaramane V. Ablation of cells in mice using antibody-functionalized multiwalled carbon nanotubes (Ab-MWCNTs) in combination with microwaves. NANOTECHNOLOGY 2021; 32:195102. [PMID: 33540388 DOI: 10.1088/1361-6528/abe32a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This is a proof-of-principle study on the combination of microwaves and multiwalled carbon nanotubes to induce in vivo, localized hyperthermic ablation of cells as a potential methodology for the treatment of localized tumors. Compared to conventional methods, the proposed approach can create higher temperatures in a rapid and localized fashion, under low radiation levels, eliminating some of the unwanted side effects. Following successful ablation of cancer cells in cell culture and zebrafish tumor-xenograft models, it is hypothesized that a cancer treatment can be developed using safe microwave irradiation for selective ablation of tumor cells in vivo using carbon nanotube-Antibody (CNT-Ab) conjugates as a targeting agent. In this study, mice were used as an animal model for the optimization of the proposed microwave treatment strategy. The safe dose of CNT-Ab and microwave radiation levels for mice were determined. Further, CNT-Ab distribution and toxicology in mice were qualitatively determined for a time span of two weeks following microwave hyperthermia. The results indicate no toxicity associated with the CNT-Ab in the absence of microwaves. CNTs are only found in the proximity of the site of injection and have been shown to effectively cause hyperthermia induced necrosis upon exposure to microwaves with no noticeable damage to other tissues that are not in direct contact with the CNT-Ab. To understand the cellular immune response towards CNT-Abs, transgenic zebrafish with fluorescently labeled macrophages and neutrophils were used to assay for their ability to phagocytize CNT-Ab. Our results indicate that macrophages and neutrophils were able to actively phagocytose CNT-Abs shortly after injection. Taken together, this is the first study to show that CNTs can be used in combination with microwaves to cause targeted ablation of cells in mice without any side effects, which would be ideal for cancer therapies.
Collapse
Affiliation(s)
- Amy Chall
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - John Stagg
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Andrew Mixson
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Eric Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Rafael L Quirino
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, United States of America
| |
Collapse
|
20
|
Arkaban H, Khajeh Ebrahimi A, Yarahmadi A, Zarrintaj P, Barani M. Development of a multifunctional system based on CoFe 2O 4@polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. NANOTECHNOLOGY 2021; 32:305101. [PMID: 33857938 DOI: 10.1088/1361-6528/abf878] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
In this work, a multifunctional theranostic nanocomposite based on CoFe2O4@polyacrylic acid (PAA)-Folic Acid (FA) Doxorubicin (Dox)loadNPs was designed for the multifunctional cancer treatment. Several techniques such as TEM, DLS,ζ-potential, vibrating sample magnetometer, XRD, and UV-Vis spectrophotometer were applied for investigating physicochemical properties of the nanosystem. The percentage of the loaded drug, loading efficiency,in vitrorelease (pH 5.4 and 7.4),invitroMRI measurements, and MTT assay (4T1 and 9A9 cell lines) were evaluated. Results showed that the percentage of loaded drug and loading efficiency was 53.33 ± 3.5 and 80.00 ± 5.3%, respectively, showing the system's high ability for Dox encapsulation. Release study showed that Dox loaded in the CoFe2O4@PAA-FA(Dox)loadNPs released faster at pH 5.4 than pH 7.4.In vitro, MRI measurements confirmed that CoFe2O4@PAA NPs could be used as a contrast agent in MRI measurements withr2 = 18.2 mM-1s-1. MTT assay demonstrated the biocompatibility of NPs, also showed a more efficient therapeutic effect for CoFe2O4@PAA-FA(Dox)loadNPs than free Dox and CoFe2O4@PAA(Dox)loadNPs.
Collapse
Affiliation(s)
- Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, I.R. Iran
| | | | - Ali Yarahmadi
- Faculty of Chemistry, University of Bu-Ali Sina, Hamedan, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States of America
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
21
|
Jain P, Kathuria H, Momin M. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacol Ther 2021; 226:107871. [PMID: 33915179 DOI: 10.1016/j.pharmthera.2021.107871] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Bladder cancer is the 10th most commonly occurring malignancy worldwide with a 75% of 5-year survival rate, while it ranks 13th among the deaths occurring due to cancer. The majority of bladder cancer cases are diagnosed at an early stage and 70% are of non-invasive grade. However, 70% of these cases develop chemoresistance and progress to the muscle invasive stage. Conventional chemotherapy treatments are unsuccessful in curbing chemoresistance, bladder cancer progression while having an adverse side effect, which is mainly due to off-target drug distribution. Therefore, new drug delivery strategies, new therapeutics and therapies or their combination are being explored to develop better treatments. In this regard, nanotechnology has shown promise in the targeted delivery of therapeutics to bladder cancer cells. This review discusses the recent discovery of new therapeutics (chemotherapeutics, immunotherapeutic, and gene therapies), recent developments in the delivery of therapeutics using nano drug delivery systems, and the combination treatments with FDA-approved therapies, i.e., hyperthermia and photodynamic therapy. We also discussed the potential of other novel drug delivery systems that are minimally explored in bladder cancer. Lastly, we discussed the clinical status of therapeutics and therapies for bladder cancer. Overall, this review can provide a summary of available treatments for bladder cancer, and also provide opportunities for further development of drug delivery systems for better management of bladder cancer.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Republic of Singapore; Nusmetic Pvt Ltd, Makerspace, i4 building, 3 Research Link Singapore, 117602, Republic of Singapore.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| |
Collapse
|
22
|
Luta G, Butura M, Tiron A, Tiron CE. Enhancing Anti-Tumoral Potential of CD-NHF by Modulating PI3K/Akt Axis in U87 Ex Vivo Glioma Model. Int J Mol Sci 2021; 22:ijms22083873. [PMID: 33918086 PMCID: PMC8070499 DOI: 10.3390/ijms22083873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In the latest years, there has been an increased interest in nanomaterials that may provide promising novel approaches to disease diagnostics and therapeutics. Our previous results demonstrated that Carbon-dots prepared from N-hydroxyphthalimide (CD-NHF) exhibited anti-tumoral activity on several cancer cell lines such as MDA-MB-231, A375, A549, and RPMI8226, while U87 glioma tumor cells were unaffected. Gliomas represent one of the most common types of human primary brain tumors and are responsible for the majority of deaths. In the present in vitro study, we expand our previous investigation on CD-NHF in the U87 cell line by adding different drug combinations. METHODS Cell viability, migration, invasion, and immunofluorescent staining of key molecular pathways have been assessed after various treatments with CD-NHF and/or K252A and AKTVIII inhibitors in the U87 cell line. RESULTS Association of an inhibitor strongly potentiates the anti-tumoral properties of CD-NHF identified by significant impairment of migration, invasion, and expression levels of phosphorylated Akt, p70S6Kinase, or by decreasing expression levels of Bcl-2, IL-6, STAT3, and Slug. CONCLUSIONS Using simultaneously reduced doses of both CD-NHF and an inhibitor in order to reduce side effects, the viability and invasiveness of U87 glioma cells were significantly impaired.
Collapse
|
23
|
Wang L, Zhao J, Cui L, Li YF, Li B, Chen C. Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics 2021; 13:6189688. [PMID: 33770173 DOI: 10.1093/mtomcs/mfab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022]
Abstract
Nanosafety evaluation is paramount since it is necessary not only for human health protection and environmental integrity but also as a cornerstone for industrial and regulatory bodies. The current nanometallomics did not cover non-metallic nanomaterials, which is an important part of nanomaterials. In this critical review, the concept of nanometallomics was expanded to incorporate all nanomaterials. The impacts on metal(loid) and metallo-biomolecular homeostasis by nanomaterials will be focused upon in nanometallomics study. Besides, the impacts on elemental and biomolecular homeostasis by metallo-nanomaterials are also considered as the research subjects of nanometallomics. Based on the new concept of nanometallomics, comparative nanometallomics was proposed as a new tool for nanosafety evaluation, which is high throughput and will be precise considering the nature of machine learning techniques. The perspectives of nanometallomics like metallo-wide association study and non-target nanometallomics were put forward.
Collapse
Affiliation(s)
- Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
24
|
Mohajeri M, Behnam B, Tasbandi A, Jamialahmadi T, Sahebkar A. Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:55-74. [PMID: 34331684 DOI: 10.1007/978-3-030-56153-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin, the main active constituent of turmeric (Curcuma longa L.), is a naturally occurring phenolic compound with a wide variety of pharmacological activities. Although it has multiple pharmaceutical properties, its bioavailability and industrial usage are hindered due to rapid hydrolysis and low water solubility. Due to the growing market of curcumin, exact determination of curcumin in trade and human biological samples is important for monitoring therapeutic actions. Different nanomaterials have been suggested for sensing curcumin; and in this case, carbon-based nanomaterials (CNMs) are one of the most outstanding developments in nanomedicine, biosensing, and regenerative medicine. There are a considerable number of reports which have shown interesting potential of CNMs-based biosensors in the sensitive and selective detection of curcumin. Therefore, this review aims to increase understanding the interaction of curcumin with CNMs in the context of biosensing.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran. .,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Aida Tasbandi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. .,Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
25
|
Yaghoubi A, Ramazani A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J Control Release 2020; 327:198-224. [DOI: 10.1016/j.jconrel.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
|
26
|
Zhong XC, Shi MH, Liu HN, Chen JJ, Wang TT, Lin MT, Zhang ZT, Zhou Y, Lu YY, Xu WH, Gao JQ, Xu DH, Han M, Chen YD. Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance. Pharm Dev Technol 2020; 26:21-29. [PMID: 33070673 DOI: 10.1080/10837450.2020.1832116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a serious challenge in chemotherapy and also a major threat to breast cancer treatment. As an intracellular energy factory, mitochondria provide energy for drug efflux and are deeply involved in multidrug resistance. Mitochondrial targeted delivery of doxorubicin can overcome multidrug resistance by disrupting mitochondrial function. By incorporating a reactive oxygen species (ROS)-responsive hydrophobic group into the backbone structure of hyaluronic acid - a natural ligand for the highly expressed CD44 receptor on tumor surfaces, a novel ROS-responsive and CD44-targeting nano-carriers was constructed. In this study, mitochondria-targeted triphenylphosphine modified-doxorubicin (TPP-DOX) and amphipathic ROS-responsive hyaluronic acid derivatives (HA-PBPE) were synthesized and confirmed by 1H NMR. The nanocarriers TPP-DOX @ HA-PBPE was prepared in a regular shape and particle size of approximately 200 nm. Compared to free DOX, its antitumor activity in vitro and tumor passive targeting in vivo has been enhanced. The ROS-responsive TPP-DOX@HA-PBPE nanocarriers system provide a promising strategy for the reverse of MDR and efficient delivery of doxorubicin derivatives into drug-resistant cancer cells.
Collapse
Affiliation(s)
- Xin-Cheng Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ming-Han Shi
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hui-Na Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jie-Jian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Tian-Tian Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng-Ting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhen-Tao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Ying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wen-Hong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Hang Xu
- Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Ding Chen
- Department of Breast Surgery, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic China
| |
Collapse
|
27
|
|
28
|
Cai X, Liu X, Jiang J, Gao M, Wang W, Zheng H, Xu S, Li R. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907663. [PMID: 32406193 DOI: 10.1002/smll.201907663] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
It is a big challenge to reveal the intrinsic cause of a nanotoxic effect due to diverse branches of signaling pathways induced by engineered nanomaterials (ENMs). Biotransformation of toxic ENMs involving biochemical reactions between nanoparticles (NPs) and biological systems has recently attracted substantial attention as it is regarded as the upstream signal in nanotoxicology pathways, the molecular initiating event (MIE). Considering that different exposure routes of ENMs may lead to different interfaces for the arising of biotransformation, this work summarizes the nano-bio interfaces and dose calculation in inhalation, dermal, ingestion, and injection exposures to humans. Then, five types of biotransformation are shown, including aggregation and agglomeration, corona formation, decomposition, recrystallization, and redox reactions. Besides, the characterization methods for investigation of biotransformation as well as the safe design of ENMs to improve the sustainable development of nanotechnology are also discussed. Finally, future perspectives on the implications of biotransformation in clinical translation of nanomedicine and commercialization of nanoproducts are provided.
Collapse
Affiliation(s)
- Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
29
|
Garriga R, Herrero-Continente T, Palos M, Cebolla VL, Osada J, Muñoz E, Rodríguez-Yoldi MJ. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. NANOMATERIALS 2020; 10:nano10081617. [PMID: 32824730 PMCID: PMC7466705 DOI: 10.3390/nano10081617] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/28/2022]
Abstract
Carbon nanomaterials have attracted increasing attention in biomedicine recently to be used as drug nanocarriers suitable for medical treatments, due to their large surface area, high cellular internalization and preferential tumor accumulation, that enable these nanomaterials to transport chemotherapeutic agents preferentially to tumor sites, thereby reducing drug toxic side effects. However, there are widespread concerns on the inherent cytotoxicity of carbon nanomaterials, which remains controversial to this day, with studies demonstrating conflicting results. We investigated here in vitro toxicity of various carbon nanomaterials in human epithelial colorectal adenocarcinoma (Caco-2) cells and human breast adenocarcinoma (MCF-7) cells. Carbon nanohorns (CNH), carbon nanotubes (CNT), carbon nanoplatelets (CNP), graphene oxide (GO), reduced graphene oxide (GO) and nanodiamonds (ND) were systematically compared, using Pluronic F-127 dispersant. Cell viability after carbon nanomaterial treatment followed the order CNP < CNH < RGO < CNT < GO < ND, being the effect more pronounced on the more rapidly dividing Caco-2 cells. CNP produced remarkably high reactive oxygen species (ROS) levels. Furthermore, the potential of these materials as nanocarriers in the field of drug delivery of doxorubicin and camptothecin anticancer drugs was also compared. In all cases the carbon nanomaterial/drug complexes resulted in improved anticancer activity compared to that of the free drug, being the efficiency largely dependent of the carbon nanomaterial hydrophobicity and surface chemistry. These fundamental studies are of paramount importance as screening and risk-to-benefit assessment towards the development of smart carbon nanomaterial-based nanocarriers.
Collapse
Affiliation(s)
- Rosa Garriga
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (R.G.); (M.J.R.-Y.); Tel.: +34-976-762294 (R.G.); +34-976-761649 (M.J.R-Y.)
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (T.H.-C.); (J.O.)
| | - Miguel Palos
- Departamento de Farmacología y Fisiología, Universidad de Zaragoza, 50013 Zaragoza, Spain;
| | - Vicente L. Cebolla
- Instituto de Carboquímica ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (V.L.C.); (E.M.)
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (T.H.-C.); (J.O.)
- CIBEROBN (ISCIII), IIS Aragón, IA2, 50009 Zaragoza, Spain
| | - Edgar Muñoz
- Instituto de Carboquímica ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (V.L.C.); (E.M.)
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- CIBEROBN (ISCIII), IIS Aragón, IA2, 50009 Zaragoza, Spain
- Correspondence: (R.G.); (M.J.R.-Y.); Tel.: +34-976-762294 (R.G.); +34-976-761649 (M.J.R-Y.)
| |
Collapse
|
30
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
31
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic macromolecular carrier-drug conjugates. Org Biomol Chem 2020; 18:5764-5783. [PMID: 32677650 DOI: 10.1039/d0ob01101k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many metabolic inhibitors, considered potential antimicrobial or anticancer drug candidates, exhibit very limited ability to cross the biological membranes of target cells. The restricted cellular penetration of those molecules is often due to their highhydrophilicity. One of the possible solutions to this problem is a conjugation of an inhibitor with a molecular organic nanocarrier. The conjugate thus formed should be able to penetrate the membrane(s) by direct translocation, endocytosis or active transport mechanisms and once internalized, the active component could reach its intracellular target, either after release from the conjugate or in an intact form. Several such nanocarriers have been proposed so far, including macromolecular systems, carbon nanotubes and dendrimers. Herein, we present a comprehensive review of the current status of rational design and synthesis of macromolecular organic nanocarrier-drug conjugates, with special attention focused on the mode of coupling of a nanocarrier moiety with a "cargo" molecule through linking fragments of non-cleavable or cleavable type.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
32
|
Acid-responsive dextran-based therapeutic nanoplatforms for photodynamic-chemotherapy against multidrug resistance. Int J Biol Macromol 2020; 155:233-240. [DOI: 10.1016/j.ijbiomac.2020.03.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022]
|
33
|
Curcio M, Farfalla A, Saletta F, Valli E, Pantuso E, Nicoletta FP, Iemma F, Vittorio O, Cirillo G. Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules 2020; 25:E2102. [PMID: 32365886 PMCID: PMC7249046 DOI: 10.3390/molecules25092102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Carbon nanostructures (CN) are emerging valuable materials for the assembly of highly engineered multifunctional nanovehicles for cancer therapy, in particular for counteracting the insurgence of multi-drug resistance (MDR). In this regard, carbon nanotubes (CNT), graphene oxide (GO), and fullerenes (F) have been proposed as promising materials due to their superior physical, chemical, and biological features. The possibility to easily modify their surface, conferring tailored properties, allows different CN derivatives to be synthesized. Although many studies have explored this topic, a comprehensive review evaluating the beneficial use of functionalized CNT vs G or F is still missing. Within this paper, the most relevant examples of CN-based nanosystems proposed for MDR reversal are reviewed, taking into consideration the functionalization routes, as well as the biological mechanisms involved and the possible toxicity concerns. The main aim is to understand which functional CN represents the most promising strategy to be further investigated for overcoming MDR in cancer.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Annafranca Farfalla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Emanuele Valli
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
| | - Elvira Pantuso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| |
Collapse
|
34
|
Hassan A, Saeed A, Afzal S, Shahid M, Amin I, Idrees M. Applications and hazards associated with carbon nanotubes in biomedical sciences. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1724151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali Hassan
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Afraz Saeed
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
35
|
Ghosn Y, Kamareddine MH, Tawk A, Elia C, El Mahmoud A, Terro K, El Harake N, El-Baba B, Makdessi J, Farhat S. Inorganic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myelogenous Leukaemia. Technol Cancer Res Treat 2019; 18:1533033819853241. [PMID: 31138064 PMCID: PMC6542119 DOI: 10.1177/1533033819853241] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia is a myeloproliferative disease where cells of myeloid linage display a t(9;22) chromosomal translocation leading to the formation of the BCR/ABL fusion gene and the continuous activation of tyrosine kinases. This malignancy has a peak incidence at 45 to 85 years, accounting for 15% of all leukemias in adults. Controlling the activity of tyrosine kinase became the main strategy in chronic myeloid leukemia treatment, with imatinib being placed at the forefront of current treatment protocols. New approaches in future anticancer therapy are emerging with nanomedicine being gradually implemented. Setting through a thorough survey of published literature, this review discusses the use of inorganic nanoparticles in chronic myeloid leukemia therapy. After an introduction on the basics of chronic myeloid leukemia, a description of the current treatment modalities of chronic myeloid leukemia and drug-resistance mechanisms is presented. This is followed by a general view on the applications of nanostrategies in medicine and then a detailed breakdown of inorganic nanocarriers and their uses in chronic myeloid leukemia treatment.
Collapse
Affiliation(s)
- Youssef Ghosn
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | | | - Antonios Tawk
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Carlos Elia
- 2 Faculty of Engineering, Chemical Engineering, University of Balamand, El-Koura, Lebanon
| | - Ahmad El Mahmoud
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Khodor Terro
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Nadia El Harake
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Bachar El-Baba
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Joseph Makdessi
- 3 Department of Hematology - Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Said Farhat
- 4 Department of Gastroenterology, Saint George Hospital University Medical Center, Achrafieh-Beirut, Lebanon
| |
Collapse
|
36
|
Ranjous Y, Regdon G, Pintye-Hódi K, Sovány T. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discov Today 2019; 24:1704-1709. [PMID: 31158513 DOI: 10.1016/j.drudis.2019.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
|
37
|
Research and Application of Glycoprotein Sensors Based on Glycosyl Recognition. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61185-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Farahavar G, Abolmaali SS, Gholijani N, Nejatollahi F. Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools. Biomater Sci 2019; 7:4000-4016. [PMID: 31355391 DOI: 10.1039/c9bm00931k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent advances in nanotechnology, such as the development of various types of nanoparticles and hybrid nanomaterials, have revolutionized nanomedicine. The small size, customizable surface, enhanced solubility, and multi-functionality endow the nanoparticles with an ability to interact with complex cellular and biological functions in new ways. Furthermore, these systems can deliver drugs to specific tissues and provide a targeted therapy. For this purpose, different categories of molecules, particularly antibodies, have been used as ligands. Antibody-conjugated nanomaterials can significantly enhance the efficiency of nanomedicines, especially in the field of cancer. This review is focused on three major medical applications of antibody-conjugated nanomaterials, namely, therapeutic, diagnostic and theranostic applications. To provide comprehensive information on the topic and an overview of these hybrid nanomaterials for biomedical applications, a brief summary of nanomaterials and antibodies is given. Moreover, the review has depicted the potential applications of antibody-conjugated nanomaterials in different fields and their capabilities to empower nanomedicine, particularly in relation to the treatment and detection of malignancies.
Collapse
Affiliation(s)
- Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Foroogh Nejatollahi
- Shiraz HIV/AIDS research center, Institute of health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
39
|
Zhang Y, Yang L, Yan L, Wang G, Liu A. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Pushkarchuk AL, Bezyazychnaya TV, Potkin VI, Dikusar EA, Soldatov AG, Khrutchinsky AA, Babichev LF. Structure Simulation of Cisplatin Complexes with Single-Walled Carbon Nanotubes and Fullerenol. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x19400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Structure and energy calculations of modified complexes of single-walled carbon nanotubes and fullerenol C[Formula: see text](OH)[Formula: see text] with cisplatin have been performed using the quantum chemical method at the DFT/B3LYP/SV/Lanl2DZ level. The nanotubes were modified with COOH groups at the end and sidewall of the nanotube and cisplatin molecules. The dependence of their structure on the presence of a solvent was established.
Collapse
Affiliation(s)
- A. L. Pushkarchuk
- Institute of Physical-Organic Chemistry, NASB, Surganova 13, 220072 Minsk, Belarus
| | - T. V. Bezyazychnaya
- Institute of Physical-Organic Chemistry, NASB, Surganova 13, 220072 Minsk, Belarus
| | - V. I. Potkin
- Institute of Physical-Organic Chemistry, NASB, Surganova 13, 220072 Minsk, Belarus
| | - E. A. Dikusar
- Institute of Physical-Organic Chemistry, NASB, Surganova 13, 220072 Minsk, Belarus
| | - A. G. Soldatov
- The Scientific and Practical Materials Research Center, NASB, P. Browka 19, 220072 Minsk, Belarus
| | - A. A. Khrutchinsky
- Institute for Nuclear Problems, BSU, Bobruiskaia Str. 11, 220030 Minsk, Belarus
| | - L. F. Babichev
- Joint Institute for Power and Nuclear Research — Sosny NASB, Acad. Krasina Str. 99, 220109 Minsk, Belarus
| |
Collapse
|
41
|
Yao M, Ma X, Zhang X, Shi L, Liu T, Liang X, Zhao H, Li X, Li L, Gao H, Jia B, Wang F. Lectin-Mediated pH-Sensitive Doxorubicin Prodrug for Pre-Targeted Chemotherapy of Colorectal Cancer with Enhanced Efficacy and Reduced Side Effects. Am J Cancer Res 2019; 9:747-760. [PMID: 30809306 PMCID: PMC6376480 DOI: 10.7150/thno.29989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) has been clinically used as a broad-spectrum chemotherapeutic agent for decades, but its clinical application is hindered by the lack of tumour specificity, severe cardiotoxicity and haematotoxicity. Pre-targeted strategies are highly tumour-specific, therapeutic approaches. Herein, a novel pre-targeted system was constructed, aiming to enhance anticancer efficacy of DOX and maximally reduce its side effects. Methods: The DOX prodrug (bDOX) was first synthesized by conjugating DOX with mini-PEGylated (mPEGylated) biotin through a pH-sensitive bond. During the pre-targeted treatment, avidin was first administrated. After an optimized interval, bDOX was second administrated. The nontoxic prodrug bDOX was eventually transformed into the toxic anticancer form (DOX) by a pH-triggered cleavage specifically in tumour cells. The drug efficacy and side effect of the two-step, pre-targeted treatment were fully compared with free DOX in vitro and in vivo. Results: The prodrug bDOX was quite stable under neutral conditions and nearly nontoxic, but was immediately transformed into the toxic anticancer form (DOX) under acidic conditions. Compared to free DOX, the pre-targeted bDOX exhibited a higher cellular uptake by human colorectal tumour cells (LS180 and HT-29 cells). In vivo evaluation performed on LS180 xenograft animal model demonstrated that the pre-targeted bDOX achieved a much more significant tumour inhibition than free DOX. The largely decreased, unwanted bystander toxicity was demonstrated by changes in body weight, cardiomyocyte apoptosis, blood routine examination and splenic pathological changes. Conclusion: The high therapeutic efficacy, together with the minimal side effects, of this easily synthesized, pre-targeted system exhibited immense potentiality for the clinical application of DOX delivery.
Collapse
|
42
|
Grushevskaya HV, Krylova NG. Carbon Nanotubes as A High-Performance Platform for Target Delivery of Anticancer Quinones. Curr Pharm Des 2019; 24:5207-5218. [PMID: 30652640 DOI: 10.2174/1381612825666190117095132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND In spite of considerable efforts of researchers the cancer deseases remain to be incurable and a percentage of cancer deseases in the structure of mortality increases every year. At that, high systemic toxicity of antitumor drugs hampers their effective use. Because of this fact, the development of nanosystems for targeted delivery of antitumor drugs is one of the leading problem in nanomedicine and nanopharmacy. OBJECTIVE To critically examine the modern strategies for carbon nanotubes (CNTs)-based delivery of anticancer quinones and to summarize the mechanisms which can provide high effectiveness and multifunctionality of the CNT-based quinone delivery platform. RESULTS Quinones, including anthracycline antibiotics - doxorubicin and daunorubicin, are among the most prospective group of natural and syntetic compounds which exhibit high antitumor activity against different type of tumors. In this review, we focus on the possibilities of using CNTs for targeted delivery of antitumor compounds with quinoid moiety which is ordinarily characterized by high specific interaction with DNA molecules. Quinones can be non-covalently adsorbed on CNT surface due to their aromatic structure and π-conjugated system of double bonds. The characteristic features of doxorubicine-CNT complex are high loading efficiency, pH-dependent release in acidic tumor microenviroment, enough stability in biological fluid. Different types of CNT functionalization, targeting strategies and designs for multifunctional CNT-based doxorubicine delivery platform are disscussed. CONCLUSION Nanosystems based on functionalized CNTs are very promising platform for quinone delivery resulting in significant enhancement of cancer treatment efficiency. Functionalization of CNTs with the polymeric shell, especially DNA-based shells, can provide the greatest affinity and mimicry with biological structures.
Collapse
Affiliation(s)
- H V Grushevskaya
- Physics Department, Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030, Belarus
| | - N G Krylova
- Physics Department, Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030, Belarus
| |
Collapse
|
43
|
Mao C, Li F, Zhao Y, Debinski W, Ming X. P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment. Am J Cancer Res 2018; 8:6274-6290. [PMID: 30613297 PMCID: PMC6299702 DOI: 10.7150/thno.29580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer nanomedicines only modestly improve the overall survival of patients because their anticancer activity is limited by biological barriers posed by the tumor microenvironment. Currently, all the drugs in FDA-approved cancer nanomedicines are substrates for P-glycoprotein (Pgp), and thus, Pgp-mediated multidrug resistance (MDR) remains a hurdle for cancer nanomedicines. Methods: In this study, Pgp-targeted photodynamic therapy (PDT) was developed to enhance the anticancer efficacy of nanomedicines by depleting MDR cancer cells as well as enhancing tumor penetration of nanomedicines. We first examined the Pgp specificity of our targeted PDT approach, and then tested combination therapy of PDT with Doxil in mixed tumor models of MDR cancer cells and stromal cells, mimicking human heterogeneous tumors. Results: In vitro studies showed that the antibody-photosensitizer conjugates produced Pgp-specific cytotoxicity towards MDR cancer cells upon irradiation with a near-infrared light. The studies with a co-culture model of MDR cancer cells and stromal cells revealed synergistic effects in the combination therapy of PDT with Doxil. Using a mouse model of mixed tumors containing MDR cancer cells and stroma cells, we observed markedly enhanced tumor delivery of Doxil after PDT in vivo. We further examined the effects of the two modalities on individual cell populations and their synergism using an in vivo dual substrate bioluminescence assay. The results indicated that Pgp-targeted PDT specifically depleted MDR cancer cells and further enhanced Doxil's actions on both MDR cancer cells and stromal cells. Conclusion: We conclude that our targeted PDT approach markedly enhances anticancer actions of nanomedicines by depleting MDR cancer cells and increasing their tumor penetration, and thereby, may provide an effective approach to facilitate translation of cancer nanomedicines.
Collapse
|
44
|
Batra H, Pawar S, Bahl D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol Res 2018; 139:91-105. [PMID: 30408575 DOI: 10.1016/j.phrs.2018.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022]
Abstract
A huge surge of research is being conducted on combination therapy with anticancer compounds formulated in the form of nanoparticles (NPs). Numerous advantages like dose minimalization and synergism, reversal of multi drug resistance (MDRs), enhanced efficacy have emerged with nanoencapsulation of chemotherapeutic agents with chemo-sensitizing agent like curcumin. Within last couple of years various nano-sized formulations have been designed and tested both in vitro with cell lines for different types of cancers and in vivo with cancer types and drug resistance models. Despite the combinatorial models being advanced, translation to human trials has not been as smooth as one would have hoped, with as few as twenty ongoing clinical trials with curcumin combination, with less than 1/10th being nano-particulate formulations. Mass production of nano-formulation based on their physico-chemical and pharmacokinetics deficits poses as major hurdle up the ladder. Combination of these nano-sized dosage with poorly bioavailable drugs, unspecific target binding ability and naturally unstable curcumin further complicates the formulation aspects. Emphasis is now therefore being laid on altering natural forms of curcumin and usage of formulations like prodrug or coating of curcumin to overcome stability issues and focus more on enhancing the pharmaceutical and therapeutic ability of the nano-composites. Current studies and futuristic outlook in this direction are discussed in the review, which can serve as the basis for upcoming research which could boost commercial translational of improved nano-sized curcumin combination chemotherapy.
Collapse
Affiliation(s)
- Harshul Batra
- Neuroscience Institute & Center for Behavioral Neuroscience, Georgia State University, 789 Petit Science Center, Atlanta, GA, 30303, United States.
| | - Shrikant Pawar
- Department of Computer Science, Georgia State University, 34 Peachtree Street, Atlanta, GA, 30303, United States; Department of Biology, Georgia State University, 34 Peachtree Street, Atlanta, GA, 30303, United States
| | - Dherya Bahl
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
45
|
Ma B, He L, You Y, Mo J, Chen T. Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Deliv 2018; 25:293-306. [PMID: 29334793 PMCID: PMC6058695 DOI: 10.1080/10717544.2018.1425779] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/29/2017] [Accepted: 01/05/2018] [Indexed: 11/22/2022] Open
Abstract
Nanomaterials-based drug delivery systems display potent applications in cancer therapy, owing to the enhanced permeability and retention effect and diversified chemical modification. In this study, we have tailored and synthesized different sized mesoporous silica nanoparticles (MSNs) through reactant control to investigate the relevancy of nanoparticle size toward anticancer efficacy and suppressing cancer multidrug resistance. The different sized MSNs loaded with anticancer ruthenium complex (RuPOP) and conjugated with folate acid (FA) to enhance the selectivity between cancer and normal cells. The nanosystem (Ru@MSNs) can specifically recognize HepG2 hepatocellular carcinoma cells, thus enhance accumulation and selective cellular uptake. The smaller sized (20 nm) Ru@MSNs exhibit higher anticancer activity against HepG2 cells, while the larger sized (80 nm) Ru@MSNs exhibit higher inhibitory effect against DOX-resistant hepatocellular carcinoma cells (R-HepG2). Moreover, Ru@MSNs induced ROS overproduction in cancer cells, leading to DNA damage and p53 phosphorylation, consequently promoting cancer cells apoptosis. Ru@MSNs (80 nm) also inhibited ABCB1 and ABCG2 expression in R-HepG2 cells to prevent drug efflux, thus overcome multidrug resistance. Ru@MSNs also inhibited tumor growth in vivo without obvious toxicity in major organs of tumor-bearing nude mice. Taken together, these results verify the size effects of MSNs nanosystem for precise cancer therapy.
Collapse
Affiliation(s)
- Bin Ma
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Lizhen He
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Yuanyuan You
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Jianbin Mo
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, PR China
| |
Collapse
|
46
|
Guo Z, Lin Y, Wang X, Fu Y, Lin W, Lin X. The protective efficacy of four iron-related recombinant proteins and their single-walled carbon nanotube encapsulated counterparts against Aeromonas hydrophila infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 82:50-59. [PMID: 30086377 DOI: 10.1016/j.fsi.2018.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Iron-related proteins play important roles in iron homeostasis, and they may be potential vaccine candidates against pathogenic Aeromonas hydrophila. In addition, the encapsulation of antigens in single-walled carbon nanotubes (SWCNTs) has recently been shown to effectively stimulate the host immune response. To investigate the immune response of zebrafish to iron-related proteins and SWCNT-encapsulated proteins, we overexpressed and purified four iron-related recombinant proteins (P55870, A0KGK5, A0KPP0, and A0KIY3) from A. hydrophila. We then vaccinated zebrafish with these proteins and their SWCNT-encapsulated counterparts via both intraperitoneal injection and bath immunization. The target proteins evoked an immune response in zebrafish after intraperitoneal injection, and SWCNT-encapsulation significantly increased the immune response after bath immunization. When challenged with virulent A. hydrophila, zebrafish administered 5 μg intraperitoneal injections of SWCNT-P55870, A0KGK5, A0KPP0, or A0KIY3 had remarkably high relative percent survivals (RPSs) (50%, 55.6%, 66.7%, and 94.44% respectively). The RPSs of zebrafish vaccinated via immunization bath with 40 mg/L SWCNT-encapsulated counterparts were also high (52.94%, 55.56%, 61.11%, and 86.11%, respectively). These results indicated that zebrafish vaccinated with P55870, A0KGK5, SWCNT-P55870, and SWCNT-A0KGK5 were partially protected, while A0KPP0 and A0KIY3 were promising vaccine candidates against pathogenic A. hydrophila infection.
Collapse
Affiliation(s)
- Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Xiaoyun Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China.
| |
Collapse
|
47
|
Borišev I, Mrđanovic J, Petrovic D, Seke M, Jović D, Srđenović B, Latinovic N, Djordjevic A. Nanoformulations of doxorubicin: how far have we come and where do we go from here? NANOTECHNOLOGY 2018; 29:332002. [PMID: 29798934 DOI: 10.1088/1361-6528/aac7dd] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology, focused on discovery and development of new pharmaceutical products is known as nanopharmacology, and one research area this branch is engaged in are nanopharmaceuticals. The importance of being nano has been particularly emphasized in scientific areas dealing with nanomedicine and nanopharmaceuticals. Nanopharmaceuticals, their routes of administration, obstacles and solutions concerning their improved application and enhanced efficacy have been briefly yet comprehensively described. Cancer is one of the leading causes of death worldwide and evergrowing number of scientific research on the topic only confirms that the needs have not been completed yet and that there is a wide platform for improvement. This is undoubtedly true for nanoformulations of an anticancer drug doxorubicin, where various nanocarrriers were given an important role to reduce the drug toxicity, while the efficacy of the drug was supposed to be retained or preferably enhanced. Therefore, we present an interdisciplinary comprehensive overview of interdisciplinary nature on nanopharmaceuticals based on doxorubicin and its nanoformulations with valuable information concerning trends, obstacles and prospective of nanopharmaceuticals development, mode of activity of sole drug doxorubicin and its nanoformulations based on different nanocarriers, their brief descriptions of biological activity through assessing in vitro and in vivo behavior.
Collapse
Affiliation(s)
- Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3:7. [PMID: 29560283 PMCID: PMC5854578 DOI: 10.1038/s41392-017-0004-3] [Citation(s) in RCA: 1096] [Impact Index Per Article: 182.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Although conventional chemotherapy has been successful to some extent, the main drawbacks of chemotherapy are its poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, development of multiple drug resistance, and non-specific targeting. The main aim in the development of drug delivery vehicles is to successfully address these delivery-related problems and carry drugs to the desired sites of therapeutic action while reducing adverse side effects. In this review, we will discuss the different types of materials used as delivery vehicles for chemotherapeutic agents and their structural characteristics that improve the therapeutic efficacy of their drugs and will describe recent scientific advances in the area of chemotherapy, emphasizing challenges in cancer treatments. Improving the delivery of cancer therapies to tumor sites is crucial to reduce unwanted side effects and patient mortality rates. Pralay Maiti and colleagues at the Indian Institute of Technology in Varanasi, India, review the latest developments in drug delivery vehicles and treatment approaches designed to enhance the effectiveness of current cancer therapies. New nanoparticle-based carriers, hydrogels and hybrid materials that offer controlled and sustained drug release are showing great promise in animal models. Furthermore, materials that respond to stimuli such as heat, light, magnetic or electric fields are also being tested to aid target-specific drug delivery and, thus, avoid damage to healthy tissues. Although there are some challenges in translating these findings to the clinic, there is no doubt that technological advances are shaping better and safer treatment options.
Collapse
Affiliation(s)
- Sudipta Senapati
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Arun Kumar Mahanta
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sunil Kumar
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
49
|
TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Li R, Guiney LM, Chang CH, Mansukhani ND, Ji Z, Wang X, Liao YP, Jiang W, Sun B, Hersam MC, Nel AE, Xia T. Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS NANO 2018; 12:1390-1402. [PMID: 29328670 PMCID: PMC5834379 DOI: 10.1021/acsnano.7b07737] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While two-dimensional graphene oxide (GO) is used increasingly in biomedical applications, there is uncertainty on how specific physicochemical properties relate to biocompatibility in mammalian systems. Although properties such as lateral size and the colloidal properties of the nanosheets are important, the specific material properties that we address here is the oxidation state and reactive surface groups on the planar surface. In this study, we used a GO library, comprising pristine, reduced (rGO), and hydrated GO (hGO), in which quantitative assessment of the hydroxyl, carboxyl, epoxy, and carbon radical contents was used to study the impact on epithelial cells and macrophages, as well as in the murine lung. Strikingly, we observed that hGO, which exhibits the highest carbon radical density, was responsible for the generation of cell death in THP-1 and BEAS-2B cells as a consequence of lipid peroxidation of the surface membrane, membrane lysis, and cell death. In contrast, pristine GO had lesser effects, while rGO showed extensive cellular uptake with minimal effects on viability. In order to see how these in vitro effects relate to adverse outcomes in the lung, mice were exposed to GOs by oropharyngeal aspiration. Animal sacrifice after 40 h demonstrated that hGO was more prone than other materials to generate acute lung inflammation, accompanied by the highest lipid peroxidation in alveolar macrophages, cytokine production (LIX, MCP-1), and LDH release in bronchoalveolar lavage fluid. Pristine GO showed less toxicity, whereas rGO had minimal effects. We demonstrate that the surface oxidation state and carbon radical content play major roles in the induction of toxicity by GO in mammalian cells and the lung.
Collapse
Affiliation(s)
- Ruibin Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Linda M. Guiney
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
| | - Nikhita D. Mansukhani
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, University of California, Los Angeles, California 90095, United States
| | | | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, University of California, Los Angeles, California 90095, United States
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, University of California, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
- Corresponding Author: Tian Xia, Ph.D.; and Andre Nel, Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175, CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 983-3359, Fax: (310) 206-8107, ,
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, University of California, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, University of California, Los Angeles, California 90095, United States
- Corresponding Author: Tian Xia, Ph.D.; and Andre Nel, Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175, CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 983-3359, Fax: (310) 206-8107, ,
| |
Collapse
|